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- Abstract. Let M be a bimodule over a prime ring R. In this paper we
define and study a very useful class of sub-bimodules of M: the class of
closed sub-bimodules. There is a canonical torsion-free extension of M to a
Q-bimodule M* which is always free over @, where @ is the complete ring
of right quotients of . We prove that closed sub-bimodules of M are in
one-to-one correspondence with closed sub-bimodules of M*. The results are
applied to study the torsion-free rank of a sub-bimodule of M and to study
non-singular and strongly closed sub-bimodules. Also, the results are applied
to study prime ideals in centred extensions and intermediate extensions. In
particular, we complete and extend the results obtained in [5].

0. Introduction.

Prime ideals in ring extensions R C S have extensively been studied in
the last years. For example, when the extension is finite and generated by
a set of R-centralizing elements, S is called a liberal extension [20,21]. A
normalizing extension is again a finite extension which is generated by a
set of R-normalizing generators [10,11,12,16]. Also, prime ideals in more
general types of extensions (not necessarily finite) have been considered (e.g.
[1,2,3,7,9,14,17,18,19]).
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In particular, the author in [4,5] studied prime ideals in polynomial rings
and in free centred extensions. The method developed in these papers allows
us to obtain precise information in infinite dimensional situations. Actually,
a more general class of ideals called the closed ideals are studied and the
results on prime ideals are obtained as applications of the general results.
Closed ideals have also been used to study prime ideals in Ore extensions
[3,7,14].

It turns out that the method developed in [5] can be extended to study
submodules of (not necessarily free) centred bimodules over prime rings. The
purpose of this paper is just to study closed submodules in this kind of
bimodules. By this way we obtain results which can be applied to the theory
of modules as well as to ring extensions. In particular, we extend all the
results in [5].

Let R be a prime ring and let M be an R-bimodule. Following [20], we
say that M is a centred bimodule over R if there exists a generating set
of R-centralizing elements, i.e., there exists X = (z;)ieq € M such that
M = ¥ ;cq Rz; and az; = za, for every a € R, ¢+ € 2. Throughout this
paper, submodule of M means sub-bimodule, unless otherwise stated.

In section 1, we define the closure [N]p of N in P, where N C P are
submodules of M. We say that N is closed in P if [N]p = P. Then we
study closed submodules and we obtain some useful characterization of this
kind of submodules. This characterization is given via a free submodule L
of M which is “dense” in M. Thus the description of closed submodules can
always be reduced to the free case. The introduction of this “dense” free
submodule of M and the characterization of [N]p are the main results of this
gection.

In Section 2 we study the extension of closed submodules from M to M*,
a canonical extension of M to a centred bimodule over @, where Q is the
maximal ring of right quotients of R. Corresponding to M* we have also a C-
vector space V, where C is the extended centroid of R. The main result here
is a one-to-one correspondence between the closed submodules of M, M*,
and the subspaces of V. There is another interesting result in this section;
the Q-module M* is always free. This result says, loosely speaking, that a
torsion-free bimodule M over a prime ring R is always free when considered
as a Q-bimodule.

In Section 3 we obtain the first applications. ‘We show that the torsion-
free rank of a submodule N of M introduced in [20] reduces to the dimension
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of a C-vector space. As a consequence this notion becomes more tractable.

In Section 4 we study non-singular and strongly closed submodules of
M. 1t follows that R is a prime non-singular ring if and only if every closed
submodule N of P is non-singular in P (i.e., Z{(P/N) = 0). A similar result
is obtained concerning strongly prime rings and strongly closed submodules.

In Section 5 we study centred extensions of prime rings R and intermedi-
ate extensions, 1.e., subrings W of S containing R. In this case we show that
S* 18 an extension of @ and the restriction V of $* to a C-vector space is an
algebra over C. Also, if W is an intermediate extension, W* and W*NV are
also rings and the one-to-one correspondence between closed submodules of
them preserves closed ideals and closed prime ideals. Every R-disjoint prime
ideal of S is closed, but we do not know whether the same is true for an
intermediate extension.

In Section 6 we apply the former results to study strongly prime, non-
singular prime, and primitive ideals. We prove that if R is a strongly prime
(resp. non-singular prime, primitive) ring and W is an intermediate exten-
sion, then every ideal P of W which is maximal with respect to PN R = 01is
strongly prime (resp. non-singular, primitive). Also, under the same assump-
tion we prove that every closed prime ideal P of W is strongly prime (resp.
non-singular), provided that W C V5(X), where Vs5(X) is the centralizer of
Xin S.

In Section 7 we study prime ideals and radicals, under some finiteness
conditions. In particular, we obtain that if W is an intermediate extension
of finite rank, then every R-disjoint prime ideal P of W is closed and maximal
with respect to the condition PN R = 0. Also, if W is torsion-free the prime
radical of W is nilpotent and a finite intersection of minimal prime ideals.
We have a similar result for the prime radical of a, so called, almost finite
extension.

Finally, in Section 8 we apply the former results to an arbitrary centred
extension of a (not necessarily prime) ring R.

The paper is reasonably self contained. It is clearly a natural sequel of
[5], but except some facts which are based on that paper no heavy machinery
is needed. Throughout, R is always a prime ring, except in Section 8, and
M is a centred bimodule over R with X = (z;);cq a8 a set of R-centralizing
generators. As we have already said, submodule means sub—bl.module The
notations C and D will mean strict inclusions. ;



§1. Closed submodules
Following [5], for submodules N C P we define the closure of N in P by
[N]p = [N]= {z € P: there exists 0 # H < R such that zH C N}.

We will omit the subscript P when there is no possibility of misunders-
tanding.

It is clear that the closure [N]p of N in P is a submodule of M with
N C[N]p C P. A submodule N of P is said to be closed in P if [N]p = N.

As in [5], the first thing we will do is to obtain a good characterization
of [N]. We begin with the case of a free centred bimodule which is similar
to the one developed in [5].

Assume that M is free over R with the centralizing basis £ = (e;)ieq-
Any z € M can be uniquely written as a finite sum z = } ., aie;, where
a; € R. The e-coefficient of z will be sometimes denoted by z(e), i.e., for
z given above z(¢;) = gy, for 1 = 1,2,...,n. The support of z is defined as
usual by supp(z) = {e € E : z(e) # 0}.

Let N be a submodule of M. A non-zero element z € N 1is said to be of
minimal support in N if for every y € N with supp(y) C supp(z) we have
y = 0. We denote by m(N) the set of all the elements of minimal support
in N. The minimality of N is defined by Min(N) = {supp(z) : z € m(N)}.
For T € Min(N) and e € I we denote by Or (/N) the ideal of R defined by
Or.(N) = {a € R : there exists z € N with supp(z) =T and z(e) = a}.

The following results can be proved in a similar way as in ([5], Sect. 1).

Lemma 1.1. Let M be a free centred bimodule over R and N C P
submodules of M. We have

1) Min{[N]p) = Min(N).

it) For any z € [N]p there exists a non-zero ideal H of R such that for
every y € [N]p with supp(y) C supp(z) we have yH C N.

Theorem 1.2. Let M be a free centred bimodule over R and N C P
submodules of M. Then [N]p is the largest submodule K of P which contains
N and satisfies Min(K) = Min(N). Also, [N] is closed and, moreover, it



is the smallest closed submodule of P which contains N. In particular,
[N] is the unique closed submodule of P which contains N and satisfies
Min([N]) = Min(N).

Now we return to the general case. An element z € M is said to be a
torsion element if there exists a non-zero ideal H of R with zH = 0. Thus
the torsion elements of M are the elements of the submodule [0]5r of M. We
will see soon that this definition agrees with the one given in ([20], Sect. 1).

The submodule N of M is said to be torsion-free (resp. torsion), if [0]y =
0 (resp. [0]y = N).

If every generator z; of M, 1 € 1, is a torsion element, then M is a torsion
bimodule. Thus [0]p = P, for every submodule P of M. It follows that P
is the unique closed submodule of P. Consequently, it is natural to assume
that there exist generators of M which are not torsion elements. It is easy
to see that any such a generator is an element of M which is free over R.

Hereafter, we assume that M is not a torsion bimodule. Consequently, by
the Zorn’s Lemma there exists a subset E = (2,);ea of X which is a maximal
R-independent subset of X. Denote by L the (free) submodule of M which
has F as a centralizing basis. There is a nice relation between M and L.

Lemma 1.3. Take any y € M. Then there exists a non-zero ideal H of R
such that yH C L and Hy C L. Moreover, if we choose a representation of
y as 3or b;z;, b; € R, we may choose the ideal H depending only on the set
{21, %2, e00y Zn }-

Proof. Suppose that z € X and z ¢ E. By the maximality of F there
exist Zj,...,z¢ in E such that {zi,...,z¢,z} is linearly dependent over R.
Then there exist ay,...,a;,a in B with a2, +... +a;24+az = 0, a # 0. Thus
zRaR C T¢_,2;Ra;R C L, where RaR is a non-zero ideal of R.

Now, take y = 1%, b;z;, b; € R. We may assume z;,...,,z, are in F and
Ts41s .5 Ty are not in E. As above we find non-gero ideals H; of R such
that z;H; C L, j = s+ 1,...,n. Hence the ideal H = N}_,,, H; satisfies the
required conditions.

Let N C P be submodules of M. We say that N is a dense submodule
-of Pif [N]p = P. Equivalently, for every z-€ P there exists a non-gero ideal
H of R with zH C P.



From the above it is clear that for every centred bimodule M over R there
exists a dense submodule L which is free over R. We will refer to it as a free

dense submodule of M.

