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Abstract

A direct framework is developed for second-order matrix equations wi-
thout transforming it into a first-order companion equation. It is done in
terms of its matrix impulse response that is directly related to the trans-
fer matrix. We formulate an extension of the Cayley-Hamilton identity,
derive the controllability and observability matrices and discuss Krylov’s
method in terms of such matrix response. This formulation will allow to
further discuss Arnoldi and Lanczos methods as well as time-integration
by FFT



1 Introduction

We develop a direct framework for the second-order matrix equation
Mq"(t)+Cq'(t) + Kq(t) = [(1), (1)

without transforming it into a first-order equation. This is acomplished in terms of
its matrix impulse response and it is illustrated through an extended Cayley-Hamilton
identity, a direct derivation of the controllability and observability matrices, and a direct
formulation of a Krylov subspace method for second-order equations. The results can be
conveniently translated for the discrete analogue

Magi2 + Cqegr + Kqi = [fi. (2)

lere M,C and K are arbitrary n x n matrices with numerical elements, M non-singular,
and ¢(t), f(t) real functions with values in the n-dimensional euclidean space.

The standard approach for studying such systems has been a transformation into an
equivalent first-order system. However, this implies putting aside the “mechanical”or
physical coordinates which are of increasing interest in control problems and natural for
measurements.

The treatment given here is based on the Laplace transform. This allows to relate
directly the impulse matrix response (“transition matrix”) to the transfer matrix. An
explicit formulation of the impulse matrix response is given in terms of a scalar characte-
ristic differential equation and its associated second-order discrete analogue. This allows
to establish several properties of second-order systems. For instance, it allows to extend
properties such as the Cayley-Hamilton identity, semigroup type relationships, and a
characterization of eigenvectors. This approach can be easily generalized to higher-order
continuous and discrete equations.

2 The second-order state framework

In this section, we shall treat second-order equations in their own framework, that is,
without relying on the reduction to a first-order system through a companion matrix
formulation. By applying the Laplace transform to the non-homogeneous equation

Mq"(t) + Cq'(t) + Kq(t) = f(2), (3)
we obtain the operational equation
A(s)Q(s) = (sM + C)q(0) + M¢'(0) + F(s),
where
A(s) =s’M +Cs+ K.

Thus



Q(s) = H(s)[(sM 4+ C)]q(0) + H(s)Mq'(0) + H(s)F(s),

where

[s*M + sC + K]H(s) = I.

We have that H(s) is the Laplace transform of the matrix solution satisfying
MA"(t) + Ch'(t) + Kh(t) = 0, (4)

Mr©OY)Y=1, hR0OY) =0,

where I denotes the matrix identity. By taking Laplace inverse transform we obtain the
variation of constants formula

q(t) = ho(t)q(0) + h(t)Mq'(0) +/ﬂt h(t — s) f(s)ds, (5)
where
ho(t) = R'(t)M + h(t)C. (6)

We shall refer to k(t) as the impulse matrix response, also refered to as the dynamical
solution or the state-transition matrix of the system. Since H(s) commutes with the
matrix polynomial A(s), we have that h(t) is also a left solution of the homogeneous
equation, that is

K' ()M + k' (1)C + h(t)K =0, h'(0Y)M =1, h(0t)=0. (7)

Although the forcing term is assumed to be Laplace transformable, by direct substi-
tution on the given equation, the validity of the variations of constants formula can be
extended to a larger class of forcing terms.

From a physical point of view, we have that a matrix impulse f(t) = é(¢)/ applied to
a second-order system initially at rest, imparts a change in momentum. Thus the matrix
response can be thought of as the response ol a system which has been in the zero state
for t <0, when a unit impulse is applied at t = 0, that is

MRE"(t) + CH'(t) + Kh(t) = §(t)I, MHK'(0)=0, h(0)=0. (8)

The elements hy;(t) of the matrix impulse response are to be interpreted as being the
response of the k-th component of the system due to a unit initial momentum (or unit
impulse force) at the j-th component.

It can be easily verified that ho(t) satisfies the same matrix equation as h(t), but with
initial values Mhg(0) = 0, ho(0) = I. However, hg(t) is not a left solution unless the
matrix coefficients commute themselves [4].

FFor the discrete equation

Mgz + Cargr + Kqi = fi,y (9)



we have that

k-1

0k = [higr M + hiClgo + heMay + Y hx_y_; fj, (10)
Jj=0

where A = h(¥)(0) is the discrete matrix impulse response, that is
Mhiya + Chpyr + Khy = hggaM + 1 C + e K = 0, (11)

with the initial values Mh, = I, hg = 0. This follows by applying the z-transform to
the given discrete equation or by a simple identification of ¢ as the k-th derivative of
the solution of the continuous time equation for a given analytic forcing term.

