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The interaction of three waves requires wavelength and frequency matching conditions. Without

the presence of a particle beam, if the conditions are satisfied and if the frequency of the envelope

is lower than the lowest frequency of the waves, they exchange energy and the evolution of the

envelope of each wave is given by a constant plus a sinusoidal function. On the other hand, if a

particle beam propagates within electrostatic and electromagnetic fields with no wavelength and

frequency match, the energy exchange between the modes is done due to the particles. One of the

modes could be amplified in this scheme. In the present work, we propose a model where a non-

relativistic particle beam propagates in a plasma within two electromagnetic modes and one elec-

trostatic mode with wavelength and frequency matching conditions. Then, the waves are allowed

to exchange energy between themselves and with the particle beam as well. We present new fea-

tures in comparison to the isolated triplet interaction and to the beam-wave interaction. These fea-

tures are relevant for a more realistic triplet interaction model. Published by AIP Publishing.
https://doi.org/10.1063/1.5005946

I. INTRODUCTION

The interaction of three waves, based on the wave triplet

concept, is quite explored and accepted in the literature. In

the analysis of a single triplet of waves, the interaction

between the waves takes place when resonant conditions are

established, i.e., the waves must satisfy frequency and wave-

length matching conditions. This implies a relation like

x1 ¼ x2 þ x3 and k1 þ k2 ¼ k3.1–8 If the interaction param-

eter which is proportional to the plasma frequency is small

enough, then the evolution of the envelope of the waves is

well described by the modulational approximation—the

dynamics of the envelope is regular and periodic.9 Thus, the

waves exchange energy, varying their amplitudes slowly, in

a way that the total energy of the system is conserved, as

seen in Ref. 2.

On the other hand, the interaction between waves and a

charged particle beam in a plasma is already described in

Ref. 14. In that work, the waves do not satisfy the frequency

and wavelength matching conditions, and thus, the presence

of the particle beam has a key role in the process: due—and

only due—the beam, the waves could exchange energy in a

conservative system. The authors included transversal and

longitudinal modes, showing that the amplitudes of the lon-

gitudinal modes have a large growth. Usually, the growth

occurs after a rearrangement time and it is exponential until

saturation. An analogy is made in the present work between

this behavior and the dynamics of a one-dimensional free-

electron laser.10–13

In the present work, we allow the waves to interact

with themselves based on the concept of the wave triplet

and to interact with a non-relativistic particle beam in a

plasma. The interaction between waves affects dramatically

the system dynamics described in Ref. 14. We consider in

this paper only three interacting modes propagating in a

plasma: two transversal modes described by electromag-

netic plane waves and one longitudinal mode vibrating

with the plasma frequency. Here, we give a more realistic

model for the triplet interaction, in the sense of including

the interaction of resonant particles, which may be found

immersed in the plasma. The whole scheme could also be

applied, as discussed later, to amplify an electrostatic wave

and to preserve some gain after a characteristic time. This

feature is interesting, for example, to accelerate a second

particle beam based on the physics of Ref. 15. Such as in

Ref. 14, a fixed sinusoidal approximation is made for the

wave fields.

This paper is organized as follows: in Sec. II, we intro-

duce the basic physical model and the equations of motion;

in Sec. III, we present the results in the absence of the par-

ticle beam; in Sec. IV, we effectively insert both the parti-

cle beam and the interaction between the waves in the

system dynamics; and, finally, in Sec. V, we draw our

conclusions.

II. PHYSICAL MODEL

In the present model, a non-relativistic charged particle

beam propagates in a cold plasma interacting with one longi-

tudinal and two transversal (a co-propagating and a counter-

propagating) waves. The model proposed here is similar to

the one given in Ref. 14. The main difference is that we also

take into account the fluctuations of density q of the plasma.