In [20], an element z € M is said to be a torsion element if there are
non-zero ideals A and B of R such that AzB = 0. As a first application of
the existence of a free dense submodule we show a result which implies, in
particular, that our definition is equivalent to this one. For liberal bimodules
this equivalence was proved in ([20], Lemma 1.4). We have

Corollary 1.4. Let N be a submodule of M and z € M. Then the
following conditions are equivalent

i) There exists a non-zero ideal H of R such that zH C N.
ii) There exists a non-zero ideal F' of R such that Fz C N.
iti) There are non-zero ideals A and B of R such that AzB C N.

Proof. If the factor bimodule M /N is a torsion bimodule, then the three
conditions above are automatically satisfied. So we may assume there exists
a free dense submodule L of M/N. Also, by factoring out N we may assume
N =0

Let AzB = 0, where A and B are non-zero ideals of R. By Lemma 1.3
there exists 0 # H < R with zH C L. Then AzH B = 0 and since L is free
and R is prime we obtain zH = 0. Thus iii)—i1). The converse is clear and
the proof of the equivalence ii)«iii) is similar.

Remark 1.5. As in [5] we can define [N] in a dual way. In fact, by
Corollary 1.4 we have

[N]p = {z € P: there exists 0 # H < R such that Hz C N} =
= {z € P: there are non-zero ideals A and B of R with AzB C N}.

Lemma 1.6. Assume that N C P are submodules of M such that ¥ is
dense in P. Then for any submodule K of P we have [K]p = [K N N]p.

Proof. It is clear that [K N N]p C [K]p. Take z € [K]p. Then z € P

and zH C K for a non-zero ideal H of R. Also, there exists a non-zero ideal . .
F of R such that zF C N. Then 2(HNF)C (KNN) and so z € [K N N]p.

6



Now we can obtain the following interesting result.

Theorem 1.7. Assume that N C P are submodules of M such that N is
dense in P. Then there is a one-to-one correspondence between the set of all
the closed submodules of P and the set of all the closed submodules of N.
Moreover, this correspondence associates the closed submodule K of P with

the closed submodule [ of N if K N N = I (equivalently K = [I]p).

Proof. If K is a closed submodule of P, then K N N is clearly a closed
submodule of N and by the former lemma we have [K N N]p = [K]p = K.

Conversely, assume that [ is a closed submodule of N and put K = [I]p.
Then KNN =1 and [K]p =[KNN]p=[Ilp =K, ie., K is closed in P.

The following is clear

Corollary 1.8. Assume that P is a submodule of M and L is a free dense
submodule of M. Then .

1) [O]MnL = 0.

ii} There is a one-to-one correspondence via contraction between the set of
all the closed submodules of P and the set of all the closed submodules
of PN L.

iii) P & [0 if and only if PN L #0.

Now we can give a description of the closure [N]p of a submodule N
of P, combining the results of Theorems 1.2 and 1.7. Choose a free dense
submodule L of M with the basis K. For a submodule N of P we define the
E-minimality of N as the minimality of the submodule N N L of L. That
is, Ming(N) = Min(N N L). We have Ming([N]p) = Ming([N]pNn L) =
Ming([NNL]lpNL) = Min([N 0 Llpar) = Min(N 0 L) = Ming(N).

The following is now clear

Theorem 1.9. Assume that N C P are submodules of M and let L be
a free dense submodule of M with the centralizing basis £. Then [N]p is
- the largest submodule K of P which contains N and satisfiess Ming(K) =
Ming(N). Also, [N]p is closed in P and, moreover, it is the smallest closed



submodule of P which contains N. In particular, [N]is the unique submodule
of P containing N and satisfying Ming([N]) = Ming(N).

In the proof of Theorem 1.2 we show that if K is a submodule of P such
that K D N and Min(K) = Min(N) we have K C [N]. Actually, as it was
pointed out in [5], we need only that K be a right (or left) submodule (see
the remark preceding Corollary 1.6 in [5]). Thus we have

Corollary 1.10. Assume K C N C P are submodules of M, [ is a right (or
left) submodule of P containing N and E is a basis of a free dense submodule
of M. Then

i) [K]p C [N]p. In addition, if Ming(K) = Ming(N), then [K]p =
[N]».

i) If N is closed in P and Ming(l) = Ming(N), then I = N.

The following corollary is very useful. First, suppose that a free dense
submodule L of M has been chosen. For an element z € L we denote by
supp(z) the support of z with respect to the basis E. Let N be a submodule
of M. An element z € L is said to be a remainder modulo N if for every
y € N with supp(y) C supp(z) we necessarily have y = 0.

Corollary 1.11. Let N be a submodule of M which is closed in P. If
K is a right (or left) submodule of P such that K O N, then there exists
z € m(L N K) which is a remainder modulo N.

Proof. Note that if N = 0, then K # 0 (so K NL # 0) and every element
0# z € KN L is a remainder modulo N. So we may assume N # 0.

By the way of contradiction, if for every z € m(L N K) there exists 0 #
y € N with supp(y) C supp(z), it follows that supp(y) = supp(z), because
N C K, and hence y € m(N N L). Consequently, Ming(K) = Ming(N)
and we obtain K = N, by Corollary 1.10, (ii).

Now we compare our definition with the one given in ([8], p.18). Let C
be a right R-module and let A be a submodule of C. We say that A is a
closed submodule of C in the sense of [8] (G-closed, for short) if A has no

proper essential extensions inside of C. We have
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Corollary 1.12. Let N C P be submodules of M.
i) f N is closed in P, then N is G-closed in P.
ii) I P is torsion-free and N is G-closed in P, then N is closed in P.

Proof. (i) Assume that N is a closed submodule of P but is not G-closed in
P. Then there exists a right submodule K of P which is an essential extension
of N. By Corollary 1.11, there exists 2 € m(K N L) which is a remainder
modulo N, where L is a free dense submodule of M. Then zR # 0 and so
RN N # 0. Take a € R such that 0 # za € N. Since supp(za) C supp(z)
it follows that z is not a remainder modulo N, a contradiction.

(ii) If X is a non-zero right submodule of [N]p, we choose any 0 # z € K.
Then there exists a non-zero ideal H of R with zH C KN N. Since P is
torsion-free we have K N N # 0. Thus [N]p is an essential extension of N
and so N = [N]p. :

The proof of the following Lemma is straightforward.

Lemma 1.13. Let M and M’ be two centred bimodules and ¢ : M — M’
an epimorphism of R-bimodules. If N' C P’ are submodules of M’, N =
@ Y(N') and P = ¢~ (P), we have [N]p = ¢™}([N']p+). In particular, N is
closed in P if and only if N’ is closed in P’.

Remark 1.14. The above Lemma allows us to make a reduction when
we want to study the lattice of closed submodules of P C M. In fact, since
[0]p C [N]p, for every submodule N C P, we may factor out [0]3; and assume
that M is torsion-free. With this reduction, the lattice of closed submodules
of any submodule P of M is just the lattice of G-closed submodules.

Remark 1.15. Another consequence of the Lemma 1.13 is to give an
alternative way for the description of the closure [N]p of a submodule of
P. In fact, choose a free bimodule S over R with the basis £ = (e;)ien
and consider the canonical epimorphism ¢ : S — M given by ¢(e;) = z,
1 € . Since there is a one-to-one correspondence between the set of all the
closed submodules of P C M and the set of all the closed submodules of
¢ }(P) C S which contain Kery, the description of the closure in the free



case gives a description for the general case. For example, the minimality of

N may be defined as Min(¢~'(N)), and so on.

2. Enlarging and Contracting Closed
Submodules

Let @ be the maximal (complete) right quotient ring of R ([22], Chap IX,
[13], Sect. 4.3). We say that T is a ring of right quotients of R if T is a
subring of Q containing R. The extended centroid of R is the center of Q.
We denote it here by C. For the basic properties we will use here the reader
can see ([4], Lemmas 2.1 and 2.2).

Following ([5], Sect. 2), the purpose of this section is to extend the
bimodule M to a Q-bimodule M* and then to contract M* to a vector space
V over C. We will show that there is a one-to-one correspondence between
the closed submodules of M, M™ and V.

We point out that we could reduce this study to the Martindale ring of
right quotients of R, but we prefere to work with Q. We begin this section
with the following particular case.

2.1. Free case. Let L be a free centred bimodule with the centralizing
basis E = (e;)ien. Denote by L* the free @Q-bimodule ¥;cq Qe;, where E =
(€:)ien is a centralizing basis of L*. For any subset S of Q, put L% = ¥;cq Se;.
In particular, L; is a vector space over C with the basis E = (e;)ica. We
denote L}, by V. Also, if T is any ring of right quotients of R, L7 is a free
T-bimodule with the same basis £ and L C L} C L*. Finally, L}y = L.

The proofs of the following results are similar to the proofs given in ([5],
Lemmas 2.1, 2.2, 2.3, Corollary 2.4 and Theorem 2.5). We will include only
the proof of Theorem 2.5 because this case is more general than that one and
also because something seems to be wrong in the proof of ([5], Theorem 2.5).

Lemma 2.1. Let N be a submodule of L, T’ € Min(N) and e € I'. Then
there exists a unique element mr,. € V such that for every z € N with
supp(z) = I' we have z = mp z(e) = z(e)mp,.. Moreover, supp(mp,) =T
and mp(e) = 1.

Given a submodule N of L we denote by M¢(N) the set of all the elements
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mpr,. constructed in Lemma 2.1, where I' € Min(N)and e € I'. So M(N) C
V and for every m € M¢(N) there exists a non-zero ideal H of R with
mH = Hm C N. Also, for every z € m(N) we have z = am, for some
m € M¢(N) and a € R.

