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Abstract

We will analyze the stationary frequency modulated (FM) process with the additive am-
bient noise

Zy=Yi+e = Acos(wet+ X(t)+ @)+, forteZ

where

X(t) = Bsin(wo t + ¢) (1.2}

is the sinusoidal modulating process, A and B are constants, w, wg € [0, 7] are, respectively,
the carrier and the modulating frequencies and ¢ and ¢ are uniformly distributed random
variables on (—, n| independent of each other and of the noise process {€:}iez. We will
consider the noise process as being Gaussian and white for simplicity of the exposition.
However, the results are similar for any stationary and ergodic process with continuous
spectral density function. Here we will estimate the relevant parameters A, B, w, and
wo by an updating procedure based on HOC (higher order correlations) sequences in the
fine tuning of parametric filters. We will use two different parametric families of time
invariant linear filters: the alpha and complez filters. Here we alleviate the assumption of
Gaussianity for the signal and we prove its stationarity and ergodicity under appropriate
conditions.

Abbreviated Title : “Frequency Modulation”.

Key words and phrases : Stationary, sinusoidal frequency modulation, spectrum, in-
stantaneous frequency, recursive method, parametric filter, ergodicity.

AMS Subject Classification : Primary 62M10, secondary 62M07.



1. Introduction

In this paper we want to apply the CM Method ideas to the frequency modulated
(FM) process

Zy=Yi4+e=Acos(wet + X(t)+ ¢)+¢e¢, forteZ (1.1)

where

X(t) = Bsin(wo t + ¢) (1.2)

is the sinusoidal modulating process, A and B are constants, w,, wo € [0, 7] are, respectively,
the carrier and the modulating frequencies and ¢ and ¢ are uniformly distributed random
variables on (—m, 7| independent of each other and of the noise process {e}icz. We
consider the noise process as being Gaussian white noise for simplicity of the exposition,
that is, e, ~ M(0,02), nonetheless for any stationary and ergodic process with continuous
spectral density function f.(A) the results follow similarly.

Our goal is to estimate the instantaneous frequency, that is, the derivative with respect
to the time of the instantaneous phase defined as

d .
w(t) = pr (wet + Bsin(wot + @) + @) = we + Bwg cos(wo t + ), fort e Z (1.3)

under the extra assumption that the modulating signal varies slowly compared to the
carrier, that is,

wC >> Ldo.

The instantaneous frequency varies about the unmodulated carrier frequency w, at
the rate wg of the modulating signal and with a maximum deviation of B wy radians.

We will consider discrete time parameter set T' = Z, but we point out that the results
of Sections 2 and 3 also apply to the continuous time T = R.

We also assume that

T < we—Buwy<we+Buwy <7

since we want the frequency support to be in [—m,7]. The constant B is called the modu-
lation indez.

In order to estimate the instantaneous frequency (1.3) we need to estimate the param-
eters we, wo and B. We will also estimate the parameters A and o.. The novelty here is the
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updating procedure based on HOC (higher order crossings or higher order correlations,
depending on what one chooses to observe, zero-crossing counts or correlations) analysis
to produce these estimates. Here we will just consider higher order correlations. For the
case of finite number of frequencies using this procedure see He and Kedem (1989), Lopes
(1991), Kedem and Lopes (1991) and Lopes and Kedem (1991).

The analysis of FM models is much more complicated than the case of finite frequencies
(see Kedem and Lopes (1991)). In some sense we have to deal with an infinite and dense
set of frequencies in (—m, 7] (see (3.9) and (3.10)).

It is well known that sine-wave modulations enable signals to be transmitted at fre-
quencies much higher than the signal-frequency components.

The notion of sine-wave modulation means that we have available a source of sinusoidal
energy with a carrier wave of the form

Y(t) = Acos(wet + ¢), t € Z. (1.4)

Any of the parameters A, w. or ¢ may be varied in accordance with the modulating
signal. In FM systems one modulates the frequency in accordance with some information-
bearing signal. An advantage of FM systems over others is that the former provides better
protection against interfering signals and noise. However, to obtain this improved response
a wider bandwidth is required. We noted previously that increasing the amplitude of the
modulating signal it should increase the bandwidth occupied by the FM signal. Increasing
the modulated signal amplitude corresponds to increasing the modulation index B. So the
bandwidth of the FM wave will depend on B. If the modulation index is zero, the resulting
process

Zy = Acos(wct+ @) +e, tEZ,

is one sinusoid plus noise model. The CM Method applied to the multiple frequency
version of this model was already pursued in some papers due to Benjamin Kedem and
his collaborators. For an application of the CM Method under the point of view of fixed
points of a certain mapping see Lopes (1991), Kedem and Lopes (1991) and Lopes and
Kedem (1991).

When the parameter B in (1.2) is equal to zero we face the case of only one sinusoid
with frequency w.. In this case it is already known that the updating procedure based
on HOC analysis works as it can be seen in He and Kedem (1989). When the parameter
B in (1.2) is equal to one or it is already known a priori there is a simplification in our
procedure as we will see at the end of Section 5.3.

A careful analysis in the model (1.1) is needed before showing how to use the higher
order correlations.

Let {L¢(-)}sco be a parametric family of time invariant linear filters, where 6 is a
finite dimensional parameter in the parameter space ©. Denote by {Z,(8)}+er the filtered
process

Z(0) = Lo(2)y,
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where {Z,}:er is the zero mean stationary process given in (1.1).

Then {p1(6)}sco, defined by

T T Bz 0)P
is a HOC family defined from a parametrized first order autocorrelation. Here and else-

where, a bar denotes complex conjugate and R{z} the real part of z.
Let the updating scheme based on higher order correlations given by

ary1 = p1(ax), for k€N, (1.5)

be applied to the process (1.1).

We will choose a time series {Z;}, of size N to give estimates for E[Z(0)Z41(9)],
for any 6 € ©, when [ = 1 or 0. Therefore, the estimates of the autocovariance or variance
of the process {Z¢(8)}ieT, for any 0 € O, are

1 N=1 S ——— 1 N—1 o
i ;[Zf“’) ~Z@1Zin(0)-ZO)] o > 12;(6) - ZO),

i=1

based on the time series Zy,Zs, -+ ,Zn. Here the inner bar denotes the mean average
value.