This allows the interaction between the wave modes even in

the absence of the particle beam. The full Lagrangian that

describes the model is written as

a)peterpeter@uol.com.br
b)marini@ufrgs.br
c)pakter@if.ufrgs.br
d)rizzato@if.ufrgs.br

1070-664X/2017/24(10)/102124/7/$30.00 Published by AIP Publishing.24, 102124-1

PHYSICS OF PLASMAS 24, 102124 (2017)

https://doi.org/10.1063/1.5005946
https://doi.org/10.1063/1.5005946
mailto:peterpeter@uol.com.br
mailto:marini@ufrgs.br
mailto:pakter@if.ufrgs.br
mailto:rizzato@if.ufrgs.br
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5005946&domain=pdf&date_stamp=2017-10-19


L ¼
ð

d3x
1

2
mnj~vj2 þ 1

2
m

q
e
j~vj2

� �

þ 1

8p

ð
d3x

����rUþ 1

c

@~A

@t

����
2

� j ~r � ~Aj2
 !

þ
ð

d3x
1

c
~j � ~A � qU

� �

þ
XN

i¼1

1

2
mj _~r ij2 þ eUð~ri; tÞ �

e

c
_~r i � ~Að~ri; tÞ

� �
; (1)

where n ¼ const: is the particle density of the background

plasma, qð~r; tÞ is the local fluctuation of charge density of

the background plasma, ~vð~r ; tÞ is the Eulerian velocity,

Uð~r; tÞ is the scalar potential, ~Að~r; tÞ is the total vector

potential, ~jð~r ; tÞ is the current, m is the mass of the elec-

tron, ~riðtÞ and _~r iðtÞ are the position and the velocity of

the i-particle of the beam, and e is the charge of the

electron.

While the fields are described by

U ¼ /ðtÞ cos kLx� xLt� bðtÞ½ �;
~A1 ¼ a1ðtÞ cos �k1xþ x1t� h1ðtÞ½ �ê;
~A2 ¼ a2ðtÞ cos �k2x� x2t� h2ðtÞ½ �ê;

(2)

where /ðtÞ; a1ðtÞ, and a2ðtÞ are the slowly varying ampli-

tudes, bðtÞ; h1ðtÞ, and h2ðtÞ are the slowly varying phases,

xL ¼ xp, ~A ¼ ~A1 þ ~A2; ê is the polarization versor, x1

¼ x2 þ xp is the frequency matching condition, and x2
p

¼ 4pne2=m is the plasma frequency. Moreover, the disper-

sion relation for the electromagnetic waves is described by

x2
i ¼ x2

p þ k2
i c2. Finally, the wavelength relation between

the waves is written as kL ¼ k1 þ k2. If we consider x1

¼ axp, where a > 1 is a given parameter, we get x2 ¼ ða

�1Þxp; k1 ¼ xp
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This implies that the resonance velocity of the beam is
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Þ. As

we increase a, vr becomes smaller. For example, for a¼ 5,

vr ¼ 0:114c, and for a¼ 20, vr ¼ 0:0257c. We point out that
~A2 is a field of a counter-propagating wave.

Exactly as Ref. 14, we assume the following linear rela-

tions for the background plasma:
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where ~vk and ~v? are the longitudinal and transverse

velocities.

Assuming periodic boundary conditions, we substitute

Eqs. (2) and (3) into Eq. (1) and we average the Lagrangian

over a box of size l. This way, we find
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Lagrangian of Eq. (4) is rewritten in terms of dimension-

less variables
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(6)

and N is the number of particles. The brackets indicate a

mean value over the beam particle distribution, i.e., hxi
¼
PN

i¼1 xi=N. Through the Lagrangian of Eq. (5), the equa-

tions of motion of the system are obtained and written as

follows:
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where _ni is the longitudinal velocity in the longitudinal

wave frame and _gi is the transverse velocity of the

ith particle. These equations completely describe the

model.

III. THREE WAVE INTERACTION

In this section, the case of the three wave interaction is

briefly discussed, neglecting the presence of the particle

beam, which corresponds to nb¼ 0.

