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ABSTRACT

Many volumetric illumination techniques for volume rendering were developed through-

out the years. However, there are still many constraints regarding the computation of

multiple scattering path tracing in real-time applications due to its natural complexity and

scale. Path tracing with multiple scattering support can produce physically correct results

but suffers from noise and low convergence rates. This work proposes a new real-time

algorithm to approximate multiple scattering, usually only available in offline rendering

production, to real-time. Our approach explores the human perceptual system to speed

up computation. Given two images, we use a CIE metric stating that the two will be

perceived as similar to the human eye if the Euclidean distance between the two images

in CIELAB color space is smaller than 2.3. Hence, we use this premise to guide our in-

vestigations when changing ray and bounce parameters in our renderer. Our results show

that we can reduce from 105 to 104 Samples Per Pixel (SPP) with a negligible perceptual

difference between both results, allowing us to cut rendering times by 10 whenever we

divide SPP by 10. Similarly, we can reduce the number of bounces from 1000 to 100 with

a negligible perceptual difference while reducing rendering times by almost half. We also

propose a new algorithm in real-time, Lobe Estimator, that approximates these behaviors

and parameters while performing twice as faster as the classic Ray Marching technique.

Keywords: Computer graphics. Volumetric rendering. Volumetric illumination. Path

tracing. Light transport. Monte Carlo path tracing. Global illumination. Real-time.



RESUMO

Muitas técnicas de ilmuninação volumétrica foram desenvolvidas ao longo dos anos. En-

tretanto, ainda há muitas restrições na computação de multiple scattering em aplicações

de tempo real usando path tracing, devido à sua complexidade e escala. Path tracing com

suporte a multiple scattering é capaz de produzir resultados fisicamente corretos, mas

sofre de ruídos e baixa taixa de convergência. Portanto, este trabalho propõe um novo

algoritmo de tempo real para aproximar multiple scattering, usado em offline rendering.

Nossa abordagem irá explorar o sistema perceptual visual humano para acelerar a com-

putação. A partir de duas imagens, nós usamos a métrica da CIE que afirma que duas

imagens são percebidas como similar ao olho humano se a distância Euclidiana das duas

imagens no espaço de cores CIELAB for menor que 2.3. Dessa forma, nós usamos essa

premissa para guiar nossas investigações quando alterando os parâmetros de Samples Per

Pixel (SPP) e bounces nos renderizadores. Nossos resultados mostram que podemos redu-

zir de 105 para 104 Samples Per Pixel (SPP) com uma diferença perceptual negligenciável

entre ambos paramêtros, permitindo reduzir o tempo de renderização por 10 a cada vez

que dividimos o SPP por 10. Similarmente, nós podemos reduzir o número de bounces

de 1000 para 100 com uma diferença perceptual negligenciável, enquanto reduzindo o

tempo de renderização por quase metade. Nós também propusemos um novo algoritmo

em tempo real, Lobe Estimator, que permite aproximar esses comportamentos e paramê-

tros enquanto permformando duas vezes mais rápido que o clássico Ray Marching.

Palavras-chave: Computer Graphics, Volumetric rendering, Volumetric illumination,

Path tracing, Light transport, Monte Carlo path tracing, Global illumination.



LIST OF ABBREVIATIONS AND ACRONYMS

sr Steradian, also known as square radian. Unit of solid angle.

RTE Radiative Transfer Equation.

VRE Volume Rendering Equation.

HG Henyey-Greenstein phase function.

SPP Samples Per Pixel.

BSDF Bidirectional Scattering Distribution Function.

PDF Probability Density Function.

CDF Cumulative Distribution Function.

MIS Multiple Importance Sampling.

JND Just Noticeable Difference.

AABB Axis Aligned Bounding Box.



GLOSSARY

Radiance Radiant flux per unit solid angle and unit area projected in a direction. Mea-

sured as Watts per steradian per square meter ( W
sr·m2 ) (DORSEY; RUSH-

MEIER; SILLION, 2008).

Irradiance Radiant flux per unit time and area arriving at a surface. Measured as Watts

per square metre ( W
m2 ) (DORSEY; RUSHMEIER; SILLION, 2008).

Optical depth Also known as optical thickness, is the natural logarithm of the ratio of

incident to transmitted radiant power through a material. It is dimension-

less and written as τ = ln( incident radiance
transmitted radiance

) = −ln(T ), where T is the

material’s transmittance.

Voxel A unit of graphic information that defines an element of a regular grid in

three-dimensional space. The word is derivated from the combination of vo

(volume) and xel (pixel).
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1 INTRODUCTION

Volumetric rendering is a field of computer graphics focused on techniques to

render participating media, i.e., large spatial volumes filled with sparse particles, e.g.,

dust, water droplets, clouds, and smoke (FONG et al., 2017). It is also a process of

calculating how light interacts with these media and what physical phenomena occur due

to this interaction. An example of ubiquitous participating media, clouds, are shown in

Figures 1.1 and 1.2.

Techniques used to calculate light transport within a volume are based on the as-

sumption that the volume is composed of many tiny and sparse particles that its rendering

model is best modeled as a probabilistic process, rather than calculating each interaction

with every single particle (PHARR; JAKOB; HUMPHREYS, 2016). By following this

strategy, it is necessary to consider three properties while calculating light interactions

with a medium: absorption, emission, and scattering.

In the real-time rendering community, the pursue of realistic interactive image

synthesis has been one of the major goals since its very beginning (JÖNSSON et al.,

2014). In more recent years, there has been an effort to capture the very challenging

property of multiple scattering, including anisotropic scattering, to real-time rendering.

Too often, it faced substantial limitations due to grid sizes (ELEK et al., 2014). Although

it is possible to render the effect of multiple scattering in real-time with constraints, it is

still a challenging phenomenon to account for due to its complexity. It is too complex

to trace all the necessary rays and compute all the properties of a single participating

medium. It turns out even harder when we consider mixed media and other objects in the

scene that are interacting with each other.

There are many different volumetric illumination techniques for interactive vol-

ume rendering (JÖNSSON et al., 2014). Some of the most important techniques are

discussed in Chapter 3. The most common technique for light transport used for both

participating media and surfaces used today in production involves path tracing (FONG

et al., 2017). It uses Monte Carlo integration to simulate global illumination, which re-

quires a considerable number of rays and bounces to converge to a satisfactory image

with low noise. To overcome this problem, the industry has adopted a variety of methods

of sampling and denoising algorithms (HOFMANN et al., 2021), but it is still a massive

bottleneck for real-time rendering.

This work proposes to bring together volumetric path tracing algorithms and per-
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ceptual principles to synthesize images faster. We will use the device-independent CIELAB

metric as a tool to estimate the threshold values at which the human eye can no longer per-

ceive differences between the proposed ground truth and the target being tested (MAHY;

EYCKEN; OOSTERLINCK, 1994). By real-time, we target less than 16 milliseconds per

frame (ELLIS et al., 2004).

This dissertation is organized as follows: Chapter 2 lays the foundations of vol-

umetric rendering theory, followed by the related work in Chapter 3. In Chapter 4, we

briefly discuss the most common algorithms used in production volumetric rendering. In

Chapter 5, we conduct a visual analysis based on the CIELAB metric, exploring how

the numbers of samples per pixel and bounces affect the rendering quality of volumet-

ric scenes. Last, in Chapter 6, we propose a new algorithm, Lobe Estimator, that ap-

proximates volumetric rendering algorithms used in offline rendering, bringing them to

real-time while also performing better than the classic ray marching used for real-time

applications.

Figure 1.1: Clouds, a classic example of participating media. Photo taken at Chute Mont-
morency in Quebec City, Canada.

Source: The author.
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Figure 1.2: Clouds, a classic example of participating media. Photo taken at Serra da
Canastra in Minas Gerais, Brasil.