In Section 6 we will show that the estimates are consistent in the situation we are
interested.

We will analyze the efect of special filters applied to the time series that will make
the updating procedure to converge to values that give us important information. For
instance, aj will converge to w, in Section 5.1.

This paper is organized as follows. Section 2 contains the derivation of the auto-
correlation function and the spectral measure of the general process {Y;}iez as in (1.1),
considered as the real part of a complex signal. In Section 3 the spectral distribution
function of the sinusoidal modulating process as in (1.1) and (1.2) is presented (see also
Subba-Rao and Yar (1982)). The first order autocorrelation of the alpha-filtered process
Zi(a) = Lo Z)y, where

Lo() =1 —a)l+aLls(B)

with I and B, respectively, the identity and the shift operators, is given in Section 4. In
Section 5 we present the instantancous frequency estimate based on ideas related to the
CM Method. This estimate is given in two different ways (the one in Section 5.4 is based
on stretches of data). The ergodicity of the stochastic process (1.1), analyzed in Section 6,
ensures the strong consistency of the estimator, used in Section 5.1, via Birkhoff Ergodic
Theorem.



The content of this paper is part of the Ph.D. dissertation of the first author under
the guidance of the second at the University of Maryland.

2. Angle Modulation Processes

The general results of this section will be applied to the specific situation we want to
analyze in Section 3.
Let {Y:}ter be the angle modulated process

Y; = A cos(w.t+ X(t)+¢), for teT, (2.1)

where T = R or Z, A is a constant, w, € [0,] is the carrier frequency, X, is the mod-
ulating process and the phase ¢ ~ U((—=,n]) is a uniform random variable on (—m, ]
independent of Xj.

The stochastic process {Y:}¢er is called phase modulation (PM) of the carrier fre-
quency by the input process {X;}:cr. If the input process is itself formed by integrating
another random process, say {Uy }1eT, then the process {Y} }1er is called frequency modula-
tion (FM) of the carrier frequency by the process {Uy }+er. Angle modulation processes are

extremely important examples of complex exponential modulation (see Gray and Davisson
(1986)). Notice that we can rewrite {Y;}:er as the process

Vi = Acos(wet + X (1) + §) = 5 {e e XO+) 4 gmivatemiX(O40))

= 2LV (1) + VD)

where

Ve = exp{i(X¢ + ¢)}.
It is well known that, for all {,s € T and t > s,
e E(Vi) = B[¢X+9)] = B¢ |E[e¥] = 0 = B(T}),

° RVV(tss) = E[VtVSJ = E[ei[X,—X,)] = @X'_X’(l)’
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where ® x,_x, (1) is the characteristic function of the increment of the process X; between
the two sample times.

Our initial goal is to obtain the second order properties of the process {Y;}ier in
terms of the process {V;}ie.

Observe that the autocovariance function of the process {V;}er is not, in general,
symmetric but it is Hermitian, that is, Rvv(t,s) = Rvv(s,t). Also, observe that for ¢ # s

o E[V,V,] = Elexp{i(X: + X,)})E[e"??] = 0 = E[V;Vj). (2.2)

Lemma 2.1: Let the process {Viher be weakly stationary (e.g., of {Xi}ier s strictly
stationary). Then, for allt, h € T,

e EY)=0

A2 . T
o Ryy(h) = T{e"**c’*Rw(h) + e~ Ry ()} (2.3)
Proof:
For any t € T', observe that
A . . _
E(Y}) = E{e“""E(V;) + e "'E(V;)} = 0.

From equalities in (2.2), for any t, h € T,

Ryy(h) = E[Yi1Y] = %EE{(ei“‘(t+”)T/z+fa + e~ (+NTLL)
X (e7 ™V, + e'V)] = Azz{eiw‘kva(h) o+ e B Ve Vi)
+ ' uettech) By, Vi) 4+ e 7" Ry v (R))
- if;-{e“’-’c**Jff,w.x(h) + e " Ryy (h)}.
m

Denote the set of all frequencies by 7". Depending on 7' being the continuous or
discrete time parameter set 7" will be, respectively, the real line or the interval (—=, 7).



Lemma 2.2: Let {Vi}ier be weakly stationary process with periodic spectral distribution
function Fy()\) with period 2m. Then, the speciral measure of the process {Y:}ieT is given
by

2
dFy()\) = AT{dFV(,\ — )+ AP~ =Y for all A €T (2.4)

Proof:
Since the process {V;}eT is weakly stationary, we have

. ¥ ek Ty ()
/ eIk dFy()\) = RYY(h) = T{e!wcthv(h) -+ e—twcthv(h)}

2 i 1 ]
_ _.rii_{e;wch,/ e:wh dFV(Ld)'}‘B_:wchf e—twh dFV(w)}

2 : e
g A_{ ei(u+wc}la dFv(LU) s e:(—w—wc)h dFv(w)}
4 T T

2 .
= AI{,/ e dFy(\ — we) + f e dFy (=X —we)}.
b i

The last equality comes from changing variables A = w + w, for the first integral and
A = —w — w, for the second one.

Therefore, since

| o A
/, et dFy()) = ./'r e‘“‘—z{dFv()« —we) + dFy (=X —wc)},

the expression (2.4) follows from the uniqueness of the spectral representation of the au-
tocovariance function of the process {Y;}er.

We mention here that

Ryvy(h) = Ryv(—h)

since the process {V} }er is weakly stationary. Then, dFy()\) = dFy(—2).

The first term in expression (2.4) is the spectrum of the complex baseband wave V;
shifted by the carrier frequency +w,; while the second term is the spectrum of V; shifted
by —w, (see Rowe and Prabhu (1975)).

We can see that in order to analyze the real process {Y; };er we only need to analyze
the complex process {V;}ier. This will be done in the next section.



3. Sinusoidal Modulating Process

In this section we will be interested in analyzing the modulated process {Y} }ier as in
(2.1) when the modulating process X is given by

Xi=Bsin(wet+¢), forteT, {3.11

where B is a constant, ¢ ~ U((—=,7]) and wy € [0, 7). Observe that the random variables
¢ and ¢ are independent of each other and also independent of the noise process when it
is present. Therefore, we are interested in analyzing the following stochastic process

Y: = A cos|w.t + B sin(wot +¢) + ¢, forteT. (3.2)

Our main purpose here is to estimate consistently the real parameters A, B, w. and
wg based on sample values. This will be explained in Sections 5 and 6 but first we address
some preliminaries.