Let T be any ring of right quotients of R and let N be a T-submodule of
L7%. Generalizing a former definition, we say that an element 0 # z € L* is
a remainder modulo N if for every y € N with supp(y) C supp(z) we have
y=0.

Now, consider N C P submodules of L}.. We denote by [N]r p the closure
of N in P and we put No= NNL C Fy,= PnL. If N =0, then [N}y p = 0.
Thus we assume N # 0. So N, is clearly a non-zero R-submodule of L and
Min(No) = Min(N). Also, Mc(Ny) is defined as above. Under this notation

we have

Lemma 2.2. Let z € L*. Then there exist elements ¢; € Q, m; € Mc(No),
t=1,2,..,n, and y € L* such that z = T ; ¢;m; + y, where either y = 0 or
y is a remainder modulo N.

Lemma 2.3. Let N be a T-submodule of L} and z € L*. Then the
following conditions are equivalent

i) 2 E QMC(N()).
i1) There exists a dense right ideal J of R with 2J C N,.
In addition, if z € L} the above conditions are also equivalent to

i) There exists a non-zero ideal H of T with zH C N.

Corollary 2.4. Assume N C P are T-submodules of L}, No = NN L and
Py = PN L. Then we have [N]rp = QMc(No) N P and this submodule is
also equal to the set of all the elements 2 € P such that there exists a dense
right ideal J of R with zJ C N,.

Note that if R is a simple ring, every submodule of M is closed in M.

Then the set of all the C-subspaces of V coincides with the set of all the
closed subspaces of V.
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Now we can obtain one of the main results of this section. In the proof
we will use freely the former results.

Theorem 2.5. Let 7 be a ring of right quotients of R, let L be a free
centred bimodule over R and suppose that P is a submodule of 7. Then
there is a one-to-one correspondence between the following

i) The set of all the submodules of L which are closed submodules of
PnlL.

i) The set of all the submodules of L which are closed submodules of P.
iii) The set of all the C-subspaces of CMc(FR).

Moreover, this correspondence associates the closed submodule N of P, =
P L with the closed submodule N* of P and the subspace K of CMc(F)
fN*NL=Nand N*=QKnP.

Proof. If N C P is a submodule of L} which is closed in P and N,
NNLC P=PnL,wehave N =[N]rp=QMc(No)NP. Then [No]g n
QMc(No)NPy=NNFy=NnL= Ny SoN,is closed in F,. If N’
another closed submodule of P with N'N L = N, we have N’ = [N']zp
QMs(N;)NnP=N.

On the other hand, let I be a submodule of L which is closed in F,.
Then N = QMc(I) N P is a submodule of L} which is contained in P and
No=NnL=QMc(I)nF, =[I]gp, = 1. Thus N = QM(N;)n P
and so N is a closed submodule of P with N 0 L = I. This establishes the
correspondence between (i) and (ii).

To complete the proof it is enough to show the one-to-one correspondence
between (ii) and (iii) for 7' = Q and under the assumption that P is closed in
L*. In fact, we may assume P is closed in L} by Theorem 1.7. Thus, by the
first part already proved P N L is a closed submodule of L and there exists
a unique closed submodule P* of L* with P*NL = PN L. It is clear that
P*n L} = P. Applying again twice the first part we obtain a one-to-one
correspodence between the set of all the closed submodules of P and the set
of all the closed submodules of P*.

So assume that 7' = @ and P is closed in L*. First we show that PNV =
CMo(PR). If m € My(P,), there exists 0 # H < R with mH C F, C P.

& nin
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Thus m € P and we have CM¢(F,) C PN V. Take a basis {v;};es of
CMc(P) over C. f PNV D CMc(F) there exists v € PNV such that
A = {v;};e6 U {v} is a linearly independent set over C. Since L* ~ Q Q¢ V
we have that A is also Q-independent. However, P = QM(F;) and so
v = Y, giu;, for some elements ¢; € @ and u; € M(F). Writing each u;
as a linear combination of the elements v; we obtain v as a linear combination
of {v;};e¢. This contradiction shows that CM¢(F) = PNV.

Now, let N be a submodule of P which is closed in P. Then N is closed
in L*, since P is closed. So by the same argument as above CMc(Noy) =
NnV C PNV = CMy(R). Then NNV is a subspace of CMy(F,) and
QN V) =QMc(Ny) =N.

Conversely, let K be a subspace of CM¢(F) and put N = QK. Then
N C QMc(Py) = P. We show that N is closedin Pand K = NnV.

First, assume Mc(No) € K. Take a basis {v;};es of K over C and an
element v € Mc(Ny) such that A = {v;} U {v} is C-independent. Hence A
is also a Q-independent subset of L*. Since vH C Ny C N = QK, for 0 #
" H 4 R, we obtain a contradiction arguing as above. Therefore Mc(Ny) C K
and so QMc(Np) C N C [N]g = QMc(N,). Consequently, N is closed.
Now, applying the former part we obtain NNV = CMq(Noy) CK C NnV.
Thus NNV = K and the proof is complete.

The following consequence of Corollary 2.4 will be used next.

Corollary 2.6. Let M be a centred bimodule over R. Then M is torsion-
free if and only if the following condition holds: if z € M and J is a dense
right ideal of R such that zJ = 0, then z = 0.

Proof. If M is free over R, clearly the above condition holds. In general,
assume that M is torsion-free and take a free centred bimodule 7 and an
epimorphism ¢ : L — M, as in Remark 1.15. Then Keryp is a closed submo-
dule of L. Suppose z € M and zJ = 0, J a dense right ideal of R, and take
y € L with ¢(y) = z. Then yJ C Kery an so y € Kerp, by Corollary 2.4.
Hence z = 0. The converse is clear.

2.2. The canonical extension of M. Now we come back to the general

-~ case. Let M be a centred bimodule over R with X = (z;);cq a set of centra-

lizing generators.
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There always exists an extension of M to a Q-bimodule M* ([22], Chap.
IX). But we will present here a direct way to obtain M*, independent of the

results in the literature.

First, let P be a right R-module. We say that P is torsion-free if the
following condition holds: z € P and zJ = 0, for a dense right ideal J of R,
imply z = 0. By Corollary 2.6 this definition agrees with the one given in
Section 1 for centred bimodules.

Definition 2.7. A pair (M™, j) of a centred bimodule M™* over Q such that
M* is torsion-free as a right R-module and an R-bimodule homomorphism
j : M — M* is said to be a canonical torsion-free extension of M if for
every right @Q-module P which is torsion-free as right R-module and for
every homomorphism of right R-modules f : M — P, there exists a unique
homomorphism of right @-modules f*: M™ — P such that f*oj = f.

We have the following

Theorem 2.8. For every centred bimodule M over R there exists a cano-
nical torsion-free extension (M*, 7).

Proof. Let L be a free R-bimodule with the basis £ = (e;)icq and ¢ :
L — M the R-bimodule homomorphism defined by ¢(e;) = z;, 1 € Q. Denote
by L* the extension of L to a free Q-bimodule with the same basis £ and
consider the canonical inclusion I — L* as an identification. So assume
LC 1L

The submodule I = ¢~1([0]y) is a closed submodule of L and so there
exists a closed submodule I* of L* such that I*NL = I, by Theorem 2.5. Put
M* = L*/I* and denote by 7 : L* — M™ the canonical projection. Thus M*
is a centred Q-bimodule with (7(e;));ecn as a generating set of centralizing
elements and 7 is a Q-bimodule homomorphism. Also, since 77(0) = I* is
closed we have that M™ is torsion-free as an R-module. We can easily see
that j(z;) = =(e;), ¢ € Q, induces a well-defined R-bimodule homomorphism
j:M— M

Suppose that P is a right Q-module which is torsion-free as right R-
module and f : M — P is an homomorphism of right R-modules. Every
z € M* can be written as z = 31, m(e;)q = XTie, 7(i)gi, for some z; € X,
- ¢ €Q,1=1,.,n Assume z = 0. Then L_"_; e;q; € I and take a dense
right ideal J of R with ¢;J C R, 1= 1,...,n. We have 37, e;q;J C [ and so
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Y1 2:¢;J C [0]y. Hence, for every a € J there exists a non-zero ideal H,
of R with Y1 zigiaH, = 0. It follows that 37—, f(zi)giaH, = 0. Since P is
torsion-free as right R-module we obtain ¥, f(z;)¢; = 0.
Consequently, the mapping f* : M* — P defined by f*(1 ., j(z:)q:) =
., f(2:)g; 18 a well-defined right Q-homomorphism such that f*o j = f.
The unicity of f* is evident.

Remark 2.9. From the proof of Theorem 2.8 is clear that (j(z;))ien is a
set of Q-centralizing generators of M*. We can easily see that Ker ;7 = [0]u.
So we may consider M C M™* if and only if M is torsion-free. Finally, if M
is free over R, then M™ is free over Q.

Lemma 2.10. Under the above notation, if P is a Q-bimodule and f :
M — P is a homomorphism of R-bimodules, then f*: M* — P is a homo-
morphism of Q-bimodules.

Proof. It is enough to show that ¢f(z;) = f(z:)g, for every ¢ € Q,
t € . Let J be a dense right ideal of R with ¢J C R and take any a € J.
We have (¢f(z:) — f(2i)g)a = ¢f(zia) — f(zi)ga = ¢f(zia) — f(ziqa) =
gaf(z;) — gaf(z;) = 0. Since P is torsion-free the result follows.

Remark 2.11. From Lemma 2.10 we can easily see that the extension
(M*, 7) is unique up to isomorphism, where isomorphism means isomorphism
of pairs as usual.

