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Abstract

In this paper, using a much simpler method than the previous existing
ones, we explicitly describe the PBW-generators of the multiparameter
quantum groups U(j (g), where g is a simple Lie algebra of small dimen-
sion, while the main parameter of quantization ¢ is not a root of the
unity.
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1 Introduction

Since the Poincaré-Birkhoff-Witt Theorem proven around 1900, PBW-bases
have an important role in Lie Theory. One of the reasons is that in many cases
they provide a finite basis even for an infinite dimensional universal enveloping
Lie algebra. The same thing happens when we discuss quantum enveloping
Lie algebras. Most of these quantum algebras are infinite dimensional, so it is
very useful to have a finite way to represent then.

The definition of a quantum enveloping algebra (also called quantum group)
is somehow sophisticated. The PBW-bases of these algebras are profoundly
connected to the root systems related to the ground Lie algebra, and this theory
is also complex. In this paper we present a method to find the PBW-bases of
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some examples of quantum groups using only combinatoric arguments. These
PBW-bases are already known (see, for example, [1]), however the previous
methods for finding these bases are really complex, so it is interesting to find
a much simpler proof. We also have two more special reasons for the interest
in this development. First, we do not simply calculate a PBW-basis (which is
not unique), but we obtain a special PBW-basis, the only one formed by hard
supper-letters (see [3]). Second, in this proof there are no restrictions in the
base field k (in [1] k needs to be algebraically closed and have characteristic
zero). It is important to notice that, although the studied quantum enveloping
algebras are Hopf algebras, we use only their algebra structure (and not the
coalgebra) to calculate their PBW-generators.

In the second and third sections, following [3] and [5], we introduce main
concepts and general results about hard super-letters and PBW-generators.
In sections 4, 5 and 6 we present the considered quantum algebras U, q+ (g) and
explicitly calculate their hard super-letters. Finally, on the last section, our
main theorem exhibits the PBW-generators for these algebras.

2 Preliminaries

Along this work, A represents an algebra over a field k and G is a multi-
plicative group.

Definition 2.1. Let A be an algebra over a field k and B its subalgebra with
a fived basis {b;|j € J}. A linearly ordered subset W C A is said to be a set
of PBW-generators of A over B if there exists a function h : W — Z U oo,
called the height function, such that the set of all products

bjwitwy? .. wk, (2.1)

where j € J, w1 < wg < ... <wp €W, n; < h(w;), 1 <i<kisa basis of A.
The value h(w) is referred to as the height of w in W. If B = k is the ground
field, then we shall call W simply as a set of PBW-generators of A.

Definition 2.2. Let W be a set of PBW-generators of A over a subalgebra
B. Suppose that the set of all words in W as a free monoid has its own order
=< (that is, a < b implies cad < cbd for all words a,b,c,d € W). A leading
word of a € A is the mazimal word m = w'wy*...w,* that appears in the
decomposition of a in the basis (2.1). A leading term of a is the sum ba of all
terms c;bym, o, € k, that appear in the decomposition of a in the basis (2.1),

where m is the leading word of a.

Definition 2.3. Let X = {x;]i € I} be a set of indeterminates and G a
group. A constitution of a word u in GUX 1is a family of non-negative integers
{ms,x € X} such that u has m, occurrences of x. Certainly almost all m, in
the constitution are zero.
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Let us fix an arbitrary complete order < on the set X, and let I'" be the
free additive (commutative) monoid generated by X. The monoid I'" is a
completely ordered monoid with respect to the following order:

/ !/ /
MATi, + Moy + ...+ MEi, > ML, + MoTiy, + ...+ Mz, (2.2)
if the first from the left nonzero number in (m; —m}, ma —mb, ..., myp —m})
is positive, where z;, > x;, > ... > z;, in X. We associate a formal degree

D(u) = > cxmar € I'" to a word w in G U X, where {m,|r € X} is the
constitution of u. Respectively, if f = > au; € G(X), 0 # a; € k then

D(f) = max;{D(u;)}. (2.3)

On the set of all words in X we fix the lexicographical order with the priority
from the left to the right, where a proper beginning of a word is considered to
be greater than the word itself.

Definition 2.4. A non-empty word u is called a standard word (or Lyndon
word, or Lyndon-Shirshov word) if vw > wv for each decomposition u = vw
with non-empty v, w.