2.1 A rational matrix characterization of the transfer function

In order to derive a formula for the impulse matrix response, we need the [ollowing
characterization of the transfer function

H(s)= (M + Cs+ K)™' =) Zb;whzn_;. (12)
Jj=11i=0
where
2n
P(s) = det[s"M + sC + K] =) bps*"* (13)
k=0

is the associated characteristic polynomial and hy the discrete matrix impulse response.
The proof follows via a convenient use of the Cramer identity

B(s)A(s) = A(s)B(s) = det(A(s))] = P(s)I,

where the adjugate matrix B(s) (transposed matrix formed from the cofactors of A) is
a polynomial of degree less than 2n — 1. By differentiating j times the Cramer identity
and noticing that A(0) = K, A’(0) = C and A”(0) = 2M, it turns out that for j > 2,
the matrix coefficients B; = BU)(0) satisfy the difference equation

ﬁ’f/lj+2 . CAj+l + IX'AJ‘ = bjf, 3j=0,...2n -2,
Ag=A; =0,

BQ!]—

where A; = m

The solution of this equation is given by the convolution

AJ = bl'hj-l'-lv



where, as before Mhjyo + Chyyy + Khp =0; Mhy =1, ho = 0.

Since H(s) = %g}l, the result follows by substituting the values By, ; or A; on the Taylor
expansion for B(s).

We can substitute s = iw to obtain the frequency response

Thgﬂ_j. (14)

2.2 The impulse matrix response

The characterization of the transfer function of a second-order matrix equation allows Lo
recover the impulse matrix response by taking the Laplace inverse transform. For doing
so, we shall introduce the following characteristic differential equation

bod®™ (t) + bydP =V (t) + - - - 4 by d'(t) + band(t) = 0, (15)
with the initial data
bod*=1(0) = 1, d®*~2(0) =...=d'(0) = d(0) = 0, (16)

whose solution can be written as the Bromwich integral [2]

1 eat
d(it) = — ¢ ——d
(t) QTrif} P(s) .

The corresponding scalar transfer function

is such that ',—,’{;7 corresponds to the Laplace transform of the k-th derivative of d(t). This
allows to conclude that the impulse matrix response h(t) is given by

2n j-—1
h(t) =3 bid D o, (17)
j:l i=0
where
Mbhiyo + Chpyy + Khi = hpyoM + e 1C + i K = 0, (18)

with the initial values Mhy, .y =1, h(0) =0.
By noticing that

2n j-—1 J_q =

ZZ P( ) hi“"‘)"rll (19)

=1 1i=0

sH(s) = s(s®1 + Cs+ K)™!

P (8)



we arrive to the following shifting property for the derivative of the impulse matrix
response

2n j—1

= 3 Bd T (20)

=0 i=0

2.3 An extended Cayley-Hamilton identity

We now proceed to establish an extension of the Cayley-Hamilton identity for second-
order pencils s*M + sC + K. With the same notation as before, we have that

2n
> bihgn—i = 0. (21)
1=0

As we shall see below, this property is related to a shifting property of the impulse
response h(t). The proof follows by writting the derivative of h(t)

2n j-1 g s
= Zbed(Jhl)(ﬂ)hgn_j,
i=11=0
as
2n41 j—2 . )
W) =YD bdV " () gy gy =Z Zb AU () = by d(t)) han—jsa,s
=2 i=0 j=1 i=0
or simply
2n j-1 2n—1
W)=Y bidV= D () hgn_jpr — Z bid(t))han-;.

j=1i=0

By the shifting property, we have that the first term on the right hand side is precisely
h'(t), from which it follows the proposed extension.
Remark We should point out that the extended Cayley-Hamilton identity is also valid
for hon—iyk, k=0,1,2,..., instead of hy,_;, that is

2n

Zbih?n—i+k =0. (22)

1=0
The reason being that the shifting property is valid for the derivatives of arbitrary order
of h(t). More precisely,

2n 3—1

RB () =D " bid =D () hgn gk (23)

j=o0 i=0

This will be shown after we establish further properties for the impulse matrix res-
ponse by using the companion matrix approach.