Source: The author.
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2 THEORY ON VOLUMETRIC RENDERING

A participating medium can be homogeneous or heterogeneous, i.e., its proper-

ties of absorption, emission, and scattering are constant or non-constant throughout the

volume (PHARR; JAKOB; HUMPHREYS, 2016). A medium can also be anisotropic

or isotropic, i.e., the scattering probability does or does not depend on incoming light

direction, while allowing asymmetric scattering, calculated by the phase function.

The notation for variables and functions used in the process of calculating light

interactions within a participating medium is shown in Table 2.1.

Table 2.1: All mathematical notations used to calculate light transport through a partici-
pating media.

Symbol Description Unit
ξ Random number, usually in the interval [0, 1) unitless
σa absorption coefficient m−1

σs scattering coefficient m−1

σt extinction coefficient (σt = σa + σs) m−1

ρ albedo unitless
fp(x, ω, ω

′) phase function at point x given incoming direction ω
and exiting direction ω′

sr−1

L(x, ω) radiance at point x in direction ω W ·m−2
Ls(x, ω) radiance scattered at point x in direction ω
Le(x, ω) radiance emitted at point x in direction ω
Lb(x, ω) background radiance at point x in direction ω
Tr(x, x′) Transmittance from point x to x′

2.1 Mathematical Model and Foundation

The mathematical model used to render participating media based on the Radiative

Transfer Equation (RTE) (Chandrasekhar, 1950), more precisely on the optical model pro-

posed by (Max, 1995), is called Volume Rendering Equation (VRE) (FONG et al., 2017)

when adapted to the rendering field. The VRE can separately incorporate the properties

of absorption, emission, and scattering. The original RTE from which we derive the VRE

is written as follows:
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(ω·∇)L(x, ω) = −σt(x)L(x, ω)︸ ︷︷ ︸
Absorption and Out-scattering

+σa(x)Le(x, ω)︸ ︷︷ ︸
Emission

+σs(x)

∫
S2

fp(x, ω, ω
′)L(x, ω′)dω′︸ ︷︷ ︸

In-scattering

(1)

where the absorption and out-scattering terms are originally written as (ω∇)L(x, ω) =

−σa(x)L(x, ω) and (ω∇)L(x, ω) = −σs(x)L(x, ω), respectively. Hence, because they

can be combined into the extinction coefficient σt, both expressing losses in radiance,

we can simplify then as L(x, ω) = −σt(x)L(x, ω). To further simplify we rename the

integral part of the in-scattering term to Ls(x, ω) =
∫
S2 fp(x, ω, ω

′)L(x, ω′)dω′, yielding

the final RTE:

L(x, ω) = −σt(x)L(x, ω) + σa(x)Le(x, ω) + σs(x)Ls(x, ω). (2)

Note that the Ls(x, ω) term integrates over the whole unit sphere S2. By finding

a suitable boundary condition and evaluating the endpoints of the function curve we can

integrate both sides of Equation 2, yielding the Volumetric Rendering Equation (VRE)

given in Equation 3.

L(x, ω) = Lb(xb, ωb)Tr(x, x
′) +

∫ x′

x

Tr(x, x′)[σa(x)Le(x, ω) + σs(x)Ls(x, ω)]dx (3)

where Lb(xb, ω) is the incident radiance entering the volume and Tr(x, x′) is the trans-

mittance function in terms of the extinction coefficient σt. The transmittance function

describes how radiance decays through the volume, and it is written as:

Tr(x, x′) = e−
∫ x′
x σt(x)dx. (4)

Since the nature of VDB datasets used in volumetric rendering are discrete, the in-

tegrals are approximated numerically, commonly with a Monte Carlo method. A number

of participating media are available under the VDB format at (FOUNDATION, ). The four

major volumetric properties, i.e., absorption, emission, in-scattering, and out-scattering,

are discussed in Sections 2.2, 2.3, 2.4, and 2.5.
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2.2 Absorption

Absorption, denoted by σa, occurs when light passes through a particle and is

converted to another form of energy, e.g. heat. This effect is mostly noticeable on thicker

media such as, for example, dense smoke produced from a fire or an explosion, where

light mostly fails to traverse the media and reach the observer due to a high absorption

rate in the volume. As described in Table 2.1, the unit of σa is the reciprocal distancem−1,

which means that it can take any positive value, and thus represents the probability density

that light radiance is absorbed per unit distance traveled in the medium. An illustrative

example is shown in Figure 2.1 where, as the light beam traverses the cloud, it gradually

loses energy due to absorption by the participating media.

To calculate the absorption we use Equation 5, where d is the distance a ray travels

in the direction ω, and x = 0 is the starting point. This formula comes from Beer’s law.

When the medium is homogeneous, thus σa is constant, we can evaluate the equation

simply as a function of the form e−x, shown in Figure 2.2.

e−
∫ d
x=0 σa(x+tω)dx. (5)

Figure 2.1: Beam of light traversing a cloud and losing energy by absorption when col-
liding with a particle.

Source: The Author.
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Figure 2.2: Absorption as a function of the form e−x, where the y axis is the amount
of energy passing through and the x axis is the distance traveled inside the medium.
Therefore, it represents the decay of radiance by absorption along traveled distance d.

Source: The Author.

2.3 Scattering

Scattering occurs when a light ray bounces inside the medium as a consequence

of collisions with particles, as illustrated in Figure 2.3. It can have two effects on the

radiance of the light beam, and is classified in two forms:

• Out-scattering: When the light ray hits a particle inside the medium it may bounce

off the path, thus reducing radiance.

• In-scattering: When another light ray interacts with the current light beam, thus

increasing radiance.
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Figure 2.3: Effects of in- and out-scattering as a light ray passes through the medium until
reaching the observer.

(a) In-scattering. (b) Out-scattering.

Source: The Author.

The probability of an out-scattering event occurring per unit distance is given by

the scattering coefficient σs. Since absorption is also an event that reduces radiance we can

define the extinction coefficient σt as the sum of absorption and out-scattering coefficients:

σt = σa + σs. An example of these effects is shown in Figure 2.4.

Figure 2.4: An example of a homogeneous participating medium with absorption values
σa of 0 and scattering σs values of σs(0.1, 0.1, 0.1), σs(0.1, 0.3, 0.1), and σs(0.1, 0.9, 0.1),
respectively.

Source: The Author.

2.3.1 Single Scattering

If each sample point along the light beam keeps the direction constant, the method

is categorized as handling only single scattering. This process is illustrated in Figure 2.5.

Single scattering is commonly used with the ray marching technique, where both the step

size and ray direction inside the medium are constant.
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Figure 2.5: Single scattering where the beam traverses the medium along a straight line
without any disturbance along its path direction.

Source: The Author.

2.3.2 Multiple Scattering

If each sample point along the beam may change the ray direction, then the method

is categorized as handling multiple scattering. This process is illustrated in Figure 2.6.

Multiple scattering is more commonly used in offline renderers, where the constraint of

time is more flexible, thus allowing for more processing power to take place.

Figure 2.6: Multiple scattering where the beam traverses the medium with changes in its
direction.

Source: The Author.



21

2.4 Extinction

Extinction, also known as attenuation, is calculated as the sum of absorption and

out-scattering (σt = σa + σs), where absorption is a function removing photons and out-

scattering is a function redirecting photons away from the current path direction.

There are other two important terms related to the extinction coefficient σt. The

first one is albedo, always between 0 and 1, which describes the probability of a scattering

event at each sampling point. An albedo of 0 means that all radiance is absorbed, and an

albedo of 1 means that no absorption occurs. Its equation is defined as:

ρ =
σs
σt
.

The other term is the mean free path, written as
1

σt
, which is the average distance

that a ray travels in the medium before interacting with any particle. These two variables

control the beam transmittance, which gives the fraction of radiance transmitted between

two points.

e−
∫ d
0 σt(t)dt.