Definition 2.5. A non-associative word is a word where brackets |[,] are
somehow arranged to show how multiplication applies.

If [u] denotes a non-associative word, then by u we denote an associative
word obtained from [u] by removing the brackets. Of course, [u] is not uniquely
defined by u in general.

Definition 2.6. The set of standard non-associative words is the biggest set
SL that contains all variables x; and satisfies the following properties:

1. If [u] = [[v], [w]] € SL then [v],[w] € SL, and v > w are standard.
2. If [u] = [[[1], [v2]], [w]] € SL then vy < w.

By the Shirshov’s Theorem, every standard associative word has only one
alignment of brackets such that the defined non-associative word is standard.
In order to find this alignment we use the following procedure: the factors v, w
of the non-associative decomposition [u] = [[v], [w]] are standard words such
that u = vw and v has the minimal length (see [6]).

Definition 2.7. A super-letter is a polynomial that equals a non-associative
standard word. A super-word is a word in super-letters.

We will denote by [u] the super-letter obtained from w using Shirshov’s
Theorem. The order on the super-letters is defined in the natural way: [u] >
[v] & u>w.
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Definition 2.8. A super-letter [u] is called hard in H if its value in H is not
a linear combination of super-words of the same degree (2.3) in super-letters
smaller than [u].

Proposition 2.9. ([3, Corollary 2]) A super-letter [u] is hard in H if and only
if the value in H of the standard word u is not a linear combination of values
of smaller words of the same degree (2.3).

Proposition 2.10. ([4, Lemma 4.8]) Let B be a set of super-letters containing
Ty ..., Ty If each pair [u],[v] € B, u > v, satisfies one of the following
conditions

1) [[u], [v]] is not a standard non-associative word;
2) the super letter [[u], [v]] is not hard in H;
3) [lul, [v]] € B;

then the set B includes all hard in H super-letters.

3 Skew-commutator and quantum algebras

We define a bilinear skew-commutator on homogeneous linear combinations
of words by the formula

[Ii, {Ej] = ZEZ'ZL‘]‘ — pijl’jl'i, (31)

where p;; € k. These brackets are related to the product by the following
identities

[u - v, w] = pwlu,w] - v+u-[v,w], |u,v-w] = [u,v] W P - [u,w].
Thus, for example, we deduce that
[xm Z; xk] = TiTjTy — PijPikTjT Ty,

[%‘ * Xy, Ik] = TiXjT — PikPjkTrITiTj,
[%’» [%’Jk]] = xi[17j7xk] - pz‘jpik[%‘, Ik]% (3-2)

Definition 3.1. (see, for example, [4, section 2]) Let C =| a;; || be a
generalized Cartan matriz symmetrizable by D = diag(dy,...,dy,), dia;; =
djaj;. Denote by g a Kac-Moody algebra defined by C' (see [2]). Suppose that

the quantification parameters p;; = p(x;, x;) = x"'(g;) are related by

pi = q%, DijPji = qhvi, 1 <45 <n. (3.3)
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The multiparameter quantization Uqu(g) of the Borel subalgebra g* is a char-
acter Hopf algebra generated by x1,...,%n, g1,...,9, and defined by Serre re-
lations with the skew brackets (3.1) in place of the Lie operation:

HH.TZ,ZE]LJZJ],],JZJ]:O, 1<i#j<mn, (34)
where x; appears 1 — aj; times.

In this paper we are going to consider the quantum algebras UqJr (g), where
g is the simple Lie algebra of type As, A3, By, Bg and (3. The cases Cy, Do
and Ds are not considered since they are isomorphic as Lie algebras to By, As
and Aj, respectively.

Definition 3.2. We say that the height of a hard in H super-letter [u] equals
h = h([u]) if h is the smallest number such that

1. puu s a primitive t-th root of 1 and either h = t or h = tI", where

[ = char(k),

2. the value of [u]" in H is a linear combination of super-words of the same
degree (2.3) in super-letters smaller than [u].

If there exists no such number then the height equals infinity.

Theorem 3.3. ([3, Theorem 2|) The values of all hard in H super-letters
with the above defined height function form a set of PBW-generators for H
over k[G].

