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Water wave radiation by a heaving submerged horizontal disk

very near the free surface
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The radiation of water waves by heaving horizontal disk at a shallow submergence depth is
considered. The problem is formulated as a Fredholm integral equation. The resonant frequencies
originating from the shallow submergence are examined and their locations are computed by a
modified Newton’s method. The hydrodynamic coefficients in a neighborhood of a resonance pole
are found to be represented by circles in the complex plane. An asymptotic approximation is
obtained for small values of the submergence depth. The relationship between the
small-submergence first order problem and the dock problem is explored and found to be clearly

represented by the added mass and damping coefficients. © 2010 American Institute of Physics.

[doi:10.1063/1.3403478]

. INTRODUCTION

We consider the radiation of water waves with a thin
rigid circular disk in three dimensions. The disk is assumed
to be submerged below the free surface. This problem is
associated with the dock problem, a situation in which the
disk is at the free surface. The circular dock problem has
been studied by several authors.'” Dock problems can be
reduced to the solution of a boundary integral equation for
the velocity potential ¢ this equation is a Fredholm integral
equation of the second kind.

The position of the thin circular disk underneath the wa-
ter surface poses additional and interesting mathematical dif-
ficulties. There are some previous works on the subject
which we now briefly review. Yu and Chwangs used matched
eigenfucntions expansions for studying the scattering by a
horizontal disk in water of finite depth. Martin and Farina’
described a rigorous method for axisymmetric motions of a
horizontal disk in deep water. They transformed the govern-
ing hypersingular integral equation for [¢] into a one-
dimensional Fredholm integral equation of the second kind
for a new unknown function; the new equation is a generali-
zation of Love’s integral equation, common in the theory of
electrostatics of a circular-plate c:apacitm’.IU Numerical re-
sults of the heaving added mass and damping were obtained.

Farina and Martin'' considered three-dimensional scat-
tering by a thin disk, in deep water. The governing hypers-
ingular integral equation is solved numerically using a
expansion-collocation method. Similarly to the radiation
problem, they found that the scattering problem presents a
strong dependence on the frequency, especially when the
plate is close to the free surface. The relationships between
the scattering cross section and the peaks in the added mass
have been explored.

Yu'? uses analytical, numerical, and semiempirical meth-
ods and summarizes the functional performance of a sub-
merged and essentially horizontal plate for offshore wave
control. Emphasis is put on the hydrodynamic force and on

1070-6631/2010/22(5)/057102/10/$30.00

22, 057102-1

the reflection and transmission coefficients. In particular, ef-
fects of the porosity of the plate and fluid viscosity are dis-
cussed and reviewed.

Roy and Ghosh" solve Laplace’s equation using the
method of separation of variables in order to calculate forces
on a circular thin disk vertically submerged in shallow water.
Morison’s equation is used for the determination of wave
force. Interesting related problems of interaction of water
waves with a flexible disk have been studied (see, for in-
stance, Refs. 14-16).

The occurrence of peaks in the hydrodynamic force is
observed in problems of interaction of water waves with
bodies. See for instance Refs. 17-20. Time-dependent prob-
lems were considered in Refs. 21 and 22.

In this work, we investigate the connections between the
peaks present in the added mass and damping coefficients for
a heaving circular disk in deep water and the so-called reso-
nant frequencies. Emphasis will be given to the case where
the body 1s very near the free surface. Extending the work by
Martin and Farina,’ we approach the problem using the gen-
eralized Love's integral equation as the governing equation.
The reason for choosing this approach is based on the sim-
plification present in Love's equation and on its efficient nu-
merical solution. The resonant frequencies are linked to the
existence of a pole in the complex K-plane, which contains
all the information about the resonance. In order to locate the
poles we search for values of complex wavenumber which
make the matrix M, related to the discretized generalized
Love’s integral equation, singular. Thus, we use a modified
Newton’s method to find the zeros of det M. In addition we
conclude that the resonance poles are of order 1, i.e., simple
poles. In particular, we associate the hydrodynamic coeffi-
cients with circles in the complex plane, when K is near a
resonance pole.

