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ABSTRACT

White dwarfs carry information on the structure and evolution of the Galaxy, especially
through their luminosity function and initial-to-final mass relation. Very cool white dwarfs
provide insight into the early ages of each population. Examining the spectra of all stars with 3o
proper motion in the Sloan Digital Sky Survey Data Release 14, we report the classification for
20 088 spectroscopically confirmed white dwarfs, plus 415 hot subdwarfs, and 311 cataclysmic
variables. We obtain T, log g, and mass for hydrogen atmosphere white dwarf stars (DAs),
warm helium atmosphere white dwarfs (DBs), hot subdwarfs (sdBs and sdOs), and estimate
photometric T, for white dwarf stars with continuum spectra (DCs). We find 15793 sdAs and
447 dCs between the white dwarf cooling sequence and the main sequence, especially below
T.ir >~ 10000 K; most are likely low-mass metal-poor main-sequence stars, but some could
be the result of interacting binary evolution.
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1 INTRODUCTION

White dwarf stars are the end state for all stars formed with initial
masses below around 7-11.8 Mg, depending on metallicity (e.g.
Ibeling & Heger 2013; Doherty et al. 2015; Woosley & Heger
2015; Laufter, Romero & Kepler 2018), which translates to more
than 97 per cent of all stars. Therefore the properties of the white
dwarf population reflect the result of the initial mass function, the
star formation rate, and the initial-to-final mass relation, for different
metallicities. White dwarf stars are also possible outcomes of the
evolution of multiple systems, with 25-30 per cent of white dwarfs
estimated to be the result of mergers (Toonen et al. 2017). White
dwarfs with masses lower than 0.3-0.45 M, are generally explained
as outcomes of close binary evolution (Kilic, Stanek & Pinsonneault
2007), given that the single progenitors of such low-mass white
dwarfs have main-sequence lifetimes exceeding the age of the
Universe. The formation mechanism of the so-called extremely low
mass white dwarfs (ELMs) — those with masses below ~0.2-0.3 Mg,
(e.g. Sun & Arras 2018; Calcaferro, Althaus & Coérsico 2018, and
references therein) — is similar to that proposed to explain composite
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hot subdwarf stars (e.g. Heber 2016): the outer envelope is lost after
a common envelope or a stable Roche lobe overflow phase, leaving
the stellar core exposed (e.g. Li et al. 2019). Hot subdwarfs result
when the envelope is lost after He-burning is triggered in the core
— hence they lie above the zero-age horizontal branch (ZAHB),
whereas an ELM will result if the mass is lost when the core He is
in a degenerate state, but He fusion has not been triggered. ELMs
show similar log g to subdwarfs, but generally lower temperature
(Terr < 20000 K).

White dwarfs do not present ongoing core nuclear burning, but
residual shell burning may occur depending on the thickness of
the hydrogen layer. ELMs are believed to show residual burning
before reaching the final white dwarf cooling track (Cdrsico et al.
2012; Istrate et al. 2016). This happens in the pre-ELM phase
(Maxted et al. 2014a,b), which can cause them to show luminosities
comparable to main-sequence and even horizontal branch stars (e.g.
Pietrzynski et al. 2012).

Because the time-scales for gravitational settling are of the order
of a few million years or smaller, the atmospheric composition of
white dwarf stars is generally simple, with around 80 per cent show-
ing solely H lines (spectral class DA). The remaining are dominated
by He lines, when the atmospheric temperature is sufficient to excite
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the He atoms. The spectral class is DB if only He I lines are present,
and DO if He1I lines are visible (typically Tu = 40000 K). Very
cool white dwarfs (T < 5000 K for H atmosphere, T < 11 000K
for He atmosphere) show featureless spectra and are classified
as DCs. A substantial fraction (20-50 per cent, Zuckerman et al.
2003; Koester, Ginsicke & Farihi 2014) of white dwarfs show
contamination by metals, which can only be explained by ongoing
accretion, except for very hot objects (Ter 2 50000 K), where
radiative levitation can still play a significant role (e.g. Barstow
et al. 2014); a Z is added to the spectral classification to flag metal
pollution. In rare cases, for stars classified as DQs, carbon may be
dragged to the surface by convection (e.g. Koester, Weidemann &
Zeidler 1982). Cool DQs show spectra similar to dwarf carbon
(dC) stars, which are themselves believed to be one outcome binary
evolution (Whitehouse et al. 2018).

In this paper we extend the work of Kleinman et al. (2013)
and Kepler et al. (2015, 2016), continuing the search for new
spectroscopically confirmed white dwarf and subdwarf stars in the
data release 14 of the Sloan Digital Sky Survey (SDSS DR14;
Abolfathi et al. 2018). Spectroscopy allows precise determinations
of Te, log g, and abundances, serving as a valuable resource for
studying stellar formation and evolution in the Milky Way (e.g.
Winget et al. 1987; Bergeron, Saffer & Liebert 1992; Liebert,
Bergeron & Holberg 2005; Tremblay et al. 2014). As a by-product,
we also identify cataclysmic variables (CVs) — white dwarfs with
ongoing mass exchange from a companion, and presenting emission
lines, generally of hydrogen and/or helium — and dC stars, due
to their similarity with carbon-rich white dwarfs. These dC stars
(Roulston et al. 2018), as well as hot subdwarfs and ELMs, hold
potential to shed light on the poorly understood process of close
binary evolution.