As can be seen in the equations of motion [Eq. (8)]

below obtained from the normalized Lagrangian [Eq. (5)]

in the particle beam absence, the Manley-Rowe relations16

can be found: I1=l1 þ I2=l2 ¼ c1; I1=l1 þ J ¼ c2, and

J � I2=l2 ¼ c3, where ci are constants. The power flow of

the waves x1I1=l1 þ x2I2=l2 þ xpJ ¼ c4 is also con-

served. Thus, the waves exchange energy in a periodic fash-

ion in this case. This behavior is expected for a wave triplet

interaction2 considering the modulational approximation,

where the frequency of the envelope is much smaller than

the high frequency of each wave. The regular behavior

could be destroyed if we allowed the system to have suffi-

ciently high intensities for the waves and a frequency mis-

match X 6¼ 0, where X ¼ x1 � x2 � xp � xp or if we

included an extra mode in the system.4,5,7,17 In the present

analysis, we always consider the perfectly matched case

with X¼ 0,

_b¼�1

8
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
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(8)

In Fig. 1, we show the evolution of the envelope of the

waves for x1 ¼ 20; xp ¼ 1; Jðt ¼ 0Þ ¼ 10�4, I1ðt ¼ 0Þ
¼ I2ðt ¼ 0Þ ¼ 2, and bðt ¼ 0Þ ¼ h1ðt ¼ 0Þ ¼ h2ðt ¼ 0Þ ¼ 0.

As can be seen in this figure, while I1, denoted by the solid

black line, which has the higher frequency, grows (decays),

I2, solid blue line, and J, solid green line, decay (grow). It is

a consequence of power flow conservation. The envelope of

the waves oscillates with the same frequency, independently

of the wave. We call this frequency the frequency of the

envelope x3W .
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The frequency of the envelope (x3W) depends on the

total energy of the system and on the plasma frequency. As

we increase xp, x3W also increases. In Fig. 2, we plot a map

where in the vertical axis is expressed xp, in the horizontal

axis is expressed t, and the colors represent the value of J.

Thus, the map is the time evolution of J for different xp. To

build the map, we kept c4 ¼ 156; x1 ¼ 20; I1ðt ¼ 0Þ ¼ 2,

and I2ðt ¼ 0Þ ¼ 2 constant and we varied xp (and, conse-

quently, x2). The frequency of the envelope grows as xp

increases, as shown by the compression of the curves. The

phase-velocity of J (v0 ¼ xp=kL, which is, in fact, identical

to vr) varies from almost zero (for xp � 0) to 0:4c, in the

case of xp � 9:5.

To complete the map of Fig. 2, in Fig. 3, explicitly, the

frequency of the envelope (x3W) against the plasma fre-

quency is shown. The frequency of the envelope grows line-

arly for small values of the plasma frequency. Even for

xp ¼ 8, for example, x3W is much smaller than xp. This

condition is necessary for the modulation approximation

used in this paper.

Although the amplitude of J could grow, due to the reg-

ular and periodic dynamics of the envelope, the growth is

not maintained along the time. Thus, this kind of system is

not indicated, for example, to amplify the longitudinal mode.

We point out that we could work with higher intensities

for the waves and a frequency mismatch together, in order

to break the regular behavior of the triplet interaction.

Additional modes could be included as well.4,8,18

IV. FULL MODEL

In this section, the full model is explored. The results

are shown turning on and off the triplet interaction and the

particle-wave interaction.

As in Ref. 14, if we do not take into account the interac-

tion between the waves, starting with a very small initial

value of J, after a rearrangement time, J grows exponentially

almost until it saturates. The exponential growth ceases

when the mixing process takes place in the phase-space of

the particles (it occurs when the particle distribution in this

space becomes a non-single valued function). After the onset

of the mixing process, the amplitude of J reaches the maxi-

mum value and then oscillates.

