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Abstrac t 

A direct fr amework is developed for secoud-order matrix equations wi­
thout transforming it into a first-order companion equatiou. lt is done in 
terms of its matrix impulse response that is directly related to the t rans­
fer matrix. Wc form ulate an extension of the Cayley-Hamilton identity, 
derive t he controllability and observabili ty matrices and discuss I<rylov's 
method in terms of such matrix response. This formulation will allow to 
further discuss Arnoldi and Lanczos methods as well as t ime-integratiou 
by FFT 
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1 Introd uction 

' \ 

Wc develop a direct framework for the second-order matrix equation 

M q11 
{ t) + C q' ( t) + [( q ( t) = f ( t), (1) 

without tra nsforming it into a first-order eq uation. This is acomplis hed in terms of 
its matrix impulse response and it is illustrated through an extended Caylcy- ll amil ton 
identity, a direct dcrivation of thc controllabili ty and observability matrices, a nd a dircct 
formulation of a I<rylov s ubspace rnethod for second-order equations . The res ults can be 
co nvenienlly translated for the discrete analogue 

(2) 

I le reM, C and I< are arbitrary n x n matrices wit h numerical elements, M non-singular, 
and q(t), f (t) real functions with values in tlte n-di mensional cuclidean s pace. 

The standard a pproach for studying such systems has becn a t ra nsformation into an 
equ ivalent first-order system. However, t his implies putting aside the "mechanical"or 
physical coordinates which a re of inc reasing interest in control problems and na tural for 
measurements. 

The treatment given hcre is based on t he Laplace t ransform. This allows to relate 
directly t he irnpulse mat rix response ("transition ma.trix") to t he transfer matrix. J\n 
explicit formu lation of the impulse matrix response is given in tcrms of a scalar charactc­
ristic differential equation and its associated second-order discrete analogue. This allows 
to establis h severa! properties of second-order systems. For instance, it a.llows to extcnd 
properties s uch as the Cayley-Ham il ton identity, semigroup type relations hips, and a 
characterization of cigcnvectors. This approach can be easily generalized to highcr-ordcr 
continuous and d iscrete equations . 

2 The second-order state fratnework 

In this section , we s hall treat secoud-order eq uations in t hcir own framework , that is, 
without relying on the reduction to a firs t-order system t hrough a companion rnatrix 
formulation. By applying t he Laplace transfo rm to Lhe non-homogeneous equation 

Mq"(t) + Cq'(t) + I<."q(t) = J(t ), (3) 

we obtai n the operational eq uation 

.ó.(s)Q(s) = (sM + C) q(O) + Mq'(O) + F(s), 

w It ere 

T hus 
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Q(s) =H (s)[(sM + C)]g(O) + H(s)M g'(O) + H(s)F(s) , 

where 
[s2 M + sC + I<]H(s) = I. 

We ha ve that H(s) is t he Laplace transform of the matrix solution satisfying 

Mh"(t) + Ch' (t) + K h(t) =O, ( 4) 

Mh'(o+ ) =I , h(o+) = o, 
where I denotes t he matrix identity. Dy taking Laplace inverse transform wc obtain Lhe 
variation of constants formula 

q(t) = ho(t)q(O) + h(t)Mq'(O) + ht h(t- s) f( s)ds, (5) 

where 

h0 (t) = h'(t)M + h(t)C. (6) 

We s hall refer to h(t) as Lhe impulse matrix response, a lso refered to as the dynam ical 
solution or t he state-trans it ion matrix of the system. Since H(s) commu tes with the 
matrix polynomial b. (s), we have t hat h(t) is also a left solution of the homogeneous 
eq uation, that is 

h"(t)M + h'(t)C + h(t)K = O, h'(o+)M = 1, h(o+) =O. (7) 

AlLhough the forcing Lerm is assumed to be Laplace transformable, by d irect s ubsLi­
tution on the given equation, the validi ty of the variations of constants formula can be 
extended to a la rger class of forcing terrns. 