Corollary 2.12. Let M and M’ be two centred bimodules over R and
f: M — M an R-bimodule homomorphism. Then there exists a unique
homomorphism of Q-bimodules f* : M* — M"™ such that ;o f = f*o 3,
where ;7 and ;' are canonical.

In addition, if f is surjective (resp. injective) so is f*.

Proof. The first part is straightforward. Also, it is not hard to show
that f* is onto when f is onto. Assume that f is injective and take z =
T, 7(2:)g; € M* such that f*(z) = T, 7’ o f(zi)g = 0. Let J be a dense
right ideal of R such that ¢;J C R, for i = 1,...,n. Thus %, j'f(z:q:a) = 0,
for every a € J, and so f(T 7, z:¢;a) € [0]a, by Remark 2.9. Let H be anon-
zero ideal of R with f(3°7_; zigia)H = 0. It follows that 3., z;q;aH = 0,
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then ¥%, 2,9, € [0]y and so zJ = T, j(2i)¢;J = 0. Therefore z = 0
because M" is torsion-free.

Now we show the following main result.

Theorem 2.13. For every centred bimodule M over R, the canonical
torsion-free extension M™* of M is free over Q. Moreover, if E is a basis of

a free dense submodule L of M, then (j(e)).er is a centralizing basis of M*
over Q.

Proof. By Corollary 2.12, the canonical inclusion I C M induces an
inclusion L* C M*, where L* is free over @ with the basis £. We show that
L* = M*. It is enough to prove that for any : € Q we have j(z;) € L*. If
z; is in E there is nothing to prove. So assume z; ¢ E and denote it by z.
Then, by the maximality of E there exist z, ..., z, in F such that z;,...,z,,2
are linearly dependent over R. Thus there exist ay,...,a,, a # 0, in R such
that y = a;z3+ ...+ a,z, +az = 0. For any r € R we have ary — yra = 0 so
ara; = a;ra and hence there are ¢; € C with c;a = q;, for 7 = 1,...,n. Then
(c13(z1) + ... Fcnj(za)+ 3(z))a = 0,80 c15(z1) +... + caj(za) + 7(z))RaR = 0
and we obtain j(z) = — I, c;j(z;) € L*. The proof is complete.

$=1
As an immediate consequence of Corollary 2.12 and Theorem 2.13 we
have

Corollary 2.14. Let M and M’ be two centred bimodules over R and f,
¢ two R-bimodule homomorphisms of M into M’. If f/L = g/L for a free
dense submodule of M, then f = g.

2.3. General case. Now we will show that the correspondence of Theorem
2.5 also holds when M is not necessarily free over R.

We know that M™ is a free Q-bimodule with the centralizing basis E =
(ei)iea- As in the first part of the section we denote by MJ the free T-
bimodule with the basis F, where 7" is any ring of right quotients of R, and
V= M = T;enCe;. It is clear that M = L is a free dense submodule of
M. We denote again here by j : M — M™ the canonical mapping.

Theorem 2.15. Let 7' be a.ny‘ ring of right qﬁotient‘;s of R, M a centred
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bimodule over R and P a submodule of M7. Then there is a one-to-one
correspondence between the following

i) The set of all the submodules of M which are closed in j~2(P).
ii) The set of all the submodules of M} which are closed in P.
iii) The set of all the C-subspaces of CMc(P N L).

Moreover, this correspondence associates the closed submodule N of
J~1(P) with the closed submodule N* of P and the subspace K of CMc(PnN
L)if 773 (N*)= N and N*=QKnP.

Proof. It follows easily from Theorems 1.7 and 2.5.

We finish this section with some additional remarks.

First, Theorem 2.15 gives, in particular, a one-to-one correspondence bet-
ween the set of all the closed submodules of M, the set of all the closed
submodules of M* and the set of all the subspaces of V. On the other hand,
if we factor out [0]y and, consequently, we assume that M is torsion-free,
then the correspondence is given by intersection, i.e., N corresponds to N*
and Kif N*OM=Nand N*NV =K.

Another interesting fact we point out is that for every z € M there exists
a unique representation of j(z) as j(z) = Y%, ¢, 0 # ¢; € Q, ¢; € E|
t = 1,...,n. Then we can define the E-support of z as supp(z) = {ey, ..., e, },
and the E-minimality of a submodule N of M by the usual way and also
give a description of [N], using this concept.

Finally, the following is not hard to prove.

Corollary 2.16. Let P be a closed submodule of M and let L be a free
dense submodule of M. Denote by P* the closed submodule of M7 with
37} P*) = P. Then we have P* = (PN L)* = {z € M3: there exists a dense
right ideal J of R with zJ C P} = {z € M7: there exists a dense right ideal
Jof RwithzJ C PNL} =QMc(PNnL)n M.

3. The torsion-free rank of a bimodule

Before considering ring extensions we give some applications.
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Let N be a submodule of a centred bimodule M over a prime ring R.
Following ([20], Definition 1.5), we define the rank of N as the length of the
longest possible direct sum of non-zero torsion-free sub-bimodules of N, if
such a bound exists, or co in the contrary case. We denote the rank of N by
rank (N).

In order to give an equivalent definition of rank (N) we begin with the
following.

Lemma 3.1. Let N be any submodule of M. Then rank(¥) =rank([N]) =
rank([N]/[0]), where [N]/[0] is a submodule of M /[0]y,.

Proof. Since [[N]] = [N] it is enough to show that rank(¥N) = rank
(IN)/[0)).

Let Y ;cr ®N; C N, where N; is a torsion-free submodule of M, for all
i € I. Then we have N; N [0] = 0 and so each N; can be regarded as a
torsion-free submodule of M/[0] and ¥ ;cr ®N; C [N]/[0].

Conversely, assume that (F;);er is a family of submodules of M properly
containing [0] such that T;er(Pi/[0]) = Tier ®(L./[0]) C [N1/[0] (note that
every P;/[0] is automatically torsion-free). Let L be a dense submodule of
M. Then P.N L is a non-zero torsion-free submodule of M with Y ;cr(P: N
L) = Tiar®(Pin L) C [N]. (Corollary 1.8). For every 1+ € I' take a non-
zero element y; € P N L. So there exists a non-zero ideal H; of R with
0 # y;H; C N. Choose a; € H; such that z; = a;3 # 0. We can easily see
that ¥;er RziR = Tier ®R2z;R C N, where Rz R is a non-zero torsion-free
submodule of M. The proof is complete.

The above Lemma shows that to compute rank(N) we may always assume

that M is torsion-free and N is closed in M.
Now, denote by (M*, 7) the canonical torsion-free extension of M and by

V the C-vector space M§. We have

Theorem 3.2. Let N be a closed submodule of M, N* the closed submo-
dule of M* with j7}(N*) = N and K = N*N V. Then rank(N)=dims(X),
where dimg(K) denotes the dimension of K as a C-vector space. In parti-
cular, rank(N) =rank(N*).

Proof. We may assume M is torsion-free, i.e., M C M* and N = N*nM.
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Suppose Y ;er ®N; C N, where N, is a non-zero (necessarily torsion-free)
submodule of M, for all 1 € T'. Let N; denote the extension of [N;] to
a closed submodule of M* and put K; = N* NV, i € I'. We easily see
that 3;ep[Ns] = Zier ®[Ni] € N and also T;er N = Tier @NF C N*™.
Hence Yier Ki = Lier ®Ki C K, where K; is non-zero. It follows that
dimc(K) >rank(N).

Conversely, suppose that {v;};cr is a linearly independent subset of K.
Since M* ~ Q ®c V as Q-bimodules, we have that {v;};er is a set of Q-
centralizing elements of N* which are linearly independent over Q. Thus
Tier Qui = Tier ®Qu; € N*. Consequently, ¥ier(QuiN M) = Tier &(QuiN
M) C N and it follows that rank(N) > dim¢(K).

Since rank(N) equals the dimension of a vector space, properties of rank
will follow easily from well-known properties of vector spaces. In fact, many of
the properties obtained in ([20], Sect. 1) can be reproved using this method.
We give two examples.

Corollary 3.3. Let N C P be closed submodules of M such that rank(N)
=rank(P) < co. Then N = P.

Proof. If K and K' are the subspaces of V' corresponding to N and P,
respectively, we have K C K’ and dimg(K) = dimg(K'). Consequently,
K=K"andso N=P.

As a second example we will reprove Proposition 1.8 of [20]. First we
need the following.

Lemma 3.4. Let M be a centred bimodule over R and let N be a submo-
dule of M. Then M/N is a centred bimodule whose canonical torsion-free
extension is (M/N)* ~ M*/N*, where M* is the canonical torsion-free ex-
tension of M and N* is the closed submodule of M* which corresponds to
[¥].

Proof. The canonical mapping j : M — M™ induces a homomorphism
g:M/N — M*/N*. If Pis aright Q-module which is torsion-free as right
R-module and f : M/N — P is a homomorphism of right R-modules, then
there exists a Q-homomorphism f' : M* — P such that for = f' o j,
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where 7 : M — M/N is canonical. Since N* C Ker f' we obtain a Q-
homomorphism f*: M*/N* — P with f* o g = f. The result follows from
the unicity of (M/N)*.

Corollary 3.5 (c.f. [20], Proposition 1.8.). Assume that N C P are
submodules of a centred bimodule M. Then rank(P) =rank(N)+rank(P/N).

Proof. Let N*, P* be the closed submodules of M™ corresponding to
N and P, respectively, and put K = N*NnV, I = PPNnV. By Lemma
3.1, rank(P/N) =rank([P]/[N]). Also, the closed submodule of (M/[N])* =
M*/N* corresponding to [P]/[N] is P*/N*. Therefore rank(N) = dim¢(K),
rank(P) = dimc(7) and rank(P/N) = dimc(f/K). The result follows from
the relation dimg (/) = dimg(K) + dimg(//K).