In a second part of this paper, we derive an asymptotic
approximation for small values of the submergence depth.
The result 1s a governing Fredholm integral equation of the
first kind. This equation is solved numerically. We observe

© 2010 American Institute of Physics
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that the graph of the first order added-mass approximation is
the perfect underlying curve for the added mass of the shal-
low submerged disk without the spikes. For small values of
the wavenumber K, the added mass behaves like —7/ Ka,
where a is the radius of the disk. Also, the damping coeffi-
cient for the dock problem is recovered by the first order
damping approximation. In addition, we find that the added
mass of the dock problem equals the first order added mass
approximation added to 7/ Ka, a result previously found by
Martin and Farina’ using the full solution of the generalized
Love’s integral equation. We found that, physically, the first
order added mass corresponds to the potential of the fluid
above the disk, in a simple state of uniform vertical oscilla-
tion in phase with the disk.

Il. FORMULATION

Consider a thin, with zero thickness, rigid plate, S, com-
pletely submerged beneath the free surface in water of infi-
nite depth. We assume that § is represented by a smooth open
surface with a smooth edge 45, We take Cartesian coordi-
nates (x,y,z) with the origin in the mean free surface; the
waler occupies the region z<< (. Linear water-wave theory is
employed. Thus, under the usual conditions, the time-
harmonic velocity potential is

Re{d(x,y,z)e™},

where ¢ satisfies Laplace’s equation in the water,

o Fo
7¢ + —(f + —? =0, (N
ax’ Ayt az

the linearized free surface condition
il
ib—quS:O, on z=0, (2)
a7

and a boundary condition on the plate,

¢

on V. )

where V is prescribed and K=w?/g is the wavenumber. We
also require that ¢ vanishes as z— —o¢ and a radiation con-
dition at infinity, given by

7
lim r”ﬁ(i”—im)zo, (4)

r—on ar
where r=(x%+y%)"2,
Let us now introduce Green’s function G, given by

G(P; Q)= Gx,y,z2:€1.0)

“k+K
_ [RZ +(z— §)2]—U2 + Jj L Kek(z+‘:)fg(kR)dk,
o0 k-

)

where P and ( are arbitrary points in the water,
R=[(x—8)*+(y—1)*]""? and J, is a Bessel function. This fun-
damental solution to our problem satisfies Eq. (1), except at
P=() where it has a singularity. G also satisfies Egs. (2) and
(4). By using Green’s theorem it is possible to represent ¢ as
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0= [ 1o -cw.gas, ©

where

[¢(q)]=Plg") — d(q)

is the discontinuity in ¢ across the plate, where g € S, ¢* and
g~ are corresponding points on S* and S~, respectively, S*
are the two sides of the plate, and d/édn, denotes normal
differentiation at ¢ in the direction from S* into the water.
Applying the boundary condition on S* gives

1 @ J . L .
aa—%L[qb(q}] anq(I(P,q)dSq— Vp*), peS. ()

The same equation is obtained by applying the boundary
condition on §7; V(p7)==V(p™) as the plate is rigid. The
integrodifferential Eq. (7) is to be solved subject to the edge
condition

[#]=0 on a8; (8)

¢ is discontinuous across the plate only.

Interchanging the order of integration and normal differ-
entiation in Eq. (7) produces a hypersingular integral. Such a
procedure is proper as long as the resulting integral is then
interpreted as a finite-part integral. We obtain

1 FG(p.q) . .
o 1] oS =VP P, ©)

q

which is to be solved subject to Eq. (8). The cross indicates
that the integral is a finite-part integral.

lll. AXISYMMETRIC PROBLEM
AND THE GENERALIZED LOVE’S
INTEGRAL EQUATION

Consider now that § is a horizontal circular disk.
Introduce cylindrical polar coordinates (r,#,z), so that
x=r cos # and y=r sin @. Then, the disk is given by

S={(r.02)0=r<a, —wm=0<m, z=—5b/2}. (10)

It has radius a and is submerged at a distance b/2 below the
free surface; we can take a=1 without loss of generality. The
factor of 1/2 in the submergence depth is included in order to
simplify expressions that appear later on in the text.

The radiation of waves by heaving (vertical) oscillations
of the disk can be formulated by choosing

V(r,0)=1.