Definition 3.1: The function

w(t) =wc+ Bwg cos(wot + ), forall teT,

is called the instantaneous frequency of the FM model {Y;}ier.
The results in Section 2 will be applied here for the input process {X;}«cr given in
(3.1). First we observe that {X}er is a strictly stationary process.

The assumptions outlined in Section 2 are satisfied for the process (3.2). In fact, we
know that the process in (3.1) is weakly stationary and, for the process {V;},e7 given by

Vi = exp{i[B sin(wot + ¢) + ¢]} (3.3)

we have, for any t, h € T,

e E(V;) =0,



o E[Vi11Vi] = Elexp{iB[sin(wo(t + 1) + @) + sin(wgt + ¢)]}] E[exp{i24}] = 0
2= E['V'!+hl/!]-

In the next lemma (see also Subba-Rao and Yar (1982)) we give the autocovariance
function at lag h € T of the process {V;}ier and we observe that this is a real and
symmetric function of & even though the process V itself is complex.

Lemma 3.1: The autocovariance function at lag h € T of the process {Vi}ier 15 given by

Ryvy(h) = Jo(2B sm[-u,uh]) &= z J2(B) cos(nwgh) (3.4)

n=—oo

where for complex z with |arg 2| < ® and for v € Z

(2) =(

l\:llir

Z(_l)k (_;_)Qk
RT(v+k+1)

k>0
is the Bessel funciion of the first kind of order v wnth Jo(0) =1 .

Proof:
Observe that, for any h € T,

Ryy(h) = E[Viss Vi) = Elexp{iBsinfwy(t + h) + @] + i¢} x exp{—iBsinfwot + ¢] — i¢}]
= Elexp{iB[sin(wot + wolt + ) — sin(wot + )]}

In order to show the first equality in expression (3.4) one makes use of the fact that ¢
is a uniformly distributed random variable on (—=, 7] and also makes use of the formula for
the difference of sine at two different arguments and the following formulas (see formulas
13 and 18 in Gradshteyn and Ryzhik page 402)

° f cos|z cos(.w)] cos(na)de = 27 ¢ % )T n(2)
o / sin[z cos(a)] cos(ne) de = 27 5111(1:171')J,7( z) (3.5)

where J;,(z) is the Bessel function of the first kind of order n € Z and z is any real number.
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Using the above fact we have that, for any h € T,

Ryy(h) = El-:r.r- exp{i2B sin(%woh) cos[%(?.wot + woh + 2z)]} dz
=2 I cos[2B s'n(l h) cos(wot + 1w h+ z)]dz
o). g™ s e

' : " 1
+ 2% sin[2B sin( 50 h) cos(wot + 5o h+ z)] dz.

-7

The second integral in the last equality is zero where one makes use of the second
formula in expression (3.5) for n = 0. For the first integral in this equality consider the
change of variables

1 ;
$=2B sin(quh) and y=uwot+ %wgh +z

and use the first formula in expression (3.5), to obtain

1 ™ 1 1 w°t+%w°h+1r
o™ cos[2B sin( Fwo h) cos(wet + Ewgh + z)]dz = o / e cos[z cos(y)] dy
—r wo woh—m
1 T
= cos[z cos(y)] dy = Jo(2).

—T

Therefore, for any h € T,

Ruv(h) = Jo(2B sin[%woh]).

Now we want to show the second equality in expression (3.4). See Watson (1962) for
the proof of the equality

Jo(v/C? + 22 = 2(zcos(¥)) = D _ anJu(C)Jn(2) cos(n) (3.6)

n>0

where (, z € R, 9 € (=7, 7] and

_{1, if n=0
W= 12 i a0



Using the equality (3.6) for ( = z = B, ) = woh and the fact that for any n € N,

InlZ), if n is even

J-n(2) = Pt
(2) { —Jn(2), if n is odd

we can derive that

J9(2Bsin[%woh])= S J2(B)cos(nuwoh).

n=-—ococ

Therefore, the expression (3.4) holds.

|
From Lemma 3.1 one concludes that the process {V;}ier is also weakly stationary.
The results in expression (2.3) and Lemma 3.1 give that, for any t, h € T,
o E(Y;)=0,
A .l —iweh ol
o Ryy(h) = —4—{6 <*Jo(2B s1n[—2-wgh]) + e Jo(2B Sm[§w0h])}
A? 1

= 7.]0(23 51n[§wgh]) cos(wch). (3.7)

As expected, this autocovariance function is symmetric. Because Jo(0) = 1, we men-
tion that Ryy(0) = %,i. From this we see that the average power associated with the
frequency-modulated carrier is independent of the modulating signal and it is in fact the
same as the average power of the unmodulated carrier. This result is true for any modulat-

ing signal whose highest frequency component is small compared to the carrier frequency.
See Schwartz (1959).

Since Ry vy (h)=Ryy(—h) we have a symmetric measure for the process {V;};er. Then,
from the expression (2.4) in Lemma 2.2, the spectral measure of the process {Y:}ier is
given by

A2
dFy()) = —4—-{dFV()\ —we) + dFy(A +w.)}, forany A e T'. (3.8)

Therefore, we have above a version of the expression (2.4) and due to the symmetry
of the autocovariance function of the process {V;}¢er, we have dFy(—\) = dFy()\). Hence
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the spectrum of {Y;}ier is the sum of shifted components of dFy, where the shifts are
determined by the carrier frequency we.

We remark here that the results of the previous sections were proved for 1" discrete or
continuous but they will be used, in the next sections, for the case when the time param-
eter set T is discrete and the set of all frequencies is T = (—7, 7).

3.1 - Spectral Distribution Function of the FM Process

We are interested in providing an explicit expression for dFy(A). First notice that,
from expression (3.7), Ryy(h) does not go to 0 when |h| — co. We will show below
(see expression ( 3.9)) that Fy contains jumps (a countable number of them) and this is
another way to express the fact that Ryy(h) does not go to 0 when |k| — co. Therefore,
the spectral measure of the process {Y;}iez has atoms (see Subba-Rao and Yar (1982)).
Since {Y%}:ez has mixed spectrum, we can not write dFy(A) = fy(A) dA, where fy is the
spectral density function of ¥; (we could have an equality of this type in a generalized
sense for mixed spectrum cases where the generalized function fy is allowed to contain
some Dirac delta functions).