From a physical poin t of view, we have t hat a mat rix impulse f (t) = ó(t)J a pplied Lo 
a second-order system iniLia lly at rest, imparts a change in momentum. T hus the maLrix 
response can be t hought of as the rcspo nse of a system which has been in the zero state 
for L$ O, when a unit irn pulse is applied at t = O, that is 

Mh"(t) + Ch'(t) + I<h (t) = ó(t)I, Mh'(O) =O, h(O) =O. (8) 

The elements hkj(t) of the matrix impulse response are to be in tcrpreted as being Lhe 
responsc of the k-th component of thc system d ue to a unit ini t ia l momen tum (or uni L 
impulse force) at Lhe j-t h component. 

lt can be easily verified that h0 (t) satisfies the same matrix equation as h(t), but with 
initial values Mh~(O) = O, ho(O) = 1. llowever, h0 (t) is nota left solu Lion unless Lhe 
matrix coefficients commute t hemselvcs (4) . 

For the discrete equation 

(9) 
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we havc that 

k-l 

qk = [hk+ ,M + hkC]qo + hkMq1 + ~f:)tk- 1-i/i, 
i=O 

where hk = h(k)(O) is the discrete mat rix impulse response, that is 

(10) 

( 11) 

with the ini tial values Mh 1 = I, h0 = O. This follows by applying the z-transform Lo 
the given discretc cquation or by a simple idcn tification of qk as Lhe k-th dcrivativc of 
the solu t ion of t he continuous time eq uation for a given analytic forcing term. 

2.1 A rational matrix characterization of the transfer function 

In order to derive a formula for thc impulse matrix response, we need the following 
charactcrization of the trans fer function 

wherc 

2n j-1 j -i-1 

ll (s) = (s
2 

M + Cs + I()-
1 

= :?= :?= b/ P(s) h2n- i• 
;=1 t= O 

2n 

P(s) = det[s2 M + sC' + KJ =L bks2
n-k 

k=O 

(12) 

(13) 

is the associated cha racteristic polynomial and hk the discrete matrix impulsc responsc. 
The proof follows via a convenient use of the Cramer identity 

B(s)~(s) = 6 (s)B(s) = det(6(s))I = P(s)I, 

where the adjugate matrix B(s) (transposed matrix formed from the cofactors of 6) is 
a polynomial of degree less than 2n - 1. By differentiating j times the Cramer identity 
and noticing that 6(0) = I<, 6'(0) =C and 6"(0) =2M, it turns out that for j > 2, 
the matrix coefficicnts Bj = BU) (O) satisfy the difference equation 

I A t2n-j w 1ere i= 211_i ,. 

MAi+2 + CAi+l + KAi = bj l, j =O, ... 2n - 2, 
Ao= A, = O, 

The solution of this equation is given by t he convolution 

j - l 

A j = Lbihj-i-1, 
i= O 
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whcre, as before Mhk+2 + C hk+1 + Khk =O; M h 1 = I , h0 =O. 

Since H (s) = ~f:l, the resuiL follows by s u bstituting Lhe values B2n-j o r A i 011 Lhe Taylor 

expansion for B(s). 

We can s ubstitute s = iw to obtain Lhe frequ ency t'esponse 

2n j -1 (' )i-1-k 
ll(iw) = ,?:Lbk t~::>(iw) h2n-j· 

J= l k= O 

2.2 The impulse matrix response 

( lt1) 

The characterization of Lhe Lransfer funcLion of a second-order matrix equatio n allows to 
recover the impulse matrix response by taking the Laplace inverse transforn1. For doing 
so, we shall in t roduce the following characteristic differential equation 

with t he initial data 

b0d(2n - l) ( O) = 1, d(2"-2l(o) = · · · = d'(O) = d(O) =O, 

whose solution can be wrilten as the 13romwich integral [2] 

1 j e3t 

d(t) = 2rri !r P(s) ds. 

T he corresponding scalar transfer function 

1 
</>(s) = P(s)' 

(15) 

( 16) 

is such that ?t
3

) corresponds to the Laplace t ransform of the k-th derivative o f d(t). This 

a llows to conclude that thc impulse matrix response h(t) is given by 

211 j - 1 

h(t) = L:l:bidu- i- •>(t)h2n-j, ( 17) 
j=l i=O 

where 

( 18) 

with the initial values M h2n- l = 1, h( O) =O. 
By noticing that 

2 _ 1 sB(s) ~ ~ si-i- 1 

sH (s) = s(s I + Cs + I() = P(s) = ~ ~ bi P(s) h2n-j+t, (19) 
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we a rrive to the following s hifting property fo r Lhe derivative of the impulse matrix 
rcsponse 