2.5 Emission

Emission, the opposite of absorption, increases the amount of radiance along a

ray that passes through the medium. It increases radiance through a process of thermal or

nuclear conversion of energy into light. This process is illustrated in Figure 2.7.
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Figure 2.7: Beam of light traversing a cloud and increasing its total energy by emission
from colliding with a particle emitting light.

Source: The Author.

2.6 Phase Function

There are several phase functions, each being suitable for a different use case. The

most common in rendering are isotropic, Henyey-Greenstein (HENYEY; GREENSTEIN,

1941), commonly abbreviated as HG, and Mie. A phase function describes the angular

distribution of rays at a scattering event, which is a point sample along the light path. The

effects of the phase function on the final rendering are partially negligible when operat-

ing over thick media dominated by high-order scattering, where after a certain number of

bounces, behaves as diffuse (BOUTHORS et al., 2008). However, the effects are percep-

tually impactful over thin media, where light scatters only a few times before leaving the

medium (GKIOULEKAS et al., 2013).

2.6.1 Isotropic

The isotropic phase function follows a uniform sampling of the unit sphere; it can

be simply expressed as:

fp(x, ω, ω
′) =

1

4π

where for each given incoming ray the resulting scattering ray will have a random direc-

tion with equal probability over the sphere. A polar plot of the 2D isotropic behavior is
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shown in Figure 2.8.

Figure 2.8: Isotropic phase function polar plot. It represents a cross section of the spheri-
cal distribution of scattered rays.

Source: The Author.

2.6.2 Henyey-Greenstein

The most common phase function used due to its simplicity and flexibility is

the Henyey-Greenstein (HG) function. It is able to convey phenomena of backward-

scattering, isotropic-scattering and forward-scattering through a single parameter g, rang-

ing from −1 to +1. The closer g gets to -1, the more backward-scattering occurs; the

closer to +1, the more forward-scattering and g = 0 means an isotropic behavior. The HG

equation is written as:

fp(θ) =
1

4π
· 1− g2

(1 + g2 − 2g cos θ)

Alternatively, expressing the phase as a function of ω, we must calculate θ between

the scattering ray ω′ and the coordinate system frame normal which, assuming we are

working with the z-axis as the up vector from the spherical coordinate system, we get a

normal axis of (0, 0, 1). Hence, following our notation the formula can be written as:
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fp(x, ω, ω
′) =

1

4π
· 1− g2

(1 + g2 − 2g cos(ω′ · (0, 0, 1)))
.

In Figure 2.9 we plot a polar graph with the effects for different values of g. In

Figure 2.10 we showcase the visual impacts of forward- and backward-scattering.

Figure 2.9: The Henyey-Greenstein phase function with backward-scattering, when pa-
rameter g is negative, depicted by the dashed line lobes, isotropic when g = 0, depicted
by the green circle at the center, and forward-scattering, when parameter g is positive and
depicted by the solid line lobes on the right.

Source: The Author.
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Figure 2.10: The Henyey-Greenstein phase function anisotropy effect. The cloud is
lit by an area light source behind it. The cloud on the left shows an effect of high
forward-scattering with parameter g = 0.9; on the right the cloud shows an effect of high
backward-scattering with parameter g = −0.9. Note that on the right, due to backward-
scattering, most light rays fail to reach the viewer, reflecting backward towards the light
source instead, and resulting in a darker cloud.

Source: The Author.
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3 RELATED WORK

Volume rendering is a field of computer graphics. One of its lines of research

focuses on evolving models for light transport within participating media, i.e. volumes

of tiny sparse particles. The different models used to calculate light transport take into

account, in order of increasing realism, absorption only, emission only, emission and

absorption combined, single scattering of external illumination without shadows, single

scattering with shadows, and multiple scattering (Max, 1995).

Throughout the years, several techniques of volumetric rendering have been de-

veloped. They can be categorized into six groups, though not entirely since a few of them

could fit in more than one group (JÖNSSON et al., 2014). The six groups are based on:

local region, slice, light space, lattice, basis function, and ray tracing. These groups are

organized taking into account the concepts used to calculate illumination in each model.

Moreover, even though all of them are based on Max’s foundations (Max, 1995), they

can differ significantly. A major difference between them is shadow intensity and quality.

Table 3.1 shows all models in each of these groups, which are briefly explained ahead.

Local region based techniques are comparable to the conventional Blinn-Phong

illumination model (BLINN, 1977) used for rendering surfaces due to their local shading

nature. Models in this group either consider only the current voxel, adjacent voxels, or

larger regions, but they are still considered localized regions. Gradient-based volumetric

rendering (LEVOY, 1988) explores gradients between voxels as surface normals, simi-

larly calculating light as with the model of Blinn-Phong (BLINN, 1977). Local ambient

occlusion (HERNELL; LJUNG; YNNERMAN, 2008) is locally approximated from ad-

jacent voxels. Dynamic ambient occlusion (ROPINSKI et al., 2008) is similar but has a

pre-computation stage to generate histograms. This method supports the integration of

ambient occlusion, color bleeding, and basic scattering effects.

Slice based techniques use a series of rectangular slices as proxy geometry to por-

tray the volumetric data. Nowadays, with increased memory and GPU support, it is more

common to simply map the volumetric data to a 3D texture. Half-angle slicing (KNISS

et al., 2003) supports phase functions, spatially varying indirect extinction, multiple scat-

tering, and only one light source. Directional occlusion shading (SCHOTT et al., 2009)

does not take into account the emission term and supports only one light source fixed

at the camera position. Multidirectional occlusion shading (SOLTÉSZOVÁ et al., 2010)

extends the directional occlusion shading by allowing the light source to be positioned
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Table 3.1: Volumetric illumination techniques sorted into six groups based on conceptual
similarities. Representative papers are listed in parenthesis.
Group Algorithms

Local region based • Gradient based (LEVOY, 1988)
• Local ambient occlusion (HERNELL; LJUNG;
YNNERMAN, 2010)
• Dynamic ambient occlusion (ROPINSKI et al., 2008)

Slice based • Half angle slicing (KNISS et al., 2003)
• Directional occlusion (SCHOTT et al., 2009)
• Multidirectional occlusion (SOLTÉSZOVÁ et al., 2010)

Light space based • Deep shadow mapping (HADWIGER et al., 2006)
• Image plane sweep (SUNDEN; YNNERMAN;
ROPINSKI, 2011)
• Shadow splatting (ZHANG; XUE; CRAWFIS, 2005)
• Historygram Photon Mapping (JÖNSSON et al., 2012)

Lattice based • Piecewise integration (HERNELL; LJUNG;
YNNERMAN, 2010)
• Shadow volume propagation (ROPINSKI; DORING;
REZK-SALAMA, 2010)
• Summed area table 3D (DíAZ et al., 2010)
• Extinction-based shading (SCHLEGEL; MAKHINYA;
PAJAROLA, 2011)
• Light propagation volumes (ZHANG; MA, 2013)
• Discrete ordinates method (DOM) (ELEK et al., 2014)

Basis function based • Spherical harmonics (KRONANDER et al., 2012)
Ray tracing based • Monte Carlo ray tracing (KROES; POST; BOTHA, 2012)

Source: Compilated by (JÖNSSON et al., 2014).

arbitrarily in the viewer’s hemisphere.

Light space based techniques consider that illumination is directionally propa-

gated concerning the current light position, but because of that, these techniques usu-

ally support only one light source. Deep shadow mapping (HADWIGER et al., 2006)

stores shadow information as a data structure of transmittance but supports only one light

source. Image plane sweep volume illumination (SUNDEN; YNNERMAN; ROPINSKI,

2011) supports one point or directional light source and single and multiple forward-

scattering. Shadow splatting (ZHANG; XUE; CRAWFIS, 2005) supports multiple point

light sources, single scattering, and uses Phong shading. Histogram photon mapping (JÖNS-

SON et al., 2012) supports multiple scattering and multiple light sources arbitrarily posi-

tioned in the environment.