Here one wants to obtain a representation of the spectral distribution function of the
process {Y; }1ez whose support is in (—x, 7]. Notice that we are working with discrete time
parameter set 7' and all frequency values are in (—, 7.

Lemma 3.2: The spectral distribution function of the process {Y:}iez is given by

dFy()) = A{ i JAB){S[A — (we + nwo)] + 6[A + (we + nwo)]} dA.  (3.9)

where A &+ (we + nwg) s considered modulus 2w, that s, A & (we. + nwy) € (—m,x), for
any n € Z.
Proof:

Using the second equality of the autocovariance function (in Lemma 3.1) of the pro-
cess {Vi}iez associated to the process {Y;},ez and by invoking once more the spectral
representation of Ryy(h), we have

11



/ e dFy(A) = Ryv(h) Z J2(B) cos(nwoh)

el n=-—co
JrZI(B)(Binwoh i e—t'm..;oh)

w

THBH [ M50 = mn)dh+ [ M50+ man) dA)

-

_ / "l Z RE10:0 0 DR R G By

where §()) is the Dirac delta function. Then, for any A € (—m, 7],

dFy()\) = Z JE(B)[E(N — nwo) + 6(\ + nwp)] dA.

n=—0oo

From equality (3.8) we obtain the desired expression for the spectral distribution function
of the process {Y; }¢ez.
|
We refer the reader to Lopes (1991) for a different representation of the process in
(3.2). We have shown there that the process {Yi}ier 1s equivalent (with probability equal
to 1) to the process

oo

Yi= ) AJu(B) cosl(we + nwo)t + n), (3.10)

n=—0o0

where AJn(B) is a constant for each n € Z, the phases 1, are equal to no + ¢ with ¢
and ¢ independent random wariables uniformly distributed on (—m,x|. Moreover, 1, are
dependent random variables uniformly distributed on (—m, 7).

In order to prove this result we show in Lopes (1991) that E|Y; — | == (),

Notice that, when wq is irrational, from (3.9) or (3.10) one can conclude that there
exists a dense set of jumps in the discrete part of the spectral distribution function of the

process {Y:}iez.
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4. First Order Autocorrelation of the Alpha-Filtered Process

We recall that our main goal is to give an estimate of the instantaneous frequency
w(t) (see Definition 3.1) for the zero mean stationary process {Y;}:ez given by

Yy = Acos|w.t+ B sin(wot +¢) + ], forteT,

where A and B are constants, we,wg € [0,7], and the phases ¢ and ¢ ~ U((—=,n]) are
independent of each other and of the process {€;}:er where the noise process is Gaussian
and white with mean zero and variance o?2.

In order to do that we need to compute the first-order autocorrelation function of the
alpha-filtered process {Yi(a)}tez. First one recalls some definitions.

Consider the stochastic process {Z;}+¢cz as in (1.1).

Definition 4.1: A parametric family Ly of linear time invariant filters is defined as the
set of filters

{Lo(:) ; 0 €0},

where O is the parameter space, with impulse response function {h,(6)}52_

function H(A;6) obtained from the Fourier Transform of the h,(6), that is,

and transfer

(e o]

H(\0) = ) exp(—inA)hn(6).

n=—oco

For this to happen we consider the following matching condition

D [ha() < o0
n=—oo
and that
[H(X;0))? dFz()\) < oo,
Ti’
where T' = (—m,n] or R depending on the process being considered with discrete or

continuous time parameter set T'.
Let us denote {Z(6)}er the filtered process defined by the convolution

Z0) = Lo(Z)e= Y ha(0)Zi—n = (ho * Z),

n=-—0oo

13



where * denotes convolution.
We shall consider a particular parametric family of linear filters.

Definition 4.2: The alpha filter applied to the process {Z;};ez is defined as the time
invariant linear transformation

Za)=(1-a)Zi+ aZi_i(a), for tE€Z

where —1 < a < 1, with impulse response function (see Kedem and Li (1990))

(1—-a)a™, forn >0

0, otherwise

=

The corresponding squared gain function is given by

(- ay
A; -1 y < 1 - A< 4.1
|H(\; o) = I a0 <a<1l and T<ALT® (4.1)

One can write the squared gain function above in a more convenient way as

1—a)? (1—a)
H AP = ( = e '
231;1(A) 251:123\)
=(1—Q')2{es)\_a, e~ A — }
={i—8) {QSin()\)ei)‘[l —ae]  2sin(A)eT A1 — o] }
e i

=~ a)z{Qsin(/\)[l —ae ] 2Sin(>~)[1 “a])

:(1___0:) e )\}{ z,\z m_et'A E(Gfei'\)

m>0 m2>0

z —i(m i(m m
=(1 -0 T gy e e
m>0

(1o ap S Sl 0 »

m>0

The expression (4.2) will be used later in Lemma 4.1.
From now on we do not consider the noise process and consider the zero mean sta-
tionary process {Y;}icz given by (3.2) with autocovariance Ryy(h) given by (3.7) and
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generalized spectral density fy(A) (it contains Dirac delta functions corresponding to the
points of jump in the spectral distribution function dFy(A) of Y) given by (3.9).

Definition 4.3: The autocovariance at lag h of the filtered process {Yi(a)}tez is defined
as

T

Bl¥i@¥ura(@)) = [ MHL P aR () = [ cosOm)HaO)? dFr ()

-

where {Yy(a)}ez is a real process and dFy(4)(A) = |Ha(A)|* dFy(A) is symmetric and
|Ho(N)|? is given by the expression (4.2).

Definition 4.4: The first-order autocorrelation function of the filtered process {Yi(a)}iez
is defined as

Y (o) = EE@)Yerr(e)] _ S cos(N) | Ha(V)]? dFy (N)
& EV2(@)] [ [Ha(NEdFy(M)

(4.3)

where |Hqo(\)|? is given by (4.2).

In what follows we derive a convenient representation for pY ().