2.4 The case of simple roots

By introducing the following polynomials

=Zb‘.sj_l_l.| J= l|2$"'12"’l (2‘1]
=0
we can write
2n j-1 8
-ST U,
j=1i=0

Let s be a root of the characteristical polynomial with multiplicity m. If we let r;;(sk)

to be the residue of %}((—}1 evaluated at the root si, we shall have that

My

ZZ — Sk)m'k —i—1"

k=1 i=1

where
n

Eyi = Z rji(sk)hon—;-

=1

When the characteristic polynomial has simple roots, my = 1, it turns out that

h(t) = iEke“*', H(s) = i Br_ (25)
k=1 k=1 5=
where E}. is now given by
;
plon 2 Btans e

3 Relationships with the companion matrix

The treatment of second-order mechanical systems is usually done by introducing the
Hamilton state formulation

— - f. — zl
1 =¢q, T2=¢, = .
T2

This approach allows to translate several properties to our second-order framework [4].

Let us consider the first-order system

o' = Az + F(t), (27)



where

0 I
A=[~M4K —M”C]' (28)

is the companion matrix of order 2n x 2n, z the state vector 2n x 1 and I?(t) = col[0 f(t)]
a column forcing vector 2n x 1.
Exponential solutions z = e**v give rise to eigenvectors of of the form

v
o (29)
where v is an eigenvector of the second-order system and A its eigenvalue, that is, [A?M +
AC+ Klv=0.
With such formulation it is easy to show that
tA | ho(t) h(t)M
. —[%m KM |- L

By differentating the exponential matrix at the origin, we obtain the following block
representation for the powers of the companion matrix

k_ | hok kM .
e [ hﬂ,k-l-l hk+1M : (JU

where hg . = h{[,k}(()) satisfies the matrix difference equation Mgz + Cqpqr + Kqe =0
with initial values go = I and q; = 0.

The following properties are an extension of the ones for sine and cosine matrix
functions that appear in conservative systems ( C' = 0)

h(t +s) = ho(t)h(s) + h(t)MHK'(s),
(32)
W (t+s) = hy(t)h(s) + ' (t)ME'(s).

They follow from the exponential semigroup property and the block characterization in
terms of the impulse matrix response given above. We shall refer to these properties as
the extended semigroup property for second-order systems.

By differentiating the exponential matrix and using the formula for the powers of A,
we arrive to the general shifting property of the impulse matrix response h(t)

(2n) j—=1

k[k](t] = Z Z bid(j—l_i)(t)h?n—j-’rk'

J=11=0

The block characterization of the powers of the companion matrix, in terms of this
discrete matrix impulse response, and the Cayley-Hamilton identity with such matrix,



allows us to obtain the extended Cayley-Hamilton identity for a second-order matrix

equation
2n

Y bihon—jyp =0, p=0,1,2,-+-.
1=0
We should observe that the validity of such identity is analogous to the situation of
multiplying the Cayley-Hamilton identity of a matrix A by any power of it.

4 Controllability and observability matrices

Here we shall derive the controllability and observability matrices for second-order sys-
tems by employing the impulse matrix response. This approach is a direct extension of
the arguments employed with first-order systems. There is no need to use the standard
companion matrix approach.

Let us consider the second-order control system
Mq" 4 Cq' + Kq = Bu (33)

where M, C, K, are arbitrary n x n matrices, M non-singular, and B a control matrix
of order n x m. If the system is controllable, then there is a control u and a time t such
that we can drive ¢ and ¢’ to the origin. By using the variation of constants formula,

this means that

t
0 = ho(t)q(0) + h(t)Mq'(0) + /0 h(t — s)Bu(s)ds,

0 = hg(t)q(0) + R'(t) Mq'(0) + /ut h'(t — s)Bu(s)ds,

or simply

0 ho(t) h(t)M q(0) ¢ | h(t—s) Bu(s)
—I—/ ds. (34)

0 ho(t) R ()M q'(0) W(t—s) Bu(s)

We now use the extended semigroup property on the integral so that we can factor
out a common matrix block which is non-singular, since it is the matrix exponential.
Thus '

0 q(0) ¢ [ h(—s)Bu(s)
+ / ds. (35)
0 q'(0) O | W (—s)Bu(s)

By substituting

2n

h(t) = Bi()han—jy k(1) = T2, Bi(t)han-ji1,
j=1

10



with :
i-1
Bi(t) =Y bidV=1 (),
=0
we obtain the algebraic linear system
EFa=w,

where

q(0) t
w=— v a=collay a; -+ agy], ai(t) = /l; Bi(—s)u(s)ds,

q'(0)
and F turns out to be the controllability matrix
h.(] B h] B .- kg,,_] B
I = (36)
hiB hyB <+ HhaB

for a second-order matrix system. Il the system is controllable, then the given equation
will have a solution for arbitary w. This implies that rank E = 2n.