4. Non-singular and Strongly Closed
Submodules

Recall that the singular submodule Z(P) of a right R-module P is defined
as the set of all the elements z € P such that the annihilator r(z) of z in
R is an essential right ideal of R. The module P is said to be non-singular
if Z(P) = 0. We say that a submodule N of P is non-singular in P if
Z(P/N) = 0 ([8], p.30-36).

When M is a bimodule over R and P is a submodule of M, we consider
P as aright R-module. So Z(P) is the right singular submodule of P an is,
in fact, a sub-bimodule of M. We will say simply “singular submodule” and
“non-singular”, omitting “right”. Also, r(z) will denote the right annihilator
of zin R.

For a ring R, the singular ideal of R is the ideal Z(R), which is the
singular submodule of R when considered as right R-module. We say that
R is non-singular if Z(R) = 0.

Lemma 4.1. Let P be a submodule of a centred bimodule M and let N
be a submodule of P. If N is non-singular in P, then N is closed in P.

= Proof. Take z € [N]p. Then z € P and 2H C N, for 0 # H < R. Hence
r(z+N) D H, where z+ N € P/N. Since R is prime, r(z+ N) is an essential
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right ideal of R and so z + N € Z(P/N) = 0. It follows that z € N.

One of the purposes of this section is to study when the converse of
Lemma 4.1 holds. We begin with the following

Lemma 4.2. Assume that R is a prime non-singular ring and N C P are

submodules of M. Then Z(P/N) = [N]p/N.

Proof. By factoring out the submodule N we may assume N = 0.

If z € [0]p, then there exists a non-zero ideal H of R with zH = 0. Then
z € Z(P) and so [0]p C Z(P). Assume that Z(P) D [0]p and let L be a free
dense submodule of M. By Corollary 1.11 there exists y = aie; +...+ aze, €
m(Z(P) N L) which is a remainder modulo [0]p N L, where 0 # q; € R and
e; € E(Fisabasisof L), i = 1,2,...,n. We easily see that r(y) = r(a;) is
an essential right ideal of R and so a; € Z(R) = 0, a contradiction.

The following is clear
Corollary 4.3. Assume that R is a prime non-singular ring and N C P

are submodules of M. Then N is closed in P if and only if N is non-singular -
in P. In particular, P is torsion-free if and only if P is non-singular.

Combining Lemma 4.2 with ([4], Corollary 2.5) we have

Corollary 4.4 Let R be a prime non-singular ring and let I be an R-disjoint
ideal of R[X]. Then there exists a unique monic polynomial f; € C[X] such
that Z(R[X]/I) = (foQ[X] N R[X])/I, where R[X]/I is considered a right
R-module.

Now we obtain a converse of Corollary 4.3.

Lemma 4.5. Let N be a submodule of M which is not a torsion module.
If Z(N/[0]m) = O, then R is non-singular.

Proof. By factoring out [0]4 we may assume M is torsion-free, Z(N) = 0

and N # 0. Let L be a free dense submodule of M and take 0 #z € NN L,
8ay T = aj€;+ ...+ Gpen, 0 # a; € R,1=1,...,n. If a € Z(R}, then r(a) is an
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essential right ideal of R. Then r(za) is also essential, thus za € Z(N) = 0.
Therefore a; Z(R) = 0 and so Z(R) = 0.

We summarize the former results in the following

Theorem 4.6. Let M be a centred bimodule over the prime ring R and
P a submodule of M which is not a torsion submodule. Then the following

sondifians aca equivalent
i) R is non-singular.
ii) Z(P/[0]p) = 0.
iii) Every closed submodule of P is non-singular in P.
iv) Z(P/N)=[N]p/N, for every submodule N of P.

Corollary 4.7. A prime ring R is non-singular if and only if there exists a
non-singular centred bimodule over R.

Now we turn for strongly prime rings. Recall that a ring R is said to be
(right) strongly prime if every non-zero ideal I of R contains an insulator,
i.e., there exists a finite set F' C I such that Fa = 0, a € R, implies a = 0.
An ideal P of R is said to be strongly prime if R/P is a strongly prime ring.
For more details on strongly prime rings and ideals see [15].

By the results in ([5], Sect. 3), we may expect that there exists some
result concerning strongly prime rings similar to Theorem 4.6. To obtain
this result we give the following definition.

Let P be a submodule of M. A submodule N of P is said to be right
strongly closed in P if for any submodule I of M with N C I C P there
exists a finite set ' C I such that Fa C N, a € R, implies a = 0. Such a set
F will be called an insulator. The submodule P is said to be strongly closed
if the ideal (0) of P is strongly closed in P.

Every strongly closed submodule of P is closed in P. Moreover, we have

Lemma 4.8. Assume that N C P are submodules of M and N is strongly
closed in P. Then N is non-singular in P.
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Proof. Assume Z(P/N) = I/N, where I D N is a submodule of P.
Then there exists a finite set ¥ C I which is an insulator. For every z € F,
A; = r(z + N) is an essential right ideal of R, where 2z + N € I/N. Also,
F(n erpA;) C N. Then N cpA, = 0, a contradiction.

It is easy to see that an intersection of strongly closed submodules of P
is also a strongly closed submodule of P. Then the intersection of all the
strongly closed submodules of P is the smallest strongly closed submodule
of P. This submodule will be called the strongly closed radical of P and
denoted by s(P).

Lemma 4.9. Assume that Ris astrongly prime ring. Then for submodules

N C P of M we have s(P/N)=[N]p/N.

Proof. Assume that [ is a submodule of M with N C I C P and that [
is strongly closed in P. If [N]p € I, there exists a finite set F C [N]p + 1
such that Fa C I, a € R, implies a = 0. Clearly we may assume F' C
[N]p. Then for every z € F there exists a non-zero ideal H, of R such that
zH, C N. Then F(N,epH,) C N C I and so N,erpH, = 0, a contradiction.
Consequently [N]p C I.

Now we show that [N]p is strongly closed in P, provided R is strongly
prime. Assume that J is a submodule of P with 7 D [N]p and let L be a free
dense submodule of M. Then there exists y € m(/ N L) which is a remainder
module [N]p N L. Write y = aje; + ... + ann, 0 # a; € R, for i = 1,...,n.
We define an ideal of R by H = {a € R : there exists y € I N L with
supp(y) = {e1,...,es} and y(e;) = a}. Since R is strongly prime, there exists
F = {b,...,b:} C H such that 5 =0, b € R, implies b = 0. Now, for every
b; € F there exists y; € I N L with supp(y;) = {e1,...,en} and yi(e;) = &;,
i = 1,2,...,t. Then we have that {y,...,%} is an insulator modulo [N]p
which is contained in I. For if b € R and y;b € [N]p, ¢t = 1,...,1, we have
y;b =0, thus b = 0 and so b = 0. The proof is complete.

Corollary 4.10. Assume that R is a strongly prime ring and ¥ C P are
submodules of M. Then N is strongly closed in P if and only if N is closed
in P.

In particular, putting together Lemma 4.1, Lemma 4.8 and Corollary 4.10
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we have

Corollary 4.11. Assume that R is a strongly prime ring and P is a sub-
module of M. Then the following conditions are equivalent

i) P is torsion-free
il) P is non-singular

i) P is strongly closed.
Now we prove the following converse of Corollary 4.10.

Lemma 4.11. Let N be a submodule of M which is not a torsion submo-
dule. If [0]y is strongly closed in N, then R is a strongly prime ring.

Proof. By factoring out [0]y we may assume M is torsion-free and N
is strongly closed. Let L be a free dense submodule of M and take any
O#£z€ NNL,sayz =aje;+...+apen, 0# a; ER,1=1,...,n. Let H be a
non-zero ideal of R and consider HzH, a non-zero submodule of N. By the
assumption there exists an insulator ¥ C Hz H. Also, for every z; € F we
have z; = T; cijed;j, cij, dij € H. Then we easily see that {di;} C H is an
insulator in R. Thus R is strongly prime.

As a direct consequence of the former results we have

Theorem 4.12. Let M be a centred bimodule over a prime ring R and P
a submodule of M. Then the following conditions are equivalent.

i) R is strongly prime.

i) [0]p is a strongly closed submodule of P.
iii) Every closed submodule of P is strongly closed in P.
iv) s(P/N) = [N]p/N, for every submodule N of P.

Corollary 4.13. A ring R is strongly prime if and only if there exists a
strongly closed centred bimodule over R.
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5. Centred and intermediate extensions

Throughout this section R is again a prime ring and S is an extension of R.
We say that S is a centred extension of R if S is a centred bimodule over R.
That is, there exists a set of R-centralizing elements X = (z;);eq of S such
that S = T ;eq Rzi. Clearly we may assume that 1 € X. Closed and prime
ideals in free centred extensions have been considered in [5].

Let S be a centred extension of R and let W denote a subring of S with
R C W. Then we say that W is an intermediate extension of R.

An ideal I of an intermediate extension W of R is said to be R-disjoint
if IN R = 0. The closure [I]y of an ideal I of W is defined as the closure of
I as a submodule of W. Using Corollary 1.4 we easily see that the closure
[[lw of an R-disjoint ideal I of W is also an R-disjoint ideal of W. Also, if
INR#0, then [Ilw =W.

The ideal I of W is said to be closed in W if [I]lw = I. It is clear that
a proper closed ideal is always R-disjoint. All the results we have proved in
Section 1 applies to R-disjoint ideals and closed ideals.

