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Scanning electron microscopy 
and machine learning reveal 
heterogeneity in capsular 
morphotypes of the human 
pathogen Cryptococcus spp.
William Lopes   1,6, Giuliano N. F. Cruz2,6, Marcio L. Rodrigues   3,4, Mendeli H. Vainstein5, 
Livia Kmetzsch   1, Charley C. Staats1, Marilene H. Vainstein1 & Augusto Schrank1*

Phenotypic heterogeneity is an important trait for the development and survival of many 
microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, 
we have applied scanning electron microscopy (SEM) to define four Cryptococcus spp. capsule 
morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently 
observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes 
we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects 
in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into 
their corresponding classes. The machine learning approach used a Random Forest (RF) classifier whose 
overall accuracy reached 85% on the test dataset, with per-class specificity above 90%, and sensitivity 
between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., 
object area, eccentricity, and contrast, are most relevant for classification. The RF results agree with 
the observed variation in these features, consistently also with visual inspection of SEM images. Finally, 
our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly 
identified and characterized using computational models so that future work may unveil morphological 
associations with yeast virulence.

The methodological advances achieved during the last decade allowed the study of phenotype heterogeneity in 
clonal cells. Particularly, the use of microorganism models has challenged the classical view of the phenotype 
determinacy based on the genotype and environmental context1–5.

It is generally accepted that phenotypic heterogeneity leads to an increase in fitness and diversity inde-
pendently of genetic mutations6. In this regard, microbial populations benefit from the ability to switch mor-
photypes and create resilient subpopulations better equipped to adapt and survive in diverse environmental and 
host niches. This morphotype heterogeneity is evident in a wide range of characteristics, many of which are 
fundamental to microbial virulence7.

A central requisite in such studies is the use of powerful detection methods and the application of statis-
tics8,9. In particular, image analysis is a common task within the machine learning field10,11. Yet, the literature on 
classification of electron microscopy-derived images for biological applications is notably sparse. As such, most 
algorithmic implementations focus on simpler methods for image data generation12.

The human pathogenic yeasts belonging to the Cryptococcus complex have been consistently used as a model 
for the study of pathogenicity and for the development of better therapeutic approaches. Infections caused by this 
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yeast kill 180,000 people around the world every year13. In addition, the treatment of cryptococcosis is unafforda-
ble in most in developing countries14,15.

An important trait for cryptococcal virulence is the presence of a polysaccharide capsule, which has been well 
described at the molecular and functional levels16,17. Capsular morphology includes a huge heterogeneity among 
distinct isolates and even in clonal isolates. This cellular diversity has been exploited in terms of drug resistance 
and pathogenic potential18–20.

The study of phenotype heterogeneity is hampered by the lack of proper detection methods and statistical 
analyses. In order to further explore this morphotype diversity, we implemented an automated image analysis 
pipeline. This machine learning approach is capable of detecting and classifying capsular morphotypes, being 
applicable to cell type quantification in microscopy-based experiments. While not a high-throughput technique 
per se, SEM does yield vast amounts of complex data. Here, we describe the adaptation of one algorithmic imple-
mentation for the analysis and classification of Cryptococcus spp. capsular morphotypes captured using scanning 
electron microscopy (SEM). Our model substantially increases data analysis efficiency and provides a template 
for future machine learning applications within microbiology.

Results
Cryptococcus spp. exhibit distinct capsule morphotypes under scanning electron micros-
copy.  The analysis of Cryptococcus spp. morphology by SEM revealed different capsular morphotypes within 
clonal microbial cultures (Fig. 1A). From the visual observations, we named four different morphotypes which 
persistently appeared in varying proportions among different yeast isolates. These morphotypes were defined as 
regular (Fig. 1B), spiky (Fig. 1C), bald (Fig. 1D) and phantom (Fig. 1E).

Image segmentation with ebimage.  Cryptococcus SEM raw images (N = 11, total cells = 811) were pro-
cessed using the EBImage package available from Bioconductor12. Shortly, the pipeline segments images based 
on pixel intensity spatial distributions. Background is separated from potentially cell-derived entities. Objects 
comprised of too few pixels were discarded, and remaining instances were visually classified as their respective 
cellular morphotypes, artifacts, or unidentified (cells of unknown morphology), Fig. 2.