2 DATA ANALYSIS

2.1 Identification of the candidates

We started with the 4851 200 optical spectra in the SDSS DR14. We
selected the 259 537 spectra of stars with 30 proper motion larger
than 20 masyr—', as well as all 68836 newly observed spectra
of stars with colours within the Kleinman et al. (2013) selected
white dwarf colour range, and all 225471 spectra classified by
the SDSS spectral pipeline as WHITE_DWAREF, A, B, OB, or O
stars, or CV. In addition, we performed an automated search for
similar spectra as described in Kepler et al. (2015, 2016) on all
the 4851200 optical spectra, selecting further ~4000 spectra. We
examined these selected spectra by eye (500000 spectra, given
the overlap between the different selections) to identify broad-
line spectra characteristic of white dwarfs, hot subdwarfs, and
dCs, resulting in our identification of 34 321 high-signal-to-noise
(S/N,) spectra containing white dwarf, subdwarf, CVs, and dCs
stars. S/N, is the S/N parameter in the g band in the SDSS spectra
reduction pipeline. Our visual inspection showed that most objects
in the SDSS catalogue with proper motion smaller than 30 mas yr~!
and magnitude g > 20 are in fact galaxies, from their composite
spectrum, high redshifted lines, or broad emission lines. We also
inspected 1449 additional spectra for Gaia DR2 stars in the colour—
magnitude white dwarf region [Mgg > 3.333 x (Ggp — Ggrp) +
8.333], not included in our previous selection. This white dwarf
region was selected using the photometric conditions in Kilic et al.
(2018), but with parallax/error >4, flux/error >3, as we are looking
for stars with spectra and SDSS photometry, matching to 3 arcsec
in the SDSS coordinates.
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In previous SDSS white dwarf catalogues, we had not employed
a proper motion criterion for selection, obtaining an S/N limited
sample, determined by a colour-magnitude selection. The main
reason we expanded our selection to include low-S/N spectra from
high proper motion objects is that our previous colour selection
excluded the low-temperature white dwarfs (7. < 8000 K), because
their SDSS colours are similar to the more numerous cool dwarf
stars. However, considering that all stars born more than 2 Gyr
ago with masses larger than ~1.5 My, are now white dwarfs cooler
than 10000 K, our colour selection was excluding a significant
population of these objects. We still limited our classification to
spectra with S/N, > 3-7, depending on the spectral type — down to
lower S/N, for DA stars because hydrogen lines are stronger and
easier to detect, but to higher S/N, in other classes.

2.2 Spectral classification

DR14 uses improved flux calibration, with atmospheric differential
refraction corrected on a per exposure basis following the recipe
described in Margala et al. (2016), and improved co-addition of
individual exposures. The Stellar Parameters Pipeline, which we
used for our initial spectral class selection, are from Lee et al.
(2008a,b) and Allende Prieto et al. (2008).

The wavelength coverage is from 3800 to 9200 A for the SDSS
spectrograph (up to Plate 3586), and 3650 to 10400 A, for the
BOSS spectrograph, with a resolution of 1500 at 3800 A and 2500
at 9000 A, and a wavelength calibration better than 5 kms~'. All the
spectra used in our analysis were processed with the spectroscopic
reduction pipeline version v5_-10_0 for BOSSS/SEQUELS/eBOSS,
the spectroscopic reduction pipeline version 26 for the SDSS Legacy
and SEGUE-1 programs, the special SDSS pipeline version 103 to
handle stellar cluster plates, and the pipeline version 104 run on
SEGUE-2 plates. These RUN2D numbers denote the version of
extraction and redshift-finding code used. In all SDSS spectral line
descriptions, vacuum wavelengths are used. The wavelengths are
shifted such that measured velocities are relative to the Solar system
barycentre at the mid-point of each 15-min exposure.

Because we are interested in obtaining accurate mass distribu-
tions for our DA and DB stars, we were conservative in labelling
a spectrum as a clean DA or DB, adding additional subtypes
and uncertainty notations (:) if we saw signs of other elements,
unresolved companions, or magnetic fields (H) in the spectra.
While some of our mixed white dwarf subtypes would probably
be identified as clean DAs or DBs with better S/N spectra, few of
our identified clean DAs or DBs would likely be found to have
additional spectral features within our detection limit.

We looked for the following features to aid in the classification
for each specified white dwarf subtype:

(i) Balmer lines — normally broad and with a steep Balmer
decrement (DA but also DAB, DBA, DZA, and subdwarfs)

(i) He14471 A (DB, subdwarfs)

(iii) He 11 4686 A (DO, PG1159, sdO)

(iv) C2 Swan band or atomic CT lines (DQ)

(v) CaitH & K (DZ, DAZ, DBZ)

(vi) C114367 A (HotDQ)

(vil) Zeeman splitting (magnetic white dwarfs)

(viii) featureless spectrum with significant proper motion (DC)

(ix) flux increasing in the red (binary, most probably M compan-
ion)

(x) O16158,7774, 8448 A (DS, oxygen dominated)

(xi) H and He emission lines (CVs and M dwarf companions)
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Table 1. Classification of 37 053 spectra in

Table 2.

Number Type
15716 DA

1358 DB

1847 DC

524 DQ

598 DZ

45 DO/PG1159/0(He)/O(H)
210 sdB

205 sdO

311 (&%

4 DS

1 DH

14 BHB
15855 sdA

447 dC

8 BL LAC

Table 1 is a tally of the 37053 objects we classified in Table 2.
As 15716 objects were classified by us as DAs and 1358 as DBs,
of the 20 088 white dwarfs in the table, 78 per cent are DAs.