Lattice based techniques directly use the grid to calculate illumination per voxel.

Shadow volume propagation (ROPINSKI; DORING; REZK-SALAMA, 2010) distributes
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illumination in a pre-processing phase, storing its calculation in a volumetric data grid.

It supports multiple scattering and only one point or directional light source in any ar-

bitrary positions, with low frame rates because of its additional lookup in the extra 3D

texture. Piecewise integration (HERNELL; LJUNG; YNNERMAN, 2008) supports only

one directional light source, approximates in-scattering as emission, and usually uses

ray casting. Extinction-based shading and illumination (SCHLEGEL; MAKHINYA; PA-

JAROLA, 2011) uses summed area tables (SAT) to compute extinction and supports point

and directional light sources. Light propagation volumes (ZHANG; MA, 2013) support

multiple point and directional light sources and both single and multiple isotropic scatter-

ing at interactive frame rates. The discrete ordinates method (ELEK et al., 2014) supports

multiple anisotropic scattering in heterogeneous participating media, but it is only physi-

cally plausible, and is limited to low grid resolutions.

Basis function based techniques use basis functions to represent light source ra-

diance and transparency. Spherical harmonics (KRONANDER et al., 2012) uses a data

structure similar to a mipmap to store multiple resolutions of the volumetric dataset, thus

requiring a lot of storage. Both area and point light sources are supported.

Figure 3.1: Results obtained with one representative method from each category.
From left to right: gradient-based shading (LEVOY, 1988), directional occlusion shad-
ing (SCHOTT et al., 2009), image plane sweep volume illumination (SUNDEN; YNNER-
MAN; ROPINSKI, 2011), shadow volume propagation (ROPINSKI; DORING; REZK-
SALAMA, 2010), and spherical harmonics lighting (KRONANDER et al., 2012).

Source: A survey of volumetric illumination techniques for interactive volume render-

ing (JÖNSSON et al., 2014).

More recent works in the industry of video games (HILLAIRE, 2015b; SHNEI-

DER, 2015; SHNEIDER, 2017; ENGEL, 2016; BAUER, 2019), which are directly fo-

cused on real-time rendering, have achieved better results regarding real-time perfor-

mance. Clouds in the "Horizon Zero Dawn" game use ray marching (SHNEIDER, 2017)
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with single scattering only, and it reaches a performance of 2ms per frame (ENGEL,

2016). In the same year, Hillaire also proposed a real-time approach for single scattering

with temporal volumetric integration, reaching performance of 2.95ms per frame (HILLAIRE,

2015b). Even today, we are still limited to single scattering in high-performance real-time

volumetric rendering, as evidenced in games and academic works. Two such examples

are the results in "Red Dead Redemption 2", presented in Figure 3.2, and the Siggraph

course (BAUER, 2019) "Advances in Real-Time Rendering in Games."

Figure 3.2: Volumetric clouds in "Red Dead Redemption 2", which is built upon the base
created by Andrew Schneider and other technologies developed throughout the industry
over the years.

Source: (BAUER, 2019).

Multiple scattering is a factor that plays a huge role into physically rendering par-

ticipating media with high albedo. A good quality image synthesizer should also take

into account anisotropic scattering effects for media with high albedo, such as clouds.

Older methods account only for single scattering (LEVOY, 1988; HERNELL; LJUNG;

YNNERMAN, 2010; ROPINSKI et al., 2008) and some with limitations to isotropic scat-

tering behavior. Recent work started taking into account anisotropic multiple scattering

for interactive rendering, but with limitations on grid size (ZHANG; MA, 2013; KRO-

NANDER et al., 2012). Some work do scale well with grid size and take into account

multiple scattering, but do not scale well with image size (ZHANG; XUE; CRAWFIS,

2005; HADWIGER et al., 2006).

A few other recent works, that were not available at the time of Jönsson et al.

categorization, and published concomitantly to the development of our work, are worth

mentioning. Hofmann et al. propose a temporally stable neural denoiser (HOFMANN

et al., 2021), that produces results in real time. However, at a resolution of 1920 × 1080
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they were still limited to 16 frames per second using an RTX 3090 to render the Disney

cloud dataset (DISNEY, 2021). On thin details, the denoiser causes a blur effect that

is greatly noticeable when near the cloud volume. Furthermore, Miller et al. (MILLER;

GEORGIEV; JAROSZ, 2019) improve upon previous work directed at offline render-

ing by proposing a null-scattering path integral formulation of light transport (MILLER;

GEORGIEV; JAROSZ, 2019) which, although not focused on real-time rendering, lays

the foundation for state-of-the art volumetric rendering, thus making possible to generate

ground-truth images used for validation.

Although many of these methods have improved volumetric rendering, each one

using different types of techniques to achieve its results, nobody has yet used the CIEE

metric as a way to speed computation and make visual comparative visual analysis, as we

propose in Chapter 5.
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4 VOLUMETRIC RENDERING ALGORITHMS

Rendering algorithms for volumes come in many flavors. Each algorithm tries

to solve the rendering equation by setting constraints that meet their needs, be it time

or quality restrictions. In this chapter, we discuss a few approaches and their use cases,

focusing more on null-collision algorithms, which is what we chose and implemented in

our own in-house Narval Engine for validation and ground truth purposes.

4.1 Distance and Transmittance Sampling

Distance sampling is the process of sampling the flight a photon travels until its

next interaction occurs within the participating medium.

There are three types of approaches to find the distance t: analytic, semi-analytic,

and approximate. The analytic closed-form tracking is used in simple homogeneous vol-

umes where the extinction σt is constant and an inverted Cumulative Distribution Func-

tion CDF−1 can be used to sample transmittance along a path. It is commonly applied to

render fogs and atmospheres. Semi-analytic approaches are used in piece-wise and het-

erogeneous volumes. The category of null-collision algorithms, which are semi-analytic,

is discussed further in Section 4.2. The most common approach used in real-time applica-

tions is ray marching, which is approximate, due to its simplicity and high performance.

It uses a fixed step to find the distance collision through the volume. Its major downside

is the introduction of bias and tendency to have detail losses more visible in thin media.

4.2 Null-collision Algorithms

This class of algorithms are semi-analytic and unbiased. Originating from neutron

transport and plasma physics, it was first applied to rendering by (RAAB; SEIBERT;

KELLER, 2008). This is the most common class of algorithms chosen when working

with heterogeneous media. For distance sampling, i.e., free path sampling, there are four

major algorithms: delta tracking, weighted delta tracking, decomposition tracking and

spectral tracking. We chose to implement delta tracking, the same method employed in

pbrt v3 (PHARR; JAKOB; HUMPHREYS, 2016). For transmittance sampling there are

four major algorithms: delta tracking, ratio tracking, residual ratio tracking, and next-
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flight delta/ratio tracking. We opted for ratio tracking, which is also the same method

employed in pbrt v3. The key concept in null-collision algorithms is the introduction of a

fictitious medium that fills all empty areas inside the bounding box of a volume. This idea

is illustrated in Figure 4.1 by the purple filling around the cloud. While introducing this

fictitious medium we also introduce the null-collision event, which is a collision where

we do not make any light transport calculation and keep the ray direction unchanged, as

illustrated in Figure 4.2 with red points.

Figure 4.1: Visual interpretation of the fictitious matter where null collisions may occur.
Note that we treat all empty areas within the volume bounding box as fictitious matter,
represented here in light purple.

Source: The author.
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Figure 4.2: For each null-collision event that happens, the path direction remains un-
changed until a normal scattering event happens inside the proper volume. The sample
points x0 and x4 represent a null-collision event, and x1, x2, and x3 a normal scattering
event.

Source: The author.

