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Abstract. The breakdown of Ehrenfest’s theorem imposes serious lim-
itations on quaternionic quantum mechanics (QQM). In order to de-
termine the conditions in which the theorem is valid, we examined the
conservation of the probability density, the expectation value and the
classical limit for a non-anti-hermitian formulation of QQM. The results
also indicated that the non-anti-hermitian quaternionic theory is related
to non-hermitian quantum mechanics, and thus the physical problems
described with both of the theories should be related.
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1. Introduction

Currently, quaternionic quantum mechanics (QQM) is a theory of anti-hermi-
tian operators [3], and thus the mathematical framework of QQM has been
developed using hermitian formalism of complex quantum mechanics (CQM)
as a reference frame. Anti-hermiticity is a way to preserve the probability
density [3], and thus anti-hermiticity is believed as necessary to a consis-
tent QQM. Nevertheless, a quaternionic non-anti-hermitian solution that
preserves the probability density has recently been obtained [19], and thus
the question about the necessity of the anti-hermitian assumption is posed.
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Furthermore, quaternionic definitions for the momentum operator, for the
probability current and for the expectation values are proposed in that ar-
ticle. These results points out that several CQM structures have no exact
equivalent in QQM. Consequently, the physical interpretation of the theories
may differ dramatically.

In this study, we are interested in the specific discrepancy between the
classical limits of hermitian CQM and anti-hermitian QQM. The Ehrenfest
theorem states that the expectation values of position and linear momentum
calculated through CQM obey a classical dynamics. The theorem thus states
that quantum mechanics and classical mechanics are somewhat related, so
that quantum dynamics must have a classical limit. Furthermore, it sets forth
the background for proposing that quantum phenomena may be generated by
fluctuations of classical quantities. Accordingly, the Ehrenfest theorem is a
basic concept that enables the formulation of semi-classical quantum mechan-
ics, with far-reaching consequences that are both conceptual and practical
in nature. Consequently, the breakdown of the Ehrenfest theorem for anti-
hermitian QQM [1-3] proves that the physical contents of hermitian CQM
and anti-hermitian QQM are different, and thus the phenomena described by
both theories are probably different.

We may conclude that QQM is either disconnected from classical me-
chanics, and thus QQM has no classical limit, or that within the classical limit
of QQM there is a generalized, and unknown, classical theory. In this study,
we propose another point of view, in which QQM is not an anti-hermitian
generalization of hermitian CQM. In fact, we propose a non-anti-hermitian
QQM as a generalization for non-hermitian CQM [6,25]. Using this simple
assumption, we were able to ascertain that the breakdown of Ehrenfest for
non-anti-hermitian Hamilton operators is similar to the breakdown of the
Ehrenfest theorem observed in non-hermitian CQM, and thus we expect that
a link between non-hermitian CQM and non-anti-hermitian QQM may be es-
tablished physically as well as mathematically. Furthermore, we shall see that
the Ehrenfest theorem may be verified in the particular case where hermitian
operators are considered for QQM.

On the other hand, if non-anti-hermitian QQM is somewhat related to
non-hermitian CQM, we may have an important way of testing QQM. We
remember that non-hermitian CQM has deserved an remarkable interest from
experimental physicists [21,24,28,29], and these techniques may test QQM
as well. Furthermore, there exist different theoretical proposals about non-
hermitian CQM [22,23,26,30,31,33] and even for non-anti-hermitian QQM
[7,8]. In summary, the proposal of this article is related to important trends
in quantum mechanics which we hope will increase the interest in QQM and
enable us to understand which kind of physical phenomena may be described
with it, if any.

This article is organized according to the two possible quaternionic wave
equations that we consider, namely the left complex wave equation (LCWE)
and the right complex wave equation (RCWE). In Sect. 2 we define the
LCWE and study its fundamental properties, namely the continuity equation
for the probability density, the expectation values and the Ehrenfest theorem.
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Furthermore, we study basic properties of hermitian Hamiltonians in QQM.
In Sect. 3 we repeat the results for RCWE and, in Sect. 4, we present our
conclusions and future directions for research.