4 Quantizations of type A

The algebra UqJr (g), where g is the simple Lie algebra of type A, is defined
by two generators x1, s and two relations

[(L’l, [Il, IQH =0= [[.Thl’g],xg] (4].)

where the brackets mean the skew commutator [z;, z;] = z;x; — pijz;z; (3.1)
and relations (3.3) take up the form p1; = pay = ¢, prapor = ¢~'. We notice
that relation [xy, [z1, z3]] = 0 is equivalent to [[xe, 1], z1] = 0, which appears
in (3.4), and the same occurs in all following cases.

Proposition 4.1. Let g be the simple Lie algebra of type As. The set of all
hard in U} (g) super-letters is given by Ay = {1, [11, 2], 22}

Proof. This follows directly from Proposition 2.10 and the defining re-
lations (4.1). Since xy > [z1, 23] > x5 all possibilities to be considered are
[x1, [x1, 22]], [x1, 22] and [[z1, 2], x2], Where [x1,25] € A and [z, [z, 22]] =
0 = [[x1, x2], 22], so they are not hard super-letters. O
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Remark 4.2. If we consider p,, as the the element obtained in the relation
[u,u] = u* — pyu®, using relation (3.2) we can see that pu, = Pju and we
can easily calculate paa = p = pcc = q.

Now we consider the algebra UqJr (g), where g is the simple Lie algebra of
type As. This algebra is defined by three generators z1, x9, x3 and five relations

[21, [21, T2]] = [[21, 2], T2] = [0, [T0, 3]] = [[0, 3], W3] = [w1, 23] =0 (4.2)

where the brackets mean the skew commutator and we have p;; = pas = p33 =
q, P12p21 = ¢~ = paaps2 and pigps = 1.

Proposition 4.3. Let g be the simple Lie algebra of type As. The set of all hard
in U(;i_(g) SUp@T’-l@tt@’f’S is gZ'U(i’I’L by A3 = {xlv [xla x?]? [xla [x27 133”7 T2, [1’2, .Tg], .753}.

Proof. For simplicity we call x; = [A], [x1, x2] = [B], [21, [2, 23]] = [C], 22 =
[D], [x2, x3] = [E], x3 = [F] and notice that [A] > [B] > [C] > [D] > [E] > [F].
From proposition 2.10 we have 15 possible cases to consider. Using item
3) of the proposition, we exclude the cases [[A], [D]] = [B], [[A],[EF]] = [C]

and [[D],[F]] = [E]. From the defining relations we see that [[A],[B]] =
(AL [F]] = [1B], [D]] = [[D], [E]] = [[E], [F]] = 0, so these five super-letters
are not hard in UJS(g). Also, the super-letters [[B], [E]] = [[x1, 73], [12, z5]],
[[B], [F]] = [[x1, x2], 3] and [[C], [F]] = [[x1, [72, x3]], x3] are not standard since

they can be written as [[[u], [v]], [w]] with v > w.

Now, for the remaining cases [[A], [C]], [[B], [C]], [[C], [D]] and [[C], [E]] we
use the defining relations of the algebra to describe their associated standard
words as a linear combination of smaller words of the same degree, proving
that they are not hard in U (g) by Proposition 2.9.

Expanding the defining relations (4.2) of the algebra we obtain the following
equations:

T1X3 = P13T3T1,
2 2 2
2125 = P12l 4 pa2)Tax1x9 — PIoPar®sry,
2
122 = Pra
2 1 2 2
XXy = p23( +p33)$3$2$3 — P23P33T3T2,

(4.
(4.
2(1+ pu1) 1oy — pripiyrar?, (4.
(4.

w513 = Pag(1 + Pa2) X322 — PraPiaals. (4.
The super-letter [[A], [C]] is not hard in UJ(g) since from relation (4.
the standard word AC' = 22x923 = p1a(1 + p11)T1T2T173 — P11PaTarizs is a
linear combination of smaller standard words. For the super-letter [[C], [D]
we see that C'D = xyx92329, which is the leading term of xy - (4.7) — (4.4) - 3.
In the case [[C],[F]], we obtain CE as the greatest term in x;zy - (4.6) —
(4.4) - 23, Finally, the super-letter [[B], [C]] is not hard since calculating (4.5) -

Tox3 — 77 - (4.7) we have pio(1 + p11)BC = p11p2ematiTors + PosPastiT3T3 —
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p23(1+pa)Tizox379 and now using (4.3) and (4.5) we obtain py(1+p1) BC =
PIIDT2ToX T XT3 + PooPrsPDisLaLias — PasPra(l + pao)?@1@2om1 L322 + paspiapin (1 +
pgg)ng%xgxg, writing BC' as a linear combination of smaller words and proving
the proposition.