In this case the solution is axisymmetric. Martin and Farina’
have shown that the solution can be written as

1
(1=- [ 2L,

w), -1

where i is an auxiliary function (see Ref. 9) satisfying
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0 1 JI _ byfs)
1 (f - 3)2 + bz

2K (!
—— | i(s)Dy(t - s,b)ds =t,
™ J

-1=t=1,

(1
where @ is a two-dimensional wave-source potential given

by

dk
Ycos kX——, (12)

(I)Q{X,Y)=Eﬁ e’
0 k-K’

which can be computed conveniently using an expansion de-
rived by Yu and Ursell:*

®y(X,Y) =—eX{(log KS — im+ y)cos KX + B sin KX}

2 (—KS)'”( + ! + 0 + ])cosmﬁ,
1 2 m

m=1

(13)

where § and B are defined by X=S sin 8 and ¥=S5 cos B3, and
y=0.57720 is Euler’s constant. Equation (11) generalizes
the well-known Love's integral equation, as we shall see in
Sec. Il A. The solution depends on the wavenumber K and
the submergence b. To emphasize this dependence we will
sometimes write (x)=l(x; K,b).

The hydrodynamic force can be decomposed in terms of
the added mass A and damping B coefficients.”* For the
submerged heaving horizontal disk they are given by

1
A+£B=—f [$ldS=-27| [dlrdr
v 0

=2 j j 4_W drrdr
r 1T\|,t -

1
_g f oy, (14)
0

A. Previous results

In the deep submergence limit, i.e., when b-— o0, it is
shown by Martin and Farina’ that the solution of Eq. (11) is
(x,K,)=x. From Eq. (14), we recover the known result,
given in

A:% and B=0 (b— ),

which corresponds to a single disk oscillating in an un-
bounded fluid.
When K=0, Eq. (11) reduces to

b Wy ~
'f/(x} - ‘JTJ-_] b2+ (x_y}gdy_xa

-l=x=1.

This equation with 1 instead of x on the right-hand side is the
original Love's equation that arises in the electrostatic prob-
lem of a circular plate condenser. In our case, we can see that
setting K=0 in the free-surface condition (2) is equivalent to
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having a mirror disk, in other words, two coaxial disks sepa-
rated by the distance b. No closed-form solution of Love's
equation is known.

As shown by Martin and Farina,” when K — o, Eq. (11)
has also a very similar form to Love’s equation:

b(' Wy
v+ fbmx =

-l=x=1.

The general case, without further a%qumpliom on K and b,
was treated numerically by Martin and Farina.? It was found
that the added mass has negative values and strong peaks at
the resonant frequencies, when b becomes small. Apart from
the spikes in the damping, the underlying trend of the damp-
ing coefficient is very close to the damping of the heaving
dock problem (h=0). The same is not true for the added
mass. In fact, the behavior of the potential in the layer be-
tween the submerged disk and the dock is one of the key for
understanding what is occurring. To clarify this phenomenon,
we construct an asymptotic approximation for small values
of b in Sec. V.

IV. RESONANT FREQUENCIES

The occurrence of resonant frequencies n the interaction
of water waves with submerged bodies, when this is close to
the free surface has been previously observed. Our objective
now is to analyze in more detail the resonant frequencies for
the problem we are treating. The resonances are presented in
both scattering and radiation problems and, although we ex-
hibit certain resonant frequencies which appear in both prob-
lems, the treatment in this work will deal mainly with the
radiation problem.

The peaks in the hydrodynamic coefficients occur at or
near the resonant frequencies. They correspond to singulari-
ties in the matrix of the linear system obtained from the
discretization of Eq. (11) as a function of complex K, for
fixed b. We denote the complex wavenumber by K.

Resonant frequencies are linked to the existence of a
pole in the complex K-plane. The pole contains a great deal
of information about the resonance. The real part of K cor-
responds to the resonant frequency observed, and the imagi-
nary part of K is proportional to the width of the peak in the
hydrodynamic coefficients, and inversely proportional to the
height of the peak, as seen in Sec. IV A.

A. The resonance poles

We now outline the mathematical theory which explains
the origin of the resonance poles. Introduce

1 .
10w = -+ [ LK

=1 _S)2+b2 y
2K (!
—— | s)Py(t—s5,b;K)ds, —-1=1=1.
mJ

Thus, solving the heaving disk problem becomes equivalent
to solving
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TABLE 1. Resonance poles computed using the modified Newton’s method.
b Resonance poles by Newton's method
0.2 (0.386 386, —=5.0068 % 10772 (2.151 037, —0.376 180) (5.069 478, —(0.829 091)
0.12 (0.261 035, —1.6390 % 1092 (1.431 881, —0.154 277) (3.554 856, —0.382 447)
0.08 (0.186 130, -6.2313 % 107") (1.025 591, -7.2383 X 107") (2.548 165, —0.189 149)
T (t) =1. To find the poles, we search for the values of K such that

It can be shown by using Steinberg (Ref. 26, theorem 1) (see
also Alves and Ha I)uong)z? that the operator valued function
1-1(K), inverse of T(K), is meromorphic on C with a discrete
set of poles in C~.

