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Abstract This paper proposes a multistage stochastic programming approach for

the asset-liability management of Brazilian pension funds. We generate asset price

scenarios with stochastic differential equations—Geometric Brownian Motion

model for stocks and Cox–Ingersoll–Ross model for fixed income securities.

Intertemporal solvency regulatory rules for Brazilian pension funds are considered

endogenously in the model and enforced with a combinatorial constraint. A VaR

probabilistic constraint is incorporated to obtain a positive funding ratio at each time

period with high probability. Our approach uses multiple trees to provide a repre-

sentative characterization of the uncertainty and is not computationally prohibitive.

We evaluate the insolvency probability under different initial funding ratios through

extensive simulations. The study reveals that the likely decrease of interest rate

premiums in the next years will force pension fund managers to significantly change

their portfolio strategies. They will have to take more risk in order to deliver the

cash flows required to cover the liabilities and satisfy the regulatory constraints.
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1 Introduction

Asset-liability management (ALM) is a classical topic in financial optimization and

is increasingly needed for fund managers operating in highly uncertain markets,

such as those in developing countries. In simple terms, ALM’s central problem is to

develop an investment strategy that permits to cover the liabilities over a multi-

period horizon (Ziemba 2003). To enable this objective, the left-side (assets) and the

right-side (liabilities) of the balance sheet must be matched (Adam 2007; Mitra and

Schwaiger 2011). ALM models have been used in a variety of environments,

ranging from pension funds (Josa-Fombellida and Rincón-Zapatero 2012; Gülpinar

and Pachamanova 2013), insurance companies (Frangos et al. 2004; Consiglio et al.

2006; Asimit et al. 2014; Asanga et al. 2014), banks (Mukuddem-Petersen and

Petersen 2008; Uryasev et al. 2010), corporate and public debt management (Date

et al. 2011; Consiglio and Staino 2012; Valladão and Veiga 2014), to personal

finance (Nielsen and Poulsen 2004; Rasmussen and Clausen 2007; Consiglio et al.

2007; Pedersen et al. 2013). Zenios and Ziemba (2006, 2007) provide a

comprehensive overview of the theoretical and methodological developments in

the ALM field and illustrate their application with a few case studies. This study

focuses on the modeling of the specific rules and conditions to which the Brazilian

pension fund industry is subjected.

Stochastic programming techniques and models have been applied to ALM since

the seventies (Bradley and Crane 1972). Cariño et al. (1994) were probably the first

to present a model with a commercial application. Subsequently, Boender (1997)

proposed a large-scale model in which heuristics techniques are employed to

determine the investment strategy. Ever since, multistage stochastic programming

approaches have become a trend (see, e.g., Consigli and Dempster 1998;

Kouwenberg 2001). Kouwenberg (2001) focused on the challenge of generating

representative scenarios, which is a key aspect in multistage stochastic program-

ming. Stochastic programming ALM models involving non-neutral risk measures

and based on the CVaR measure (see, e.g., Rockafellar and Uryasev 2000;

Bogentoft et al. 2001; Kilianová and Pflug 2009; Ferstl and Weissensteiner 2011)

and on the inclusion of jumps for the asset prices (Josa-Fombellida and Rincón-

Zapatero 2012) have recently been proposed.

However, the legislative side of the ALM problem has seldom been the primary

concern of the existing models, especially for emerging markets. Fund managers are

bound to comply to laws in their judicial system and, therefore, the practice of ALM

should also consider this particular set of restrictions. The objective of this study is

to present the regulatory framework faced by the Brazilian pension funds’ industry

and to develop a multistage stochastic programming model that explicitly accounts

for the set of ALM regulatory rules in Brazil. More specifically, we focus on the so-

called defined benefit (DB) plan (Ziemba 2003), which is the most commonly used

plan in Brazilian public institutions. In DB plans, the benefits received by the
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members of the plan (i.e., liabilities) are defined in advance which makes the fund

liabilities almost deterministic and contrasts with the stochastic nature of assets’

returns. Recent changes in the Brazilian capital markets is the main motivation for

this application, as presented by Dupačová and Polı́vka (2009) and Kilianová and

Pflug (2009) for other emerging markets. Brazilian pension fund managers have

been used to almost exclusively invest in fixed income securities. However, with the

capital markets and country developments, the long-term trend of the interest rate is

decreasing. In this study, we investigate the possible changes in portfolio allocation

due to this new economic environment and to the strict regulation.

Our study proposes a multistage stochastic programming ALM model with

chance and combinatorial constraints which is motivated and can be applied by the

Brazilian pension fund industry. The chance constraint enforces a Value-at-Risk

(VaR) requirement to keep the pension fund solvent across time with a high

probability. The combinatorial constraint represents endogenously an intertemporal

solvency regulation imposed by the Brazilian pension fund legislation. We construct

multiple binary trees and each gives the same importance to catastrophic and normal

economic scenarios. Thus, the model tends to be more conservative, an important

feature for long-term survivorship in highly volatile environments, such as the

Brazilian market.