O

Remark 4.4. In this case we obtain paa = pep = Pcc = Ppp = PEE = PFF =
q.

5 Quantizations of type B

Let us consider the algebra Uq+ (g), where g is the simple Lie algebra of type
Bs. This algebra is defined by two generators xy, xs and two relations

[:L‘h [xla x?“ = [Hxlv .ZCQ], .[L'Q], 12] =0. (5].)
In this case, p1; = p%Q = q2 and py1p12 = Cf2-

Proposition 5.1. Let g be the simple Lie algebra of type Bs. The set of all
hard in UJ(g) super-letters is given by By = {x1, [x1, 22}, [[x1, 22], 2], w2}

Proof. We call x1 = [A], [x1, 23] = [B], [[x1, 22, z5] = [C], 25 = [D] where
[A] > [B] > [C] > [D]. From Proposition 2.10 we have 6 possibilities. Using
item 3) we exclude the cases [[A],[D]] = [B] and [[B],[D]] = [C]. From the
defining relations we see that [[A], [B]] = [[C],[D]] = 0, so these two super-
letters are not hard in U (g).

The remaining cases are [[A],[C]] and [[B],[C]], so we use the defining
relations of the algebra to describe their associated standard words as linear
combinations of smaller words of the same degree and prove that they are not
hard in U (g).

Expanding the defining relations of the algebra we obtain the equations:

95%33'2 = p12(1 + p11)x12071 — pnp%zl'zl’% (5.2)

2175 = pra(1+pag + Do) 22175 — Poapia (14 Paz+P3y) 150122 +Poopiasar (5.3)
If we multiply the equation (5.2) from the right by z3, we have AC as a
linear combination of smaller words. Thus the super-letter is not hard. Now,
let us multiply the equation (5.2) from the right by xs, while relation (5.3)
from the left by x;. The leading term of the difference equals:

(—p1a(1 + pa2 +p§2) + p12(1 +p11))BC

Therefore BC' is also a linear combination of smaller words and the super-
letter is not hard by Proposition 2.9. U
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Remark 5.2. In this case we compute pas = pcc = ¢* and ppp = ppp = q.

Now we consider the algebra U (g), where g is the simple Lie algebra of
type Bs. This algebra is defined by three generators x1, x2, x3 and five relations

[[21, za), xo] = [, [21, o] = [[[2, T3], 3], W3] = [wa, [w2, w3]] =[21, 23] =0. (5.4)

Relations (3.3) take up the form pi; = pg = Q27 P33 = (¢, P12P21 = q’2 = P23P32
and pigp3; = 1.

Proposition 5.3. Let g be the simple Lie algebra of type Bs. Then the set of
all hard in U (g) super-letters is constituted by Bs = {1, [v1, 2], [x1, [22, 73],
[:Clv H.TQ, 563], x3“7 [[Q?l, H‘T27 563], x3“7 .CCQ], Zo, [x27 x3]7 H.TQ, Q:g], x3]7 x3}'

Proof. As done before, we define [A] = xy, [B]=|z1, 23], [C] =[z1, [r2, x3]],
(D] = [z1,[[xa, ws], 23]], [E] = ([, [[w2, w5], 23], 22], [F] = 22, [G] = [, 3],
[H] = [[x2,z3],23) and [I] = x3. From propositiom 2.10 we have 36 pos-
sibilities. Using item 3) we exclude the cases [[A], [F]] = [B],[[A],[G]] =
(CL,[[A), [#]] = D], [[D), [F]] = [EL[[F), [7]] = G] and [[G], [I]) = [H]. From
the defining relations we see that [[A], [B]] = [[4], [{]] = [[B], [F]] = [[F], [G]] =
[[H],[I]] = 0, so these five super-letters are not hard in U/ (g). The super-
\etters [[BY{GT), [BLAT], [BY), [[CYA], [[C), (1), (D], (1), (121, [G1) [[B), (2]
and [[E], [I]] are not standard since they can be written as [[[u], [v]], [w]] with
v > w.