Now suppose a pole I, lies sufficiently near to the real
K-axis, such that the Laurent expansion

oo

1K) =D, (KZ—IC,)J"T;, for some m=1,

J==m

where 1’ are bounded operators, is valid in a neighborhood
(a, B) of Re(KC,). Thus it is suggested from

p=T"(K)= 2 (K-K)Tt, (15)

J=—m

that i and therefore the hydrodynamic coefficients, as func-
tions of K, present a maxima or peaks in (e, 8).

B. Finding the resonances

Similarly to the work in Ref. 9, we can solve the gener-
alized Love’s integral equation by a Guass—Legendre quadra-
ture method. Then, an approximation # of the solution i
satisfies

Mip=T, (16)

where the matrix M is given by

1 2K
M:(I——A——B), (17)
T T
here
b
A={A =w——F—
{ 1}} w‘r(t,-—tj)2+bz’

B={B;}=w;®y(t; - 1;,b),
l’;f= [‘;{’(rl)a v !M{N)])

= (f], -,rN),

and {I;}g are the Gauss—Legendre quadrature nodes and {w !}g
are the corresponding weights. The value N=120 was cho-
sen, based on the observed numerical convergence of the
method.

det M =0,

where M is the matrix M evaluated at complex K. Before

we proceed by describing any method to do this task, it is

opportune to show how we can evaluate M. From Eq. (17),

it is seen that the part of M which includes values of K is
2K

—B,
o

where
B={B,} = wd(1; - 1;,b).

Thus our task is to find the wave-source potential ®y(X,Y)
for complex K. Thus,

. dk
Dy(X,Y) = 4:0 e cos kXﬁ
. dk
=2miec & cos KX + Eﬁ e cos kX——,
0 k-K

where the second integral runs above the pole K. Then, for
Im(K) <0, @ is given by

. - dk
®y(X,b) = 2mie™* cos KX + j e cos kKX——,
0 k=K

(18)

where the integral is nonsingular.

We applied a modified Newton’s method to locate the
zeros of det M. See Appendix A for the details of this
method. Table I shows the resonance poles, for a number of
submergences, b, obtained by employing the modified
Newton’s method.

In Figs. 1 and 2 the relationship between the resonance
poles and the peaks in the added mass for a heaving disk is
clearly seen. Note that the higher the peaks, the narrower
they are.

For values of the submergence depth, £ =0.04, the modi-
fied Newton’s method poses convergence difficulties. Find-
ing estimates for these frequencies, for small values of b,
based on perturbation methods might be an option to over-
come this problem. Anther approach seems to be the one

proposed by Meylan and Gross>® where an alternative search
algorithm is used to find the poles.
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FIG. 1. The added mass (solid line) and the resonance poles (circles) com-
puled by Newton's method. The submergence is given by b=0.12.

C. Classification of the poles

In this section we aim to classify the resonance poles
according to their order. From Eq. (15) it follows that the
added mass and damping, as functions of K and near the real
part of the resonance pole IC,, are given by

1 ® 1
A(K)+£B(K)=8f prdr=8 >, (K-K,Y t1;tde.
0 j=—N 0
(19)
Now suppose that the order of the pole K, 1s 1. Then we have
A(K) +iB(K) ~ T+ aq. (20)

r

where @ and « are complex constants.

The region of the complex plane given by the right hand
side of Eq. (20) is a circle. Therefore X, being a simple pole
implies that A(K)+iB(K) determine a circular curve near K,.

20T T T T T T

added mass
=)
T

20 L L 1 L
[1] 0.5 1 1.5 2 25 3 35 4
K

FIG. 2. The added mass (solid line) and the resonance poles (circles) com-
puted by Newton’s method. The submergence is given by b=0.08.
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35¢ e Ka=0.386

N :

251 / \

damping

151 | [

10F

o
T

] \_3 __f‘f/
10 5 0 5 10 15 20 25
added mass

FIG. 3. The function A(Ka)+iB(Ka), for 0.01=Ka=12. The depth of
submergence is given by b=0.2.

Moreover if K, has an order greater than 1, the dominant
terms in the Laurent series (15) do not represent a circle in C.