Among the 15 716 DAs, we found 474 magnetic DAHs, 598
unresolved binaries with main-sequence M dwarf companions
(DA 4+ M), 136 DAZs with Ca and/or Mg lines, and 52 DABs
contaminated by Hel lines. We also found 41 stars having an
extremely steep Balmer decrement (i.e. only a broad Ho and
sometimes H S is observed while the other lines are absent) that
could not be fit with a pure hydrogen grid (see Section 2.3 below),
or indicated extremely high gravities. We find that these objects are
best explained as helium-rich DAs, and therefore with an extremely
thin H layer mixed with the underlying He, and denote them
DA(He).

We classified 447 spectra as dC — dwarf carbon stars, in line
with Green (2013) and Farihi et al. (2018). We cannot identify
a clear visual discontinuity from the coolest DQs to the hottest
dCs either in term of the C line strength or the colour-magnitude
diagram (see Fig. 13). We do not have spectral models for dCs,
so we do not determine their properties. Of the 340 CVs, 9 are
AM CVn type, with pure He spectra, and 87 CVs show both H
and He lines. As an example of the spectra of CVs found in our
search, Fig. 1 shows the spectrum of the ultracompact white dwarf
binary AM CVn SDSS J141118.314-481257.66, with g = 19.38,
spectrum P-M-F 1671-53446-0010, with He emission double lines
(Fig. 1). Rivera Sandoval & Maccarone (2018) reported an outburst,
the first recorded for this star. Ramsay et al. (2018) review of
AM CVns show many have outbursts reported; AM CVn are
ultracompact hydrogen-deficient binaries, each consisting of a white
dwarf accreting helium-dominated material from a degenerate or
semidegenerate donor star.

We classified 15 793 stars as sdAs, stars with spectra dominated
by narrow hydrogen lines, following Kepler et al. (2016). Solar
metallicity main-sequence A stars have absolute magnitudes M, =~
0-2. As stars brighter than g = 14.5 saturate in SDSS, only A stars
with distance moduli larger than 12.5 are observed in SDSS, i.e. far-
ther than 3.5 kpc. Because SDSS observed mainly perpendicular to
the disc (galactic latitude in general larger than 30 deg), these would
be located in the halo, where A stars should already have evolved off
the main sequence. Thus, these sdA stars are mostly likely very low
metallicity main-sequence stars ([Fe/H] < —1.0), whose spectra
are dominated by hydrogen because they lack significant metals,
and most have masses smaller than the Sun, or their spectra would
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show higher effective temperatures than observed. As their absolute
magnitude, according to Gaia parallaxes, cover —8 > Mg > 10 (see
Fig. 11), they cannot be classified as normal main-sequence A stars,
presenting much lower masses and temperature than AV stars. They
are hotter than sdF stars (Scholz et al. 2015). Some of these sdAs
may be stars that lost mass due to binary interaction, resulting
most probably in He core stars, precursors of ELMs, and ELMs
(Pelisoli, Kepler & Koester 2018a; Pelisoli et al. 2018b, 2019) (see
Section 3.3).

2.3 Models

After classifying white dwarf and subdwarf stars, we fitted the
observed spectra to improved models of pure DAs and DBs (Koester
etal. 2011; Koester & Kepler 2015), DOs (Reindl et al. 2014, 2014a;
Reindl & Rauch 2015), sdBs, and sdOs (Geier et al. 2015, 2017a,b).
For DAs, we used ML2/ox = 0.7 models, with an LTE grid extending
from 5000 K <T.; < 80000 K and 3.5 < logg < 9.5 dex (cgs).
For T < 14000 K we corrected the temperature and gravity to the
3D calculations of Tremblay et al. (2013), resulting in a flat log g
distribution down to T >~ 10000 K, as shown in Fig. 2. The figure
also show models for He core pre-white dwarfs (Althaus et al. 2015;
Istrate et al. 2016) and for the ZAHB to show the region where
we do not consider the objects as white dwarfs. For DAs whose
LTE analysis indicates 7. > 45000 K (that is where NLTE effects
become important), we employed NLTE models. We computed
a pure H grid with the Tiibingen non-LTE Model-Atmosphere
Package (TMAP; Rauch & Deetjen 2003; Werner et al. 2003, 2012)
spanning from 7, = 40 000-200 000 K (step size 5000 K for T <
100000K and 10000 K for T, > 100000 K) and log g = 6.0-9.0
(step size 0.5 dex).To calculate synthetic line profiles, we used Stark
line-broadening tables provided by Tremblay & Bergeron (2009).
To derive the effective temperatures and surface gravities the Balmer
lines of the hot DAs were fitted in an automated procedure by means
of x? minimization using the FITSB2 routine (Napiwotzki 1999)
and calculated the statistical 1o errors. Each fit was then inspected
visually to ensure the quality of the analysis. We excluded hot DAs
whose spectra show an red excess and/or central emission features
in the Balmer lines that cannot be the result of NLTE effects but are
likely due the to the irradiation of a cool companion by the hot white
dwarf.

Fig. 3 shows the histogram of the number of DA stars versus
effective temperature. The hottest DAs we analysed have Ty =~
120000 K. The decrease of the number in the coolest bin is
mainly due to incompleteness, because cooler stars are fainter —
partially compensated by the low-mass stars that are brighter, but
also affected by the finite age of the disc stars (Winget et al. 1987).