The scenario generation relies on suggestions given by Kouwenberg (2001) and

its key ingredients are the use of multiple trees and Stochastic Differential

Equations (SDEs) to simulate the asset prices. The fixed income asset prices are

simulated with the mean-reverting Cox–Ingersoll–Ross model (CIR), which

guarantees the interest rate to be non-negative (Cox et al. 1985). Stock prices are

generated with Geometric Brownian Motion (GBM). Some earlier studies

pertaining to portfolio and ALM models have also used SDEs, but they focus on

methods in which the portfolio allocation is kept fixed throughout the time (Merton

1973, 2001; Kim and Omberg 1996; Milevsky 1998; Wachter 2002). Notably

different from the single tree approach typically used in the existing literature (see,

e.g., Kouwenberg 2001), we implement an extensive scenario generation method to

construct multiple trees. We solve the multistage stochastic programming problem

corresponding to each tree and use a variant of the resampling method proposed by

Michaud and Michaud (2008) to derive the final investment strategy.

Using empirical data for a specific Brazilian pension fund, we estimate its

insolvency probability for different initial funding ratios. The results show that

Brazilian pension fund managers shall modify their investment behavior and

strategies in the near future: they will be pressured to increase their positions in

riskier assets if the long-term downward trend of interest rates gets confirmed. As

funds managers become less risk averse, their fund’s insolvency probability will

increase. However, if pension fund managers decide to keep their current risk profile

(in terms of risk allocation and insolvency probability), pension fund’s members

external contributions would have to be raised in the next years.

The paper is organized as follows. In Sect. 2, we discuss the pension funds

industry and the capital markets in Brazil. We motivate and formulate the stochastic

programming model in Sect. 3. Section 4 describes the scenario generation

techniques, while the algorithmic procedure and the data used in the numerical tests
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are outlined in Sect. 5. The results of the application of the model to the Brazilian

market are presented in Sect. 6. Concluding remarks are provided in Sect. 7.

2 Pension funds and capital markets in Brazil

Pension funds play an important role in the Brazilian financial system by promoting

financial stability for future retirees. In 2014, according to the Brazilian Association

of Closed Supplementary Pension Funds (2014), the total nominal value of Brazilian

pension funds assets was approximately 219 billions US dollars. The value was

distributed across 317 different pension funds with varying sizes. Most of the

pension funds are from private institutions.

In Brazil, every pension fund1 is under the supervision of the Board of the

Pension Funds Management, which is a regulatory authority of the Brazilian

National Financial System. The pension fund’s auditing activities are managed by

the Supplementary Pensions Department that acts as an watchdog for the existing

standards. Both are subordinated to the National Monetary Council, the highest

level authority in the Brazilian financial system. The private social entities in Brazil

are organized in the form of non-profit foundations or civil societies and are

accessible only to private employees of a company, group of companies or public

employees (federal and state wide). Every investor of a pension fund is called a

member.

The main legislation regarding pension’s fund asset allocation limits and

operation was designed by the National Monetary Council (Brazilian Central Bank

2012). In Brazil, a pension fund may invest the members’ money in the following

categories: fixed income, equity, structured investments, investment abroad,

properties, and operations with participants. The maximum allocation for each

instrument is 100, 70, 20, 10, 8, and 15 % respectively, and is aimed at controlling

the pension’s fund financial risk and protecting their members. There is no minimal

allocation imposed for any of the instruments.

Solvency across time is another crucial consideration for Brazilian pension funds.

According to the Ministry of Social Welfare (2008), the funding ratio, defined as the

ratio of current assets to the present value of future liabilities, cannot be smaller than

one in more than two consecutive years. The goal of this rule is to protect the

members’ wealth by ensuring a certain level of liquidity for the pension fund.

Currently, the fixed income allocation is highly predominant in the case of

Brazilian pension funds. It can be explained by the high real interest rate that allows

managers to reach, in most cases, the actuarial target without taking much risk. In

April 2015, the domestic real short-term interest rate was approximately 6.5 % per

year, a very high risk premium that discourages managers to take positions in riskier

assets.

However, the context in which Brazilian pension fund managers operate is

changing. As in the rest of the world, life expectancy (and thereby liabilities of

pension funds) in Brazil has increased, and the high real interest rate tends to

1 Also called in Portuguese Entidade Fechada de Previdencia Complementar (EFPC).
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normalize at lower levels as the monetary policy instrument reaches the objective of

holding the domestic inflation. One of the objectives of this paper is to investigate

the consequences of the modified socio-economic context on the asset allocation

strategies pursued by Brazilian pension funds.

The proposed multistage stochastic programming ALM model captures the

economic changes and regulations in Brazil. The scenario generation method

accounts for the modifications of the economic environment. The stochastic

programming model incorporates constraints specific to the legislative regulations.

The model enforces endogenously the intertemporal funding ratio constraint

imposed by the current legislation. This makes the proposed model directly

applicable by the Brazilian ALM practitioners. We present the specifics of the

proposed model in the next section.

3 Stochastic ALM model

The ALM paradigm resides in the allocation of a certain amount of wealth in a

number of financial assets i ¼ 1; . . .;N in order to cover the liabilities lt in each

period t ¼ 1; . . .; T . The model takes the form of a stochastic and intertemporal

dynamic allocation problem due to the randomness of the asset prices and the time-

dependency nature of the investment and rebalancing decisions. The investment

policy is defined with three sets of variables: Xits is the number of shares of asset i to

hold in time period t and scenario s, while Bits and Vits respectively denote the

number of shares of i bought and sold in time t and scenario s. The stochastic

variable nit is the price of asset i in time t and can take a finite number (s ¼ 1; . . .; S)

of realizations denoted Pits. Table 1 presents the model notations.