For the 16 remaining cases we use the defining relations of the algebra to de-
scribe their associated standard words as a linear combination of smaller words
of the same degree, proving that they are not hard in U (g) by Proposition
2.9.

Expanding the defining relations of the algebra we obtain the equations:

T1T3 = P13T3T1 (5~5)

21y = pra(1 + p11)T1T9T1 — P11PIaTaT] (5.6)

351563 = p12(1 + poa)Tox1T9 — p%2p22x§x1 (5.7)

17;%3 = pa3(1 + poa)Toxsry — p22p§3I3l’§ (5.8)

$25L'3 Pas(1+pss +p33)m3x2x3 p33p§3(1+p33 +P§3)1‘§$2$3 +P§3P§3I§x2 (5.9)

The super-letters [[A], [C]], [[A], [D]] and [[A], [E]] are not hard in U; (g)
since from relation (5.6) we write the standard word AC' = x2zox3 = p12(1 +
P11)T1 oL T3 — pllp%ngx%xg as a linear combination of smaller standard words,
and also AD = AC - x3, AE = AC - x315. Analogously, the super-letter
[[F], [H]] is not hard in UJ(g) since from relation (5.8) the standard word
FH = 2322 = po3(1 + pa)Tow379T3 — PoaPasT3Taxws is a linear combinations of
smaller standard words.
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The super-letter [[B], [C]] is not hard since calculating (5.6) - zox3 — 27 (5.8)
we have pio(1+p11) BC' = piiplama®i oty + propistiests — pas(1+pas)xiwoxses
and using (5.6) and (5.5) we obtain pia(1 + p11)BC = p11piersrizers +
Poap3sPls 31wy —paspi2(1+pa2) (14p11) 212221 X3 2 +P2sp11Dis(1+paz) xoxi w3 s,
The cases [[B], [D]] and [[B], [E]] follow from the previous case since BD =
BC - x3 and BE = BC' - x3x5.

For the super-letter [[C],[D]] we compute xizox; - (5.9) and obtain that
p13CD = p2_31(1 + D33 +D33) " (T1 22w @05 +D53p33(1 4 P33 +D35) 12201 25T0Ts
—PaaPasT1T2T1 TaT2). Notice that we have zxoz 1073 = BD - x5 = s (1 +
p11) " H(priplararizax —pospia(1 + p11)(1 + poo)@1@om1 232923 +pr1paspis(l +
P22) ToTr3To T3 +Poapiapiszsriaszr?). Now, we replace that word in the first re-
lation obtaining (p13+p12pas(1+p11) (14p22))CD = pyy (1+psz+p3s) ' (p1a (1+
p11) " (Puptatarirary  + pupasPio(l + pao)Toxiastaxy + paapispisrsririas
+p33033(1 + P33 + D33) 1020103093 —PiagPiasT1ToT123x2). Thus C'D is a lin-
ear combination of smaller words. In the case [[C], [E]] we just notice that
CE=CD - x,.

In the case [[C], [F]] we see that C'F' = 1292319, which is the leading term
of x1 - (5.8) — (5.7) - 3. Thus the super-letter is not hard. As a consequence,
the super-letter [[C], [G]] is not hard since CG = CF - z3.

For the super-letter [[D], [G]] we compute z125 - (5.9) — (5.7) - 23 and obtain
P33033(14-p33+p33) DG = piapss(1+pss+p33) 010903223 = phapisrire —pra(1+
P22)ToT1 To Ty + ProPao®ar1 T3+ Paz(1 + psg + P33 ) 102237975, Note that the word
DG is smaller than the word {Ell’gl‘gl’gmg. Now we calculate z; - (5.8) - a:% and
find 71792372732 = (pa3(1+ paa)) (w1253 + paopiszix32323), so using (5.8) we
obtain z1@ox3x923 = (pa3(1 + p22)) ' (P12(1 4 Paz) o1 2223 — plyproxir s +
P2opasr1r373w3). Now we can replace the word x129z37275 and write DG as a
linear combination of smaller words. For the super-letter [[D], [H]] we see that
DH = DG - z3.