For DBs we use ML2/a = 1.25 LTE models as in Koester &
Kepler (2015), with 12000 K <7 < 45000 K, and 7 < logg <
9.5 dex (cgs), resulting in the T — log g distribution shown in
black in Fig. 4. An increase in the estimated log g can be seen for
Ter < 16000 K. This is not solved when pure He 3D corrections
are applied (Cukanovaite et al. 2018), shown in red in Fig. 4, and is
probably caused by poor estimates of neutral broadening.

Because the spectral fits are normally degenerate between a
hot solution(s) and a cool one, we also fitted the ugriz colours
of DAs and DBs to synthetic colours derived from the same
atmospheric models, and used the photometric values to guide our
spectral parameter determinations. For DCs, DQs, and DZs, we only
estimated their T, from the colours derived from the atmospheric
models of Koester (2010).
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Figure 1. Spectrum of the outbursting AM CVn SDSS
J141118.31+481257.66, with He emission double lines.
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Figure 2. Surface gravity (log g) and effective temperature (7.sr) estimated
for the 10189 DA white dwarf stars for which the SDSS spectra has
S/Ng > 10, after applying three-dimensional convection atmospheric model
corrections from Tremblay et al. (2013), in black. The ZAHB plotted was
calculated with solar composition models. These delimit the region of solar
metallicity Blue Horizontal Branch stars. It indicates the highest possible
surface gravity for a hot subdwarf. Stars with Teir < 45000 K and smaller
surface gravities than the ZAHB are sdBs. We have also plotted 0.45, 0.3,
0.2, and 0.15 Mg models of He core pre-white dwarfs (Althaus et al. 2015;
Istrate et al. 2016) to guide the eye to the limiting region of what we call
white dwarfs.

White dwarfs in SDSS DR14 2173
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Figure 3. Histogram of the number of DA stars versus effective temperature
(in black), compared to the distribution for DCs (in blue), and DBs (in red).
The number scale for DCs and DBs is shown on the right.
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Figure 4. Surface gravity (log g) and effective temperature (7.fr) estimated
for 805 DB white dwarf stars with spectral S/N, > 10. The increase in
apparent gravity below T >~ 16000 K is probably caused by incorrect
neutral broadening estimative (Schaeuble et al. 2017). In red are the values
after applying the pure He 3D corrections of Cukanovaite et al. (2018).

3 RESULTS

3.1 Masses

For white dwarfs, the main indicator of log g is the width of
the atmospheric absorption lines. However, for T < 10000 K,
the width of the hydrogen lines becomes very weakly dependent
on gravity. As a result, it is very difficult to distinguish low-mass
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Figure 5. Mass distribution for the 11 129 DAs with S/N, > 10. This sample
overall shows a mean mass of (M) = 0.5904 £ 0.0014 M. For stars with
Tefr > 10000 K, however, the mean mass is (M) = 0.6131 +0.0014 Mg,
whereas for stars with Tegf < 10000 K, the mean mass is (Mpg) = 0.5276 +
0.0035 Mg . Most of the low-mass DAs concentrate below Teir = 10000 K.
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Figure 6. Hess diagram —density distribution — across effective temperature
and surface gravity for DAs with spectra with S/N > 10, showing the low-
mass DA white dwarfs concentrate below Tege = 10000 K.

Table 4. Distribution of DAs with Teg.

Number Temperature range
273 < 6000 K
2938 6000-8000 K
2312 8000-10000 K
3325 10000-15000 K
3179 15000-20000 K
2968 20000-40000 K
596 > 40000 K
15591 Total

White dwarfs in SDSS DR14 2175
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Figure 7. Mass distribution for the 550 pure DBs with S/N, > 10 with
Teir > 16000 K, the distribution shows a mean mass of (MBEI‘ZS) =
0.618 £ 0.004 M, and a dispersion of 0.098 M. With the pure He 3D cor-
rection, in blue, the mean mass decreases to (MS%) = 0.536 £+ 0.003 Mg,
with a dispersion of 0.074 M. For lower temperatures the log g, and
therefore mass, is not trustworthy due to large uncertainties in the neutral
broadening estimative. The DB mass distribution does not extend to masses
below 0.45 Mg, or masses above 1.1 Mg; however, the statistics is much
poorer than for DAs. The average S/N of the spectra is (S/Ng) = 25.

log g(cgs)

4.6 4.4 4.2 4 3.8
log T, (K)

Figure 8. Surface gravity (log g) for the DCs, obtained from the SDSS
ugriz photometry, Gaia DR2 parallax, and a He-atmosphere mass—radius
relation.

white dwarfs and metal-poor main-sequence A/F stars in the T <
10000 K and log g < 6.5 range solely with visual inspection, even
though low-metallicity main-sequence stars have an upper limit to
logg < 4.64, for a turn-off mass of ~0.85 M. The two steps we
took to overcome this limitation was the extension of the model

MNRAS 486, 2169-2183 (2019)
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Figure 9. Normalized SDSS spectra of the newly discovered DO (upper
two) and DA (bottom two) hot wind white dwarfs. The spectrum of
SDSS J090023.89+4-234353.2 is convolved with a Gaussian (FWMH = 3
A) to smooth out the noise. The TWIN spectrum of HS 21154-1148, for
more than 20 yr the only known H-rich hot wind white dwarf, is shown for
comparison.

grid to logg > 3.5, fitting all the spectra we classified as DAs
and sdAs, using the result to separate log g > 6.5 as white dwarfs,
and finally, after Gaia DR2, using the parallaxes, as discussed in
Section 4.