The model enforces risk and regulatory restrictions and takes the form of a multi-

stage stochastic programming problem with chance constraints formulated as

follows:

max
XS

s¼1

XN

i¼1

pTsPiTsXiTs ð1Þ

s.t.:Q ¼
XN

i¼1

Pi0Xi0 ð2Þ

Xits ¼ Xi t�1ð Þs þ Bits � Vits; t 2 1; . . .; T ; i ¼ 1; . . .;N; s ¼ 1; . . .; S ð3Þ

P
XN

i¼1

nitXit �KðLt � FtÞ
 !

� at; t ¼ 1; . . .; T ð4Þ

XN

i¼1

PitsVits �
XN

i¼1

PitsBits þ ft ¼ lt; t ¼ 1; . . .; T ; s ¼ 1; . . .; S ð5Þ
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XitsPits � p
XN

i¼1

XitsPits; t ¼ 1; . . .; T ; i ¼ 1; . . .;N; s ¼ 1; . . .; S ð6Þ

KðLt � FtÞ �
XN

i¼1

PitsXits �MCts; t ¼ 1; . . .; T; s ¼ 1; . . .; S ð7Þ

X2

j¼0

C tþjð Þs � 2; t ¼ 1; . . .; T � 2; s ¼ 1; . . .; S ð8Þ

Xits;Bits;Vits � 0; i ¼ 1; . . .;N; t ¼ 1; . . .; T; s ¼ 1; . . .; S ð9Þ

Table 1 Notation summary

Sets–indices

t Time index (stage) t ¼ 0; 1; . . .;T

i Index of asset classes i ¼ 1; . . .;N

s Index of scenarios s ¼ 1; . . .; S

Decision variables

Xits Number of shares of assets i to hold in time t and scenario s

Bits Number of shares of assets i to buy in time t and scenario s

Xi0 Number of shares of assets i hold initially (t ¼ 0)

Vits Number of shares of assets i to sell in time t and scenario s

Cts Binary variable taking value 1 if there is underfunding in time t and

scenario s and taking value 0 otherwise

Random variables

nit Random price of asset i in time t

Deterministic parameters

Q Initial wealth

at Reliability level in time t

K Legally required funding ratio

Lt Present value of future liability t ¼ t þ 1; . . .; T

lt Liability to be paid in period t

Ft Present value of future external contributions, t ¼ t þ 1; . . .;T

ft External contributions in each period t

M Maximum amount of underfunding allowed

q Discounting factor

p Maximum weight of an asset in the portfolio

pts Probability of scenario s at time t

Pits Price of asset i at time t and scenario s

Pi0 Known initial (t ¼ 0) price of asset i
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Cts 2 f0; 1g; t ¼ 1; . . .; T ; s ¼ 1; . . .; S : ð10Þ

The model maximizes the expected terminal value of the fund (1). The objective

function reflects the goals of the fund manager who aims at reaching the largest

possible gains in the last period while respecting risk, regulatory and liability

constraints. At time t ¼ 0, there is no uncertainty affecting the allocation of the

initial wealth Q to the asset classes and the price Pi0 of each asset is known in (2).

The number B0 of shares bought is equal to the number X0 of shares detained at the

end of the initial period. The linear equalities (3) are the share balance constraints

and specify that the number of shares Xits of asset i in time t and scenario s is equal

to the number of shares Xi t�1ð Þs detained at the previous period augmented by the

number of purchased shares Bit minus those sold Vit at time t. Since the asset prices

are known and deterministic, we have Xi0s ¼ Xi0; 8s. The chance constraints (4)

enforces the funding ratio requirements. The funding ratio represents the long-term

relation between assets and liabilities. The actual funding ratio bts of a fund in time t

and scenario s is computed as:

bts ¼
Ft þ

PN

i¼1

PitsXits

Lt
; t 2 1; . . .; T ; s 2 1; . . .; S;

ð11Þ

where
PN

i¼1 PitsXits is the current asset value of the pension fund in scenario s. Lt
and Ft are, respectively, the present value of the future liabilities and contributions

discounted by q:

Lt ¼
XT

j¼t

lj

1 þ qð Þj�t
;

The initial funding ratio is denoted by b0 ¼ ðF0 þ
PN

i¼1 Pi0Xi0Þ=L0. A value of b
smaller than 1 signals that the value of the assets might become insufficient to cover

the future liabilities and that the fund might run into solvency issues in the near

future. The Brazilian legislation on pension funds requires the use of a discounting

factor q equal to 5 %.

Each probabilistic constraint (4) enforces a safety level on the funding ratio and

does not allow it to fall below a specified threshold K with some large prescribed

probability level at. The two parameters K and at define the risk-aversion of the

asset-liability management policy. The risk-aversion level increases monotonically

with the value taken by K and at. In general, K is between 1 and 1.5, while at is

defined on [0.9 , 1). The constraints (4) can be viewed as some sort of VaR

constraints that ensure that the value of the fund is at least equal to KLt in each

period t with probability at least equal to at. Their purpose is to maintain the long-

term solvency level of the fund. As discussed in Sect. 2, the Brazilian legislation

defines K ¼ 1. Haneveld et al. (2010) considers some more risk-averse values for K

(i.e., 1.05 and 1.30). Note that the probabilistic constraints (4) are individual ones.