To choose a free dense submodule L of S we consider a maximal R-
independent subset E = (¢;);ca of X containing 1. Thus such a free dense
submodule contains R, the canonical torsion-free extension S* of S has a
basis containing 1, and @ C S*. As in the former sections we denote by V
the C-vector space Sg = 3 ;cp Ce;.

Since S* is free over @ with the basis F, the multiplication in S induces
a multiplication in S*. We can easily see that S* is a ring and the canonical
mapping 7 : S — S* is a ring homomorphism. For every t, £k € A we
have e;e; € Vs5.(Q) = V, where Vs.(Q) denotes the centralizer of S* in Q.
Consequently V is a C-algebra with the same basis E.

We have some problems to obtain a theorem of the type of Theorem 2.15
for closed and R-disjoint prime ideals of W. First, if T is any ring of right
quotients of R, the T-submodule S} = ;.5 T'e; of S* need not be a subring,
in general. So we have to restrict our attention to subrings T of Q with the
following additional property: for every e, ¢/ € E we have ee’ € S;. We
certainly can proceed with any ring of right quotients containing the central
closure RC of R.

Hereafter we modify our notation for simplicity. We denote by @ any ring
- .of right quotients of R containing RC and by S* the ring S = ¥ ;c4'Qe;. It
is clear that V C §*, $* ~ Q ®¢ V, and S™ is free over Q with the basis F.
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There is another problem concerning R-disjoint ideals of an intermediate
extension W. If W = S is easy to see that every R-disjoint prime ideal of W
1s closed. But we do not know if the same result holds for any intermediate
extension. Moreover, we think the result is not true. We will consider the
question afterwards. Meanwhile, an R-disjoint prime ideal which is closed

will be called a closed prime ideal.
We begin the section with the following.

Lemma 5.1. Let W C U be subrings of S such that W is dense in U.
Then the correspondence of Theorem 1.7 preserves closed and closed prime
ideals.

Proof. Let P be a closed submodule of U and put P = PNW. lf P is
an ideal of W, z € P and y € W we have non-zero ideals H and F' of R with
2H C Py and Fy C W. Then FyzH C P, C P and so yz € P, because P
is closed. Similarly, zy € P. Thus P is an ideal of U if and only if F, is an
ideal of W. ‘

Now, assume that F; is prime and let A, B be ideals of U with AB C P.
If 2 € [Aly, y € [B]y then zH C A and Fy C B, for non-zero ideals H and
F of R. Hence as above we obtain yz € P. Therefore we may assume that
A and B are closed. Thus (ANW)(BN W) C P, and so either ANW C P,
or BOW C F. It follows that either A=[ANW]y CPor BCP.

Conversely, assume that P is prime and A and B are ideals of W with
AB C P,. As above we show that [A]y[B]y C P and we have either A C
PaW=PF o BCH.

Let W be an intermediate extension of R. Then it is easy to see that
[W]s is also a subring of S containing R. By Lemma 5.1, in the proof of
some results we may assume that W is closed. In this case we say that W is
a closed intermediate extension.

We can do another simplification. Every closed ideal of W contains [0lw =
[0]s n W. Thus, by factoring out the ideal [0]s we may assume that S is
torsion-free. Henceforth we may consider S C S* and the correspondece of
Theorem 2.15 is given by intersection.

Let W be an intermediate extension of R. Then there exists a closed
submodule W* of S* with W* N S = [W] and put Wy, = W*n R. We have

26



Lemma 5.2. If W is an intermediate extension of R, then [W], W* and
W, are subrings of S, S* and V, respectively.

Proof. We already know that [W]is a ring. i z, y € W, C W* there
exist non-zero ideals H and F of R with ¢ H C W and y¥ C W. Then
2yHF = zHyF C W C W* hence zy € W*NV = W,. Thus Wy is a
subalgebra of V. The rest is clear because W* = QW,,.

Now we can prove the following

Theorem 5.3. Let W be an intermediate extension of R. Then the cor-
respondence of Theorem 2.15 is a one-to-one correspondence between the
following

i) The set of all the closed (resp. closed prime) ideals of W.
ii) The set of all the closed (resp. closed prime) ideals of W*.
iti) The set of all the (resp. prime) ideals of Wj.

Proof. We may assume W is closed. Let P denote a closed submodule
of W, P* the extension of P to W* and P, = P*NW,. Using a similar
argument to that in Lemma 5.2 we see that when one of the submodules P,
P* and P, is an ideal so are the others.

Assume that P is a closed prime ideal and A, B are ideals of W, with
AB C Py. Thus (QANWYQBNW) CQAB)NW C PPNW = P. Then
either QANW C Por QBNW C P and it follows that either A C F, or
B C Py. Consequently F; is prime.

Now, assume that F, is prime and suppose that AB C P*, where 4 and
B are ideals of W*. Then (A N W,)(B N W,;) C P, and it follows easily that
either AC P*or BC P~

Finally, assume that P* is prime and AB C P, where A and B are ideals
of W. Suppose that there exists z € A\ P. As above we may assume that B
is closed in W and let B* denote the extension of B to W*. For every y € B*
there exists a dense right ideal J of R with yJ C B. Then zyJ C P C P* and
it follows that zy € P*. Therefore zB* C P*, where z € P*. Consequently
B=B*nSC P*nS = P. The proof is complete.
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Remark 5.4. i) The above Theorem generalizes ([5], Theorems 2.5 and
2.7).

ii) Changing B by A we see that the above correspondence is also a one-
to-one correspondence between closed semiprime ideals.

i) It is clear that the correspondence preserves intersections too.

Now we give some easy examples of R-disjoint prime ideals which are
automatically closed.

Exemple 5.5. Let W be an intermediate extension and let P be an ideal
of W which is maximal with respect to PN R = 0. Then it is easy to show
that P is a closed prime ideal.

Example 5.6. Assume that the ring R satisfies the following condition:
Every non-gero ideal of R contains a central element (for example, this con-
dition holds if R is a PI ring). Then every R-disjoint prime ideal of W is
closed. For, if zH C Pforz € W, 0 # H 4 R, where P is an R-disjoint
prime ideal of W, we obtain zWcW C P for a central element 0 # c € H.
Then z € P.

Example 5.7. Let R be a subdirectly irreducible prime ring and let W be
an intermediate extension. Then every R-disjoint prime ideal of W is closed.
In fact, if zH C P,forz € W, 0 # H < R, take any element y € Wj, and let
F be the minimal ideal of R. Then yF C W. Also, for every z = yq, ¢ € Q,
we have 22FHF = zygFHF = 2qF HyF CaHyF C P,since ¢gF C R. It
follows easily that zW FHF C P and consequently z € P.

In Section 7 we will consider another case in which every R-disjoint prime

ideal is closed.

6. Special types of prime ideals

The purpose of this section is to study strongly prime and non-singular prime
ideals. At the end, we also include a Theorem concerning primitive ideals.
These results are generalizations of the results in ([5], Sections 3 and 4).
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Throughout this section W is an intermediate extension of a prime ring
R. In [5], we proved that if R is a prime ring of some special type (e.g.,
strongly prime, non-singular, primitive), S is a free centred extension of R
and P is an ideal of S which is maximal with respect to PN R = 0, then
S/P is also a ring of the considered type ([5], Theorems 3.1, 3.2, 4.1). One
of the purposes of this section is to extend this results. We have

Theorem 6.1. Let R be a strongly prime ring and let P be an ideal of W
which is8 maximal with respect to PN R = 0. Then P is a strongly prime
ideal of W.

Proof. Suppose that [ is an ideal of W with / D P. Then /N R # 0 and
so there exists a finite set ' C I'N R such that Fa =0, a € R, implies a = 0.
We show that F' is an insulator in W/P. Put K = {y € W : Fy C P}. Then
K is a right ideal of W containing P. Assume, by contradiction, that K O P
and take a free dense submodule L of S with the basis £ = (e;)ica. Then
since P is closed, there exists an element z € m(K N L) which a remainder
modulo P N L, by Corollary 1.11. Write 2 = Y- a;e;, 0 # a; € R, ¢; € E|
t=1,...,n. Since Fz C PNL we have Fz = 0andso Fa;=0,:1=1,...,n. It
follows that z = 0, a contradiction. Consequently K = P and P is strongly
prime.

Now we consider non-singular prime ideals. A prime ideal P of W is
said to be non-singular if W/P is a (right) non-singular prime ring. Right
annihilators of an element z = z + P € W/P, z € W, will be denoted by
T‘Wllp(i).

Theorem 6.2. Let R be a non-singular prime ring and let P an ideal of
W which is maximal with respect to PN R = 0. Then P is a non-singular
prime ideal.

Proof. Assume, by contradiction, that Z(W/P) = I/P # 0, where I is
an ideal of W. Then I N R # 0 and we may choose any 0 #a € IN R. We
will reach a contradiction by showing that a € Z(R) = 0.

Let J be a non-zero right ideal of R and let L be a free dense submodule
of S with the basis E = (¢;)ica. Since (JW + P)/P is a non-zero right ideal
of W/P there exists z € JW \ P such that az € P. Put K = {y € JW :
ay € P}. Then K is a right ideal of W and K D P. Thus me may choose
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z € m(K N L) which is a remainder modulo P N L, by Corollary 1.11. Also,
z=yr,aw, fora; €J,w; € W, 1 =1,...,n Take a non-zero ideal H of
R with w;H C W O L, for every 1, and choose b € H such that zb # 0. It is
easy to see that zb = }_T2, bje;, for some b; € J, e; € E, j = 1,...,m. Since
suppg(zb) C suppp(z), zb € K is also a remainder modulo P N L. Further,
azb € P and so azb = 0. Consequently ab; = 0 and hence rg(a) N J # 0.
Therefore a € Z(R) = 0, a contradiction.