Kleinman et al. (2013) limited the white dwarf classification to
surface gravity log g > 6.5. At the cool end of our sample, log g =
6.5 corresponds to a mass around 0.2 Mg, well below the single
mass evolution in the lifetime of the Universe — but reachable via
interacting binary evolution. The He-core white dwarf stars in the
mass range 0.2-0.45 M, referred to as low-mass white dwarfs, are
usually found in close binaries, often double degenerate systems
(Marsh, Dhillon & Duck 1995), being most likely a product of
interacting binary stars evolution. More than 70 per cent of those
studied by Kilic et al. (2011) with masses below 0.45My and
all but a few with masses below 0.3 Mg show radial velocity
variations (Brown et al. 2013; Gianninas et al. 2014; Brown, Kilic &
Gianninas 2017). Kilic et al. (2007) suggest single low-mass white
dwarfs result from the evolution of old metal-rich stars that truncate
evolution before the helium flash due to severe mass-loss. They also
conclude all white dwarfs with masses below ~0.3 Mg must be a
product of binary star evolution involving interaction between the
components.

The spectroscopic sdA sample defined in Kepler et al. (2016)
and used in our pre-selection here, being only a visual deter-
mination of narrow H lines and absence of strong metal lines,
includes many types of objects: real white dwarfs, ELMs, pre-
ELMs, low-metallicity main-sequence stars, and even giants with
low atmospheric metallicity. We need to define separate classes
depending on the absolute luminosity (radius) to distinguish among
them (see Section 3.3). Even though the nomenclature would
suggest that subdwarfs have smaller radii than main-sequence
stars, it is not always the case — they mainly have smaller
masses.
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Table 5. Table of hot subdwarfs.

New/Known

total

logn(He)/n(H)

elogn(He)/n(H)

log n(He)/n(H) fit

total
logg

e

eﬁ;gg
0.10
0.08
0.07
0.07
0.11

logg

total

e
Tefr

fit
Tegr

Type

SDSSJ

P-M-F

New
New
New
New
New
New
New
New
New
New

0.34
0.27
0.39
0.39
0.29
0.22

0.28
0.18
0.33
0.34
0.21
0.09

—2.46
—1.74
—223
—2.01
—1.99

0.14
0.13
0.12
0.12
0.15

4.50
4.63
4.50
4.24
4.52

6.40

623
672
543
570
784
1523
2078

372

17321
17411

BHB
BHB
BHB
BHB
BHB
He-sdB
He-sdO
He-sdO
He-sdO
He-sdO

151250.01—-015436.33
095638.14+145258.60

4017-55329-0110
5325-55980-0738
5420-56009-0298
4775-55708-0626
0793-52370-0623
4504-55571-0996
5064-55864-0668
4493-55585-0560

449
213

17247

130625.914+133349.14
151519.21+054333.33

274

604
1296

15960

18669
32648
53992
46857
47257
49283

151847.69+551154.24
082216.14+133822.54
220711.11+125755.59
080833.77+180221.83

1.25
2.00
2.00
2.00
2.00

0.16
0.17
0.17
0.17

0.05
0.07
0.08
0.09

6.11

6.08

565
966
958

2221

6.17
6.23

2218

161023.39+371315.74

5200-56091-0132

2230

987

144321.34+402834.06

5172-56071-0644
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Figure 10. Hot subdwarfs, sdOs and sdBs. The ZAHB and the Terminal
Age Horizontal Branch (TAHB) plotted were calculated with solar compo-
sition models. In green we also plot a 0.46816 M, z = 0.02, SM (shallow
mixing hot flasher), DM (deep mixing hot flasher), and EHF (early hot
flasher) models from Battich et al. (2018).

Table 3 shows the atmospheric parameters obtained from the
fitting of the spectra for DAs. Fig. 5 shows the mass distribution
for DAs with S/N, >10, with 11129 stars, and result in a mean
mass (Mpa) = 0.5903 £ 0.0014 M, and individual dispersion of
0.152 M. For the 8171 DAs with T > 10000 K, the mean mass
is (Mpa) = 0.6131 £0.0014 My, with a dispersion 0.126 Mg,
while for those 2958 with Ter < 10000 K, (Mps) = 0.5276 £
0.0035 M, with a dispersion 0.174 M. Fig. 6 shows the density
of DAs versus temperature and surface gravity, showing the surface
gravity decreases significantly below 7. 2~ 10000 K.

Table 4 shows the effective temperature distribution for DAs
in our sample that were found to have effective temperatures
in the range specified. The hottest we found is the DAO
SDSS J160828.694-422101.77, with an S/N, = 43 spectrum
and T = 120000 £ 10000 K, while the hottest pure DA is
SDSS J101756.24+4-411524.72, with an S/N, = 26 spectrum
and T = 110000 £ 8000 K. The most massive pure DAs are
SDSS J121234.854+165320.26, with an S/N = 17 spectrum
and Ty = 5944 £91 K, logg = 9.611 £ 0.166, M = 1.370 +
0.006 Mg, and SDSS J152958.12 + 130454.80, with an S/N, =
48 spectrum and T = 5758 £99 K, logg = 9.476 + 0.197,
M = 1.364 £ 0.005 M. We caution that the quoted uncertainties
are only the internal uncertainties from the least-square fits. For stars
with multiple spectra, our mean external uncertainty is 5 per cent
in the effective temperature and 0.05 dex in log g, but for T <
10000 K, the real uncertainty is unknown.

The histogram of the number of DB stars versus effective
temperature can be seen in Fig. 3 (in red), compared to for DAs
(in black). We see no obvious DB gap, just the normal decrease in
DBs hotter than 30 000 K due to the ionization of He I.