For each identified object, features such as pixel intensity, moment (e.g. eccentricity), shape and texture 
were extracted using the corresponding commands from the EBImage package12. Over 50 features per cell were 
obtained, the majority of which were invariant to cell position and/or rotation.

Visualizing overall profiles with principal component analysis.  The final data matrix obtained was 
composed of over 800 cells (rows) and over 50 features (columns). In order to verify whether there were clear 
groupings among the observations, exploratory analysis was performed through Principal Component Analysis 
(PCA)21. This procedure achieves dimensionality reduction by projecting the data matrix into a new subspace, 
composed of linearly independent vectors (Principal Components – PCs), which can be treated as new, uncorre-
lated features. These new features are ordered decreasingly in terms of total explained variance and hence can be 
used to visualize global tendencies of the original data in lower dimensional space.

Figure 3 shows the PCA for the SEM images. Each axis is a Principal Component (PC) with its corresponding 
proportion of explained variance. Each point in the plot represents a single cell, and the colors represent the cell 
morphotypes. Points that lay closer together have similar overall profiles across all original features, while distant 
observations in the chart tend to be distinct in nature. The data captured the differences among the capsular 

Figure 1.  Morphological diversity of the cryptococcal capsule based on SEM analysis of a clinical isolate of 
C. gattii. (A) SEM image showing the coexistence of different morphotypes, which were classified on the basis 
of morphological characteristics including fiber abundance, capsule thickness, size and apparent texture. The 
capsular morphotypes were named regular (B), spiky (C), bald (D), and phantom (E). Scale bars: 10 μm (A) and 
5 μm (B–E).
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morphotypes, although clustering is hindered by partial overlap. This was further tested using a non-parametric 
version of multivariate ANOVA, which is capable of testing whether groups of observations show significantly 
different centroids22. Considering only those objects with actual cell morphotype labels, PERMANOVA revealed 
significant overall differences across cell types (P < 0.001). Also, the artifact observations were placed distant from 
all the labeled cells, indicating that their profiles differed in great extent. Finally, unidentified objects appeared 
distributed throughout the regions populated by labeled cells, which suggests they display cell-like properties and 
probably correspond to actual cells that failed to be manually classified into their corresponding morphotypes.

Cellular morphotypes significantly differ in shape, moment, pixel intensity, and texture.  To 
further investigate morphological differences across identified cells, we used robust methodologies to compare 
basic (pixel-intensity related), shape, moment (eccentricity), and texture features across morphotypes. Figure 4 
illustrates how the cells differ. The red lines connect the means, and pairwise comparisons were performed using 
Wilcoxon test. Although significant differences were often observed, note how pixel intensities do not seem to 
differ as much as contrast. Not surprisingly, mean radius seems to vary coordinately with major axis size.

As there were over 50 features to compare, we adapted a common analysis strategy from the genom-
ics literature. Using robust regression, we estimated the means of each cell morphotype for all features. After 
multiple-comparison correction of P- values, non-significant regression coefficients were set to zero and contrasts 
were used to compose the estimated expectations. Translation- and rotation-variant features were left aside, as 
these represent positioning rather than cell type morphology. The scaled estimates were used to construct the 
heatmap shown in Fig. 5. We observed greater differences among shape and Haralick features, suggesting shape 
and texture are major components of morphological differentiation, consistent with visual inspection.

Figure 2.  Illustration of image segmentation from a SEM image. The colors were randomly chosen to represent 
the distinct objects detected by EBImage. Unique identifiers are assigned to each object, and those were used 
for posterior manual labeling. Note that most cells are well distinguished, although marginal objects tend to 
be merged together, as illustrated by C96 at the very bottom. These merged cells, as well as other non-cellular 
objects, were all treated as artifacts. Cells that were not displayed entirely in the field of view such that no visual 
classification was possible were considered unidentified. Scale bar: 10 μm.