We found convincing numerical evidence that the com-
plex function A(K)+iB(K) takes a neighborhood of a reso-
nance pole into a circle. This fact was observed in all cases
of b considered and examples are shown in Figs. 3-6, where
the proportion in diameter between the circles can also be
noted.

The association of resonances with circles in the com-

120

100}

801

BOF | |

damping

a0l \ : o

20r

40 20 0 20 40 60

added mass

FIG. 4. The function A(Ka)+iB(Ka), for 0.01 =Ka=5. The depth of sub-
mergence is given by b=0.12.
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FIG. 5. The function A(Ka)+iB(Ka), for 0.2=Ka=12.3. The large circle
is due tw the second resonance. The depth of submergence is given by

bh=0.02.

plex plane was mentioned in a paper by Linton and Evans'®

and the more general idea of plotting the added mass against
damping is suggested by chl'crys..29

V. SMALL SUBMERGENCE @\ 00

In this section we look for an approximation of the so-
lution when the disk submergence is very small. The inten-
tion is to study by a perturbation method how the submerged
disk problem approaches the dock problem.

Let us show that for small b, relatively to radius of the
disk (and ¢ bounded away from *1),

1 : 1 :
2 a2 Lo

al_ (t-5)+b? x)_ (1-5)?

For completeness we present the derivation of that result
here.

The integral on the left-hand side of Eq. (21) is defined
for =0 and -1 <1<1. We approximate it for small values
of b, with # bounded away from the end-points, 1. We start
by splitting the range of integration into three, so that

b ('S
—J‘_] mds =1 +1,

m

where

B[ f) b ([ flerw
L= wJ: {r—.s-}2+b2ds_11- B b2+u2du,

et 1

t-& I .
LY i Ry

—_— s,
al P+ (t-s) 7 1ye 7+ (1 =5)

it e<1. In I3, f is not in the range of integration, so we can
readily approximate for small b:
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18

14

damping
[a]
\
!

6} J \
f III
af II | |
'.‘\ IIJ
i —a
10 ? 0 5 10

added mass

FIG. 6. The function A(Ka)+iB(Ka), for 0.2 = Ka=12.3. The 3rd up to the
11th resonance are completed represented. The depth of submergence is

given by b=0.02.

JQ:EJ’_Z 91 4 02

w)_y (-9

I
N b f(s)

T tee {I - S)

5{1 + O(b?)}ds,

as b—0. In [, the range of integration is small, so we ex-
pand f(t+u) about u=0; as the range of integration is sym-
metric about u=0, we obtain, using [Ref. 30, formula

(4.4.42)]

I = - (:)J‘z L +i 'E(s)J‘z wdu +R
5= Wf P +i? 27rf b+

= %T,r(z)tan—'g ¥ %fﬂt}{s b tun"%] :
b |1
= - —f(r){~ +0(b-'*)}
m £
+ 2}'9(1){9 = wg + ()(b-‘)} +R

as b—0, where R is due to the remainder in Taylor’s theo-
rem; using Lagrange’s form of this remainder, we obtain

26L (5 Wt
R===| 5—du=
w4 )y b2 +u?

where L is a bound on fU?. Hence, neglecting the error
terms, and letting £ — 0, we obtain

bLe?
127
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b (' fs)
TI'J‘_I (t—s)+ bzds

b (" fs) 1
=f(t)+ —X ———ds—-b*fq1), 2z
(o) ch_l s 3P (22)
after making use of definition of one-dimensional finite-part
integral:

b X=E
W 0
)E (x—f)zd"l'f{']{ f G-t

b " .
) 2w
+J’x+5(x_t)2dt_ £ ],

which is valid whenever f8is a Holder-continuous function,
fe CHA,

Let us now consider the limit b— 0 preserving the wave
effects, i.e., K is finite and positive. Supposing X # 0 and
using

(23)

d
Dy(X,b) = Dy(X,0) + b—Dy(X,2)
9z z=0

in conjunction with the free-surface condition which is sat-
isfied by ®@;, we get

®y(X,b) = (1 — Kb)Dy(X,0) + O(b?)

Substituting Eq. (24) in Eq. (11), and using Eq. (21), we have
as b—0 that

as b— 0. (24)

(1-Kb)Sy+ gHy";:g{t), —l=1=1, (25)

where

1

1
(SP)() = KJ’ s)Dy(2 - 5,0)ds,
-1

Y s)
(1—s)?