The whole dynamics is similar to what happens in a one-

dimensional single pass free-electron laser: a FEL is a device

that could efficiently convert the kinetic energy from a rela-

tivistic electron beam into electromagnetic energy in the form

of radiation. To make this possible, the beam and the electro-

magnetic wave to be amplified (the laser or radiation) propa-

gate in a spatially periodic and time-independent magnetic

field produced by a wiggler. The combined action of the

wiggler and laser fields forms the ponderomotive potential,

which is responsible for the energy conversion.10–13,19 In

the FEL case, the evolution of the laser field occurs as the

evolution of J, a rearrangement time, then an exponential

growth, the first peak and oscillations with frequency in the

order of the plasma frequency. The turning point from linear

growth to saturation is also related to the onset of the mixing

process. Moreover, the initial velocity that maximizes the

growth rate of the amplified mode is slightly greater than the

resonance velocity (the difference of velocities is related

to the detuning11–13,19) and if the beam has an initial distribu-

tion of velocities, just as in FEL, the growth rate becomes

smaller.12,13

While in the FEL dynamics, the laser field10—a trans-

versal plane wave—is amplified, in this case, the longitudi-

nal mode is amplified J. One of the reasons for that is

because in the present model, the beam velocity is limited to

non-relativistic velocities. This implies that the coupling

between transversal fields and particles is weak. All of the

features discussed here are presented through the evolution

of J, denoted by the blue solid line, in Fig. 4, for nb=n
¼ 0:1; x1 ¼ 20; xp ¼ 1; v0 ¼ xp=kL; _nðt ¼ 0Þ ¼ 0; I1ðt ¼ 0Þ
¼ 2; I2ðt ¼ 0Þ ¼ 2, and Jðt ¼ 0Þ ¼ 10�4.

FIG. 1. In green, the evolution of J, while in black, the evolution of I1 and

in blue, the evolution of I2. The figure was built for x1¼ 20;xp¼ 1; Jðt¼ 0Þ
¼ 10�4; I1ðt¼ 0Þ¼ I2ðt¼ 0Þ¼ 2; bðt¼ 0Þ¼ h1ðt¼ 0Þ¼ h2 ðt¼ 0Þ¼ 0.

FIG. 3. Frequency of the envelope x3W vs. plasma frequency xp, maintain-

ing fixed c4¼ 156;x1¼ 20; I1 ðt¼ 0Þ¼ I2ðt¼ 0Þ¼ 2.

FIG. 2. Map of the evolution of J for different values of the plasma fre-

quency xp, maintaining fixed c4 ¼ 156 and x1 ¼ 20; I1ðt ¼ 0Þ ¼ I2ðt ¼ 0Þ
¼ 2. Then, Jðt ¼ 0Þ ¼ c4=xp � ðx1I1=l1 þ x2I2=l2Þ=xp.

102124-4 Peter et al. Phys. Plasmas 24, 102124 (2017)



The green solid line in Fig. 4 shows the evolution of the

system in the absence of the particle beam. As we show in

Sec. III, in this case, the three waves exchange energy in a

way that J has a regular and periodic behavior, oscillating

along the time. The period of oscillations is about T¼ 200.

The black solid line represents the evolution of the

amplitude of J in the presence of the particle beam and turn-

ing on the triplet interaction. Some features must be pointed

out: there is no rearrangement time in the beginning of the

motion because the system is initially driven by the triplet

interaction, as can be seen in panel (a) of Fig. 4; the dynam-

ics of the amplitude has two characteristic frequencies—the

lowest one is related to the triplet frequency, while the high-

est one is related to the plasma frequency; the amplitude of J
never goes back to its initial value due the presence of the

beam particle; the mean-value of J is greater in the case of

the full system in comparison to the value obtained turning

off the triplet interaction. In fact, the largest peak value of J
is achieved when the beam is not taken into account.

However, this scenario may be seen as less realistic in the

sense that it completely disregards the presence of resonant

electrons immersed in the plasma.

In Figs. 5(a) and 5(b), the evolution of the electromag-

netic modes I1 and I2 is plotted, using the same parameters

as in Fig. 4. The blue solid lines represent the evolution of I1

and I2 without the wave interaction, the green solid lines rep-

resent that in the absence of the particle beam, and finally,

the black solid lines for the full model. As can be seen, there

is no significant change in these amplitudes in the case

without the wave interaction. In the absence of the particle

beam, the amplitudes of I1 and I2 vary significantly. The rea-

son why is explained taking the initial values of I1, I2, and J
and the Manley-Rowe relations [I1ðt ¼ 0Þ=l1 � I2ðt ¼ 0Þ=
l2 � Jðt ¼ 0Þ]. In the full model, an intermediate behavior

is shown.