The super-letter [[D],[E]] is not hard since computing zixez123 - (5.9) -
zy we have pas(1 + paz + pi3) DE = pasp3i (1 + paz + p33)010001 75020570 =
— T Do T3ToT T+ P33Pag (L + D33+ Pis ) 11001 TaToT 30 — Piaapis 1 Tox 2873, We
notice that the word D FE is smaller than .rla:ga:l:vga:gxgxg, but 32’15525131.173.1’21’%372 =
CD - x5, thus DFE can be written as a linear combination of smaller words.

In the case [[E],[F]], calculating z; - (5.8) - zow3 we have x1ziw37973 =
P23(1 + Po2) 109237373 — PoopisT1T3Tax3 and using (5.8) we obtain pi,pas(1 +
p22)EF = P33P22(1+p22)371$2$§$% = —371563133%21534‘19%3(1+p22)2$1$2$3$€2$3$2—
papiriz3rsrs. Note that the words xx32z379w3 and x792379w372 are big-
ger than EF, but z73231023 = (5.7) + 37973 = DP12(1 + poo)Tox1 Tox3T073 —
p22p%295§$1$3$2933 and x12223727379 = CG-x9 = P22p23(1 +p22)71131$3$§$3932 -
P12Da3 ToT1 ToT2+p2oDoopys (14pae) ‘222102, as calculated in the previous cases.
By replacing these words we write K F" as a linear combination of smaller words.

Finally, the supper-letter [[G], [H]] is not hard since computing x5 - (5.9)
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we have po3(1+ pss + p3s) GH = pas(1 4 pss + p3s) Tow3225 = 2525 + p3apss(1+
P33 + p33)$2x31‘2x3 P33P3sT273To. Note that the word GH is smaller than
x373, however 2223 = FH - 13 = po3(1+ pao) GH — pagpiswsrizr?. Replacing the
word 2373 we obtain (pas(1 + pss + p3s) — P2s(l + p22))GH = p33pss(1 + pas +
p33)x21’§l’21’3 - p22p231’3$gx3 p23p33$2$§$2 U

Remark 5.4. In this case we calculate paa = P = Pep = Prr = q°,

pcc = pac = prr = q and Ppp = PHH = q4.

6 Quantizations of type C

In this section we are going to explicit a set of PBW-generators for UqJr (9),
where g is the simple Lie algebra of type C3. This algebra is defined by three
generators x1, To, x3 and five relations

[1, [z1, 22]] = [[21, @2], 2] = [22, [@2, 2, w3]]] = [[w2, 33], @3] = [31,25] =0
(6.1)
where the brackets mean the skew commutator and we have p1; = pas = ¢,

P33 = q°, P1apa1 = ¢ 1, pasps2 = ¢ % and pi3ps; = 1.

Proposition 6.1. Let g be the simple Lie algebra of type C3. The set of all
hard in U (g) super-letters is given by Cs = {1, [v1, 2, [[71, 22), [T1, [12, 23],
(21, [22, 23]], [[21, [T, T3]], 2], Ta, T2, [2, T3]], [2, T3], w3}

For simplicity we call zy = [A], [z1,22] = [B],[[z1, x2], [21, [22, 23]]] =
[C]’ [371, [x27w3]] = [D]7 [[:)31, [$2,1‘3]],$2} = [E]va = [F]v [:132, [x2>x3“ = [G]7
[z, 23] = [H],x3 = [I] where [A] > [B] > [C] > [D] > [E] > [F] > [G] >
[H] > [I]. From proposition 2.10 we have 36 possible cases to consider. Using
item 3) of the proposition, we exclude the cases [[A], [F]] = [B], [[4],[H]] =
(D], [[B],[D]] =[], [[DL[F]] = [E], [[F],[H]] = [G] and [[F],[I]] = [H].
From the defining relations we see that [[A], [B]] = [[A],[I]] = [[B],[F]] =
[[F], [G]] = [[H],[I]] = 0, so these five super-letters are not hard in U (g). The
nine super-lotters [[B], (1] = [[w1,a2], aa], [C], [E]] = [[ler,s], [, [, 2]l
(1, [22, 5], o], [[C, [G]] = [[[21, @2, [21, [wa, w3]]] , [a, [0, 3]]], [[C], [H]] =
[Hxhx?]v [xl, [I% 953]]]7 [‘T?v x3]]7 [[O]v [[H = [Hxth]’ [Ilﬂ [va x3m7 3] [[D]a [IH =
[[1’1, [‘r?v I3H7I3]’ [[E]7 [GH = [[[mh [:L‘??x?’]]: m2]7 [x27 [I27x3]]]’ [[E]v [HH =
[[z1, [z2, x3]], 2], [x2, x3]] and [[E], [I]] = [[[z1, [r2, x3]], x2], x3] are not stan-
dard since they can be written as [[[u], [v]], [w]] with v > w.