2n j -1 

h'(t) = L L bjdu-i-l)(t)h2n-j+ l· (20) 
i=O i=O 

2.3 An extended Cayley-Hamilton identity 

We now proceed to establish an extension of the Cayley-Hamilton identity for second­
order pencils s2 M + sC + f{ . Wi t h Lh e same notation as beforc, we h ave t hat 

2n 

L bih2n- i = O. 
i= O 

(21) 

As wc s ha ll see below, this property is related to a shifting p roperty of t he impulsc 
response h(t). The proof follows by writting the derivat ive of h(t) 

2n j-J 

h'(t) = LLbidu- i>(t)h2n- j. 
j= l i=O 

as 

2n+ l j -2 2n j-1 

h'(t) = L Lbid(i - i- l)(t)h2u-j+1 = L(Lbid(j- i- l)(t) - bj -1 d(t))h2u-j+1· 

j=2 i=O j =1 i=O 

or simply 
2n j-1 2n-1 

h'(t) =L L bjd(j-i- l)(t)h2n-j+l - L bjd(t))h2n-j · 
j= l i=O j =O 

13y Lhe shifting p roperty, we have that the first term on the right hand side is precisely 
h'(t), from which it follows the proposed extensiou . 
Remark We s hould point out thaL Lhe extended Cayley-Hamilto n ident ity is also valid 
for h2n-i+k• k = 0,1,2, ... , iustead of h 2n- i 1 t hat is 

2n 

L bih2n- i+k = O. 
i=O 

(22) 

The reason bein g that the shiftíng pi'Oper·ty is valid for the derivatives of arbitrary ard er 
of h(t). More precisely, 

211 j-1 

h<k>(t) = L L bjcL<i-i-l)(t)h2n-i+k· (23) 
i=o i=O 

T his will be shown a fter we establis h further properties for Lhe impulse matrix res­
ponse by using lhe companiou matrix a pproach. 
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2.4 The case of simple roots 

By introducing the following polynomials 

we can write 

j -1 

Qj(s) =L bisi-l-i, j = 1, 2, · · ·, 2n, 
i=O 

'ln j- 1 ( ) 
Qj s 

H(s) = ~~ P(s) h2n-j · 
J=l 1=0 

(2tl) 

Let Sk be a root of the characteristical polynomial with mult iplicity mk. lf we let r·ij(Sk) 

to be the residue of ~§f;/ evaluated at the root Sk, we shall have that 

where 
2n 

Eki =L 1'ji(Sk)h2n-j• 

j= l 

When the characteristic polynomial has simple roots, mk = 1, it turns out that 

2n 

h(t) =L Eke3"t, 
k=l 

where Ek is now given by 

2n E 
ll (s) = ~ _ 'k_ , 

L..J S- Sk 
k=l 

3 R elatio nships with the con1panion matrix 

(25) 

(26) 

The treatmcnt of second-order mechanical syslems is usually clone by inlroducing the 
Ha milton state formulation 

1 [ X 1 ] X1 = q, X2 = q; X= X
2 

· 

This approach allows to translate severa! properties to our second-ordcr framework (4]. 

Let us consider the firsl-order system 

x' = Ax + F(t), (27) 
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wherc 

A-[ O I ] - -M-1 f{ -M-1C ' 

is the companion malrix of order 2n x 2n, x the state vector 2n x 1 and F(t) = col[O 
a col umn forcing veclor 2n x 1. 

Exponential solutions x = é'-v give rise to eigenvectors of of the forrn 

(28) 

J(t)] 

(29) 

where v is an eigenveclor o f lhe second-order system and >. its eigenvalue, lhal is, [>.2M+ 
>.C+ K]v =O. 

With such forrnulalion it is easy lo show that 

tA _ [ ho(t) h(t)M ] 
e - h0(t) h'(t)M · (30) 

By differentating lhe exponential malrix at the origin, we obtain Lhe following block 
rcpresenlaLion for the powers of the companion rnatrix 

(31) 

where ho,k = h~k) (O) satisfies the matrix difference equation M qk+2 + Cqk+ l + K qk = O 
with initial values q0 = I and q1 =O. 

The following properLies are an cxtension of the oncs for sine and cosine matrix 
functions t hat appear in conservative systerns (C= O) 

h(t + s) = h0 (t)h(s) + h(t)M h'(s), 
(32) 

h'(t + s) = h0(t)h(s) + h'(t)Mh'(s). 