Using the expression (3.9), the autocovariance at lag 1 and the variance of the filtered
process {Yi(a)}iez (respectively, h=1 and h=0 in Definition 4.3) are given by

m

¢ BIY()Yia(a)] = [ cos0IHa(VI dFY ()

—T

= /’T cos(A)|Ha(N) I2 A Z J2(B)[B(X = (we 4 nwy)) + (A + (we + nwo))]

- n=—co

A Z J2(B)|Ha(we + nwp)|? cos(we + nwp) (4.4)

n=-—oo

and

o E[V?(a)] = / Ha (V)2 dFy (3)

n=—00

7 2 oo

= [Ha(wé— S TEB)SA — (we + nwo)) + 6(A + (we + nwo))]
A
T

=i Z B)|Ha(we + nw)|?. (4.5)
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The last equality in expressions (4.4) and (4.5) was obtained from the symmetry of
the cosine function in (—=, 7] with the square gain function |H,(\)|? given by (4.2).
Therefore, for any a € (—1,1) and any t € Z,

o Bl¥i(a)Yua(@)l = 5 D JAB) Ha(we + o)l cos(w + o)
e BYA@)] =5 3 TAB)Halwe + )l (46)

Our purpose in the end of this section is to write the above expressions as power series
in a. This is done in the next lemma.

Lemma 4.1: For any a € (—1,1), the autocorrelation at lag 1 of the process {Yi(a)} ier
15 given by

,0;,(05) - E[Y;(a)}ft'l'l(a)]
E[Y(a)]

L (- el At 3 Jo(2B sin[3(j + L)wo]) cos[(j + Lwelad + 127} )
(1 — )2 4 {127 350 Jo(2B sin[} jwo]) cos(jwe)od — 12 ) ‘

Proof:
The proof of this lemma involves extremely long computations and we refer the reader
to Lopes (1991) for it.
|
We need the above expression for an error estimation at the end of Section 5 (see

(5.12)).

5. Estimation Based on Sample Autocorrelation

In this section we consider the stochastic process {Z;}cz given by (1.1) and (1.2)
with wy << w,, that is,
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Zy =Y, +¢& = A cosjwct+ B sin(wot + )+ @)+, forteT, (5.1)

where A and B are constants, w., wg € [0,7] with wy << w,, and the phases ¢ and
¢ ~ U((—m,x]) are independent of each other and of the process {&;}ter where the noise
process is Gaussian and white with mean zero and variance o?. Later we will make some
assumptions related to the modulation index B.

We want to estimate the parameters of the model (5.1) through the sample autocorre-
lation based on a time series {Z;}]_, of N observations. The parameters are the amplitudes
A and B, the carrier frequency w,, the modulating frequency wq and the variance o2 of the
noise. The estimates of the above parameters are everything we need in order to estimate
the instantaneous frequency of the signal Y;.

The estimation of the parameters is based on the autocovariance function at lag h € T'
and variance of the time series {Z;}X., and, therefore, we need to know if the estimator is
consistent. This is the reason for the considerations about ergodicity in Section 6.

We shall consider another parametric family of linear filters different from the alpha
filter introduced previously. Denote 8(a) = cos™(a).

Definition 5.1: The complez filier applied to the process {Z;}«cz is defined by the
transformation

Zy(a, M) = (14 e%IBYMZ, for teZ, -1<a<l and —7<6b(a)<m,

where M is a positive integer and B is the shift operator BZ, = Z;—;. We think of 8(a) as
the “center of the filter”.
Clearly,

M
M\ .
Zy(a, M) = Z (n)cw(a)"Z;_n, for t€Z, —w<0(a) <7 and M € N-{0} (5.2)
n=0

and the impulse response function is

M

if(a)n £ & <
h(n;a, M) = (n)e ’ e U_n_M-

0, otherwise

The transfer function is
H;a,M) = (14 @O0 g5, _r<A<n
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and the corresponding square gain function is

A—6(a)

|H(X; 6(a), M)|? = 4M cos?™M ( 5

), for —r< A\, 0<7m and —1<a<1l. (5.3)

For properties of the complez filter see Lopes (1991) and Lopes and Kedem (1991).

Let {Z}*+M be a time series of length N + M obtained from the process (5.1) and
Z(a, M) the correspondent complex-filtered time series version. We consider M fixed (in
fact, M=1 will be used in Section 5.1). For each variable @ € (—1,1), the first order
autocorrelation function is given by

R{E[Zi(o, M) Z 441 (e, M)]}
"E|Zy(a, M)|? ’

pi(a) = pf(a, M) =

Let agy1 = pi(ag), for £ € N, be the updating scheme applied to the process (5.1).
The complez filter is used in Lopes and Kedem (1991) for the updating procedure
based on correlations for the case of finite number of frequencies but not for FM models.

5.1 - Carrier Frequency Estimation

In this section we want to obtain the estimate of the carrier frequency w.. It will be
based on the CM Method using the complez filter (see Definition 5.1). Here we will consider
the situation of a narrow band signal where the modulation index B is less than 7. Figure
1 show the graph of J,, for any z € R and n = 0,1,--- ,4. Notice that Jo(z) > Ju(2),
for all n € N — {0}, when z € (0,%) (see Figure 1). So, among all possible frequencies
we + nwg, for n € N, of the process {Yi}ter, we is the one with the largest amplitude (see
expression (3.9)).

Here we will need to iterate the map pi(-). If we apply the complex filter with M =1
to the time series {Z;}/L;, then the updated « in the iterative procedure will converge to
we. We explain now why this happens.

When there exists a finite number of frequencies the iterative procedure applied to
the complex filter has a tendency to converge to the frequency closest to the initial value
ag. The reason is that the weight in the weighted average (see Kedem and Lopes (1991)
and Lopes (1991)) is larger for the frequency closest to the initial value ay.

The situation when we have an infinite number of frequencies (see (3.9)) is different.
There exists a dense set of frequencies. Therefore, the closest one to the initial value ag
does not exist. In this way, the iterative procedure has simply a tendency to converge to
the frequency with largest amplitude (the weighted average makes the iterative procedure
to converge to the frequency with the largest amplitude). So, we can estimate w,, since

this is the frequency with largest amplitude Az—drg(jjl (see (3.9)) when the modulation index
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B is less than 7 (observe that Jo(z) > Jn(2), for all n € N — {0} when z € (0,7) as one
can see in Figure 1). Notice that increasing M it attenuates the difference. Therefore, it
is better to take M small (say, less than 10). The value M =1 is optimal.