Alternatively, we could have used joint chance constraints at each period t. Such an

approach would not allow for the funding ratio to fall below a specified threshold

K with probability level at at t and at any of the earlier periods t0 ¼ 1; . . .; t � 1. This
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would enforce stricter requirements, may be appropriate in practice, and is much

more difficult to solve.

The stochastic equalities (5) are the cash balance constraints and model the

relationship between the fund’s cash inflows and outflows. Inflows include the sales

of assets, yields, and external contributions, while outflows are the payments of

liabilities and the purchases of assets. External contributions are payments made by

members or sponsors to the pension fund. The stochastic constraints (6) are

motivated by the Brazilian legislation that defines an upper bound p on the

proportion of the fund value invested in a particular asset. Each constraint (7)

indicates if there is underfunding in period t and scenario s. If this is the case, the

binary variable Cts is forced to take value one. The parameter M is a large positive

number and represents the maximum acceptable underfunding value. The Brazilian

regulation stipulates that the funding ratio of the pension fund must not be below the

value of 1 for more than two years in a row. This requirement is enforced by the

combinatorial constraints (8). They make sure that there is no underfunding in three

consecutive periods for every scenario. Constraints (9) and (10) define the non-

negativity and integrality restrictions.

An equivalent mixed-integer programming problem can be formulated for the

above multi-stage stochastic programming problem:

max ð1Þ
s:t:: ð2Þ � ð3Þ; ð5Þ � ð10Þ

XS

s¼1

ptsCt;s � 1 � at; t ¼ 1; . . .; T

ð12Þ

Noticing that
PS

s¼1 pts ¼ 1 for t ¼ 1; . . .;T, the knapsack constraints (12) ensure

that the sum of the probabilities of the scenarios with underfunding is below the

complement of the enforced reliability level at.

4 Scenario generation

As discussed by Cariño et al. (1994) and Dupačová and Polı́vka (2009), the benefits

of the insights provided by the model depends heavily on the quality and relevance

of the scenarios generated to represent the stochasticity of the assets’ prices.

Simulating prices properly is essential for the model’s performance. In this study,

the asset prices follow correlated SDEs of form:

dnit ¼ lðnit; tÞdt þ rðnit; tÞdWit:

Wit is a Wiener process normally distributed with mean zero and variance D for

t\t þ D. If more than one asset is used in the simulation, we should take into

account the returns’ correlated errors between the different assets (Dempster et al.

2003). The correlation coefficients qij between two assets i and j at any time t are

defined by:
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dWi � dWj ¼ qijdt; qii ¼ 1; 8i; j:

We consider two assets in the model: stock (n1t) and fixed income (n2t). We use the

widely known Geometric Brownian Motion model for stock prices (Neftci 1996;

Duffie 2001):

dn1t ¼ ln1tdt þ rn1tdW1t:

The GBM offers a known closed form solution:

n1t ¼ n1ðt�1Þe
l�

1

2
r2

� �
dtþr�

ffiffiffi
dt

p

;
ð13Þ

with ��Nð0; 1Þ. For the price of the fixed income asset, we use the Cox–Ingersoll–

Ross term structure model (Cox et al. , 1985) to avoid the negative values that

interest rate simulations can take with Vasicek (1977). The fixed income asset is

represented by:

dn2t ¼ aðl� n2tÞdt þ
ffiffiffiffiffiffi
n2t

p
rdW2t ; ð14Þ

where n2t is the interest rate and K � ða; l; rÞ are model parameters. The drift

function lðn2t;KÞ ¼ aðl� n2tÞ is linear and presents a mean reverting property, i.e

interest rate n2t moves in the direction of its mean l at speed a. The diffusion

function r2ðn2t;KÞ ¼ n2tr2 is proportional to the interest rate n2t and ensures the

interest rate to be always positive. It is important to point out that the simulation

model is related to the spot price of two assets only, one stock and one fixed income

instrument. Since we only have long positions in the assets and we are not using

prices from the other instruments in the yield term structure of the Cox–Ingersoll–

Ross model, we have not detected any arbitrage opportunities in our simulations.

However, it should be noted that in other applications it might be necessary to

ensure that the simulations don’t allow for arbitrage opportunities, resulting in

unrealistic prices of financial assets. Suggestions on how to handle this issue can be

found in Høyland and Wallace (2001), Klaassen (2002) and Consiglio et al. (2016).

5 Data structure and algorithm

We construct multiple multistage binary event trees with T time periods (stages) and

S scenarios. Every node in a tree has two successors, except for the leaf nodes at

time T. Therefore, the total number of nodes in the tree is 2Tþ1 � 1. Each path from

the root to a leaf node represents a scenario, and the nodes represent decision points.

The same probability is attributed to each node at the same time (stage). The

pension fund manager makes his/her decisions in time t and scenario s based on the

currently available information and future expectations of asset prices. This process

is completed in time T. Each node is equally likely, and therefore the same

probability is given to normal and extreme scenarios, which makes the approach

conservative. This is an important and valuable feature for countries like Brazil
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where the market volatility is quite high when compared to more developed

markets.