Figure 3.  PCA of SEM image data. Each point represents a single cell, each color represents a given label: bald 
(red), regular (green), spiky (blue), phantom (purple), artifact (orange) or unidentified (grey). The left chart 
shows PC1 and PC2, resembling a “front view” of PCA. Bald, spiky, and regular cells show grouping patterns, 
although artifacts differ greatly. Unassigned cells appeared well distributed all over labeled cells, which indicates 
they may belong to any morphotype. The right chart shows a “top view”, confirming the previous observations.
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Machine learning predicts cellular morphotype.  In order to assess the degree with which the identi-
fied morphotypes were differentiable, we performed supervised classification using a Random Forest (RF). We 
split the cells into training and test sets with representative proportions of target labels (capsular morphotypes). 
Seventy five percent of the data were assigned to the training set. Using repeated 10-fold cross validation, we 
applied the Rborist algorithm (from within the Caret R package interface) to perform grid search on hyperpa-
rameters that were relevant for classification optimization23,24. The optimized parameters included the number 
of randomly selected predictors considered at each split within each tree (known as mtry or predFixed) and the 
minimal node size (minNode) considered for all trees in the RF model.

At this stage, the random forest was built of over 2,000 decision trees. Each tree splits the data into recursive 
partitions in a way that minimizes a function of node impurity, often the Gini index or Entropy10. By consid-
ering an aleatory subset of predictors at each split (“random”), the algorithm yields many uncorrelated trees. 
Among this aggregation of trees (“forest”), the majority vote for each observation is taken as its actual class. 
Supplementary Fig. S1 depicts the classification performance as a function of the number of randomly selected 
predictors for 10 different values of minimum node size. Using the training set, the top-performing hyperparam-
eter values observed were 11 randomly selected predictors at each split and 7 as the minimum node size.

Once the RF classifier was built, we used it to predict the morphotype classes in the test set. This included the 
three cell types (bald, regular, and spiky), as well as artifacts and unassigned (unidentified) cells. This approach 
allowed for cell identification in the presence of unwanted objects, which are inherent to (and a current challenge 
for) high- throughput image segmentation25. Phantom cells were not included in as the sample size was consid-
ered too small for predictive modeling. The results are shown in Fig. 6. The overall accuracy was computed as the 
proportion of total correct predictions, settling at 85%. The model presented highly specific predictions for all 
classes (mean 96%, standard deviation 3.5%), while sensitivity varied more broadly (mean 86%, standard devi-
ation 12.2%). Bald cells yielded the lowest sensitivity value (66%), while the greatest sensitivities were reported 
for regular cells, unidentified objects, and artifacts (93%, 94%, and 94%, respectively). All target classes showed 
specificities above 91%. Balanced accuracy (mean 91%, standard deviation 6.9%) was computed as the average 
between sensitivity and specificity for each group, ranging between 81% (bald) and 97% (artifact).

One of the main challenges for the predictive performance is the bias from manual labeling. This manual pro-
cess is often affected by image-to-image variability, which itself can also be a source of bias. One way to overcome 
this issue is to increase the number of images analyzed. Nevertheless, such a procedure also relies on operator 
availability. Here, we used the so-called confusion matrix23, a cross-tabulation of observed and predicted classes, 
to observe error tendencies from our model (Fig. 7). Columns represent the predicted morphotypes and rows 
represent the references. The correct predictions are in the principal diagonal, which represents the sensitivity 
values as the numbers shown are the relative proportions from row-wise calculations.

Figure 4.  Capsular morphotypes differ significantly in mean radius, major axis size, mean pixel intensity, and 
contrast. Each point represents a single cell, and a small noise was added to each position to avoid overlap. 
Differences in shape (mean radius) tend to correlate with differences in moments (major axis), but also with 
texture (contrast). Pixel intensities (basic feature) differed significantly, but effect sizes do not seem to be nearly 
as large. The types of the features are named as defined in the EBImage R package. Red lines connect the means. 
Overall and pairwise comparisons computed with Kruskal-Wallis and Wilcoxon tests, respectively. *p < = 0.05; 
**p < = 0.01; ***p < = 0.001; ****p < = 0.0001.
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From the confusion matrix, it was clear that many bald cells are mislabeled as spiky, and many spiky as regular. 
These were the main errors leading to the two lowest sensitivity values observed (66% and 83%, for bald and spiky 
cells, respectively). These results may be affected by biases in visual labeling as these are often misinterpreted by 
the human eye. Also, unwanted objects (artifacts and unidentified) were mostly detected as such.