Now we consider arbitrary closed prime ideals. In ([5], Sect. 3) we proved
that similar results hold for every R-disjoint prime ideal of a free centred
extension S of R, provided that the basis is a either a finite or a commuting
set. We consider here any centred extension S of R with X = (z;)ieq as a
set of R-centralizing generators. Recall that V5(X) denotes the centralizer
of X in S.

We can obtain the following generalization of the above mentioned result.

Theorem 6.3. Let R be a strongly prime ring and let W be an intermediate
extension with W C Vg(X). If P is closed prime ideal of W, then P is a
strongly prime ideal of W.

Proof. By factoring out the ideal [0]s we may assume S is torsion-free.
Suppose that [ is an ideal of W with I D P. If I N R # 0, we obtain an
insulator F C I N R of W/P, by the same way as in Theorem 6.1. So we
may assume ] N R = 0.

Let L be a free dense submodule of S with the basis E = (e;);es. Since P
is closed there exists z € m(/ N L) which is a remainder modulo PN L, say
z=Y" a6,0#a €R,1=1,..,n Then H =0Op,, (I NL)is a non-zero
ideal of R and so there exists an insulator F C H. Put F = {b,bs,...,b }.
For every 1 <7 < m there exists z; = Z;-'_.ﬂ bije; € I N L with b;; = b;. Also,
by Lemma 2.1, there exists 2 € Mc(I N L) such that z; = 2b;, for 1 < i < m,
and z is a remainder modulo P*, the extension of P to W*. We show that
G = {z;: 1 <1< m} is an insulator in W modulo P.

Put K = {y € W: Gy C P}. If K = P we are done. Assume that
K > P and take an element y € m(K N L) which is a remainder modulo
PN L. Then zb;y € P C P*, for 1 < i < m. Since W C Vg(X) it follows
that W* C Vs.(E). Hence :W*b;y = W*zb;y C P*, z ¢ P*, and P* is prime.
Therefore by € PPNL=PNLandsoby=0,1<i1<m. Sincey € L and
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F is an insulator we obtain y = 0, a contradiction. The proof is complete.

The corresponding result for non-singular prime ideals is the following.

Theorema 6.4. Let R be a non-singular prime ring and let W be an
intermediate extension of R with W C V3(X). If P is a closed prime ideal
of W, then P is a non-singular prime ideal.

Proof. By factoring out the ideal [0]s we may assume that S is torsion-
free. Assume that Z(W/P) = I/P # 0, where [ is an ideal of W. I
IO R # 0 we arrive to a contradiction by the same way as in Theorem 6.2.
So we consider the case TN R = 0.

Let L be a free dense submodule of S with the basis F = (e;);ea. Then
there exists ¢ = 31-; aie; € m(J N L) which is a remainder modulo PN L,
where 0 # a; € R, ¢; € E, 1 < i < n. We show that a; € Z(R) = 0, a
contradiction.

Let J be a non-zeroideal of R and consider the non-zeroideal (JW+P)/P
of W/P. Then there exists y € JW \ P such that zy € P. Thus K = {w €
JW : gw € P} is a right ideal of W and K O P. Therefore there exists
y € m(K N L) which is remainder modulo P N L. Also, as in the proof
of Theorem 6.2 we show that we may choose y € JE. Finally, by Lemma
2.1 there exists z € Mc(I N L) with za; = z. We have zaq1y € P C P*
and so zW*a;y = W*zayy C P*, since W* C Vs.(E). Consequently a;y €
P 0L =PnNL, thus a;y = 0 and so r(a;) N J # 0. We obtain a; € Z(R), a
contradiction. The proof is complete.

It is not surprising that in Theorem 6.3 we proved that an R-disjoint
prime ideal is strongly prime only for closed ideals. In fact, we have

Proposition 6.5. Assume that P is a strongly prime ideal of an interme-
diate extension W of R such that PN R = 0. Then R is a strongly prime
ring and P is closed.

Proof. If H is a non-zero ideal of R, then W HW is a non-zero ideal of
W which is not contained in P. Then there exists a finite set F C WHW
such that Fz C P,z € W, implies 2z € P. Also,everyy, € FCWHW CS
can be written as y; = ¥, ziai;, for some elements a;; € H. Thus {a;;} C H
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is an insulator in R.

Now, assume that [P] D P. Then there exists a finite set F C [P] such
that Fz C P, z € W, implies z € P. However, since F' is finite there exists
0# H< Rwith FH C P and H € P. The contradiction shows that P is

closed.

The corresponding of Proposition 6.5 for non-singular ideals is the follo-
wing.

Proposition 6.6. Assume that there exists a closed non-singular prime
ideal P of W. Then R is a non-singular prime ring.

Proof. Suppose that A and B are ideals of R with AB = 0. Then
AWBW C ABS = 0, so either AW C P or BW C P and it follows that
either A =0 or B = 0. Thus R is prime.

Take a € Z(R) and let J be a right ideal of W with J D P. Choose

an element z = ae; + ... + aze, € m(J N L) which is a remainder modulo
P L, where L is a free dense submodule of S with the basis E = (¢;);ea,
0 # a; € Rfor 1 <1< n, and consider the right ideal ©p.,(J N L) of R.
Then there exists 0 # ¢ € O, (J N L) such that ac = 0. Also, there exists
Yy =cie3+...+cqe, € JNL with ¢; = c. Assume that ay = ac,e,+...+ac,e,,
where ac; # 0 for s < j < n. Since ¢,R # 0 there exists b € R such that
c.b # 0 and ac,b = 0. Thus 0 # yb = ac,41be, 41+ ... + acpbe,. Repeating the
argument we find an element 2z € J N L with supp(z) = supp(y) and az = 0.
Counsequently, rw/py(a+ P)N(J/P) =0 and we have a € PN R = 0. Then
Z(R) = 0 and the proof is complete.

As a direct consequence of the former results we have the following co-
rollaries.

Corollary 6.7. Let W be an intermediate extension of R. Then R is
strongly prime (resp. non-singular prime) if and only if every ideal P of
W which is maximal with respect to PN R = 0 is a strongly prime (resp.
non-singular prime) ideal.

Corollary 6.8. Let W be an intermediate extension of R with W C Vs(X).

An R-disjoint prime ideal P of W is strongly prime if and only if R is strongly
prime and P is closed.
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Corollary 6.9. Let W be an intermediate extension of R with W C Vs(X).
Then R is non-singular prime if and only if every closed prime ideal of W is
non-singular.

Combining the above results with Examples 5.6 and 5.7 we have

Corollary 6.10. Let W be an intermediate extension of R with W c
Vs(X). Assume that one of the following condition is fulfilled.

i) W=25.
ii} Every non-zero ideal of R contains a central element.
iii) R is subdirectly irreducible.

Then R is strongly prime (resp.non-singular) if and only if every R-
disjoint prime ideal of W is strongly prime (resp. non-singular).

Remark 6.11. i) An example given in ([6], Example 2.6) shows that
Theorem 6.3 is not true if the condition W C Vg(X) is not assumed. We
could not find a similar example for Theorem 6.4. Thus the corresponding
question for non-singular prime ideals is still open.

i1) We do not know if every non-singular R-disjoint prime ideal is always
closed. This is true for strongly prime ideals (see Propositions 5.5 and
5.6).

iii) We did not succeed in proving that if W C Vs(X), then every prime
ideal P of W with PN R = 0 is closed.

To finish the section we prove the result corresponding to Theorems 6.1
and 6.2 on primitivity. This result is a partial extension of ([5], Theorem 4.1).
Recall that an ideal P of W is said to be (right) primitive if there exists a
maximal right ideal N of W such that (N : W)={z e W : Wz C N} = P,
where (IV : W) is the largest ideal of W contained in N.

Theorem 6.12. Let R be a primitive ring and let P be an ideal of W

which is maximal with respect to PN R = 0. Then P is a primitive ideal of
w.

33



Proof. Let J be a maximal right ideal of R with (J : R) = 0. We show
that (JW + P)N R = J. Assume, by contradiction, that (/W + P)NR = R.
Then there exist 2 € JW, y € P such that z + y = 1. Write z as a linear
combination of the centralizing generators (z;);en of S with coeflicients in R.
We easily see that we may put z = 1, a;z;, where q; € Jfor 0 < : < n and
zo denotes the identity of R. Consequently, there exists y = " jciz; € P
such that ¢, € J and ¢; € J for 1 <1 < n. Let L be a free dense submodule
of S with the basis £ = (e;);cs and let H be a non-zero ideal of R with
yH C L. I ol C J, using cocR+ J = R we easily obtain H C J. Therefore
there exists b € H such that cob € J. Hence, changing y by yb we see we may
assume that y = bg + bye; + ... + bies € PN L, where bg € J and 0 # b; € J
for : = 1,...,f. Also we may assume that { is minimal with respect to this
conditions. Take I' € Ming(P N L) such that ' C {ey, €1, ..., &¢}. It follows
that there exists some i, say 1, such that e; € I' and consider the ideal
Or, (PN L). Since (J: R) = 0 we have Or,(PNL) € J. So we can find
an element z € PN L with supp(z) =T and z; = 2(e;) € J.

On the other hand, 50R + J = R and so bgRz; € J. Hence there exists
r € R with byrz; € J. Then the element v = yrz; — byrz € PN L and it
can be easily seen that vy = v(ep) € J, v; = v(e;) = 0 and v(e;) € J for
2 <1 <t. This contradicts the minimality of ¢.