4.2.1 Delta Tracking

Delta tracking is an algorithm used to sample medium interactions. The general

idea of delta tracking, also known as Woodcock tracking, the null-collision algorithm, or

pseudo scattering, is to homogenize the volume with a fictitious density by creating a new

collision type. In this new type of collision, called null-collision and represented by the

coefficient σn, the direction of the ray is preserved, not affecting light transport, as shown

in Figure 4.3. In order to have the volume homogenized, σn must be chosen respecting

the restriction that the free path coefficient σ̃ becomes constant.

σ̃ = σa + σs + σn.
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In this method we now have three collision types to account for as probabilities:

Pa(x) =
σa(x)

σ̃
, Ps(x) =

σs(x)

σ̃
, Pn(x) =

σn(x)

σ̃
.

Adapting the VRE to support null-collision probability gives the following equa-

tion:

L(x, ω) =

∫ ∞
t=0

[Pa(x)Le(x, ω) + Ps(x)Ls(x, ω) + Pn(x)L(x, ω)]dt.

Interpreting the mathematical formulation and translating it into pseudo code gives

Algorithm 1.

Figure 4.3: Distance sampling at a microscale level. Starting at the volume boundary,
each sampled distance gives a point along the current ray direction and, if this point is
inside the medium, and thus results in a valid normal scattering event, we move on to
sample the phase function for a new ray direction. We repeat this step until we reach the
boundary again or a transmittance value of 0, i.e. an obstacle or an absorbed ray.

∆0

∆1

∆2

∆3

∆4

Source: The author.

4.2.2 Ratio Tracking

The delta tracking based estimator of transmittance can be interpreted as a random

walk terminated by russian roulette. An unbiased transmittance estimator that is related

to delta tracking was introduced to computer graphics by (NOVáK; SELLE; JAROSZ,
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Algorithm 1: Delta tracking. x is the sampled point, ω is the ray direction,
and d is the sampled distance.

procedure deltaTracking(x, ω, d):
while true do

ξ ∈ [0, 1]

t = − ln(1−ξ)
σ̃

if t > d then
return Ld(x, ω)

end
x = x− t× ω
if ξ < σa(x)

σ̃ then
return Le(x, ω)

else if ξ < 1− σn(x)
σ̃ then

ω = sample ∝ phase(x, ω)
d = new_Ray_End_In_ω

else
d = d− t

end
end

2014). The russian roulette of delta tracking is replaced by a Monte Carlo weight that

is equal to the probability of a null collision in relation to the extinction coefficient at

a given sampled point. The ray is navigated backwards while updating the weight until

the boundary is hit. This method is called ratio tracking and a pseudo code is given in

Algorithm 2.

Algorithm 2: Ratio tracking. x is the sampled point, ω is the ray direction,
and d is the sampled distance.

procedure ratioTracking(x, ω, d):
Tr = 1
while true do

ξ ∈ [0, 1]

t = − ln(1−ξ)
σ̃

if t > d then
return Tr

end
x = x0 − t× ω0

Tr = Tr × (1− σt(x)
σ̃ )

end
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4.3 Volume as Material

Once the methods used to sample distance and transmittance of ray paths inside

a volume are chosen, the next step is to integrate these algorithms into the path tracing

equation. The Narval Engine works with two file formats when importing volumes: vol

and vdb. The format .vol is a simple text file containing its resolution in the first line,

followed by the grid density as an array of floating-point numbers written as plain text,

where each row represents a row into the matrix. The second format .vdb, from the Open-

VDB project (FOUNDATION, ), which is an open source initiative held and maintained

by the Academy Software Foundation (ASWF).

The volume material properties are parameterized into: absorption, scattering,

density multiplier, and phase function. Absorption corresponds to a vector of 3 floating-

point numbers that represents the volume absorption in m−1 for each RGB color channel.

Scattering corresponds to a vector of 3 floats that represents the volume probability of

a scattering event per m−1. The density multiplier is a constant factor that represents

how thin or thick the volume is. As this value gets larger the volume starts to appear

like a solid, with dense matter. The last parameter is the phase function, either isotropic

or Henyey-Greenstein. An example scene with a cloud centered at origin and an area

light emitter behind it is given in Listing 4.3. Every scene descriptor is a JSON file

and mainly composed of four areas of configuration: materials, primitives, camera, and

renderer. For this scene we first define both a light emitter and cloud materials. The

emitter material is set by attributing a name to the material, its type ("emitter"), and its

albedo (radiance). The cloud must also have a name and type, which is "volume" followed

by scattering, absorption, phase function, path for its file relative to the executable and

density multiplier. Next we create two primitives, one rectangle for the light emitter

and a volume for the cloud, which is internally treated as an Axis Aligned Bounding

Box (AABB). For each primitive one must define its transformations with corresponding

position, scale, and rotation (in degrees). It is also necessary to specify the material name

to which we will attribute the primitive to. The camera is defined by its position, point

to which look at, up vector, movement speed in meters per second, vertical field of view

(FOV), aperture (functional only when in offline rendering mode), and focal distance.

The renderer is defined by its resolution, number of samples per pixel (SPP), number of

bounces per camera ray, and whether HDR and tone mapping is active or not.
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{

" m a t e r i a l s " : [

{

" name " : " e m i t t e r " ,

" t y p e " : " e m i t t e r " ,

" a l b e d o " : [ 2 0 , 20 , 20]

} ,

{

" name " : " c loudVolMat " ,

" t y p e " : " volume " ,

" s c a t t e r i n g " : [ 1 . 1 , 1 . 1 , 1 . 1 ] ,

" a b s o r p t i o n " : [ 0 . 0 1 , 0 . 0 1 , 0 . 0 1 ] ,

" p h a s e F u n c t i o n " : " hg " ,

" g " : 0 . 9 ,

" p a t h " : " vdb / w d a s _ c l o u d _ q u a r t e r . vdb " ,

" d e n s i t y " : 10

}

] ,

" p r i m i t i v e s " : [

{

" name " : " r e c t L i g h t " ,

" t y p e " : " r e c t a n g l e " ,

" t r a n s f o r m " : {

" p o s i t i o n " : [ 0 , 0 , 8 0 ] ,

" s c a l e " : [ 1 5 0 , 100 , 1 ] ,

" r o t a t i o n " : [ 0 , 0 , 0 ]

} ,

" mate r i a lName " : " e m i t t e r "

} ,

{

" name " : " c l o u d " ,

" t y p e " : " volume " ,

" t r a n s f o r m " : {

" p o s i t i o n " : [ 0 . 0 , 0 , 0 ] ,

" s c a l e " : [ 1 5 . 9 , 9 . 5 1 , 1 3 . 5 ] ,

" r o t a t i o n " : [ 0 , 0 , 0 ]

} ,

" mate r i a lName " : " c loudVolMat "

}

] ,

" camera " : {

" p o s i t i o n " : [ 0 , 0 , −17] ,

" lookAt " : [ 0 , 0 , 0 ] ,

" up " : [ 0 , 1 , 0 ] ,

" speed " : 5 ,

" vfov " : 45 ,

" a p e r t u r e " : 0 . 0 0 0 1 ,

" f o c u s " : 1

} ,



38

" r e n d e r e r " : {

" r e s o l u t i o n " : [ 1 2 0 0 , 6 0 0 ] ,

" spp " : 1000 ,

" bounces " : 3 ,

"HDR" : t r u e ,

" toneMapping " : t r u e

}

}

Listing 4.1: Example of a scene file description.
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5 IMAGE ANALYSIS AND VALIDATION

We investigate our novel approach to volumetric illumination that allows approxi-

mation of multiple scattering in real time. We first lay a foundation analysis to see how the

Samples Per Pixel (SPP) and Bounces parameters affect our renderer’s speed and quality.

Next, with the ground truth computed and perceptual analysis done, we proceed to discuss

the novel algorithm in Chapter 6.