Let us assume that ¢ has a regular expansion in powers of b.
Then from Eqg. (25),

I
(H) (1) :j[ ds.
-1

¢:(]+Kb)%—£2—)¢|+0{b2) as b—0,

where
Sh=g,
(26)
Siy = Hly.

We look at basic Eq. (26), in what follows. Thus, the gov-
erning equation for our small-submergence approximation,
Si=g, can be written as

Phys. Fluids 22, 057102 (2010)

o e T
1 o -
/ T
! -
x"f‘x_s
caf....P e
/ B
i =N
e,
£ i el
gosp | e
[ )
= )
)
|
|
049
|
|
]
4
0zf]
|
|
0 i
0 05 1 15 25 3 35 4

2
K

FIG. 7. The damping as a function of K. The solid line is computed with the
method in this section. The circles are the damping of the dock problem.

=== 1

' — 7t

Dy (1 - 5,0)ds = ——, 27

J._| (s)Py(1 - 5,0)ds T (27)

This is a Fredholm integral equation of the first kind for .
From Eq. (13), the kernel in Eq. (27) can be written as

(IJO{.!—S,O}
w
=cos K|t —s|(im—log K|t —s| — y) - Esin Klt—s|

oo

S (=Klt=s)"1 1 1
+2,{|79|)(—+—+] +—)cosmE.
m 2

m! 1 2

m=1

(28)

In order to solve Eq. (27), we employ the numerical method
described in Appendix B.

A. Results

We found that the solution of Eq. (27) produces interest-
ing results. The damping coefficient of the dock problem is
recovered as Fig. 7 shows. In this figure and also in Fig. 10,
the dock problem results are obtained solving a two-
dimensional Fredholm integral equation of the second kind
by boundary element method (see Ref. 31 for details).

Moreover the first order added mass approximation has
the behavior (see Fig. 8)

aw

A, = K—0, (29)
as predicted in Ref. 9. Further, this added mass is identified
as the lower underlying curve sought for the added mass of
the slightly submerged disk, as can be seen from Fig. 9. The
dashed line in this figure represents the added mass for the
disk submerged with h=0.02 and was computed solving the
generalized Love's integral equation by the method de-
scribed in Ref. 9.

The major question is why only the damping is
recovered. An interesting result is obtained if the function
h(K)=/K is added to our first order added mass approxi-
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20F .

added mass

P
50 i _

B80H

05 1 15 2 25 3 35 4

FIG. 8. The first order added mass approximation as a function of K. The
circles are values of the function —/ K.

mation. Denote the added mass and the damping of the dock
problem by A and B, respectively. We find that

A+ h(K) = A.

Figure 10 graphically shows Eq. (30).

The essence of relation (30) and a theoretical explana-
tion of why this is obtained is given by Martin and Farina.”
For small values of b, the potential beneath the submerged
disk and the dock is the same. However, the potential in the
thin layer above the submerged disk is significant; there the
fluid is in a simple state of uniform vertical oscillation in
phase with the disk, with potential z—1/K (see Ref. 17).
Thus, | ¢]= ¢, where ¢, is the potential on the dock. Hence,
Agpt+iBB,,= A+iB-m/K, in agreement with the numerical
results. In that work, however, the reasoning proposed did
not considered the first order approximation, solution of Eq.
(27), however; only the full solution of the generalized
Love's integral Eq. (11) was solved.

(30)
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FIG. 9. The first order added mass approximation as a function of K and the
added mass for the submerged disk (b=0.02) (— —) as a function of K.
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FIG. 10, The dock problem added mass, A (solid line). The circles represent
the first order added mass approximation added to A(K).

The asymptotics make the solution of Eq. (27) represent
a first order approximation of the small submergence prob-
lem. Although this solution does not include the resonances,
it shows mathematically the connection between the slightly
submerged disk with the dock problem. Furthermore, physi-
cally, we can see from the results and discussion above that
the first order added mass approximation is due to the poten-
tial of the fluid above the submerged disk, for lower fre-
quency waves.

VI. DISCUSSION

The radiation of water waves by a submerged circular
disk has been examined. Emphasis was put on the case
where the submergence is very small. In this critical regime,
the hydrodynamic force presents a strong dependence on the
frequency. In particular the peaks in the added mass and
damping coefficients have been studied and located by a
modified Newton’s method. We also showed definitive nu-
merical evidence that the added mass and damping coeffi-
cients are mapped into circles in the complex plane, near the
resonant frequencies.