2. The Left Complex Wave Equation

Quaternions (H) are generalized complex numbers with three anti-commuting
complex units: 4, j and k [34]. The complex units satisfy

ij=—ji=k and ijk=—1, (1)
and an arbitrary quaternionic number is written as
q = z0 + 210 + 22) + 23k, (2)

where xq, 1, T2 andxs are real. In symplectic notation, ¢ € H is written

qg==z+¢j with 2z, (eC. (3)
Let us consider the quaternionic Schrodinger equation
ov
ih— =HY, 4
ith—-=H (4)

where U and H are quaternionic. The left hand side of (4) admits two po-
sitions of the complex unit 7, and hence we call (4) the left-complex wave
equation (LCWE). In accordance with a previous study of the Aharonov—
Bohm effect in QQM [19], we propose the quaternionic Hamiltonian operator

h2
H:—i(V—Q)-i(V—Q)+V. (5)

2m
Q@ is a pure imaginary quaternionic vector, and V is a quaternionic scalar

potential. Using the symplectic notation we write
Q=ai+pBj and V=Vy+ V], (6)

where a is real and 3, Vy and V; are complex. We notice that a quater-
nionic imaginary vector potential has been introduced by Michael Atyiah
for examining Yang—Mills instantons [5], and this potential has been firstly
used in QQM considering the quaternionic Aharonov—Bohm effect [19]. The
quaternionic Hamiltonian (5) is general and neither Hermiticity nor anti-
Hermiticity are supposed. Furthermore, we wish to examine the conservation
of probability in (4). If p is the probability density, thus

ov* L O¥ «
at/dazp /dm( v+ v (’915) where p=U*"U. (7)

Furthermore, using (4) and (5), we obtain
ov h
07 _ LI [tV - QU Ut iQU — UrQi- VU
o Qm{v (wi(vY - Q)| + VU -iQ Qi-v

1
VUV — Q- iQ\II} - WV, 8)
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Several terms of the right hand side of (8) cancel out in (7). Consequently,
the continuity equation reads

dp B
a"‘V'J—g, (9)

where the probability current J, the gauge-invariant quaternionic linear mo-
mentum operator Il, and the source g are as follows
V¥ —iV 1 *
Ty, J:—[\IJ* 0) + (I \1:}
- L [ () + (1)

and TV = —ih(V — Q) V. (10)

g=v

If the source is zero, there is neither source nor sink of probability, and this
is an important consistency test. The source term g of (9) is zero for real
V', and the correspondence between QQM and CQM is exact in this case.
However, the conservation of the probability density does not preclude the
existence of other sources of discrepancy between QQM and CQM, as we shall
see for the Ehrenfest theorem. On the other hand, non-zero sources appear
in non-Hermitian CQM [6,25], particularly when complex scalar potentials
are admitted, and then we shall research quaternionic potentials taking the
non-hermitian complex case as our frame of reference.

Real V' potentials have been explored in non-anti-hermitian QQM with
relative success [9-18,27,32]. However, we point out that (5) is neither her-
mitian nor anti-hermitian. This is an example that leads to the question of
whether anti-hermiticity is really necessary for QQM. In order to obtain a
quaternionic quantum theory with a well-defined classical limit, we take in-
spiration from complex quantum mechanics. From the probability current
(10), we write the canonical momentum as

(IT) = m/dx3J. (11)

Using the quaternionic probability current from (10), we propose the expec-
tation value for an arbitrary quaternionic operator O to be

(0) = %/daz?’ [\11*(0\1/) + (\1:*(0\1/))*] (12)

This expectation value is based on a quaternionic scalar product compatible
to Fock and Hilbert spaces [20], and thus a more rigorous study concerning
the hermiticity of @ can be conducted in future research. Definition (12)
generalizes the expectation value of CQM for two reasons. Firstly, because
the usual definition is recovered when O is hermitian and, secondly because
(12) is real for every O, regardless of its hermiticity. Let us next ascertain
whether QQM is well-defined within the classical limit when the expectation
value (12) is supposed. The time-derivative of the position operator r gives

d(r 1 2

% = Ly 2avr) (13)
This result is in agreement with hermitian CQM for real V' and is in agree-
ment with non-hermitian CQM for complex V', and thus we hypothesize that
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non-anti-hermitian QQM may generalize non-hermitian CQM. By way of
clarification, we notice that

2(iVry = ((iV — V*i)r) (14)

is identical to zero for real Vp, considering V' as defined in (6). This means
that (r) obeys classical dynamics, and consequently satisfies the Ehrenfest
theorem for real Vp and |B] = 0, a fact that is already known for anti-
hermitian QQM [3]. A real V implies that (r) is dynamically classical and
additionally that H is hermitian; this constitutes further evidence that anti-
hermitian operators may not be essential to QQM. (13) recovers the usual
form of Ehrenfest theorem within the limit @ = 0, where the usual linear
momentum p replaces IT.