The converse of the above rank condition is also true, that is, if the matrix F has
rank 2n then the second-order equation is controllable. This amounts to show that there
is a control v and a time ¢, such that the controllability Grammian

h(—s)B [ h(—s)B

t
we= [
o h'(-s)B

is non-singular. The proof is entirely similar to the one found in the literature for first-
order equations and we shall not repeat it here. In such a case, the control

1{ lho(—h) h(=t,)M :' [ q(th) ] [ q7(0) ] }
u(t) =Q)W; o )
UL wget) wewm | Loy ] | Mg
h(~t)B ]‘

I (~t)B

t

ds (37)

h'(-s)B

where
Qt) = ’
will be such that
t ho(—t1) h(=t;)M q(t1) 0
Q(s)u(s)ds = = .
0 ho(—ty) h'(=t)M q'(ty) M"lql',

11



—AfeAt

By using the extended semigroup property and the fact that e = I, we obtain

ds.

q(ty) ho(ty) h(ty) Q0 t, [ Aty — s)Bu(s)
1 +£

q(t) hi(ty) h(ty) Mg hg(ty — s)Bu(s)

That is, the initial state can be transfered to another state in finite time through the
above control u.

It should be observed that the controllability matrix and the Grammian could have
been derived by a convenient use of our formula for the powers of a companion matrix,
or by the block characterization of the exponential corresponding to the equivalent first-
order equation with the companion matrix. However, we would have missed a key point,
that is, the shifting property, which is essential when using the exponential matrix with
a [irst-order equation.

Remark
The controllability matrix
hgl} h1f3 L hgn_213 kgn_113
hlB h,gB A hgn_lg hgnB

was derived in [8] by using a Jordan type of spectral factorization for matrix polynomials.
Here that matrix has been derived by a non-spectral direct method which resembles
Kalman’s work.

4.1 The observability matrix

We now consider the control problem
Mq¢"+ Cq¢' + Kq = Bu,
(38)
y=IFq+ Pq,
where M, C, I, are n x n matrices, M is non-singular, B is n x m and F, P are s X n.
The above system is observable when from the knowlegde of the output y(¢) and u(t), M,
C, K, F, P, it is possible to determine the initial state . From the variation of constants

formula, we have that the control forcing term contributes a known convolution response
term to the observed value. Thus, we may as well consider B = 0. We can write

y = Flho(t)q(0) + A(t)Mq'(0)] + Plhy(t)q(0) + k'(t) Mq'(0)],
or simply
y=[F('M + hC) + P(h"M + h'C)]q(0) + [Fh + Ph']1Mq'(0).

By substituting the formulas for h and h’, it turns out

2n—-1
y= > Bi(O{[F(hjt1M + h;jC) + PhjyaM + hjy1C)]q(0) + [Fhj + Phjp1]Mq'(0)}.

=0

12



In matrix terms, we have

y=p R Qo,
where
B=[Bo P1 - Pan-1)],
F(hy M + hoC) + P(haM + hy C) (Fho + Phy)M
F(ha M + h,C) + P(hsM + hyC) (F'hy + Pha)M
= F(haM + haC) + P(haM + hsC) (Fhy + Phy)M

F(hz“ M + hzu_| C) -+ P(h?,ﬂ.] J'l’f -+ hg"C) (!:‘h:irl—l + Phg,,]a"l'f

o
Qo =
qa
This system will have a solution for an arbitrary initial state whenever the rank of the
observability matrix R is equal to 2n. Since

hiyoM +ppy) C = —=hyi KK,

the observability matrix i can be further simplified. Finally, the observability Grammian
can be also introduced in the usual way.

5 Krylov subspace method

Here we shall discuss Krylov’s methods for computing the coeficients of a characteristic
polynomial and the eigenvectors associated with a second-order matrix pencil s2M +
sC + K.

Let v be a non-zero vector and set vy = hiv. From the extended Cayley-Hamilton
identity we have

2n 2n
Zbkthl—k-!-pvy: Z bkv2n'—k+P =0, p=0,L
k=0 k=0

We write in matrix form

by
by

Un—-1 V2n-2 - U1 W ] . _ _1)‘[ U2n ]
Un  U2pn-1 - U2 U ; U2n+1
b?u—l
b2n
The matrix on the left, with the above definition of vg in terms of A, can be written
[ hon—1v hop_sv -+ hv hgv ]

hopv  hop—v -++ hgu hyv

13



This is just a block permutation of the controllability matrix for the second-order equation

with a scalar control u(t) g
qﬂ' + C:q! + ‘r{'q‘.= Uﬂ(t)-

We thus conclude that if the above system is controllable for certain nonzero vector v,
then the coefficients of the characteristic polynomial can be obtained by Krylov’s method.