Let {Zi(a,M)}icz be the complex-filtered version of the process (5.1) where a €
(—1,1) and M € N—{0} are the filter parameters. The first order autocorrelation function
of the complex-filtered stochastic process {Z;(a, M)}iez is given by

R{E[Z(a,M)Zti1(c, M)]}
E|Z(a, IVI)P

plz(a'! M) =

Mgz T2(B){cos?M (L0t y | oog2M (<o () H0n ) o5, ) + a pf(a, M)

n=—oo 2
4M—1425°% JE(B){COSQM(%) o COS:»M(E‘_(;H&)} k) pg(a,M)( |
5.4

)

where 6, = w, + nwy, for any n € Z.

Let {Z,}\AM be a time series of length N4+M obtained from the process (5:1). Let
Zy(a, M) be the correspondent complex-filtered time series version with o € (—1,1) and
M € N — {0} being the filter parameters. We consider a time series Gaussian white noise
{e:}{L,. In the simulations we take N=3000. As we said before we use this time series to
estimate pZ(a, M).

See Table 5.1 and Table 5.2 for the above updating procedure applied to the estimation
of the carrier frequency. From Table 5.1 we observe that when M is equal to 1 (the first
possible value for the parameter M € N — {0}) it does not matter what the size of the
time series is. The procedure works fine. If B is small, we always converge to w, in the
case when the signal-to-noise ratio is sufficiently large. These tables show that our method
works for solving the problem of finding the carrier frequency we.

We observe that when M is large, even though B is small and the signal-to-noise ratio
1s large, the iterations ag41 = plz(ozk,M) do not converge to w,.

5.2 - Modulating Frequency Estimation

Now we want to estimate the modulating frequency wy. First we apply a low-pass
filter to the time series {Z;}}, in order to filter out the carrier frequency we, supposing
we have its estimated value. The spectral distribution function of the resulting time series

(we will use the notation {Z}{i] for this time series) will have now at w. 4wy the highest

amplitude and the value of this amplitude is given by ﬁg(ﬂ (see (3.9)) and note that
now J1(B) > Ju(B), for n > 2 and B € (0, 7) as one can see in Figure 1). Then we

apply the iterative procedure again to the resulting time series {Z};’il using the complex
filter (see Definition 5.1) with M=1. The convergence of this procedure for the time series

{Z,}1L, will give us the consistent estimate of w. +wo by the same reasoning as in Section
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5.1 when we wanted to find the frequency w, for the time series {Z,}X;. Since we already
know the estimate ©., we can obtain ©g. This solves the problem of finding the modulating
frequency wy.

5.3 - Estimation of the Remaining Parameters

In order to estimate the true parameters A, B and 0., we need three pieces of informa-
tion involving them. This means that we need three equations involving A, B and o.. After
we obtain these three equations, then with the help of a numerical method we will be able
to get the estimates A, B and &.. For this section we consider the alpha-filtered version
of the stochastic process {Zi(a)}ser (see Section 4). Let {Zi(a)}, be an alpha-filtered
time series with length N.

From the expression (4.8) and with Gaussian white noise, we have

Bl = E[Z(a)Zi1(e)] _ EY(a)Yiq(a)] + Ele(@)erta ()]
E(Z}(a)] E[Y}(a)] + Ele}(a)]

A2 (122){(1+ 02) X5 Jo(2Bsin[(j + 1wo]) cos(j + Dwelad + a} + o2 20=2)
A (22){23 50 Jo(2B sin[Ljwo]) cos(jwe)ad — 1} + 02152

(5.5)

Two informations can be obtained from the autocovariance and variance of the stochas-
tic process {Z;(a)}¢ez when a = 0, that is, when no filter is applied. From the numerator
and denominator of the expression (5.5) above we have

2
E[Zt(O)ZH.l(O)] = %JO(QB Sln[—wo])COS(de) (56)

and

E(Z2(0)) = 5 + 7. (5.7)

Therefore, by taking samples of E[Z,(0)Z+1(0)] and E[Z2(0)], we can find the re-
spective values F; and E,. Finally, we have the following two equations
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A? o . 4 X 3
—2—-Jg(2B 51n[—2-wg]) cos(w.) =E;4 (5.8)

and

? + 6‘3 :Ez. (5.9)

The third equation is obtained from the expression E[Zi(a)Z.+1(a)], given as the
numerator of equation in (5.5), with a fixed value a (say, @ = 7). Suppose that in this
problem one stipulates a tolerance value e (for instance, e = 10™*) for the error. Now we
can choose k large enough such that

S )ZJo("B( ) <e

Note that in order to find k above we need estimates for A% (from (5.9) A2 < E, 2) and
for B (it is bounded by =; see Section 5.1). We can also choose a smaller & (for instance,

= 0.1) to have a smaller k. Therefore, by taking care of the tail part, the following
expression

Z Jo(2B sm[ (J + 1)wo]) cos|(7 + l)wc]( )’ 4 } 4 a§ (5.10)

J =0

is a good approximation, up to an error e, to

ZJ0(2B s:n[ (7 + 1)wo]) cos[(s + l)wc]( Y+ = }—l—a .

J>U

Now E[Zi(3)Zi4+1(3)] is approximately equal to the expression (5.10). Hence, by
taking samples of E[Z¢(3)Z4+1(3)] we can find the value E;. The third equation based on
expression (5.10) is given by

&
AQ{ZZ:JOQB sin[%(; + 1)@o]) cos|(j +1)wc](1) + = } + &% = E;. (5.11)

Finally, the system of three equations and three unknowns is given by the expressions
(5.8), (5.9) and (5.11). Now we solve this nonlinear system by a numerical method and we
obtain the estimates A, B and 0:3 Recall that we already know the estimates &, and &g
from Sections 5.1 and 5.2, respectively. Note that if B is known a prior: the estimation
will be simpler since B is the most difficult parameter to estimate. In any case we are
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able to obtain the five parameters A, B, w,, wo and o2. Therefore, we can estimate the
instantaneous frequency (see Definition 3.1) by

e + B & sin(@o t).