Let us next consider whether the expectation value of the linear mo-
mentum operator also behaves like the position expectation value. Along the
x direction, we get

i fo

For real V, the right hand side of (15) gives (— d,V), in perfect agreement
with hermitian CQM. Using expectation values, we obtain

o) _2<_gg>+2<_v§c>. (16)

In this case, there is a perfect agreement with CQM for real and complex
potentials. Additionally, the Ehrenfest theorem is verified for real V, and
thus this case comprehends the quaternionic Aharonov—Bohm effect [19] as
well. This means that QQM does satisfy the Ehrenfest theorem in the case
of hermitian Hamiltonians, and the breakdown of the theorem for non-anti-
hermitian operators is in agreement with anti-hermitian CQM. This enables
us to infer that the origin of the breakdown of the classicality of (z) and
(ps) have the same origin, namely the non-hermiticity of the pure imaginary
terms of the potential. Before considering the right complex wave equation
case, let us consider several interesting properties of hermitian Hamiltonians
in QQM. We notice that the time derivative of IT has not been presented
because it seems too complicated and difficult to interpret. However, once
understood, this result will provide the quaternionic version of the quantum
Lorentz force, and hence this point remains as an important direction for
future research.

0
VU + 0V —
3 +

= ov
' 5 (15)

2.1. Hermitian Hamiltonian Operators

If ‘H is hermitian, it may be interchanged with ihd;, regardless of the wave
function. Using this fact, we use (4) and (12) to get the identity

(HO) =h <z'a£> — (iOiH), (17)
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where HOU = {70, (O¥) has been used. Similar relations are obtained by
replacing O with ¢{Oi, Oi and iO. From them, we eventually obtain

<[H, 0—2'01']> <68t((92+z(9)>

({r, 0+i0i}) = —h<§t((’)i — z'(’))> ,

(1, 0i+i0]) = —h<§t((’)—z’(’)i)>,

({r. Oz’z’O}>—h<§t(O+iOi)>, (18)

where the square brackets denote commutation relations and the curly brack-
ets denote anti-commutation relations. The set of relations (18) assures that
the quaternionic solutions of (4) are stationary states. In other words, we
have the Schrédinger picture, where wave functions are time-dependent and
the operators are time-independent. At this point, it is natural do discuss the
time evolution for the expectation values. Assuming (4) and (12), we get the
identities

%<o —i0i) = <§t(o - z'(’)i)> + % ([, 0i+io) + f<0 —i0i),
(19)
G{0i4i0) = (Zoi+i0)) - ([0~ i0] ) + 2{0i+i0),
(20)
%<O+Z(91> - <gt((9+z(91)> - % ({n, 0i-io})+ 6t<0+2(91>
(21)
%<(’)z —i0) = <§t((9@ - z(’))> + % ({n. 0+ioi})+ %<(’)i —i0).

(22)

If O and ¥ are complex, (19) and (20) recover the usual CQM relation,
while (21) and (22) become trivial and the last term of the right hand side
of each (19-22) disappears. This fact enables us to interpret that, in CQM, if
(18) is valid then we will have stationary states.

Conversely, using (18) in (19-22) we calculate that the total time-deriva-
tives are not identical to zero. Thus, the expectation values are not necessarily
independent of time, nor are the wave functions stationary states. In order to
obtain a quaternionic Schrédinger picture for LCWE we need the additional
set of constraints, namely

gt<o z(’)z> 8t<(’)z’+i(9> - %<o+¢0¢> - %<0¢—¢(9> 0. (23

Now, if (18) and (23) are valid, then we have stationary states and the quan-
tum quaternionic states may be considered to be framed in the Schrédinger
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picture. A Heisenberg picture and the Virial theorem are also valid for her-
mitian Hamiltonian operators in the same fashion as in CQM, and thus QQM
and CQM are perfectly compatible for hermitian Hamiltonians.