In the stochastic programming ALM model, a scenario tree must be constructed

to depict as accurately as possible the uncertainty structure. It is important to reduce

the bias in the generation of scenarios and trees. If one single tree is constructed, this

issue could be to some extent overcome by generating a very large tree. This could

however lead to the formulation of an enormous stochastic programming problem

that could be extremely difficult to solve even approximately. As another alternative

to alleviate the issue of scenario bias in a single tree, Kouwenberg (2001) proposes a

random sampling adjustment to control the aleatory nature of the problem. In this

context of information uncertainty, we design in this paper a method that is based on

the generation of scenarios for multiple trees and the solution of an optimization

problem of smaller size for each tree, which permits to keep the computational

complexity and the solution times under control. This technique has some

similarities with the resampled efficient frontier method proposed by Michaud

and Michaud (2008)2 for the construction of portfolio of risky securities. For ALM

purposes, Figueiredo (2011) has also recently adopted a multiple scenario tree

approach analyzed with the sample-average approximation presented by Linderoth

et al. (2006). We provide below the pseudo-code of our algorithmic procedure.

Algorithm 1 Routine to generate the ALM results.
Step 1: Define the number θ of trees to be used in the ALM simulation.
Step 2: Use (13) and (14) to generate the asset prices’ scenarios for each path and node of
every tree.
Step 3: Solve for each tree the ALM Problem (1)-(3); (5)-(10); (12).
Step 4: Evaluate the results considering the θ trees. At time zero, the portfolio allocation
is the average obtained with the θ trees.

In Step 1, we define the number of trees to be solved for each parametrization

(see, e.g.,Michaud and Michaud 2008). The value of h must be sufficiently large so

that the portfolio allocations are stable and small enough so that the approach does

not become computationally prohibitive. Once the number h of trees is defined, we

generate in Step 2 scenarios for each tree using the method presented in Sect. 4. In

Step 3, we solve to optimality the optimization problem (see Sect. 3) corresponding

to each tree. In Step 4, we evaluate the results based on the optimal solutions of the

h trees. A key output of the model is the initial asset allocation, which is obtained by

taking the average of the optimal initial asset allocations for each of the h trees.

The resampling solution (Michaud and Michaud 2008) presents advantages and

disadvantages. On the positive side, it limits extreme weight allocations that can

arise with the classical mean-variance portfolio selection model. Additionally, the

constructed portfolio is usually less sensitive to estimation error (Fletcher and

Hillier 2001). However, Scherer (2002) raises some criticism to the resampling

method. First, it is a heuristic without a theoretical economic rationale. Second,

when long and short positions are allowed, the resampled efficient frontier is not

2 The resampling method was first published by Michaud (1998).
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necessarily an improvement over the classical efficient frontier (Markowitz 1952).

Scherer (2002) also argues that resampling should be compared to Bayesian

methods instead to the traditional mean variance. The literature is still controversial

on the pros and cons of the results delivered by resampling (Markowitz and Usmen

2003; Ulf and Raimond 2006; Becker et al. 2015). There have been some recent

attempts (see, e.g., Frahm 2015) to develop the theoretical foundations of the

portfolio resampling approach. While the resampling method is certainly not

exempt from criticism, our motivation to use it lies in the possibility it gives to

consider many scenarios while preserving computational tractability.

The method described above is not without resemblance to the sample average

approximation (SAA) method. As noted by Kim et al. (2014), the method can be

applied when the sample and the true problems both enjoy features that are critical

(e.g., continuity, differentiability) for optimization solvers. However, in terms of

asymptotic efficiency, it was shown that the standard implementation of the SAA

method does not perform as well as stochastic approximation. The performance gap

is due to the fixed and very large size of the sample set, which makes extremely

difficult to solve the resulting SAA formulation. To circumvent this issue, a method

called retrospective approximation retrofit was recently proposed, in which the size

of the sample set increases iteratively at a controlled rate. We refer the reader to

Kim et al. (2014) for a comprehensive discussion of the principles, advantages,

limitations, and implementation of the sample average approximation method.

6 Application to the Brazilian market

We implement the model presented in Sects. 3, 4 and 5 for a Brazilian pension fund.

We use 10-period binary scenario trees with two asset classes. In order to calibrate the

simulation of the fixed income asset, we collected data of the 1-month Brazilian LTN

(similar to a T-Bill in the USA) as a proxy for the short-term interest rate. For the

stocks, we collected the returns for the Brazilian Index IBOVESPA (similar to the

S&P 500 in the USA). We use maximum likelihood to estimate the parameters in

equations (13) and (14). The training period is from January 2005 to January 2015. In

Table 2, we present some descriptive return statistics for the two asset classes.

Table 2 highlights a peculiarity of the Brazilian capital market. Namely, the fixed

income asset has an expected return (9.6 %) that is very close to the stocks expected

return (10.11 %), but has a much lower volatility (i.e., 3.34 %) than stocks have

(i.e., 28.6 %). It is thus easy to understand the preference of Brazilian pension fund

managers for fixed income assets as their volatility is much lower than that of the

Table 2 Annualized return

statistics for the two asset

classes

Asset Mean (%) SD (%)

Stocks 10.11 28.6

Fixed income 9.6 3.34
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stocks. However, as aforementioned, the fixed income premium is likely to decrease

in Brazil, which could impact the pension funds asset allocations. The correlation

between both assets is slightly negative and equal to �0:036. Therefore, in a node of

the tree, we can have the prices of both assets going up, both going down or up and

down at the same time.