Fig. 7 shows the mass distribution for the 550 pure DBs with
S/N, > 10 spectra and T > 16000 K, with and without the
pure He 3D convection correction following Cukanovaite et al.
(2018). Without the correction, the mean mass is (MZ5'?) =

White dwarfs in SDSS DR14 2177
0.618 £ 0.004 M, and a dispersion of 0.098 M. With the 3D cor-
rection, the mean mass decreases to (M7D) = 0.536 4 0.003 Mg,
and a dispersion of 0.074 M. The theoretical neutral broadening
used in the models overestimates the log g, and therefore masses,
for lower temperatures (e.g. Koester & Kepler 2015; Schaeuble
et al. 2017). For the 333 pure DB with S/N, > 20, we obtain
(MDY = 0.533 & 0.003 M, with a dispersion of 0.058 M, i.e.
the S/N is not changing the mean value. The low mean mass is
a direct consequence of the pure He 3D corrections. Our fitted
mean surface gravity, with the ML2/ow = 1.25 models is log g =
8.032 +£ 0.008, while the 3D corrected log g = 7.864 + 0.007. A
similar mean mass for DBs was obtained by Genest-Beaulieu &
Bergeron (2019).

The two highest mass DBs, above 16000 K, are
SDSS J163757.584-190526.01, with S/N, = 24, Ty =
39895 + 441 K, log g =8.86 £0.05, M = 1.111 £ 0.017 Mg, and
SDSS J081223.854-254842.82, with S/N, = 14, T = 20394 £
1000 K, logg = 8.85 £+ 0.05, M = 1.100 & 0.005 M, but our
models, prior to the 3D correction, only go up to log g = 9.0.

For the 1314 DCs in Table 2 with Gaia DR2 parallaxes, we
obtain their masses from the ugriz colours and Gaia DR2 parallax,
following Ourique et al. (2019). Their radius is estimated from
the observed flux and distance, assuming an He atmosphere mass—
radius relation. Their distribution shows a mean surface gravity
(log gP€) =8.166 % 0.007 dex (cgs), with a dispersion of 0.245 dex,
and a mean mass of (MP€) = 0.694 4 0.004 M, with a dispersion
of 0.127 Mg.

Fig. 8 shows the effective temperature and surface gravity for
1314 DCs with Gaia DR2 parallaxes and ugriz SDSS colours.
The mean mass obtained is (M)pc = 0.694 = 0.004 My with a
dispersion of 0.127 M. Ourique et al. (2019) presented the first DC
mass distribution, using the Gaia colours and distances, showing
it concentrates at higher masses than DBs. It is unlikely caused
by an increase in the pressure by undetected hydrogen dredged up
affecting the colours, as the non-DA to DA ratio increases below
16000 K.

3.2 Hot white dwarfs

We identified spectroscopically in our sample a total of 12 PG 1159
and O(He) stars and 36 DOs with spectra dominated by He II lines.
Furthermore, we found one O(H) star (Reindl et al. 2016) and 48
DAO stars, with spectra showing both H and He 11 lines as well as
310 hot DAs, showing only H lines. All these stars are hotter than
T = 45000 K, where NLTE effects are important in the spectral
analysis. We note that the majority of these objects were already
known and that our catalogue is far from being complete with
respect to the hottest white dwarfs found in previous SDSS data
releases. This is a consequence of the 3¢ proper motion criterion,
because hot white dwarfs are intrinsically more luminous and are
detected over larger distances, and the more distant ones will have
small proper motions.

One of the PG 1159 stars and 10 of the DO white dwarfs
belong to the group of the so-called hot wind white dwarfs (Werner
et al. 1995), i.e. they show abnormally broad and deep Hell
lines with seven of them showing additionally ultrahigh excitation
(uhe) absorption lines (e.g. O VIII). For the latter objects we
introduce the sub-classification uhe, i.e. PG 1159uhe and DOuhe.
Our sample includes two newly identified hot wind DO white
dwarfs, SDSSJ003213.134-160434.7, which shows the strongest
uhe features detected in any hot wind white dwarf so far, and
SDSS J102907.314-254008.3, which shows only abnormally broad
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Figure 11. sdAs (colour-coded according to parallax_over_error) separated using their Gaia absolute magnitude and colour. They extend from the white dwarf
cooling region, binary region, through the low-metallicity main sequence, to the giant phase. As a comparison, we also show the sample C of Lindegren et al.
(2018), consisting of solar neighbourhood stars (within 100 pc) with clean parallax, and the ELMs of Brown et al. (2016) .
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Figure 12. Distances for DA white dwarfs in our sample, estimated from
the Gaia parallax uncertainty distribution, compared with the distance
calculated from the spectroscopic distance modulus. The solid red line
represents the median. The lower and upper dashed red lines represent,
respectively, the 16 and 84 percentiles. The points represent bins with less
than 5 objects. We did not use a Gaia DR2 parallax precision limit in this
plot, or used the parallax to select the best spectroscopic solution. The
distances from the parallax are compatible with the spectroscopic distances
we obtained given the large error bars.
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and deep He II lines and possible an uhe feature located at
5250 A. We also report the discovery of uhe features in two
of the hot DA white dwarfs SDSS J090023.89+234353.2 and
SDSS J125724.044-422054.2 (PG 1255+426). After more than 20
yr, these are the first two H-rich hot wind white dwarfs discovered
since HS2115+1148 (Dreizler et al. 1995). Fig. 9 shows the
normalized SDSS spectra of the newly discovered objects. The uhe
lines were recently shown to originate from an extremely hot, wind-
fed circumstellar magnetosphere (Reindl etal. 2019). The two newly
discovered DA hot wind white dwarfs show the Balmer line problem
(failure to achieve a consistent fit to the Balmer lines, Werner 1996),
which is also present in HS 2115+1148. Thus, the Balmer line
problem can serve as a first indicator for the hot wind phenomenon.
It is assumed that the cooler parts of the magnetosphere constitute
an additional line forming region of the too-broad and too-deep
H 1/-He 11 lines (Reind]l et al. 2019).