In terms of application, we may think in a system com-

posed of the present scheme and a second particle beam. The

initial velocity of the second beam is relativistic and does

not have any kind of resonance with the quantities shown

during this work. This way, the second beam only interacts

with the waves and there is no ponderomotive potential

effect acting over the beam. In Ref. 15, the envelope of the

electrostatic mode has a Gaussian shape. Differently, here

the envelope of J grows exponentially and reaches satura-

tion. Besides that, the same physical principle of Ref. 15

could be used to accelerate the second particle beam. We

point out that, due the oscillations of J after the saturation,

the velocity of the second particle beam also oscillates, but

even with the oscillations, the net gain could be apprecia-

ble—the oscillations of the velocity are not expressive in

Ref. 15 because of the shape of the electrostatic field.

In Fig. 6, the phase-space _x vs: n for different situations

is shown. Panels (a), (b), and (c) show the initial phase-space

configuration, the phase-space at the beginning of the onset

of the mixing process. and a picture of the phase-space after

the onset of the mixing process, respectively, for the full

model. Panels (d), (e), and (f) were built for the case of no

triplet interaction. Panel (d) shows the initial phase-space

configuration, while (e) is a picture of the phase-space at the

beginning of the onset of the mixing process and (f) is a

FIG. 4. Longitudinal mode evolution using the following parameters:

nb=n ¼ 0:1; x1 ¼ 20; xp ¼ 1; _nðt ¼ 0Þ ¼ 0 and the following initial condi-

tions I1ðt ¼ 0Þ ¼ 2; I2ðt ¼ 0Þ ¼ 2 and Jðt ¼ 0Þ ¼ 10�4; bðt ¼ 0Þ ¼ h1

ðt ¼ 0Þ ¼ h2ðt ¼ 0Þ ¼ 0. The points 6b and 6e represent when the mixing

process starts for the full model and for the case one neglects the triplet

interaction, respectively. Panel (a) is a zoom of panel (b), showing, in detail,

the beginning of the dynamics.

FIG. 5. Electromagnetic mode evolution for I1 in panel (a) and for I2 in

panel (b), using the following parameters: nb=n ¼ 0:1; x1 ¼ 20; xp ¼ 1;
_nðt ¼ 0Þ ¼ 0 and the following initial conditions I1ðt ¼ 0Þ ¼ 2; I2ðt ¼ 0Þ
¼ 2 and Jðt ¼ 0Þ ¼ 10�4; bðt ¼ 0Þ ¼ h1ðt ¼ 0Þ ¼ h2ðt ¼ 0Þ ¼ 0.
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snapshot after the onset. Typically, the onset of the mixing

process occurs earlier in the full model: the triplet interaction

speeds up the exchange of the energy process between the

modes, eliminating the rearrangement time. The value of J at

the onset of the mixing process is greater for the full model,

but the peak value comes closer as the relation nb=n is

increased.

In Fig. 7, the value of the amplitude J at the onset of the

mixing process (Jðt ¼ tosÞ) vs. nb=n is shown. As can be

seen, when the beam density is increased, the value of JðtosÞ
is also increased. It occurs because there are more particles

to transfer the energy between the modes. In the case without

the wave interaction, denoted by the red solid line, for

nb=n < 0:15; JðtosÞ is smaller than in the full model (dashed

blue line) because the dynamics is mainly driven by the trip-

let interaction. As we increase nb=n, we offer more particles

and consequently more energy to the system. However, the

triplet interaction anticipates the onset of the mixing, so, we

see that for nb=n > 0:15, the value of J evaluated at the onset

of the mixing process is greater in the case without the wave

interaction.