We design the scenario generation in C?? and Matlab. AMPL and the CPLEX

12.5 solver are used to model and solve the optimization problems. We run CPLEX’

standard branch-and-bound algorithm with its default settings on a 64-bit desktop

with Intel Core i7-4510U 2GHz CPU with 8GB of RAM. The computational

performance is not the central goal of this paper, but it is worth pointing out the

complexity of the model. For one single tree, we have 14,329 variables (2,047

integers), 2,047 nodes and 104,404 constraints. The computational time for the

generation of the scenarios and the solution of the optimization problem varies from

7 to 21 seconds. Without the combinatorial regulatory constraint (8), the time

decreases to around 2 � 3 seconds.

6.1 Number of trees - h

We want to define the allocation that maximizes the wealth in the last period, while

not violating any of the solvency, risk, and regulatory constraints. Our objective in

this section is to determine the number of scenario trees needed to reach the

stable state of the portfolio, i.e., stable allocations in fixed-income securities and

stocks. Figure 1 shows how the average initial portfolio allocations vary with the

number of trees.

The results displayed in Fig. 1 indicate that the initial portfolio allocations

become fairly stable with 200 generated trees. The subsequent tests presented in this

paper are obtained by using 300 trees in Algorithm 1. The computational time to run

the method proposed in this paper with 300 trees takes from 35 to 105 minutes

depending on the parametrization. The solution time varies predominantly and not

monotonically with the value of the initial funding ratio. If this latter is large (above

1.25), the solution time is minimal and about equal to 35 minutes. The solution

process is the longest when the initial funding ratio is slightly smaller than one.

Fig. 1 Stability of average solution with respect to the number of trees - h
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6.2 Insolvency probability

A key indicator of the financial health of the pension fund is its insolvency

probability. A tree is said to be infeasible if there is no feasible solution for the

corresponding optimization problem (see Step 3 in Algorithm 1). The probability of

insolvency is defined as the following ratio:

P Insolvency j VaR90 %ð Þ ¼ Number of infeasible trees

Number of trees
ð15Þ

The model is constrained in such a way that the funding ratio must be above 1 with

90 % probability in each period t and includes a 90 %-VaR constraint at each period

t. Furthermore, the intertemporal solvency regulation requires the funding ratio not

be lower than 1 (K ¼ 1) in more than two consecutive periods in any scenario. If in

scenario s the funding ratio is below 1 in stages t and t þ 1, it must be above 1 in

stage t þ 2 in scenario s. Another regulatory constraint is the 70 % maximum

amount of wealth to be allocated to stocks (see Sect. 2). The strong regulation and

the high market volatility creates an environment in which the probability of a tree

to be insolvent (infeasible) is not negligible.

Figure 2 displays how the insolvency probability varies in function of the pension

fund’s initial funding ratio b0 for which we consider values ranging from 0.58 to

1.67. Note that the value of K, i.e., the legally required funding ratio, is kept equal 1

in each test and that we construct 300 trees for each considered value of the initial

funding ratio. Each point in Fig. 2 corresponds to the mean portfolio allocation over

300 trees and the associated insolvency probability.

Figure 2 highlights that the insolvency probability is stable and low until the

pension fund’s initial funding ratio reaches 0.95. The insolvency probability

Fig. 2 Insolvency probability chart in terms of initial funding ratios
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increases very fast when the funding ratio goes below 0.95 and makes it virtually

impossible to keep the fund solvent when the value of the funding ratio falls below

0.93. For values of the funding ratios below 0.95, the pension fund manager will

definitely need additional external contributions. The external contributions can

come from the members in two ways: (i) decrease in the future benefits (liabilities)

or (ii) increase in the contributions without raising the benefits. Next, we present in

Table 3 how the portfolio allocations and insolvency probability vary with the initial

funding ratio.

As in the resampled efficiency frontier method (Michaud and Michaud 2008), the

composition of the ‘‘final’’ fund is obtained by taking the average of the portfolio

weights of all the 300 trees. Table 3 shows that the positions of the fund are not

monotone with the initial value of the funding ratio. If the initial funding ratio is

high (i.e., amount of assets is much higher than the present value of liabilities), the

fund tends to allocate 70 % and 30% in fixed income and stocks, respectively. The

70–30 % fixed income-stock allocation coincides to the one used in many Brazilian

pension funds (Brazilian Association of Closed Supplementary Pension Funds

2014). As the initial funding ratio becomes slightly lower than 1, the fund tends to

concentrate more in fixed income to reduce its risks of not paying the liabilities—

the fixed income allocation gets close to 80 %. Once the initial funding ratio gets

smaller than 0.95, the fixed income yield is not enough to cover the liabilities, a

Table 3 Portfolio allocation and insolvency probability under different initial funding ratios

Fund ratio Fixed-income bond (%) Stocks (%) N Insolv Scen Insolv. Prob. (%)

1.672 70 30 0 0.0

1.463 67.3 32.7 0 0.0

1.254 70.9 29.1 0 0.0

1.045 72.6 27.4 2 0.7

1.003 72.2 27.8 7 2.3

0.961 81 19 12 4

0.953 83 17 15 5

0.945 82.1 17.9 56 18.7

0.941 82.1 17.9 122 40.7

0.940 73.1 26.9 139 46.3

0.939 71.6 28.4 151 50.3

0.938 70.4 29.6 171 57

0.937 63 37 180 60

0.936 64.4 35.6 182 60.7

0.928 30 70 253 84.3

0.919 30 70 258 86.0

0.752 30 70 298 99.3

0.669 NA NA 300 100

0.585 NA NA 300 100
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larger part of the portfolio is then dedicated to stocks. The 70 % stock allocation is

the maximum amount allowed by the Brazilian legislation and such an allocation is

associated with a very high insolvency probability. This V-shaped portfolio policy is

somewhat similar to the results reported by Berkelaar and Kouwenberg (2003) and

Siegmann and Lucas (2005). With lower initial funding ratios (lower wealth levels)

the allocation tends to be concentrated in the risky asset.