The eigenvector equation
(M +sC+ K)v=0, v#0 (39)

arises when seeking non-zero exponential solutions ¢ = e*v for the second-order equation
Mq"4+Cq'+ Kq = 0. By writting the exponential solution in terms of the matrix impulse
response hy, it turns out that v satisfies the equivalent relationship

(hggp1M + hiC)v + AhMv = \ev, (40)

for arbitrary non-negative integer k.

Let us assume that all eigenvalues Ag, with corresponding eigenvectors v, are distinct.
Then for any given vectors yp and y; we can find constants cx such that

Yo = C1v) + Cavp + -+ - + Convgy,

Y1 = c1A1vg + €2A07 + -+ - 4 cp Agnvg,.

= Uk
we=| 2 ]

constitute a basis for the 2n-dimensional euclidean space.

The reason being that the vectors

Let us define the vectors
Yk = (hrg M + hiC)yo + hip1 Mys. (41)
By substituting yo and yy, it follows that
Yk = clAfvl -+ c2A§u2 4ot cn,\’z‘“vgm k=0:2n-1.

We now consider the linear combination

2n
Q1.iY2n-1 + @2iY2n—-2 + -+ @2n,iYo = Z ckPi(Ak) vk,
k=1
where
n
$ilA) =) gid®r,
r=1

14



By choosing
P()
Pi(A) W

an eigenvector corresponding to the eigenvalue A; can be obtained as the linear combi-
nation

2n
vi =Y qj(A)yen-i (42)
J=1

where ¢;; = ¢;(A;). Here the polynomials

i—1
gi(A) =) beN 1K,
k=0

can be obtained by the recurrence relation go(A) = bo, ¢;j(A) = Agj—1(A) +b;.
Remark

By choosing yo = 0 and y; to be the first vector of the usual basis for the euclidean
space, we obtain that v; is just the eigenvector obtained by Danilevskii method [6].

6 Difference and higher-order matrix equations

The results obtained for second-order matrix equations can be easily generalized for
higher-order or discrete equations. We shall simply enunciate them since the arguments
will the same as those employed for second-order equations.

Let us consider the m-th order equation
Aﬂq(m} (t) + Alq(m_l(t] v i . Am—lq;(t) + Amq(t) = f{t), (43)

where the A}s are n x n scalar matrices, with Ag non-singular.
The transfer matrix is given by

mn mn j—1

o gi=isl '
B = (2 AT =0 L by e ()
k=0 J=11=0
where
m ) mn )
P(s) = det[y_ Ais™ ™= bis™ (45)
1=0 i=0

15



and hy is the solution of the characteristic difference equation

> Ajhnir—gy =0, Mhpoy =1, hj=0, j=0:m—2. (46)
j=0

As before, h(t) is the inverse Laplace transform of the transfer matrix and satisfies
Ach™(t) + AR () 4 - - - 4 Aot A (t) + Amh(t) = 0, (47)

with the initial values Agh(™=Y =1, RU)(0) =0 forj =0:m — 2.

We have that

n j—
h’[p) Z Z b 'd(J"hI)(t)hmn—j-Pps p=0,1,2,---, (48)
j=11i=0
where d(t) is the solution of the scalar characteristic differential equation

mn

Y bidy(t) =0, bodpn—y =1, d90)=0, j=0:mn -2 (49)

The extended Cayley-Hamilton identity reads

mn

> bihmn—ity =0, p=0,1,2,-- (50)
1=0

The case of difference equations can be handled directly with the z-transform or by
using the power series relationship g = ¢(¥)(0). Let us consider the discrete equation

Ai}‘?m-f-k + Algm-Hc-—l + e Apy Gr41 + Am@'k = fk‘ (51)

We have that the discrete matrix impulse response A = h{*)(0) satisfies

m
ZAJ-hHm_j =0, Aohm_y =1, hj=0, j=0:m—2. (52)
=0

It turns out that

mn j—1

hk'l‘P = Z Z bjd-’c+j-!'-lhmn—j+p: r=0,12,---, [53)
j=11=0 '
where dj, = d¥)(0) satisfies the characteristic difference equation

mrmn
E bidigmn—j =0, bodmn_1 =1, dpg=0,k=0:mn-2. (54)
k=0
The variation of constants formula for the continous and discrete equation in terms
of the matrix impulse response can be written in a straightforward manner.

16
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