3.3 Subdwarfs

We classified 77 stars as hot subdwarf sdOs, 128 sdOBs and 209
sdBs. To refine the visual classification and derive the atmospheric
parameters, a quantitative spectral analysis was performed for all
sdO/B candidates in our sample with data of sufficient quality (S/N,
> 20) and no atmospheric parameter determination in the literature.
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Figure 13. Colour-magnitude diagram of our sample, from Gaia distances and colours. The lines are 10 Gyr MIST isochrones with solar metallicity and
[Fe/H] = —4 (Choi et al. 2018). We also included two triangles, the upper one (green) with Tesr = 6000 K, 10 Gyr, [Fe/H] = —2.5, off the main sequence, and
the lower one (black), for [Fe/H] = —4, still on the main sequence, for reference, from the MIST models.

The method is described in Geier et al. (2011). We used appropri-
ate model grids for the different subclasses of sdBs and sdOBs. The
hydrogen-rich and helium-poor [logy = logn(He)/n(H) < —1.0]
stars with effective temperatures below 30 000 K were fitted using
a of grid of metal line blanketed LTE atmospheres with solar
metallicity (Heber et al. 2000). Helium-poor stars with tempera-
tures ranging from 30000 to 40000 K were analysed using LTE
models with enhanced metal line blanketing (O’Toole & Heber
2006). Metal-free NLTE models (Stroer et al. 2007) were used
for hydrogen-rich stars with temperatures below 40 000 K showing
moderate He-enrichment (logy = —1.0 to 0.0). The uncertainties
provided are from statistical bootstrapping errors only. For more
realistic uncertainties, additional random errors of about 1000 K
in T and +0.1dex in logg should be adopted for sdBs and

sdOBs. For the hotter sdOs £2000K and +0.2dex are more
appropriate.

Table 5 shows the hot subdwarfs analysed in this work, their
classifications following the scheme proposed in Geier et al. (2017a)
and their derived atmospheric parameters from the literature or this
work. Fig. 10 shows effective temperature and surface gravity for
the sample of hot subdwarf O- and B-type stars.

We also classified 15 793 as sdAs, which is only a spectroscopic
class to flag objects with narrow H lines (Kepler et al. 2016). The
classification carries no information on their origin or radius. The
Gaia DR2 parallax determinations (next section) are somewhat
uncertain for these objects (see Fig. 11), being in many cases of the
same order of the error. This leads to a large scatter, placing objects
above and below the main sequence, the latter a region compatible
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with low-metallicity main-sequence stars, or interacting binary
remnants (e.g. Maxted et al. 2014a; Pelisoli et al. 2018a,b, 2019;
van Roestel et al. 2018; Wang et al. 2018). Some sdAs could be very
low mass white dwarfs or pre-ELMs, but with the current parallax
uncertainties this cannot be confirmed. We verified that by simply
adding twice the parallax uncertainty to its value, over 95 per cent of
the objects in the region between the main sequence and the white
dwarf cooling track become compatible with the main sequence,
suggesting that an inaccuracy of only 2o in the parallax values is
sufficient to explain this spread. Moreover, most of these objects
have tangential velocities larger than 200 km s~!, the criterion used
for halo stars in the Gaia papers, providing further indication that
they are compatible with low-mass main-sequence stars in the halo.
However, we caution that a high tangential velocity could also be
observed for an object in a close binary, which is the case for the
ELMs. In the next Gaia data releases, when the astrometry of binary
objects and nearby contamination is more accurate, we will have a
better understanding of the origin of these sdAs.

Fig. 11 shows the M versus Ggp — Ggrp diagram of the identified
sdAs (colour coded by parallax_over_error), with a tentative colour
separation for canonical white dwarfs, (pre-)ELM candidates, and
stars in the main-sequence region and giant, which might be low-
metallicity main-sequence stars or binaries (e.g. Istrate et al. 2016).

4 GAIA

Gaia DR2 listed proper motion for 34 499 of our objects, but did not
obtain parallax for 4539 of these. The proper motions were mainly
compatible with those from the USNO, APOP, and GPS1, and the
distances from the parallax are compatible with the spectroscopic
distances we obtained. Fig. 12 shows a comparison of the distances
estimated from Gaia parallax by Bailer-Jones et al. (2018) versus
the distance estimated from our spectroscopic fits for DA stars,
showing they are compatible but with a large scatter. The scatter is
sometimes caused by the degeneracy of hot and cold solutions in
the spectroscopic determination, and low S/N,, but mainly above
magnitude g = 20 or distances larger than 1.5 kpc.