Now, for the remaining 16 cases we use the defining relations of the al-
gebra to describe their associated standard words as a linear combination of
smaller words of the same degree, proving that they are not hard in U, q+ (g) by
Proposition 2.9.
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Expanding the defining relations (6.1) of the algebra we obtain the following
equations:

T1X3 = P13T3x1,
2 2 2
21Ty = pra(1 4 p11)T12221 — P11PYR T2,

2 2 2
2125 = P12(1 4 pa2)Tox1 Ty — PloPaT521,

)
2215 = pos(1 + ps3)w3T2Ts — PgP3s3Ta,

x%xs = po3(1+pa +P32)$§$31’2 —p22p§3(1+p22 —|—p§2)x2x3x§ +p§2p§3x3x3. (6.6

Multiplying equation (6.3) on the right by xjxsx3, 3 or xzxs we obtain
linear combinations whose leader term is AC, AD and AF, respectively. Cal-
culating (6.4) - z3 we have AG = BH as a combination of smaller words, and
to obtain BG we compute (6.4) - xoxs. In the case GI, we multiply x5 - (6.5)
and obtain the needed combination.

In order to write DH, GH and DG as linear combinations of smaller words,
we compute the leading term of equations z1x5 - (6.5) — (6.4) - 22, (6.6) -3 — 23 -
(6.5) and z; - (6.6) - 23 — (6.4) - 2913 — paz(1 + pag + P2y ) (6.4) - 37973, TEspectively.

For the super-letter [[E], [F]] we subtract x; - (6.6) — (6.4) - 2223 and ob-
tain EF = pyy oy 11257352 + PagPia(1 + Pag + p3y) ™ 012375 — pag s pra(1 +
Pa2) (14 paa + o)~ o1 2505 + o Do (1 + Pas +15s) ' a3212023 = Py Py ra(1+
P22)T2T1TaT3T2 — Pog D3 T301 032+ PasPhy (14 Doz +D3y) 012353 — pog Py pr2(1+
P22) (14 Dag +D3y) " t0m1 2323+ i Poo (14 pag+ P2y ) L2311 w923 where the second
equality follows from using (6.4) - xoxs.

In the case of the super-letters [[B], [E]] and [[C], [F']] we notice that BE =
T1T921 027379 = C'F. Multiplying (6.3) - w379 We obtain z2x3x31s = p1a(1 +

p11) BE — p11p2,w00229w375. Note that the word BE is smaller than z3x3x3x,.

Now, we multiply z% - (6.6) and have x2z3x3 = pa3(1 + paa + Pag)Tix3T3T9 —
P33P2a(1 + Paz + Poo) TiTow375 + Poopis®iTars = pa3(l + pag + p3y)airisTs —
P33p22(1 + Pz + P3o)Tiw0w3x3 + plopispisxsrizs. We still have that the word

BE smaller than the words z2x3z3 and z2xoz323. We multiply (6.3) - 2323 and

(6.3) - w373 and we obtain zix3rs = pia(1 + p11)T1T201 7503 — Pr1PigTeriTiTs
and 12291373 = p1o(14+p11)T1T2m1 23735 — p11P2eTarizszrs. The word xiwom w373
is bigger than BE, but we multiply x 25 - (6.4) - 73 and we have z1xo71 7573 =
p23(1+ ps33)T120371 2913 — Plypaoriwiri23. Thus we have all words smaller than
BE. Substituting all of these words we have BE as a linear combination of
smaller words.