We also tested additional assumptions for the pension fund. We assumed that the

fund manager (or the regulator) becomes more risk averse. In such a case, we set

K ¼ 1:1 (instead of 1) in (4). As expected, the insolvency curve plotted in Fig. 2 for

K ¼ 1 shifts to the left for K ¼ 1:1. If we remove the intertemporal funding ratio

regulatory constraint (8), the insolvency probability just slightly decreases.

6.3 Allocation with a decreasing interest rate

Despite the current sharp interest rate increase in 2014 and 2015 (more than 400

bps), a decreasing interest rate ‘‘looks like’’ a future tendency in Brazil. Dupačová

and Polı́vka (2009) observed a similar trend in the Czech Republic. We shall now

analyze the impact of a long-term decrease in the interest rate on the investment

policy of Brazilian pension funds. In our analysis, we consider two scenarios that

differ in the value of the initial funding ratio. In Fig. 3 panel (a) (resp., panel (b)),

we consider a pension fund with initial funding ratio of 1.25 (resp., 0.94). We chose

an initial funding ratio of 1.25 that corresponds to a financially healthy pension

fund, while 0.94 is the critical level of the initial funding ratio (see Fig. 2) when the

involvency probability of the pension fund changes significantly. The resulting

portfolio is also constructed by taking the average asset positions over the optimal

positions of the 300 trees.

Based on Fig. 3 panel (a), we observe that when the initial current asset value is

much larger than the present value of future liabilities, the portfolio allocations are

stable, i.e., around 70 and 30 % allocated to fixed income and stocks, respectively.

Despite the lower level of the interest rates, the funds do not increase their position

in the risky assets due to their high volatility. Under this context, it is not needed to

take more risks to be able to pay the liabilities. However, this conservative policy

significantly decreases the future wealth of fund members. Now considering in

Fig. 3 panel (b) funds with low initial funding ratios, we can see that, as the interest

rate decreases, the position in stocks becomes larger in order to possibly generate

larger returns allowing for the payments of the liabilities. When the interest rate is

close to 5%, the pension fund is required to take a riskier approach, investing more

resources in stocks than in fixed income. This is a marked departure with the

standard current allocations of pension funds and gives a clear indication the type of

allocations most of Brazilian pension fund managers will have to adopt in the near

future in case of lower interest rates.

In both cases displayed in Fig. 3, pension fund managers will have to change

their portfolio allocation if the decrease of interest rate becomes a reality. On one

hand, if the fund is financially healthy (initial funding ratio 1.25), this change is

necessary to avoid the progressive erosion of the initial wealth and capital. On the

other hand, if the resources of the fund are tight (i.e., initial funding ratio 0.94), this
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adjustment is fundamental to maintain the ability to cover the liability payments.

Besides the modification of the investment strategy, it is likely that members will be

asked to increase their contributions and/or to accept benefits of lesser value in the

future.

6.4 Robustness and scalability

In this section, we focus on the out-of sample robustness and on the scalability with

respect to the number of assets. First, we train the model on two different periods:

Training A - from January 2005 to December 2013 and Training B—from January

2005 to December 2014. The application of the model built on the Training A (resp.,

Training B) data on the out-of-sample 2014 (resp. 2015) data permit to evaluate the

out-of-sample performance of the model. As the return data are not at the present

time available for the entire 2015 year, the 2015 out-of-sample analysis is based on

the January 2015 - November 2015 period. To obtain the initial portfolio allocation,

we use the method presented in Sect. 5. We test the model with three different

initial funding ratios: 0.95, 1.00 and 1.05. These initial funding ratios become the

benchmark for the out-of-sample tests presented in Table 4.

We have chosen funding ratios that are close to the critical value of 1. We have

also avoided ratios below 0.95 because of the V-shaped behavior towards the riskier

asset documented in the literature (Berkelaar and Kouwenberg 2003; Siegmann and

Lucas 2005) and discussed in Sect. 6.2. A 15 % federal income tax discount was

used for the out-of-sample portfolio return. Based on Table 4 and considering the

initial level of 1, the out-of-sample funding ratio increases to reach 1.006 in 2014

and 1.025 in 2015. Similar results were obtained with the initial funding ratios of

0.95 and 1.05. The initial funding ratio pension fund’ maintenance (or increase) in

the out-of-sample tests shows the robustness of the model.

We also note that this study has been conducted by accounting for the main asset

classes (i.e., stocks and fixed income) in the ALM context. Those are definitely the

main investment options considered by pension fund managers in Brazil (Brazilian

Association of Closed Supplementary Pension Funds 2014). Next, in order to

analyze the scalability of the model, we consider a larger number of assets. We

design an experiment for two and eight assets with the following features: 500 runs

(generating the scenarios and optimizing the tree), each tree with ten periods and

funding ratio of 1. The objective here is to verify if the number of assets can be

increased without making the computational performance prohibitive. The results

showed that each run took on average 17.28 seconds for 2 assets and 22.30 seconds

for 8 assets. The standard deviation was 1.59 and 4.2 seconds, respectively, for 2

Table 4 Out-of-sample tests

with different funding ratios
Funding ratio (FR)

Initial FR 0.950 1.000 1.050

Out-of-sample FR 2014 0.958 1.006 1.066

2015 0.982 1.025 1.085
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and 8 assets. Thus, the implementation can easily be scaled up to a larger number of

assets.