Fig. 13 shows the Hertzprung—Russell colour—-magnitude dia-
gram of our DR14 sample, using only the Gaia measurements,
totally independent of our spectroscopic measurements. They show
DAs and DBs spread through the diagram, compatible with the Kilic
et al. (2018) conclusion that the gap seen in Gaia Collaboration
(2018) white dwarf HR diagram is not mainly due to atmospheric
composition. El-Badry, Rix & Weisz (2018b), El-Badry et al.
(2018a), and El-Badry & Rix (2018) used the main-sequence white
dwarf wide binaries with parallax/error >20 for parallax >10 mas
(d < 100 pc) and Mg < 14, corresponding to T > 6000 K, in
Gaia DR2, to study the IFMR of white dwarfs, specially for initial
masses < 4 Mg, and conclude the bimodality seen in the Gaia data
constrains the data to multiple populations.

5 DISCUSSION

The systematic uncertainties in our atmospheric parameters derived
from spectral analysis are minimized by the use of only SDSS
spectra, i.e. same telescope and only two spectrographs (SDSS and
BOSS), and fitting all the spectra with the same models and fitting
technique.

Gentile Fusillo et al. (2018) selected photometrically white dwarf
candidates from the Gaia DR2 and classified those they matched
to SDSS spectra in DR14, similar but a subset of our work. We
matched their catalogue and we did not miss any star they classified,
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but we do include other objects they did not classify, because of their
selection criteria.

Rolland, Bergeron & Fontaine (2018) analysed 115 helium-line
DBs and 28 cool He-rich hydrogen-line DAs through S/N > 50
spectra and concluded 63 percent of the DBs show hydrogen
lines. Koester & Kepler (2015), using S/N, >~ 20 SDSS spectra,
measured 75 per cent DBs show hydrogen and speculated all DBs
show hydrogen, if observed at high resolution and S/N. The surface
gravity obtained with fits of pure He, for DBs containing H, and
of pure H for DAs containing He, are overestimated, because of
the extra particle pressure. Rolland et al. (2018) conclude only if
My > 107°M, H will not mix with the underlying He layer by
convective mixing at low effective temperatures. In our mean mass
determination, we only included DBs hotter than T, > 16000 K
and that we did not see any contamination, but it is limited by our
S/N and resolution. Tremblay et al. (2018) fitted 3171 S/N > 20
DR 14 spectra for DAs and 405 DBs for the white dwarfs selected by
Gentile Fusillo et al. (2018), applying 3D corrections for both DAs
and DBs, as we did, and compared to those they obtain from the
Gaia photometry and parallax, concluding the agreement is good,
for DAs. They concluded the DA and DB and DBAs mean masses
obtained from the Gaia data match within 2 per cent, but their figs 4,
5, and 12 show the disagreement for DBs, between spectroscopy
and Gaia parallaxes is larger when the pure He 3D corrections are
applied. As discussed in Section 3.1, the introduction of the pure 3D
correction for DBs is the cause of the reduction in the mean mass of
DBs, and it is probably not real. Ourique et al. (2019) show there is
strong evidence for spectral evolution with effective temperature.

Latour et al. (2018) analysed the hot subdwarfs of the globular
cluster w Cen, and found aratio of 26 per cent sdBs (7 < 30 000 K),
10 percent sdOs (T > 42, 000 K), and the majority as sdBs
(intermediate Teg). They also found the majority of their sdOBs
were helium-enriched, without a counterpart in Galactic field, while
we found 33/128 = 26 per cent of sdOBs are He-sdOBs.

6 CONCLUSIONS

We extended our search of white dwarf and subdwarf stars to SDSS
DR14. In addition to searching all spectra with significant proper
motion for new white dwarfs, we also fitted known DAs and DBs
that fell in our selection criteria. The SDSS flux calibration is based
on hundreds of comparison stars and in general more accurate than
those derived from single night observations. We fitted the spectra of
highest S/N for each star, taking into account that SDSS re-observes
fields and improves the quality of the spectra. Our classifications are
independent from previous classifications, and should be considered
improvements.

Of the total 37053 objects in our Table 2, only 6 per cent come
from plates obtained after DR12, but only 13 927 are in the SDSS
DR 7 to DR 12 catalogues. The DR7 to DR12 catalogues contain
35590 stars, including 29262 DAs, so our catalogues are not a
subset or complete sets, but complementary. The total number of
unique stars in Kleinman et al. (2013), Kepler et al. (2015, 2016),
and this DR14 catalogue is 52299, with 28 681 DAs, 2287 DCs,
2148 DBs, 1126 DZs, 572 DQs, 137 DOs, 4 DS, 396 sdB, 410 sdOs,
and 324 CVs.

For the first time we include 3D convection corrections to the
derived effective temperatures of DBs, in addition to DAs. The
obtained mean masses for DAs and DBs are lower than any previous
determinations. For DAs, the main difference was the inclusion of
more DAs cooler than T, = 10000 K, which show substantially
smaller masses, while for DBs the inclusion of the convection
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correction was the main difference. Tremblay et al. (2018) show
the disagreement between the spectroscopic determinations and the
Gaia parallaxes and colours increases when the 3D correction is
applied.

The Gaia distances and colours show there is large spread in the
region between cool white dwarfs and cool main-sequence stars.
Due to the considerable uncertainty in the parallax (of the same
order of the parallax itself for most stars in this region), a reliable
separation between different types of sdAs is not possible. This
spread causes many stars to be in the region between the main
sequence and the white dwarf cooling range, which is compatible
with interacting binary evolution. This region is occupied by known
sdBs, sdOs, CVs, and WD + MS binaries. The parallax uncertainties
suggest most (>95 per cent) of the sdAs in this intermediary reason
are consistent with low-mass metal-poor halo stars, but a few could
be products of binary evolution such as ELMs.
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