Moreover, an increase in nb=n reduces the time until the

onset of the mixing process. As in Ref. 14, the relation nb=n
is limited to the order of 0.4 due to the sinusoidal approxima-

tion of the electrostatic wave. Higher values of nb=n could

change the shape of this mode.

V. CONCLUSIONS

We have investigated the interaction of a triplet and a

particle beam in a plasma. In the proposed model, if we

neglect the particle beam, the interaction between two trans-

versal modes and a longitudinal mode (these modes satisfy

the wavelength and frequency matching conditions) produ-

ces a regular and periodic behavior to the envelope of the

waves. The frequency of the envelope depends on the total

energy of the system and on the plasma frequency. In order

to avoid chaos, we took parameters such as the frequency of

the envelope is much smaller than the plasma frequency.2

On the other hand, if we ignore the direct interaction

between the waves, the longitudinal mode J grows exponen-

tially after a rearrangement time.14 The growth ceases just

after the onset of a mixing process in the phase space (the dis-

tribution function becomes a non-single valued function), J
reaches the saturation, and then it oscillates around a mean

value with a frequency comparable to the plasma frequency.

The whole process is similar to what happens in a FEL.10–13,19

When we turn on both the triplet and the plasma beam

interaction, the final result is a combination of the effects of

these two interactions. In a real plasma, particles are immersed

in the plasma in a way that resonant particles could exchange

energy with the three waves, changing the triplet dynamics,

even for a low density of resonant particles. Usually, in the

present model, the J envelope is initially driven by the triplet,

so there is no rearrangement time. Then, J grows exponen-

tially and reaches the saturation just after the onset of the mix-

ing process. Instead of returning to its initial value, the J
dynamics has two characteristic frequencies (the lowest one is

related to the triplet frequency, while the highest one is related

to the plasma frequency) and its value oscillates near the peak

of the amplitude. Moreover, the peak value of J is greater than

FIG. 6. Phase space snapshot for dif-

ferent situations. Panels (a), (b), and

(c) are for the full model, while (d),

(e), and (f) are from turning off the

triplet interaction. The phase space

configuration when simulations start

are shown in panels (a) t¼ 0 and (d)

t¼ 0. The phase space configuration at

the onset of the mixing process is

shown in panels (b) t¼ 6.56 and (e)

t¼ 12.74, while the configuration after

the onset of the mixing process is

shown in panels (c) t¼ 15 and (f)

t¼ 25.

FIG. 7. Value of the amplitude J evaluated at the onset of the mixing process

(t ¼ tos) as a function of nb=n for the full model (dashed blue line) and for

the case one neglects the triplet interaction (solid red line). The figure was

built using the following initial conditions I1ðt ¼ 0Þ ¼ I2ðt ¼ 0Þ ¼ 2 and

Jðt ¼ 0Þ ¼ 10�4; _nðt ¼ 0Þ ¼ 0, and bðt ¼ 0Þ ¼ h1ðt ¼ 0Þ ¼ h2ðt ¼ 0Þ ¼ 0.
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the case in which we consider the presence of the particle

beam and we ignore the triplet interaction.

The main conclusion in this paper is that the presence of

a particle beam modifies the triplet dynamics even for a low

density of particles. Thus, a more realistic triplet interaction

model must include the interaction with the particles of the

plasma. Moreover, frequency and wavelength matching con-

ditions could be explored, when it is possible, to extract the

maximum performance in low density particle beam and

wave interactions in order to amplify the longitudinal mode

and to produce a gain sustained along the time.

Despite the complexity of the presented model, veloci-

ties are restricted to non-relativistic values, for example. A

relativistic model based on the relativistic model based on

Ref. 20 must be developed. In addition, the shape of the lon-

gitudinal mode could be significantly changed due to the

particle distribution if we increase the particle density of

the beam. Beyond that, chaos could be also introduced by

allowing a frequency mismatch between the waves and add-

ing new modes in the system.4–6,8,18,21,22 The chaos could be

interesting in the point of view of J amplification. These

topics should be explored in upcoming papers in order to

provide a more accurate model.
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