In order to understand the connections between this
problem with the dock problem, we derive an asymptotic
approximation for small values the submergence. We found
that the first order approximation possesses most the of fea-
tures appearing in the dock added mass and damping. Addi-
tionally, we found that, physically, the first order added mass
corresponds to the potential of the fluid above the disk, in a
simple state of uniform vertical oscillation in phase with the
disk. 'The associated problem of interaction of water waves
with nonplanar perturbations of a disk is being investigated
and will be described elsewhere.
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TABLE TII. Convergence of Newton’s method t the pole 1.025 591
—i0.072 382 with the initial guess 1.2—i04 and submergence depth
bh=0.08.

n K, det M|

1 (1.2, —0.4) 42825% 107
2 (1.166 841, —0.257 773) 1.5311x 10°™
3 (1.111 380, —0.136 350) 47031 % 1079
4 (1.049 537,-7.8199 % 107") 8.7012 1079
5 (1.027 035,-7.1837 % 107) 5.1648 % 1077
6 (1.025 591,-7.2376 % 1077) 22279 % 107"
7 (1.025 591,-7.2382 % 107") 4.8755x 107"
8 (1.025 591,-7.2382% 1077 3.7023 % 10719
9 (1.025 591,-7.2382% 1079 7.7350% 10720
10 (1.025 591,-7.2382x 107"2) 2.1982x 10720

APPENDIX A: THE MODIFIED NEWTON’S METHOD

The Newton’s method to find the zeros of a complex
valued function f(w) is the iteration procedure

f(w,)

. Al
Flw,) (AD)

Wpel =W, —

Since we do not possess an analytical expression for the
derivative of det M, we actually use the approximation
(with e<<1)

det M(K) —det M(K + ¢€)

€

(A2)
for the derivative

d
Rdet M(K).

The parameter € was taken, in our experiments, as 107
+i1077. Using Egs. (A2) in Eq. (Al), we get the so called
modified Newton’s method:

e det M(K,)
" det M(K,) —det M(K,,+€)

’Cn+| =K (A3}

This scheme achieved convergence very fast. For b= 0.08,
ten iterations were usually sufficient to determine a zero with
good accuracy (see Table 1I).

The resonance poles have small and negative imaginary
parts. This suggests that the initial guess, Ky, in Eq. (A3)
is chosen accordingly. However determining the region of
convergence,

Q) ={KyNewton’s method Eq. (A3) converges},

is a delicate problem. It is very likely that the boundary of ()
1s a fractal. See Ref. 32 for more information about Newton’s
method and fractals. We remark that a second method could
also be used to find the zeros of M(K).
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APPENDIX B: THE BOUNDARY ELEMENT METHOD

The logarithmic singularity present in the kernel of Eq.
(27) prevents the method of solution from having the same
collocation and quadrature points, so that a simple quadra-
ture method cannot be used. Instead we use a boundary ele-
ment method to solve this equation.

We start by subdividing the interval [—1, 1] into N8sub-
intervals, S}, such that

R ) .
b‘,-—laj,aj], j=1,...,N8
where

s}—>—] and 55— 1 as N—oo.

Ng

"I'he collocation points, {s}}f lie on the midpoint of the sub-
intervals. Thus

Equation (27) can then be approximated as
N 4
—
s f s Dot - 5,0)ds = = B1)
=15 2K

This approximation is exact if the union of the subinter-
vals is [—1, 1]. Assuming constant elements, we have

N
— il
s r,b{s-)f Dyt - 5,0)ds = ——. (B2)
o s 2K
g
Evaluating Eq. (B2) at the collocation points we get
N
— r8;
3 ) [ wyts—s.00a5= =2 (83)
j=1 §; 2K
I
Denoting the vectors 1}1 and g as
g={yls1, ... ¥sng ), (B4)
g’_:(.&'h‘..,sj\ré, (BS)
we write Eq. (B3) as the matrix equation:
AY=3, (B6)
where

A= {AU} = j q){](.\‘,'— S,O)d.&'.
5

The solution of Eq. (B6) gives a discrete solution . This
approximation to i is constant on each subinterval §;. The
value of N8=76 was used to assure numerical convergence.
From Eq. (14), the first order added mass and damping co-
efficients can be written as

N
Ay +iB,, =42 Yls)[(sD)? - (s)?].
=1
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