For the super-letter [[D], [E]] we have DE = p3;x1x901 23222329 and using
(6.3), we get DE = ax?x,13090379 + Brox213727379 Where a = pyippy (1 +
p11)" "t and B = p31p1ap11(1 + p11)~'. However the word DE is smaller than
T3ToT3T9T3T2. Using (6.5) we obtain that DE = ~yzizixize +oxizerizd
+Baox2 0319039, Where 7 = apys (14 ps3) ™' and 0 = apaspss(1+pss) . Note
that z2xezrizr2 = AD - x373 which is a linear combination of words smaller
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than DE. Calculating (6.6) - z3 — 23 - (6. 5) and using (6.5) twice, we obtain
a3 w5w5Ty = \rrarsriry+ X' where A = pyy (1+p22+p22)(1+p22(1+p33) b
Now, we use (6.3) and we obtain DE = pzixyx3x 2503+ AD - w375+ X where
p = YAp13p12(1+p11) and X and X’ are linear combinations of words beginning
with zs.

For the super-letter [[B],[C]] we have BC' = zjxom1z0x12923. We com-
pute z; - (6.3) and using again (6.3), we obtain xiry = exiz2? + X; where
e = p%y(1+p1 +p?,) and X; is a linear combination of words beginning with x,
for every i € {1,2,3,4,5,6, 7} Now, we multiply z3xs - 2y = ex12203 29 + X129
and from (6.3), we obtain x3x3 = ux,zox17921 + X5 where ,u = e(p12(1 +p11)).

We are calculating (6.3) - 23 and using (6.4) we obtain zz3 = X3. Then

we calculate (6.4) - zo + p12(1 + pag)xs - (6.4), and we get z125 = nasw s +
oxsry where = pio((1 4 pa)? — p) and ¢ = —piypaa(l + pa2). Using
(6.3) we obtain zizex1Tew1rs = Ex?x3T179 + X4 Now we use (6.4) and
then we use (6.3) in the previous equation to get xizozT2x1x9 = Tx:fxg +
X5. We multiply xlxlexgxlxg on the right by x3 and using (6.6) we have
BC = 11X901 09710973 = NT3x9x375 + 0x373w370 + PxiT375 + X6, Where
¢ = p3,ps;. Now we use the relations obtained previously, and write BC' =
O 1T 1T9T1 ToT 13T + PigNeT  Tox3 0325 + piadrsrias + Xg. Thus BC is a linear
combination of smaller words.

Finally, for the case [[C],[D]] we will use the previous case. First we
have 232322 = prxoximom17973 + X7 and using (6.6) we obtain poz(1 +
P22 + Do) T3 T53ToT3 — P3gPaa(l + Pag + P3o) o333 + Phyphyairsrivs =
UT1T2T1 T Tow3 + X7. Now using the relations obtained for z3xy and z3x3
and (6.5), we get the equation wps;C' D = W LT ToT1T3T2T3 = PagPas(1+paa+
D3 DIaET1 LT3 TITITs — Py PasDis 3T TS T 3 — [UP3aP33T1 Lo 1 Lo X539 + X7 Where
w = pa3(14+paa+p3s)(1—piy(1+p11)(1+ps3)). Thus CD is a linear combination
of smaller words.

Remark 6.2. In this case we calculate paa = P = Ppp = PEE = PFF =
puE = q and pcc = pec = P11 = CI2-

7 Explicit PBW-Generators for Quantizations

In this section we finally prove that the previous sets are actually the PBW-
bases of the considered algebras.

Theorem 7.1. If q is not a root of 1, then the sets As, As, Bo, B3, Cs con-
stitute sets of PBW-generators for U (g) over k|G|, where g is a simple Lie
algebra of type Ay, Az, By, By and Cs, respectively. Also, each super-letter from
each set has infinite height.

Proof. This Theorem is a consequence of Propositions 4.1, 4.3, 5.1, 5.3 and
6.1, since they prove that all the hard in U/ (g) super-letters are contained in
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the previous sets. If they are all hard and not zero, from Theorem 3.3, they
form a set of PBW-generators for U, (g) over k[G]. Now we only have to see
that all heights are infinite.

From Remarks 4.2, 4.4, 5.2, 5.4 and 6.2 we know that for every hard super-
letter [u], either puy = ¢, Puw = ¢* OF Py = ¢*. But we are supposing that ¢ is
not a root of 1, so p(u,u) is not a primitive ¢-th root of 1 for any ¢, and from
Definition 3.2 we have that h([u]) is infinite. O
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