To further investigate the sources of error, the same results were plotted in Fig. 8 as a heatmap of class prob-
abilities. As expected, unequal probabilities yield mostly correct predictions, and the classification challenges 
exposed by the confusion matrix were generally represented by cells with similar probabilities of morphotype 
assignment and, therefore, difficult to visually differentiate (e.g. bald versus spiky). These results indicate that 
manual labeling may be a major issue in predictive modeling of Cryptococcus spp. morphotypes using SEM 
images. However, such an effect may be resolved, for instance, with greater sample sizes. Nonetheless, it was clear 
that the pipeline showed satisfactory performances for object detection and classification, thereby enabling auto-
mated cellular morphotype analysis in SEM-derived Cryptococcus spp. images.

Figure 5.  Capsular morphotypes differ significantly in intensity, shape, moment, and texture. We estimated the 
expected value (mean) for each cell morphotype across all features using robust regression. The scaled values are 
represented as color intensities, i.e., the greater the intensity, the greater a given cell type differs from the cross-
group average for the corresponding feature. Non-significant regression coefficients were set to zero and in 
these cases the resulting color corresponds to the baseline (estimate for regular morphotypes). Near-zero values 
mean the cell morphotype was close to the cross-group average.
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Image labeling with predicted morphotypes.  A drawback from random forest analysis, however, is the 
lack of interpretability26. Even though a given tree can be visualized from the resulting RF, this is not representa-
tive of the ensemble model. In order to overcome this issue, we plotted the actual predictions over the subjects of 
study. Figure 9 shows the original images along with the predicted annotations. The gray labels represented the 
correct predictions, while the red labels represented classification errors with the actual class within parentheses. 
The annotated objects were sparse as most observations were used for model building (comprising the training 
set). The visualization, hence, was constructed over the test set solely (N = 202). The green lines highlighted the 
detected objects from the automated segmentation procedure.

Variable importance.  A useful application of random forest classifier is to infer variable importance, i.e., to 
estimate how important a given feature is for the overall classification task. For instance, features that cause major 
decreases in the Gini index, a measurement of node impurity, tend to show higher importance. Figure 10 shows 
such a measurement for all features considered during model building. Feature names describe source (e.g. pixel 
intensities or objects’ binary masks), type (e.g. “s” for shape, “h” for haralick), and label (e.g. “radius.max” stands 
for maximum radius). For instance, to compute “binary - s.radius.sd”, the EBImage package uses the binary mask 
generated from objects’ segmentation (1 = foreground, 0 = background) and calculates the standard deviation of 
a set of radius measurements obtained for a given object.

Among the features with highest mean decrease in the Gini index, moment and shape features were notably 
prevalent - followed by Haralick features. This observation suggests that objects’ structural characteristics had 
the highest influence on classification. Texture measurements also showed persistently high values, while basic 
features were less frequent among the most relevant variables. Indeed, the 5-quantile of pixel intensities, as meas-
ured after top hat transformation (top hat – b.q005), appeared among the 5 with the greatest mean decrease in 
Gini index. Feature cumulative information is what builds the random forest classifier, so assessment of individual 
predictors would not be representative. Still, each variable may leave clues about the partitions that the many 

Figure 6.  Random Forest prediction performance. Bald (red), spiky (green), regular (blue), artifact (purple) 
or unidentified (orange) morphotypes are shown. Performance values were sensitivity (left panel), specificity 
(middle panel), and average (balanced accuracy, right panel).

Figure 7.  Cross-tabulation of observed and predicted values from RF classifier on the test set (confusion 
matrix). Proportions were calculated on a row-wise basis so that the principal diagonal shows the sensitivity 
values for each class, i.e., the proportion of cells labeled in each class and detected as such. For example, 92% of 
regular cells were correctly classified, while 8% were mistakenly predicted as spiky.
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decisions trees produce at each recursive split. A Principal Coordinate Analysis was performed to yield a glimpse 
into the classification mechanism performed by the RF algorithm (see Supplementary Fig. S2). The actual relation-
ships, distributions, and correlations for five of the most relevant features are detailed in Supplementary Fig. S3.

Figure 8.  Heatmap of class probabilities obtained from the RF model. (A) The predicted probabilities are 
represented in the first five rows. (B) The predicted classes and reference labels are displayed on the remaining 
two rows. Most mismatches between predicted and reference rows (classification errors) occurred among 
objects difficult to differentiate even visually. This observation indicates that biases from manual labeling might 
be a significant challenge for classification accuracy.