T hey follow from the exponential semigroup property and the block characterization in 
terms of the impulse matrix response givcn above. We shall refer to t hesc properties as 
the extended semigmup p1·operty for second-order systerns. 

I3y differenliating Lhe exponential matrix and using lhe formula for lhe po\vers of A, 
we arrive to Lhe general shifting property of the impulse matrix responsc h(t) 

(2n) j-1 

h(k)(t) =I: I: Úid(j-l-i)(t)h2n-j+k· 

j= l i=O 

Thc block charactcrization of lhe powers of the companion matrix, in terms of this 
discrete matrix impulse response, and the Cayley-Hamilton identity with such matrix, 
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allows us to obtain the extended Cayley-Hami lton identity for a second-order matrix 
equation 

2n 

L bih2n-j+p =O, p =O, 1, 2, · · ·. 
i=O 

We should observe that the validity of such identity is analogous to the situatiou of 
multiplying the Cayley-Hamilton identity of a matrix A by any power of it. 

4 Controllability and observability matrices 

Here we s hall derive the controllability and observability matrices for second-order sys­
terns by e mploying the impulse matrix response. This approach is a direct extension of 
the arguments employed with first-order systems. There is no need to use the standa.rd 
compa.nion matrix approach . 

Let us consider the second-order control system 

Mq" + Cq' + J(q = Btt {33) 

where M, C, [(, are arbitra.ry n x n matrices, M non-singu la r , and B a control matrix 
of order n x m . lf the system is controllable, then there is a control u and a time t such 
that we can drive q and q' to the origin. By using the variation of constants formula , 
this means that 

or simply 

O= h0 (t)q(O) + h(t)M q'(O) + ht h(t - s)Bu(s)ds, 

O= h~(t)q(O) + h'(t)Mq'(O) + ht h'(t- s)Bu(s)ds, 

[ 

h0 (t) h(t)M l [ q(O) l t [ h(t - s) 

h~(t) h'(t)M q'(O) + 1 h'(t- s) 

Bu(s) l 
Bu(s) 

ds. (3t!) 

We now use the extended semigroup property on the integral so that we can factor 
out a common matrix block which is non-singular, since it is the matrix ex~onential. 
Thus 

[

O l [ q(O) l 1 
[ h(-s)Bu(s) l 

O = q'(O) + 1 h'(-s)Bu(s) ds. 
(35) 

By substituting 

2n 

h(t) = LfJj(l)h2n- j 1 h(l) = l:j:::l {Jj (l)h2n-j+lt 
j = l 
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wit.b 
j-1 

{3j(t) = I>idu- l-i)(t) , 
i=O 

we obtain t he algebraic li11 ear system 

Ecr = w , 

where 

w = - [ q(O) ] 

q'(O) 
cr = col[at 0'2 · · · cr2nJ, Cl'i(t) = {' f3i( -s)u(s)ds, .f o 

and E turns ou t to be the controllability matrix 

(~~6) 

for a second-order matrix systern. lf the system is controllable, then the give11 cquation 
will have a solu tion for arbitary w. This implies that rank E= 2n. 

T hc converse of the above rank condit ion is also true, that is, if the rnatrix E has 
ra11k 2n then the second-o rder equation is colltrollable. This amounts to show that therc 
is a control u and a time t 1 such that t he controllability Grammian 

1t 1 [ h(- s)D l [ h(-s)B l 1 

Wc = ds 
0 h'( - s)B h'(-s)D 

(37) 

is non-si ngular. The proof is entirely similar to the one found in tbe literaturc for first­
order equations and we s ha ll not repeat it here. In such a case, thc control 

u(t) = Q(t) Wã 1 

where 

{ [ 

ho( -tt) 

h~( - t t) 

h( -tt)M l [ q(tt) l 
h'(-ti)M q'(tt) 

[ 

h(- t)B l 1 

Q(t) = 
h'( - t)B 

will bc such that 

f'' [ ho(-t l ) h(-tt)M l 
Jo Q(s)u(s)ds = 
o h~(-t 1 ) h'( - tt)M 

11 
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By using the extended semigroup property and the fact that e-AteAt = I, we obLain 

[ 
q(tJ) l 
q' (t t) [ 

h0 (tt) h(t1) l [ q0 l + 11, [ h(tJ - s)Bu(s) l ds. 

h0(ti) h(tt) M qb 0 h0(t 1 - s)Bu(s) 

That is, the initial state can be transfered to another state in finite time through Lhe 
above control u. 