5.4 - Instantaneous Frequency Detection Based on Stretches of Data

In this section we want to estimate, by another method, the instantaneous frequency
(see Definition 3.1) for the sinusoidal frequency modulated model contaminated by an
independent additive Gaussian white noise component (see expression (5.1)). The main
goal is to estimate the instantaneous frequency by the Contraction Mapping (CM) Method
(see Kedem (1990)) based on sample autocorrelation and demodulate the baseband signal
{Yi}ter- The novelty here is to apply CM Method stretch by stretch (see Yakowitz (1990)
and Kedem and Yakowitz (1990)). The analysis is based on a single time series {Z,} X, of
N observations. This time series is divided into several nonoverlapping stretches of data,
each stretch containing the same number of observations. The CM Method is applied to
each stretch using the alpha filter.

We need the following assumptions.

Assumptions :

(1). The model is considered in the discrete time where t € T = Z.

(2). The random variables ¢ and ¢ are uniformly disiributed on (—m, ) independent of
each other and of the process {e:}er.

(3). The modulating signal varies slowly compared to the carrier (we >> wy).

The reason for assumption (3) will be explained later on in the conclusion, in Section
5.5.

Now we will outline the CM Method applied to the time series {Z,}},. Our main goal
is to estimate the instantaneous frequency w(t) (see expression (1.3)). In a simulated model
we consider A = v/2, B = 238, w, = 0.942, wo = 0.00126, ¢ = ¢ = 0 and N = 10,000
observations. We recall, from assumption (3), that wy << w. and, since we want two
complete oscillations, we consider w10,000 = 47. We divide the time series {Z}Y,
mto N; = 20 nonoverlapping stretches with N, = 500 observations each and we consider
Gaussian white noise with o2 = 1.0.

Remark 1: We will denote the left hand side of each stretch by T; = 5001, for 0 < ¢ < 20.
In each stretch [T}, Ti41], for 0 < 7 < 20, with initial condition ag = 0.5, we calculate the
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first order autocorrelation of the alpha-filtered time series and we obtain

_ ElZd0)Z+1(a0))
P1(0) = == FZT e

Remark 2: In practice, we obtain p;(aq) based on a time series of N, = 500 observations.

With a; = pi1(ao) as the updated filter parameter we estimate again the first order auto-
correlation of the alpha-filtered time series and we obtain

_ E[Z{(0a1)Zt41(1))
pi(en) = =]

In an analogous way we obtain a; from a; with the same updating procedure. In each
stretch we obtain, by induction, the sequence

Q1 = pl(ak), for k= 0, 1, EE M ,15

For our purposes to iterate sixteen (16) times is good enough.

We take ai6 as the best estimate for the instantaneous frequency in that stretch.
Notice that the final value @y can change from stretch to stretch (the instantaneous
frequency is not a constant function of t). The polygonal line in Figure 2 represents the
plot of the best estimate &;¢ in each stretch. The graph of the instantaneous frequency

w(t) = 0.942 + 238(0.00126) cos(0.00126 t)

and its estimated by the method presented here are shown in Figure 2.
Another example is given in Figure 3 where we estimate the instantaneous frequency

w(t) = 0.5+ 500(0.00094) cos(0.00094 ¢)

by the method presented here. We consider a simulated model with A = /2, B = 500,
we = 0.5, wg = 0.00094, ¢ = ¢ = 0 and N = 20,000 observations. We divide the time
series {Z;}N_, into N; = 40 nonoverlapping stretches with N, = 500 observations and we
consider Gaussian white noise with o, = 1.0.

Now we state a useful result to justify our above procedure.

Theorem 5.1: Consider {Z;}ter @ real-valued zero-mean stationary process given by

Zi =Y+ €4

where the signal {Y3} e has spectral measure as a sum of an infinite number of Dirac delta
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functions at frequencies w; with amplitudes Cj, for j € N — {0}, and it is uncorrelated
with the Gaussian white noise component {€} e with €4 ~ N(0,02). Let {Zi(a)}ier be
the alpha-filtered process. Let the first-order autocorrelation of Z; be

7 [T _erFz(d))
! [T _Fz(d\)

where T’=(—n,n] is the frequency domain and Fz(d\) is the spectral measure associated
with {Z; }eT-

Suppose also that the support of the discrete speciral measure Fy(dA) is in the interval
[wﬁwb} C {017‘-]'

Then, for any a € (—1,1), given § > 0 there ezists N € N such that forn > N

pr(a) € [cos(wp) — 8, cos(wy) + 6]

where py(a) is the first-order autocorrelation function of the alpha-filtered process {Z(a)}ier.

The theorem says that any o € (—1,1) will be attracted by iterations of the mapping
p1 to the support of the discrete part of the spectral distribution function of the process
{Zi}eer.

We point out that the claim of Theorem 5.1 is true for a general filter as long as the
first-order autocorrelation function of the process {Z(6)}¢er, for any 6 € O, is a convex
combination of # and the cosine of the frequencies (as in (5.12) below).

For the case of finite number of frequencies we refer to Theorem 1 in Kedem and Li
(1989).

The proof of the above theorem will be given after some lemmas. The first lemma
requires that the process {Z;}ier shall satisfy all assumptions outlined in Theorem 5.1.

Note that the atoms of the discrete spectral distribution function dFy () are denoted
by wj, for j € N — {0}. Therefore, all w; satisfy

wa <UJJ <wb.