Figure 9.  Original images with classification annotations. The predicted classes were mapped to their 
corresponding objects and drawn on top of the original images. Objects detected in the segmentation step are 
highlighted in green. Correct predictions are shown in gray, while misclassifications appear in red (with correct 
label in parentheses). Scale bar: 10 μm.
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Discussion
Image analysis is a common task in machine learning, being especially valuable for biomedical applications25. 
Most research efforts, however, have been focused on technologies effortlessly adaptable to high-throughput 
processing, e.g., light and fluorescence microscopy techniques27–29. While not as scalable, SEM produce 
high-resolution images for detailed phenotypic characterization at the single-cell level, shedding light onto oth-
erwise obscure microbial diversity profiles30. Still, proper characterization relies on reproducible observation of 
cellular morphotypes, which encouraged the study herein presented.

C. gattii and C. neoformans are deadly pathogens with major mortality impacts worldwide13. The heteroge-
neity of its morphotypes has been demonstrated to be clinically relevant both in terms of virulence and drug 
resistance18. Here, we extensively characterized distinct capsule morphotypes and constructed a random forest 
classifier to predict such morphotypes in SEM-derived images. Based on the EBImage R package, the pipeline 
properly identified objects that potentially represented actual cells, differentiating these from the image back-
ground. After cell segmentation, feature extraction, and manual labeling, the cells showed significantly different 
shapes, moments, textures, and pixel intensity patterns. The differences detected were sufficient to yield reasona-
ble predictions of cell subtypes using machine learning algorithm.

Model assessment revealed that class prediction was partially hampered by morphotypes difficult to differen-
tiate visually, even for experienced operators. Nonetheless, random forest achieved satisfactory predictive per-
formance through model tuning using grid search across relevant hyperparameters. The algorithm is known 
to reduce prediction variance as in bagging26. Although both techniques rely on ensembles of decision trees, 
RF de-correlates the generated trees by selecting a randomly-chosen subset of original features at each split. 
Suited for multi-class problems, our model was able not only to identify cell morphotypes, but also artifacts that 
remained from cell segmentation and even cells that could not be visually classified, e.g., cells that were only 
partially displayed in the image frame. Furthermore, random forest models have the advantage of generating 

Figure 10.  Feature importance and the mean decrease in the Gini index. Features are colored by type and may 
be calculated from three different sources: pixel intensities, segmentation-derived binary masks (i.e. images 
encoded as matrices in which identified objects are represented by 1, while background is coded as 0), and 
morphological top-hat transformations of pixel intensities.
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estimates for variable importance. Our pipeline produced over 50 features of different types. In partial accord-
ance with visual intuition, the decrease in Gini index, caused by variable permutations, indicated that structural 
features are most relevant for class prediction, followed by texture - although pixel intensities yielded important 
characteristics as well.

Finally, concerns may be risen regarding the biological meaning of the presented morphotypes. It is still 
unknown whether polysaccharide serotype and capsular morphotypes are correlated. However, the reported varia-
tion of capsular architecture within a single serotype of C. gattii argues against this hypothesis31. This highlights the 
importance of further investigation of capsular populations across genotypes and serotypes of Cryptococcus spp.

In conclusion, this study has applied computational tools to investigate clinically-relevant microbial mor-
photypes detected by SEM. We described Cryptococcus spp. capsular morphotypes in terms of shape, moments, 
texture, and pixel intensities. We also demonstrate these cellular morphotypes can be accurately predicted using 
machine learning techniques, which also gave insight into which features were most relevant for describing cell 
differences. It is clear that regular, bald, spiky, and phantom cells comprise significantly divergent morphotypes. It 
remains to be investigated, however, to which extent these cellular variations may affect virulence potential, drug 
susceptibility, and clinical practice.

Materials and Methods
Cryptococcal strains and growth conditions.  A total of 11 isolates (C. gattii strains: R265, WM 161 and 
7 clinical isolates; C. neoformans strains: 2 clinical isolates) were included in this study. Cells were grown for 24 h 
at 30 °C in 25 mL of YPD broth in a rotary shaker at 150 rpm. The cells were counted using a hemocytometer and, 
to induce capsule formation, suspended at 105 cells/mL in capsule-inducing minimal medium (3 µM thiamine, 
15 mM glucose, 10 mM MgSO4, 29.4 mM KH2PO4 and 13 mM glycine) following incubation for 72 h at 37 °C with 
5% CO2.