Our approach to achieve better performance is inspired by the technique presented

by (KRAVCHENKO et al., 2017), applying the CIELAB metric (MAHY; EYCKEN;

OOSTERLINCK, 1994) to quantitatively compare results to a ground truth, and to de-

termine which parameters improve performance without losing perceived quality.

The human visual system is more sensible to certain wavelengths, more pre-

cisely the ones near 555nm, making yellow-greenish hues more noticeable (PEGORARO,

2016). In Figure 5.1 one can visualize this increased sensitivity near wavelengths at

555nm. Since certain color changes are less noticed, we can reduce processing demand

by scaling down parameters in our algorithms, while monitoring the significant changes

for the human eye.

This concept is conveniently encapsulated when working in the CIELAB color

space, also known as L*a*b*. It represents colors as a triplet (L*,a*,b*) where L* stands

for perceptual lightness, and a* and b* the variation of four unique colors: red, green,

blue and yellow. A visual representation of this color space is given in Figure 5.2.

The CIELAB similar images metric, states that two images will look similar to

a standard observer if they have a just noticeable difference (JND) (SHARMA, 2003) of

∆E∗ab ≈ 2.3. The variable ∆E∗ab is defined as the Euclidean distance between two images

in the CIELAB color space (MAHY; EYCKEN; OOSTERLINCK, 1994). This distance

is computed by Equation 6, where L∗, a∗, and b∗ are the color axes in the CIELAB color

space illustrated in Figure 5.2.

∆E∗ab =
√

(L∗2 − L∗1)2 + (a∗2 − a∗1)2 + (b∗2 − b∗1)2 (6)
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Figure 5.1: Photopic brightness sensitivity of the human eye as a function of wavelength.

Source: The author.

Figure 5.2: CIELAB Color Space Axes. L∗ varies from 0 to 100, b∗ and a∗ varies from
-128 to 128.

a*

b*

L*
White

Black

Red

Green
Yellow

Blue

Source: The author.

In their work, Kravchenko et al., propose a technique to bring the iridal light trans-

port (ILIT) model, previously presented in (LAM; BARANOSKI, 2006), up to interactive

frame rates. To achieve this goal, they use CUDA to adapt the model for GPU processing

and adapt their framework parameters, such as rays and spectral resolution, to achieve

better performance while respecting the CIELAB metric. Their ground truth, used as ref-

erence, was generated with a high spectral resolution and thousands of rays up to a point

of high fidelity biophysically-based iris. In a similar manner, we propose to generate our
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ground truth reference with as high as possible quality, with thousands of rays and ray

bounces. Our first approach is to reduce the quantity of rays and bounces maintaining

interactive frame rates and meeting the CIELAB threshold.

We use pbrt v4 renderer from Matt Pharr et al. (PHARR; JAKOB; HUMPHREYS,

2016) as a reference starting point to validate our path tracer. The choice of version

4, instead of version 3, was made based on the fact that the more recent version 4 of

pbrt encompasses newer and more accurate algorithms for volumetric rendering. The

Narval Engine uses delta tracking to sample medium interactions and ratio tracking to

estimate transmittance, whereas pbrt v4 is based on the null-scattering path integral for-

mulation (MILLER; GEORGIEV; JAROSZ, 2019). The resulting comparison is shown

in Figure 5.3, where differences between images mainly appears in shadow areas, still

keeping general shape and detail. Since we do not use the same volumetric rendering

algorithm as pbrt v4, the results are not identical. Because of limitations and other im-

plementation nuances, we are not able to perfectly align the images and thus cannot use

RMSE for a statistical comparison. Nevertheless, it reassures us that we do not have any

significant deviations or artifacts in our path tracer.

Figure 5.3: Disney cloud dataset one quarter size, rendered with our Narval Engine, as
shown on the left side, and with pbrt v4, as shown on the right side, respectively. Both
images were generated with 104 SPP.

Source: The author.

All tests were computed on a laptop equipped with an RTX 3060 GPU with 6 GB of

VRAM, an Intel i7-10870H and 16 GB of RAM. The GPU renderer is coded using

OpenGL shaders and the CPU renderer coded using multi-thread tiled rendering. For

all tests in this chapter the GPU version was used in order to have the best performance

possible.

Next, we make a psychophysical analysis using the CIE JND metric upon some

parameters of our volumetric rendering, mainly the number of ray samples and bounces

per pixel. Our goal is to relate visual response to stimulus intensities, making subjective
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perception measurable and relating physical and psychological scales through the Just

Noticeable Difference (JND) from CIELAB. To improve results and retain as much illu-

mination detail as possible, all images were generated and treated in EXR format, which

has 32 bits per channel in linear float space, before the final conversion to PNG, which

are then used as figures in this dissertation.

We first analyze how the number of samples per pixel (SPP) affects the JND met-

ric. For each test, five clouds were rendered with decreasing numbers of SPP, starting

with 105 SPP, denoted as reference, followed by 104 SPP, 103 SPP, 100 SPP, and 10 SPP.

These results are shown in Figure 5.4 and Figure 5.5. The first test shown in Figure 5.4

was conducted with the number of bounces limited to a maximum of 3 and the second

test shown in Figure 5.5 limited to a maximum of 50 bounces. For each rendered image

we compare it against the reference. In Figure 5.4 and Figure 5.5 the first row shows the

reference, the second row shows each subsequent image to be compared against the ref-

erence, the third row is the CIELAB ∆E difference between the column rendered image

and the reference in its column, and the fourth row shows in red the pixels that exceed the

CIELAB Just Noticeable Difference (JND) metric of ∆E ≈ 2.3.

For the first test, shown in Figure 5.4, the differences between 105 SPP and 104

SPP are negligible, where only 0.49% pixels exceed the JND, thus the overwhelmingly

majority of pixels being visually identical to a human observer. Although the visually per-

ceptual difference is almost null, the reference took approximately 137 minutes, whereas

the one with 104 SPP took only 13 minutes, a difference of 10.5× longer. Similarly, when

comparing the reference against 103 SPP, the JND was reasonably low, at 14.96%. Time-

wise, the difference, following a linear pattern, between the reference and 103 SPP was

100.9× longer, from 137 minutes to 1 minute. The next two JND trials of 100 SPP and 10

SPP against the reference were too high, at 56.5% and 81.5%, respectively. All rendering

times are presented in Table 5.1. In Figure 5.6, we zoom on the tail of the cloud, where the

thin media display a more pronounced divergence against the reference, thus highlighting

areas where the difference is more acute.

For the second test, shown in Figure 5.5, the differences between 105 SPP and 104

SPP are still negligible, where only 2.24% pixels exceed the JND. Although the visual

perceptual difference is not significant, when operating with 50 bounces the reference

took much longer, approximately 354 minutes, against 137 minutes when operating with

only 3 bounces. The same linear time pattern applies when operating with 50 bounces, for

each time we divide the number of SPP by 10, the time it takes to render also drops by a
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factor of 10. When comparing the reference against 103 SPP, the JND was reasonably low,

at 11.95%. Time-wise, the difference, following a linear pattern, between the reference

and 103 SPP was 106.5× longer, from 354 minutes to 3 minutes. The next two JND

trials of 100 SPP and 10 SPP against the reference were too high, at 47.22% and 77.3%,

respectively. All rendering times are presented in Table 5.1.

Figure 5.4: Disney Cloud dataset at one quarter its original size, rendered with 105, 104,
103, 102, and 10 Samples Per Pixel (SPP), respectively, and limited to a maximum of 3
bounces. The first row shows the reference with 100 000 SPP, the third row shows the
∆E difference between the upper image in the same column and our reference, the first
cloud rendered with 105 SPP. The fourth row shows pixels exceeding the CIELAB Just
Noticeable Difference (JND) metric of ∆E ≈ 2.3, shown as red pixels alongside the total
percentage of pixels that exceed the JND for the whole image.