Therefore (JW + P) N R = J. Thus there exists a right ideal N of W
which is maximal with respect to N D (JW + P) and N N R = J. Clearly
N is a maximal right ideal of W. Also (N : W)NR C (J: R) = 0 and so
(N : W) = P. The proof is complete.

7. Some finiteness assumptions

In this section, we first consider intermediate extensions of finite rank. Note
that if S is finitely generated over R (a liberal extension, according to [21])
and W is an intermediate extension, then rank (W) < co. The study of this
situation is contained in [20].

Now, let S be an arbitrary centred extemsion of R and let W be an
intermediate extension. We say that W is of finite rank if rank (W) < oo.

As usual, in this section we denote by S* the canonical torsion-free ex-
tension of S and by V the corresponding C-vector space. Also, W* denotes
the extension of the closed subring W of S and we put Wy = W*nNnV.
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The prime (resp. strongly prime, Jacobson) radical of a ring B will be
denoted by P(B) (resp, s(B), J(B)).
We begin this section with the following.

Theorem 7.1. Let W be an intermediate extension of finite rank of R with
[0]w = 0. Then the prime radical of W is nilpotent and is a finite intersection
of minimal prime ideals. The minimal prime ideals of W are precisely those
ideals of W which are maximal with respect to having zero intersection with

R.

Proof. By factoring out from S the ideal [0]s we may assume S is torsion-
free. First we assume that W is closed in S. By the assumption, dim¢(Wp) <
0o. Then there exists a finite set of minimal prime ideals { K7, ..., K.} of Wy
such that the prime radical B = P(W,;) equals to N%,K; and B™ = 0, for
some integer number m > 1. Also, P, = QK; N W is a closed prime ideal of
W,1=1,..,n,such that A=QBNW =N, F, and A™ = 0. Hence we can
easily see that A is the prime radical of W and {P,..., P,} is the set of all
the minimal prime ideals of W.

Suppose there exists an ideal 7 of W with P, C  and /N R = 0. We may
assume that such an ideal I is maximal with respect to /N R = 0. Hence
IOV D P*nV = K; and therefore I* NV = K;. It follows that I = P,.

In general, if W is any intermediate extension of finite rank we consider
[W]s. Applying Lemma 5.1 it is easy to complete the proof using similar
arguments as above.

Corollary 7.2. Let W be an intermediate extension of finite rank of R.
Then every R-disjoint prime ideal of W is closed.

Proof. Assume that P is any R-disjoint prime ideal of W. If z € W and
zH =0,for 0 # H< R, we have z(HSNW) = 0. Thus z € P since HSNW
is an ideal of W which is not contained is P. Consequently, [0l C P and,
by factoring out from S the ideal [0]s we may assume [0]w = 0.

Using the same notation as in the proof of Theorem 7.1 we have that there
exists 1 < ¢ < n such that P O P;. Hence P = P, is closed, by Example 5.5.

Since now we kwow that every R-disjoint prime ideal of W is closed, it
is easy to repeat the arguments of the proof of Theorem 7.1 to obtain the
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following.

Corollary 7.3. Let W be an intermediate extension of finite rank of R
and let I be a closed ideal of W. Then the prime radical of W/I is nilpotent
and is a finite intersection of R-disjoint prime ideals of W/I.

As an immediate consequence of Theorems 6.1, 6.2 and 6.12 we have

Corollary 7.4. Let W be an intermediate extension of finite rank of a
strongly prime (resp. non-singular prime, primitive) ring R. Then every R-
disjoint prime ideal of W is strongly prime (resp. non-singular, primitive).
In particular, in the first case s(W) = P(W) and in the latest case J(W) =
P(W).

Now we consider another finiteness assumption. Let S be a centred ex-
tension of R with X = (z;);en as a set of R-centralizing generators. We
say that S is an almost finite centred extension of R if there exists a finite
commuting subset {z1,...,2,} of X such that Sy = R[z1,...,2,] is a dense
subring of S, where R[z,,...,z,] denotes the submodule of S generated by

all the elements of the type z¥...zi* i; > 0.

Theorem 7.5. Assume that S is an almost finite centred extension of R
and let I be a closed ideal of S. Then the prime radical of S/ is nilpotent
and is a finite intersection of minimal prime ideals of S/I all of which are
R-disjoint.

Proof. By factoring out the ideal / we may assume I = 0 and S is
torsion-free. Let L be a free dense submodule of S; = R[zi,...,z,] with a
basis E contained in the set {zi...z/»} of generators of S;. Then L is also
a free dense submodule of S and we have $* = S5 = L* is free over @ with
the basis £. Then S* is a homomorphic image Q[zi,...,2,] of a polynomial
ring over Q in a finite number of indeterminates and also V = Clzy, ..., 2,].
Hence V is a noetherian ring and so there exists a finite family { K3, ..., K;} of
minimal prime ideals of V such that the prime radical B of V equals N{_, K
and B™ = 0, for some integer number m > 1. Then P, = QK; N S is an
R-disjoint prime ideal of S, 1 < i < ¢, with P(S) = n{_, P; and P(S)™ = 0.
The proof can easily be completed as in Theorem 7.1.
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Corollary 7.6. Assume that R is a strongly prime (resp. primitive) ring
and S is an almost finite centred extension of R. If I is a closed ideal of S,
then s(S/I) = P(S/I) (resp. J(S/I) = P(S/I)).

Proof. Using the same notation as in Theorem 7.5 we have that
Clz1,..., %) is a commutative Jacobson ring. Then every ideal K; is an
intersection of maximal ideals of V. It follows that P; is an intersection of
ideals of S which are maximal with respect to having zero intersection with
R. So it is enough to apply Theorem 6.1 (resp. Theorem 6.12).

Remark 7.7. Assume that S is an almost finite extension of R. If R
is strongly prime (resp. non-singular prime), then every R-disjoint prime
ideal of S is strongly prime (resp. non-singular). In fact, Theorem 6.3 (zesp.
Theorem 6.4) shows that this is true for the R-disjoint prime ideals of So.
Now, it is not difficult to prove that if P is an R-disjoint prime ideal of S
and PN .S, is strongly prime (resp. non-singular), then P is strongly prime

(resp. non-singular).

8. Some additional applications

The purpose of this section is to give some applications of the former re-
sults. Throughout, R is any ring (not necessarily prime) and S is a centred
extension of R.

If P is a prime ideal of S, then P N R is a prime ideal of R. Hence, to
study S/P we may factor out from R and S the ideals PN R and (PN R)S
(or even P), respectively. So we may assume that R is a prime ring and P
is an ideal of S with P N R = 0. Then, as a direct application of Corollaries
6.8, 6.9 and 7.4 we obtain the following extension of ([5], Theorem 3.3).

Theorem 8.1. Let R be any ring and let S be a centred extension of
R with X as a set of R-centralizing generators. Assume that one of the
following conditions is fulfilled.

i) X is a commuting set

i) rank (S) < oo.
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Then every prime ideal of R is strongly prime (resp. non-singular) if and
only if the same is true of S.

We say that every prnime ideal of R can be extended to S if for every
prime ideal P of R there exists a prime ideal I of S with I N R = P. Note
that this is the case when S is a free centred extension of R.

Another application is the following.

. Proposition 7.2. Let S be a centred extension of R. Then s(S)NR D
s(R). In addition, if every prime ideal of R can be extended to S, then

s(S)N R = s(R).

Proof. If P is a strongly prime ideal of S, by factoring out from R
the ideal P N R and applying Proposition 6.5 we obtain s(R) C P. Thus
s(R) Cs(S)nR.

Now, if P is a strongly prime ideal of R and P can be extended to S,
we take an ideal I of S which is maximal with respect to /N R = P. By
Theorem 6.1, I is strongly prime. This completes the proof.

Remark 7.3. i) Applying similar arguments to those used in the proof of
Proposition 6.6 we can prove that Z(R) C Z(S) N R. It is easy to see that
Z(R) = Z(S) N R, provided that S is a free centred extension of R.

ii) As in Proposition 7.2 we can prove that if every prime ideal of R can
be extended to S, then J(S)N R C J(R).

iii) Similarly we obtain that P(R) C P(S) N R and the equality holds
provided that every prime ideal of R can be extended to S.

It seems to be very difficult to study prime ideals of intermediate extension
W. To apply our results it should be necessary to reduce to the R-disjoint
case. If P is a prime ideal of W, we cannot factor out convenient ideals of
R, W and S so that in the new situation the image of P be R-disjoint. This
is possible, for example, if S is a liberal extension of R ([20], Theorem 3.2).
To finish the paper we include here a case in which this is possible.

Theorem 7.4. Assume that R is a ring such that every -prime factor
of R is subdirectly irreducible, S is a centred extension of R and W is an
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intermediate extension. If P is a prime ideal of W, then PN R is prime ideal
of R and there exists a prime ideal / of S such that /N R = PN R and
InwcCP.

Proof. With minor modifications, the proof is the same as in ([20], The-
orem 3.2). We use the same notation as in [20] to indicate the changes.
We cannot use rank. Anyway we have TX C P; and this easily implies
that (P ®@ K)NT = P. Also, F; @ K is a dense submodule of S and so
SY C P,® K, where Y is the smallest ideal of R. The result follows.

From Corollary 6.10, the following is clear.

Corollary 7.5. Assume that Ris aring such that every prime factor of R is
subdirectly irreducible, S is a centred extension of R with X as a centralizing
generator set and W is an intermediate extension with W C Vg5(X). Then
every prime ideal of R is strongly prime (resp. non-singular) if and only if
the same is true of W.
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