lt should be observed that Lhe controllability matrix and the Grammian could have 
been derived by a convenient use of our formula for the powers of a companion matrix, 
or by Lhe block characterization of Lhe exponenLial correspond ing Lo Lhe equivalent first­
order equation with the companion matrix. However, we would have missed a key poinL, 
that is, Lhe shifting property, which is essential when using the exponential matrix with 
a firsL-order equation. 
Remark 

The controllability matrix 

[ 
h0 B htB · · · 
h1B h2B · · · 

was derived in [8) by using a Jordan type of spectral factorization for matrix polynomials. 
llere that matrix has been derived by a non-spectral direct method which resembles 
Kalman 's work. 

4 .1 The observability matrix 

We now consider the control problem 

Mq" + Cg' + I<g = Bu, 

y = Fq+.Pq', 
(38) 

where M, C, I<, are n X n matrices, M is non-singular, B is n x m and F, Pares x n. 
The above system is observable when from the knowlegde of the output y(t) and u(t), M, 
C, I<, F, P, it is possible to determine the initial state . From the variation of constants 
formula, we have t hat the control forcing term contributes a known convolution response 
Lerm to the observed value. Thus, we may as well consider B =O. We can write 

y = F[h0 (t)q(O) + h(t)M q'(O)] + P[h0(t)q(O) + h'(t)M q'(O)], 

or simply 

y = [F(h' M + hC) + P(h" M + h'C)]q(O) + [Fh + Ph']M q'(O). 

By substituting the formulas for h and h', it turns out 

2n-l 

y = I: ,Bj(t){[F(hi+tM + hiC) + P(hi+2M + hi+tC)]q(O) + [Fhi + Phi+t]Mq'(O)}. 
i=O 
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I n maLrix Lerms, we have 

where 

y = {3 R Qo, 

f3 = ({3o f3t · · · fJ2n - 1J, 

I 
F(lit M + hoC) + P(li2M + li t C) 
F(li2M + lit C)+ P(l13M + li2C) 

fl = F( IIJM + h2C) + P(111M + lia C) 

F( li2n M + li2n- t C) + P(112n+ t M + li2,. C) 

Qo = [ qu ] · 
qb 

(FIIo+PIIt)M I 
(Fii t + Pli2)M 
(f"li2 + P lta)M 

(Fii2u-t + Pli2,.)M 

, 

This sysLcm will havc a solution for an arbiLrary iniLial sLaLc whenever Lhe rank of thc 

observabili Ly matrix R is equal to 2n. Since 

hk+2lvf +hk+t C= -hk K, 

Lhe observability matrix R can be furLher simplified. Finally, Lhe observability Gramrnian 
can bc also introduced in the usual way. 

5 Krylov subspace Ine thod 

llerc we shall discuss Kry lov's methods for compuLing l he cocfi cients of a charactcr istic 
poly nomia.l and t he eigenvectors associated wi t h a second-order matri x penei I s2 M + 
sC + f (. 

Lct v bc a n011-2ero vector and set Vk = hkv. From Lhe extcnded Ca.y ley-Hamil ton 
idcntity we have 

2n 2n 

L bkh2n-k+pVJj =L bkV2n-k+p =O, ]J =O, l. 
k=O k=O 

We writc in matrix form 

bt 

b2 

[ V2n-J V2n-2 Vt Vo ] 1 [ U2n ] = -;~; 

V2n U2n-l v2 Vt U2n+t 
b2n- l 

b2n 

The matrix on Lhe left, with the above defi ni tion of Vk in terms of hk, can be wri tten 

[ 
h2n- t V h2n-2V htV hov ] 

h2nV h2n-t V h2v htV · 
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This is justa block permutation of the controllability matrix for the second-order equation 
with a scalar controltt(t) ./ 

q" + Cq' + I<q'-= vu(t). 

We t hus conclude that i/ the above system is controllable for· certain nonzero vector v, 
then the coefficients of the characteristic polynomial can be obtained by Iú·ylov 's method. 

T he eigenvector equation 

(s2 M + sC + I< )v = O, v# O (39) 

arises when seeking non-zero exponential solu tions q = e>-tv for the second-order eq uation 
M q" +Cq' + [( q = O. By writting the exponential solution in terms of t he rnatrix impulse 
response hk, it turns out t hat v satisfies lhe equivalent relationship 

(40) 

for a r bitrary non-negative integer k. 