3. The Right Complex Wave Equation

In this section, we explore solutions of the quaternionic Schrédinger equation

hO Wi = HV, (24)
that we call the right complex wave function (RCWF). In this case, we have
h? 2
H=-(V-Q) +V. (25)
2m

Following the LCWE case, we will study the continuity equation. Using (7),
(24) and (25)

ov . h . o .
S = %{V- (Vo -Qu)iv| + Q- (vive - vwiv')
—VU - (iVU*) — [QI* Wi U*} — %vqmqf (26)

Because UiVU* — VUi U* is real and Q is pure imaginary, several terms
cancel out in (7). Thus, we obtain a continuity equation (9) where the source,
the probability current and the linear momentum are such that

1 1 *

— ~(wivvr - \I!\IJ) J:—{H\IHI/* U(TIU }

g h< PPV -V 5 (ITV) 0" + W(I1V)

and TV = —h(V — Q) Wi (27)
Hence, we propose the expectation value (11) as the expectation value

)= / ar®[(ow)wr + ((ow)w+)’]. (28)

We can accordingly study the Ehrenfest theorem, so that

d{r)y (IT) 2 .
L m ﬁ<(V”'|Z)>a (29)

m

where we define the notation
(O]i)¥ = O Vi. (30)

The second term on the right hand side of (29) are zero for real V', and the
dynamics of (x) is classical for hermitian Hamiltonians as well. If we calculate
the expectation value for the linear momentum along the x direction we

obtain
d(pz) 3 ov*  ov ..,
il f/dz 4% o + 63:\1} V. (31)

which recovers the CQM result for real V, as expected. (31) implies (16), and
thus Ehrenfest’s theorem is valid for the RCWE dynamics as well.
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3.1. Hermitian Hamiltonian Operators

A hermitian Hamiltonian enables us to obtain

([1, 0]) :h<(§to]¢>>, (32)

and we observe that there are important differences compared to the LCWE":
there is only one equation and there are no anti-commutation relations. We
expect that the physical content of the left complex case is different from the
right complex case, but the actual differences will only be ascertained after
explicit solutions have been found. Finally, we get

d , d 1 9((Oli))
o)) = { 2 (01} + L (o, )+ 2O
dt<( 7) <6t( |Z)>+h LAV (33)
As in the LCWE;, stationary states are obtained if a set of constraints include
(32) and
9(0)
—— =0. 34
5 (34)
Hence we have a consistent QQM for the RCWE, which contains a wave equa-
tion, a continuity equation and a classical limit. In future research, we will
develop explicit solutions to illustrate and build models where some physical
phenomena can be researched. However, the important point of the formal
consistent has been established throughout this study.

4. Conclusion

In this article, we have proposed an alternative formulation for quaternionic
quantum mechanics that has enabled us to explain the breakdown of the
Ehrenfest theorem observed in the anti-hermitian formulation of QQM. This
formulation of QQM encompasses quaternionic Hamiltonians, and neither
hermiticity nor anti-hermiticity are supposed. In spite of this, we were able
to define a theory with real-value expectation values. The question about
the necessity of the anti-hermitian assumption in QQM has arisen in a non-
anti-hermitian solution to the quaternionic Aharonov—Bohm effect [19], and
the present article has given a formal expression to a non-anti-hermitian
QQM. Furthermore, non-anti-hermitian QQM has been proven to have a
well-defined classical limit.

The existence of either sources or sinks of density of probability has been
ascertained to be responsible for the breakdown of the Ehrenfest theorem,
and these sources of probability density are generated by the imaginary terms
of the scalar potential of the Hamiltonian operator.

There are many directions for future research. The results indicate that
meaningful quantum quaternionic effects can be researched in physical sit-
uations that are found in non-hermitian CQM, like resonances and scat-
tering phenomena [6,25]. Another important possible source of interesting
physics problems involves geometric phases, and an initial theoretical study
has already been conducted [19]. The relation of the present results with the
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various proposals for non-hermitian CQM [22,23,26,30,31,33] and non-anti-
hermitian QQM [7,8] must be ascertained as well. Rigorous mathematical
studies are also important. The study of quaternionic multi-particle states
have already been conducted [20], and the spectral theorem has also been
considered for quaternionic operators [4]. Nevertheless, a rigorous study of
the hermiticity of operators whose expectation value is given by (12) is also
highly desirable, and are accordingly important directions for future research.
Measurable effects have never been researched for non-hermitian quaternionic
physical situations, and we expect that the framework we propose may be
useful for renewing the interest in QQM within the field of experimental
physics. On the other hand, we hope that theoretical interest in quaternionic
quantum solutions may also be renewed, particularly the search for explicit
solutions.
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