Sample preparation for SEM image acquisition.  Capsule-induced cells were collected by centrifuga-
tion at 3,000 g for 5 min, washed three times in PBS and fixed (2.5% glutaraldehyde type 1 in 0.1 M sodium caco-
dylate buffer) for 1 h. Then, cells were washed in post-fixative solution (0.1 M sodium cacodylate buffer, 0.2 M 
sucrose and 2 mM MgCl2), and adhered onto coverslips coated with 0.01% poly-L-lysine, for 30 min. The cover-
slips containing cryptococcal adhered cells were dehydrated in solutions of graded ethanol (30, 50 and 70%, for 
5 min/step, then 95% and twice 100%, for 10 min/step). Samples were subjected to critical point drying (Critical 
Point Dryer CPD030 - Balzers), mounted on metallic stubs, coated with a 15–20 nm gold layer, and visualized in 
a scanning electron microscope (Zeiss Auriga), operating at 5–10 kV.

Image pre-processing and object identification.  Based on the EBImage R package, we defined an 
automated segmentation pipeline capable of properly separating actual cell-associated pixels from background 
noise12. For preprocessing, all 11 images were primarily set to grayscale mode and 1024 × 724 pixels. Adaptive 
thresholding was performed using linear filtering. The local calculated background was removed from the orig-
inal images for the construction of binary masks: in which 1 represents an object-associated pixel (foreground), 
and 0 represents the background, for each position in the image matrices. However, as the objects in these binary 
images often presented holes and blurred separations, they were propagated towards more lenient, fully filled 
binary masks through Voronoi tessellation32. Segmented objects with less than 1000 pixels were considered as 
obvious artifacts and hence assigned to the background.

Feature extraction.  The identified objects proceeded to feature extraction, which included basic (e.g. inten-
sity mean and standard deviation), shape (e.g. area, max radius, mean radius), and moment (e.g. eccentricity) 
variables. Texture was analyzed using gray-scale co-occurrence matrices as in EBImage’s implementation of orig-
inal Haralick features12,33. Variable names were coded as follows: x.s.y.z in which x is a placeholder, s is the feature 
source (e.g. binary mask or original image), y is the type (e.g. basic, shape), and z is the actual feature name (e.g. 
mean, area, radius). The feature type is identified as “s”, “b”, “m”, and “h” for shape, basic, moment, and Haralick 
features, respectively. Feature source varied among “0”, “a”, and “Ba” for binary mask, original images, and top-hat 
transformed images, respectively. Note that only translation- and rotation-invariant features were kept for model 
construction to avoid spatial biases - i.e. cells being classified based on position-related characteristics. The final 
data set was comprised of 811 cells and 54 features.

The identified objects were manually labeled as regular (N = 285), bald (N = 129), or spiky (N = 261) morpho-
types. Borderline cells detected by the pipeline were labeled as unidentified when manual labeling was hampered 
(N = 74). Also, as the high-throughput image processing yields artifacts, these were also labeled accordingly and 
considered for modeling (N = 62).

Random forest classifier.  The labeled objects were then used to train a random forest (RF) model for 
morphotype classification. The optimization process was performed using the interface available from the Caret 
R package23. The RF algorithm chosen was the implementation from the Rborist R package, which allows for par-
allelism and fast optimization (within Caret) of two of the most relevant hyperparameters: minimal node size and 
number of randomly selected predictors at each split24. The optimal values were 9 and 10, respectively. The orig-
inal data set was split into training and testing sets in a way that original class distributions were retained - using 
the sample.split function from Catools R package. All modeling optimization was carried out using repeated 
10- fold cross validation (10 times) performed entirely on the training data set. Random Forests were constructed 
with 2000 trees each. The phantom capsular morphotypes were left aside as their total count was considered too 
low for model fitting (less than 3% of total cells).
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Statistical analysis.  Non-parametric comparisons were performed using Kruskal-Wallis and Wilcoxon 
tests. Robust regression was carried out using M estimator as implemented in the MASS R package34. 
Benjamini-Hochberg procedure was used for multiple comparisons correction of P-values. An alpha level of 0.05 
was used as significance threshold in hypothesis testing.

Code availability
All code and raw data are available at https://github.com/giulianonetto/crypto_classification. The pipeline is 
capable of (i) identifying potentially cell-associated objects in the SEM-derived images; (ii) computing object-
level features; and (iii) classifying these objects into their corresponding classes.
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