Let us assume that ali eigenva lues Àk, with corresponding eigenvectors Vk, are distinct. 
Then for a ny given vectors y0 and y1 we can find constants Ck s uch t hat 

Yl = C!ÀtVJ + C2À2V2 + · · · + CnÀ27W2n · 

The rcason being that the vectors 

Wk = [ )..~~k ] 

constitute a basis for lhe 2n-dimensional euclidean space. 

Let us define the vectors 

By s ubstituting Yo and Y1, it follows that 

Yk = C JÀ~Vl + C2À~V2 + · · · + CnÀ~nV2n 1 k =O: 2n- 1. 

We now consider t hc linear combination 

2n 

Ql,iY2n-1 + q2,iY2n-2 + · · · + q2n,iYO =L Ck</>i(Àk)Vk, 
k=l 

wh ere 
2n 

</>;(>.) = L qr,iÀ2n-r • 
r=l 

14 
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By choosing 

"'-(À)= P(>.) 
'+'• ). - Àj ' 

an eigenvector correspond ing to the eigenvalue Ài can be obtained as the linear combi­
nation 

2n 

Vj = Lqj(Ài)Y2n-j, 
j=1 

where qj,i = qj(Ài)· Here the polynomials 

j - 1 

qj(>-) = I>k>-j-1-k, 
k=O 

can be obtained by the recurrence relation qo(>.) = bo, qj(À) = Àqj-J (>.) + bj. 

Remark 

( 42) 

By choosing Yo = O and Y1 to be the first vector of the usual basis for the euclidcan 
space, we obtain that Vi is just the eigenvector obtained by Danilevskii method [6) . 

6 Difference and higher-order matrix equations 

The results obtained for second-order matrix equations can be easily generalizecl for 
higher-order or discrete equations. We shall simply enunciate them since the arguments 
will the same as those employecl for second-orcler equations. 

Let us consicler the m.-th order eq uation 

(43) 

where the Aí_,s are n x n scalar matrices, with Ao non-singular. 
The t ransfer matrix is given by 

mn mn j-1 · · 1 

H(s) = [LAksmn- k]- 1 =L?~>/~~~~ hmn-j, (44) 
k= O ; =1 •=O 

where 

m mn 

P(s) = del[L Aism- i] =L bismn-i, ( 45) 
i=O i=O 
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and hk is the solution of the characteristic difference equatiou 

m 

L Ajh(m+k-j) =O, Mhm-1 =I, hj =O, j =O : m- 2. 
i=O 

( 46) 

As before, h(t) is the inverse Laplace transform of the transfer matrix and satisfies 

Aoh(m)(t) + A1h(m-l (t) + · · · + Am-rh'(t) + Amh(t) =O, 

with the initial values A0 h(m-t) = I, hU)(o) = O forj =O : m- 2. 

We have that 

mn j-1 

(47) 

h(P)(t) = L L bjd(i-i-1)(t)hmn- i+P• p =O, 1, 2, · · · 1 (48) 
j =l i=O 

where d(t) is the solution of the scalar characteristic differential equation 

mn 

L bjd(i)(t) = O, bodmn-1 = 1, d(j)(O) =O, j = O: mn- 2. (49) 
k= O 

The extended Cayley-Hamilton identity reads 

mn 

L b;hmn-i+p = O, P =O, 1, 2, · · · 
i = O 

(50) 

The case o f difference eq uations can be handled directly with the z-transform o r by 
using the power series relationship qk = q(k)(O). Let us consider the discrete equation 

Aoqm+k + Atqm+k-1 + · · · + Am- 1qk+1 + Amqk = fk· 

We h ave that the discr-ele matrix impulse response hk = h(k) (O) satisfies 

m 

LAjhk+m- j = O, Aohm-1 =I, hj =O, j = O: m- 2. 
i=O 

lt turns out that 

mn j - 1 

(51) 

(52) 

hk+p =L L bjdk+j-i- thmn-j+p 1 p =O, 1, 2, · • ·, (53) 
j=l i=O 

where dk = d(k)(O) satisfies the characteristic difference equation 

mn 
L bjdk+mn-j =o, budmn-1 = 1, dk =o, k =o: mn- 2. 

k=O 
(51) 

The variation of constants formula for the continous and discrete equation in terms 
of the matrix impulse response can be written in a straightforward manner . 
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