Source: The author.
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Figure 5.5: Disney Cloud dataset at one quarter its original size, rendered with 105, 104,
103, 102, and 10 Samples Per Pixel (SPP), respectively, and limited to a maximum of 50
bounces. The first row shows the reference with 100 000 SPP, the third row shows the
∆E difference between the upper image in the same column and our reference, the first
cloud rendered with 105 SPP. The fourth row shows pixels exceeding the CIELAB Just
Noticeable Difference (JND) metric of ∆E ≈ 2.3, shown as red pixels alongside the total
percentage of pixels that exceed the JND for the whole image.

Source: The author.

Table 5.1: Rendering time in seconds for each SPP parameter value used in Figure 5.4
and Figure 5.5.

3 bounces 50 bounces

SPP Time (seconds) Speed up Time (seconds) Speed up

100 000 8235.6 — 21279.6 —

10 000 819.3 10.05 2026.2 10.50

1 000 81.6 10.04 199.7 10.14

100 8 10.20 19.5 10.24

10 0.8 10.00 1.7 11.47
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Figure 5.6: Samples Per Pixel experiment from Figure 5.4 zoomed on the tail of the cloud
where we have thin details that show less convergence, thus more prone to noise. The
second row shows the final rendered image and the third row shows the JND between the
cloud above in the same column and the reference cloud with 100 000 SPP.

Source: The author.
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The next step in our analysis is to evaluate how the number of bounces affects

image quality and how the human eye perceives it. All images were fixed at 104 SPP.

We start with 1000 bounces, denoted as reference, and decrease them to 100, 50, 35, 25,

10, and 5 bounces, respectively. These results are shown in Figure 5.8. As with our first

experiment the first row shows the reference, the third row is the CIELAB ∆E difference

between the rendered image in the same column and the reference, and the fourth row

shows in red the pixels that exceed the CIELAB Just Noticeable Difference (JND) metric

of ∆E ≈ 2.3. The increase in bounces allows the participating medium to accumulate

all the energy that enters the medium and disperses through it, resulting in less attenuated

shadows than when using a lower number of bounces. This is emphasized in Figure 5.9

when zooming in near the cloud tail. However, increasing the number of bounces has

one consequence that an artist has to take into account: the number of bounces increases

very rapidly the time taken to render until it reaches an equilibrium, as shown in Table 5.2

and in Figure 5.7. This equilibrium happens as a consequence of either the transmittance

reaching 0, when all light gets absorbed during this light path, or when the ray escapes

the volume boundaries before reaching the parameter value set as maximum number of

bounces.

The number of bounces affects the JND mostly in areas of stronger shadowing, as

expected, and is shown in the last row of Figure 5.9. The difference between the reference

with 1000 bounces and 100 bounces is only 0.82% JND, which is imperceptible. On the

other hand as we decrease from this value, changes escalate quickly. Decreasing to 50

bounces the difference becomes 6.46% JND and decreasing them by half, to 25 bounces,

the JND more than triples, reaching 23.05% JND.
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Table 5.2: Rendering time in seconds for each number of Bounces used in Figure 5.8.
Bounces Time (seconds)
1000 3452.9
100 2107.8
50 1875.6
35 1724.1
25 1564.4
10 1178.7
5 955.7

Figure 5.7: Time taken to render a participating medium with increased numbers of
bounces grows very rapidly.

Source: The author.

In conclusion, we recommend a minimum of 104 SPP and 50 bounces if the goal

is to have a physically plausible result. For a more fluffy cloud an artistic choice of less

than 10 bounces is also feasible, at the cost of neglecting image fidelity, but gaining in

performance.
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Figure 5.8: Disney Cloud dataset at one quarter its original size, rendered with fixed 104

Samples Per Pixel (SPP) and 1000, 100, 50, 35, 25, 10, and 5 bounces, respectively. The
second row under each cloud shows the ∆E difference between the rendered cloud and
our cloud with largest number of bounces, the first cloud is rendered with 1000 bounces.
The third row shows pixels exceeding the CIELAB Just Noticeable Difference (JND)
metric of ∆E ≈ 2.3 shown as red pixels alongside the total percentage of pixels that
exceed the JND for the whole image.

Source: The author.
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Figure 5.9: Bounces experiment zoomed in an area where shadows are more pronounced.
The first row shows the final rendered image, the second row shows the JND between the
cloud in its column and the reference, and the last row shows an overlay between the first
row and second row, highlighting areas where the JND exceeds 2.3.

Source: The author.
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6 LOBE ESTIMATOR

In the previous chapter we discussed how to increase performance by reducing

SPP and bounces while maintaining perceptual visual quality. However, it is still costly

to render using path tracing, even when using lower numbers of SPP and bounces, thus

requiring a new method, capable of real-time rendering.

To achieve real-time rendering of participating media and compete with the most

common technique used nowadays in real-time for this purpose, ray marching, we pro-

pose to investigate a new method, Lobe Estimator. Given the importance of the phase

function (GKIOULEKAS et al., 2013) and how multiple-scattering contributes and be-

haves diffusely after a certain number of bounces (BOUTHORS et al., 2008), we empiri-

cally started by testing sampling points along the directions of the phase function instead

of along the ray. Therefore, we propose a new method called Lobe Estimator.

The Lobe Estimator algorithm starts by casting a ray into the volume until it

reaches a non-empty voxel. The whole process is illustrated step by step in Figure 6.1

and formalized in Equation 7. Once we have the collision point in this voxel we cast

another ray, in the same direction as the previous one, at a depth of t, defined by the mean

path of the volume,
1

σt
, multiplied by a depth factor. With this new point inside the vol-

ume we sample the phase function randomly for directions and shape them along the ray

direction axis, and use this point as its origin. Sampling the phase function for directions

is crucial and should be done by importance sampling, as it heavily affects the final re-

sult, as depicted in Figure 6.5. To avoid unnecessary performance costs, we recommend

pre-computing the sampling process and pass the results forward to the shader.

For each point along the sampling lobe oriented towards the ray direction we cal-

culate the transmittance and incoming light. Transmittance is calculated by doing a sum

of transmittances between the point inside the volume and each sample point along the

lobe, then divide it by the number of sample points, thus returning the average, as pre-

sented in the first term of Equation 7. For the incoming light we do a sum for all light

sources and, for each light source, another sum of the phase function between the sample

point along the lobe and the light source position, multiplied by the transmittance between

both. Then we multiply by the falloff term and divide by the number of sampled points

along the lobe, hence giving an average of the incoming radiance for each given ray cast

onto the volume as presented by the second term of Equation 7.
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L(x, ω) = Lb(x, ω)
n∑
i=0

Tr(Pi)

n
+

l∑
k=0

n∑
i=0

fp(Pi, Lk)Tr(Pi, Lk)
L(Pi, Lk)

||Lk − Pi||2
n

. (7)

Figure 6.1: Lobe Estimator algorithm demonstrated in three steps.

(a) Ray cast at the volume border.

t

(b) Projected vector origin inside
the volume using the mean path
length multiplied by the depth
factor, as depicted by t.

L0

P0

P1

P2

P3 P4

(c) Sample points on the lobe
surface along the new vector ori-
gin. For each point, we calculate
the transmittance and incoming
light.

Source: The author.

To showcase our algorithm we used a scene with the Disney cloud at one quarter its

original resolution with one light point right above it. In Figure 6.2 we compare the results

of each algorithm side by side and in Table 6.1 we give the associated rendering times.
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Note that the Monte Carlo rendering time is calculated as the total time it takes to converge

to the number of samples per pixel selected. Here the Lobe Estimator approximates the

Monte Carlo result quite well, partially softening some shadow areas, whereas the ray

marching extrapolates the light intensity throughout the volume.

Table 6.1: Rendering times in milliseconds for each method. The lower the better. The
Monte Carlo algorithm was rendered using 1000 SPP and 100 bounces. The Lobe Esti-
mator algorithm used 100 steps for shadow rays and depth factor of 20. Ray Marching
was used with 60 steps along the ray and 10 steps for each shadow ray.