7 Conclusions

The objective of this study is to develop and apply a multistage stochastic

programming ALM model for a Brazilian DB pension fund that takes into account

the dynamic of the domestic financial market and its regulatory idiosyncrasies.

Besides the multistage aspect, the complexity of the model is exacerbated by (i) the

enforcement of a VaR metric modelled with probabilistic chance constraints, and

(ii) the intertemporal solvency regulation modelled with combinatorial constraints.

Different economic scenarios are simulated with the GBM and CIR models and

used to construct multiple multistage scenario trees. The proposed multiple scenario

tree approach is inspired from the resampling efficiency frontier method and is

aimed at enabling the consideration of a representative set and vast number of

contingencies without making the algorithmic procedure computationally

prohibitive.

The empirical analysis shows the link between the initial funding ratio on one

hand and the insolvency probability and the positions of the fund on the other hand.

A simulation assuming a decrease in the interest rate provides key insights about the

likely changes in the investment strategies of the Brazilian pension funds.

A promising future research avenue is to switch the focus from defined benefit

(DB) to defined contribution (DC) with minimum guarantees pension funds. For

instance, the Brazilian public sector is currently experiencing this shift from DB to

DC with some guarantees. Consiglio et al. (2015) not only discuss other countries in

which this change is taking place but also present a model integrating option pricing

and portfolio optimization to obtain asset allocations considering minimum

guarantees.

Acknowledgments The authors thank the three anonymous referees and the two associate editors for

their valuable comments and suggestions that greatly improved the quality of the paper. This work was

funded by the following Brazilian Research Agencies: CAPES and FAPERGS.

References

Adam A (2007) Handbook of asset and liability management: from models to optimal return strategies,

1st edn. Wiley, London

Asanga S, Asimit A, Badescu A, Haberman S (2014) Portfolio optimization under solvency constraints: a

dynamical approach. North Am Actuar J 18(3):394–416

Asimit A, Badescu A, Siu TK, Zinchenko Y (2014) Capital requirements and optimal investment with

solvency probability constraints. IMA J Manag Math, pp 1–31

Becker F, Gurtler M, Hibbeln M (2015) Markowitz versus Michaud: portfolio optimization strategies

reconsidered. Eur J Financ 21(4):269–291

Berkelaar A, Kouwenberg R (2003) Retirement saving with contribution payments and labor income as a

benchmark for investments. J Econ Dyn Control 27:1069–1097

Boender GCE (1997) A hybrid simulation/optimisation scenario model for asset/liability management.

Eur J Oper Res 99(1):126–135

366 A. D. de Oliveira et al.

123



Bogentoft E, Romeijn HE, Uryasev S (2001) Asset/liability management for pension funds using cvar

constraints. J Risk Financ 3:57–71

Bradley SP, Crane DB (1972) A dynamic model for bond portfolio management. Manag Sci 19:139–151

Brazilian Association of Closed Supplementary Pension Funds (2014) Consolidade estatı́stico. http://

www.abrapp.org.br/Consolidados/Consolidado%20Estat%C3%ADstico_12_2014.pdf. Accessed 05

Jan 2015

Brazilian Central Bank (2012) Resolution number 3792. http://www.bcb.gov.br/pre/normativos/res/2009/

pdf/res_3792_v1_O.pdf. Accessed 05 Jan 2015

Cariño DR, Kent T, Meyers DH, Stacy C, Sylvanus M, Turner AL, Watanabe K, Ziemba WT (1994) The

Russel-Yasuda Kasai model: an asset/liability model for japanese insurance company using

multistage stochastic programming. Interfaces 24(1):29–49

Consigli G, Dempster MAH (1998) Dynamic stochastic programming for asset—liability management.

Ann Oper Res 81:131–161

Consiglio A, Staino A (2012) A stochastic programming model for the optimal issuance of government

bonds. Ann Oper Res 193(1):159–172

Consiglio A, Saunders D, Zenios SA (2006) Asset and liability management for insurance products with

minimum guarantees: the UK case. J Bank Financ 30(2):645–667

Consiglio A, Cocco F, Zenios SA (2007) Scenario optimization asset and liability modelling for

individual investors. Ann Oper Res 152(1):167–191

Consiglio A, Tummiello M, Zenios S (2015) Designing guarantee options in defined contribution pension

plans. Insur Math Econ 26:267–279

Consiglio A, Carollo A, Zenios SA (2016) A parsimonious model for generating arbitrage-free scenario

trees. Quant Financ 16(2):201–212

Cox JC, Ingersoll JE, Ross SA (1985) A theory of the term structure of interest rates. Econometrica

53(2):385–408

Date P, Canepa A, Abdel-Jawad M (2011) A mixed integer linear programming model for optimal

sovereign debt issuance. Eur J Oper Res 214(3):749–758

Dempster MAH, Germano M, Medova EA (2003) Global asset liability management. Br Actuar J

9:137–216

Duffie D (2001) Dynamic asset pricing theory. Princeton University Press, Princeton
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