Method Time (ms)

Lobe Estimator 55.5

Ray Marching 125

Monte Carlo 115236

As long as we have fewer points to sample compared to ray marching we should

perform better. In Figures 6.3, 6.4, and 6.5 we show the impacts of each parameter of

our algorithm. Note specially how the selection of points along the lobe impacts the final

results, as depicted in Figure 6.5. Although not covered in this work, we strongly believe

that, similarly as how importance sampling works, one must choose points that have major

impact by selecting the ones with highest BSDF values, thus working well for static lights

where we can pre-compute the highest BSDF values. It may be penalized in performance

cost when considering dynamic lights, as one would need to calculate it in real-time.

The main downside of our proposed algorithm are the need of fine tuning and it

does not approximate well with low density participating media. However, on the upside it

performs really well in real-time and is twice as fast as Ray Marching, thus being suitable

for use cases where the application must be interactive.
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Figure 6.2: Result for each algorithm under same scene configuration.

(a) Monte Carlo algorithm with 100 bounces and 1000 SPP.

(b) Lobe Estimator algorithm rendered with depth parameter 20, 30 sampling
points along the lobe, and 100 points towards the light.

(c) Ray Marching algorithm based on the implementation of (HILLAIRE, 2015a)
with 60 steps along the ray and 10 shadow ray steps.

Source: The author.
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Figure 6.3: Visual impact of changing the number of sampling points around the lobe.
From top to bottom the number of sampled points is 10, 20, and 30. Note that the larger
the number of sampled points the better the result, making the "washed out" appearance
less noticeable.

Source: The author.
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Figure 6.4: Visual impact of changing the depth factor. From top to bottom the values are
20, 100, and 200. The larger the depth, the darker the participating medium.

Source: The author.
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Figure 6.5: Visual impact of choosing different sets of sampling points along the lobe
which greatly impacts the final result, hence indicating its extreme importance.

Source: The author.



57

7 CONCLUSION

To this day participating media are one of the most difficult and costly type of

material to render. It demands large memory consumption, when not using procedural

generation, and immense processing power due to its three-dimensional complexity. Its

challenges also include dealing with low convergence rate, overlapping with another ma-

terials, and appropriate solutions for the Rendering Transfer Equation (RTE).

In the cinematographic industry, where the rendering process is usually comprised

of rendering farms and time and memory constraints are more flexible, various algorithms

are used and have been yielding good visual results. However, in the game industry, where

the rendering pipeline is much more restrictive, usually having just a single GPU at the

user’s home, time and memory are a restriction many times more significant. In this type

of environment various compromises must be made, and only in recent years the video

game industry was able to incorporate proper volumetric rendering into their pipelines.

The two most common compromises made in a real-time scenario are related to

rendering time, changing accurate methods for ones that are faster but introduce bias,

and memory storage, where a single 3D texture file with resolution of 5123 can cost up

to 50 0MB. Considering we store only a single density floating-point value per voxel,

500 MB corresponds to 8.3% of the total space available in a GPU with 6 GB, the most

common VRAM storage capacity nowadays, according to Steam August 2021 hardware

and software survey (STEAM, 2021). Taking into account that a cloudscape has hundreds

of clouds, it is completely impractical to expect such file sizes just for volumetric data.

We presented a perceptual analysis based on the JND CIELAB metric in order

to verify how the human visual system perceives changes of rendering parameters and

how we could save computation time by lowering their values without suffering from a

huge visual impact. This study lays the foundation for better understanding of how the

most accurate method, pah tracing, could be explored to improve its performance while

maintaining image fidelity. Unfortunately, although we reached interesting performances,

they are still not sufficient for real-time rendering. Hence, we use the visual cues obtained

through our analysis to put together ideas on how we could approximate rendering for

real-time.

After this analysis, we empirically proposed a new lobe sampling algorithm suit-

able for real-time, which, although not as good as path tracing, gives us suitable results

for applications where the interactive aspect is of utmost importance.
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For future work our lobe sampling algorithm could be improved by testing whether

sampling multiple lobes at different consecutive depths does impact the final result posi-

tively at a moderate performance cost.

We believe in open science where society should benefit from its results and have

free access to information. Hence, all shader code, implementation, and test scenes used

throught this dissertation are publicly available at github.com/ibfernandes/NarvalEngine.

https://github.com/ibfernandes/NarvalEngine
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APPENDIX A — UMA APROXIMAÇÃO PARA DISPERSÃO MÚLTIPLA EM

ILUMINAÇÃO VOLUMÉTRICA VOLTADA PARA RENDERIZAÇÃO EM

TEMPO REAL

Renderização volumétrica é uma área da computação gráfica voltada para técnicas

responsáveis pelo cálculo e resolução da equação de renderização em mídias participati-

vas, isto é, volumes compostos de partículas esparsas tais como poeira, gotículas de água,

nuvens e fumaça. Muitas técnicas de iluminação volumétrica foram desenvolvidas ao

longo do tempo para solucionar a equação de renderização. Entretanto, ainda existem

muitas limitações quando trabalhando com multiple scattering em tempo real devido à

sua complexidade e escala.

Na comunidade de computação gráfica, a constante busca por sintetizadores de

imagens realistas em tempo real foi um dos seus maiores e mais ambiciosos objetivos

desde o início. Nos anos mais recentes houve um esforço para tentar trazer a propriedade

de multiple scattering para tempo real, com limitações nos tamanhos de grid e capacidade

de processamento. Muito embora seja possível renderizar o efeito de multiple scatter-

ing em tempo real com restrições, ainda é um grande desafio a ser superado devido sua

complexidade. Já é muito custoso e complexo calcular e traçar raios dentro de uma única

mídia participativa, mas as coisas tornam-se especialmente complicadas quando se leva

em conta múltiplas mídias e suas interações com outros objetos na cena.

Estas técnicas de renderização volumétrica partem da premissa de que tais vol-

umes são compostos por partículas tão pequenas e esparsas que o modelo de renderização

é melhor modelado como um processo probabilístico. Algumas técnicas são discutidas

no Capítulo 4. Entretanto, esse mesmo processo probabilístico sofre de ruídos e baixa

convergência, muito embora seja capaz de produzir resultados fisicamente corretos. Para

calcular a interação da luz com um volume deve-se levar em conta três propriedades: ab-

sorção, emissão e dispersão. Esse trabalho propõe uma nova solução em tempo real para

aproximar o efeito produzido por multiple scattering, comumente usado em renderers

offline.

Nossa abordagem foi explorar o sistema de percepção visual humano para acel-

erar o processamento. Dado duas imagens, nós usamos a métrica do CIE que diz que

duas imagens serão percebidas de maneira similar perante o olho humano se a distância

Euclidiana no espaço de cores do CIELAB for menor que 2.3. Desta forma, nós usamos

esta premissa para guiar nossas investigações no Capítulo 5. Nossos resultados mostram
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que podemos reduzir de 105 para 104 amostras por pixel de maneira que a diferença para

o olho humano seja negligenciável, permitindo reduzir o tempo de renderização em até 10

vezes toda vez que reduzimos a quantidade de amostras por pixel em 10. De maneira sim-

ilar, é possível reduzir o número de bounces de 1000 para 100 de maneira negligenciável

ao olho humano, permitindo reduzir o tempo de renderização em quase pela metade. Os

principais resultados das análises são demonstrados nas Figuras 5.4, 5.6, 5.8 e 5.9.

No Capítulo 6 subsequente é proposto um novo algoritmo em tempo real, entitu-

lado Lobe Estimator, ou "Estimador em Lobo", em tradução literal, que aproxima esses

comportamentos e parametros discutidos enquanto mantém uma performance até duas

vezes mais rápida que o clássico Ray Marching utilizado em tempo real.
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