Lemma 5.1: Let {Z,}ieT be a stochastic process as in Theorem 5.1. Let {Zi(a)}ier
be the alpha-filtered process. Then, the first-order autocorrelation function of the process

{Z(a)}ieT 18 given by
Y iv1 CilHa(wj)|? cos(wj) + o?ais
2om>1 Cm|Ha(wm)? + o252

p1(a) =

= ZAJ'(CH) cos(wj) + Ao(a)a (5.12)
i>1
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where

C;|Ha(w;)I?
EmZ] Cm|Ha(wm)|? + ‘73'}5.%

Aj(a) = >0, forallj>1,

and

21—«
%% Ita

S ey o
mz>1-m a\m € l4a

with [Ha(A)|? given by ezpression (4.2) and the frequencies wj, for j € N — {0}, are the
atoms of the spectral distribution function of the process {Zi}ier-

Ao(&') =

Proof:
From the assumptions of this lemma (also of the Theorem 5.1) we know that the

spectral measure of the process Z; is given by
2
O’E
Fz(d)\) = Fy(d)\) + F.(d)\) = E C;6(A — wj) + o

jz1

where C; > 0 are constants and w; € [0,7]. Consider T" = (—m, 7] the frequency domain.
Then, from the definition of the alpha filter, we have

BlZ(@)Zua(@)) = [ cosVIHaIPR(@N) + [ cosMIH P F(a)
1—a
=Y Cj|Ha(w;)|? cos(w;) + o2 :
S GlHa(ef s + o o

Therefore, we have

2521 leﬂa(wi)P cos(wj;) + 0'3051;_3

pi(a) = Emzl ConlHa(wm)I? + 03}—_:%

= E Aj(a)cos(w;) + Ao(a)a
jz1
where
C;|Ha(w;)|? ;
Ai(a) = 2 S — 20, doraljzl,
’ Zmzl Crn|Ha(wm)[? + GE{_}_—Q
and
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Ao(a) = Site i)
N S Ol H{wn P oEEE

Remark 3: Note that for any a € (=1,1), }0;54,(a) = 1 where 4;(a), for j > 0, is
defined as above. Therefore, the expression (5.12) shows that, for any a € (—1,1), pi1(a)
is a weighted average of cos(w;), 7 > 1, and a. This property will be essential for our
reasoning in what follows.

Lemma 5.2: Let ' be the interval [cos(wy),cos(wq)] = [¢,d]. Then, p1(Q') C Q' and, in
particular, pi(cos(w,)) € Q' and pi(cos(wp)) € .

Proof:
Suppose ag > ¢ = cos(wy). Since cos(wy) < cos(wj) for all 7 € N — {0} such that
w; €= [we,ws], then

p1(ag) = z Ajcos(wj) + Agag 2 (Z A; + Ag) cos(wp) = cos(wsp) = c.
j21 j>1

Therefore, if ag > ¢ then a3 = pi1(ag) 2> c.
Similarly, if ap < d = cos(w,) then a; = pi(ap) < d. Therefore, p; (') C Q. In
particular,

cos(wp) < Z: Ajcos(wj) + Ag cos(wp) = p1(cos(wp)) < (Z Aj + Ag) cos(w,) = cos(w,),
i>1 i1

i.e., pi(cos(wy)) € Q. Similarly, p1(cos(w,)) € Q.
|

Remark 4: Notice that, in the situation of this Lemma 5.2 (that is, when aq € [c,d]), we
can not say that a3 > ag or a; < ay.

Lemma 5.3: There czists a constant I € (0,1) such that for all ay € (—1,1)

p1(ag) — cos(wyp)

<R <1,
ag — cos(wp)

o :1f ag<c=cos(wy) then

,01(0’0) i COS(LU“)
ag — cos(wg )

o if ag>d=cos(w,) then LK< (5.13)

Proof:



The proof will be given only for the first part. For the second part, it follows in a
similar way.

Suppose ag < ¢ = cos(ws). Since w; < wp, for all 7 > 1, by monotonicity of the
function cos(z) on [0, ], we have

p1(ao) — cos(wy) EJ’ZI Ajcos(w;) + Agag — cos(ws)

ag —cos(wy) ag — cos(wp)
_ 2521 Ajlcos(w;) — cos(wy)]
- ag — cos(wy)

+ Ag < Ap.

Notice that the first term in the last sum is nonnegative. Therefore, there exists a constant
K = Ay < 1 such that a; — cos(ws) < K(ag — cos(ws)).
|

Remark 5: Notice that in Lemma 5.3, when ag¢ ¢ [c,d] and a¢ < ¢, from expression
(5.11), we have p;(ag) = a3 > ag (that is, the sequence is monotone). When ao ¢ [c,d]

and ag > d then pj(ap) = a1 < ag. This is different from the situation in Remark 4.

Lemma 5.4: p; is a map onto (—1,1).
Proof:

From Lemma 5.1, p1(«a) is a weighted average of cos(wj), for j > 1, and «. Let « be
in (—1,1). Since

-1< ZA_,’ cos(w;) + Ao = p1(a) < (Z Aj+ Ag)(1) =1,

> >t
p1(—1) = =1 and p;(1) = 1 we conclude that p; is a map onto (—1,1).
Now we will give the proof of Theorem 5.1.
Proof of Theorem 5.1:
Let a be in (—1,1) and let é§ be greater than 0. Suppose o < ¢ = cos(wyp). If

pi(a) € Q' = [¢,d], for all n € Z, then from Lemma 5.1
pi(a) € Q' C O
and the result follows. If there exists m € N such that p*(a) € Q' then
piHa) € Q' C s, forall n>m.

Again the result follows for N = m.
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Now suppose p7*(a) ¢ Q' for all m € N. From Lemma 5.2, the sequence {p*(a)}m>1
is monotone and bounded. Notice that its limit, say a*, is equal to

a” = sup pi" ().

If a* = ¢ then, from Lemma 5.1,

pi(a*) € Int(Q) = (e,d)

and, therefore, there exists [ € N such that p!{(a) € Int( ). This is a contradiction. If
a* < c then, from Lemma 5.2 (see Remark 4),

p1(a*) > a”

and, therefore, there exists [ € N such that p!(a) > o*. This is again a contradiction.
Therefore, there exists N € N, such that for all n > N, pl'(a) € Q5.
The proof is similar when a > d = cos(w,).
o

Now we shall apply the above theorem in each stretch [T}, T;41], for 0 < 7 < 20. Let
io € {0,...,20} be fixed and consider the stretch [T, T;,+1] in order to fix the ideas. The
justification of why CM Method works well for the FM model is the following: recall that
in each stretch we consider $}°(ag) with ap = 0.5 (in fact &g could be any point in (-1,1))
as a good approximation for the instantaneous frequency.

Notice that, if w, >> wy then the instantaneous frequency has a small interval range.
For the fixed stretch [T}y, T;,+1] we apply the CM Method and, heuristically speaking, the
time series does not know what happens in the other stretches. Therefore, if the stretch
[Tiy, Tig+1] is relatively small then in this interval the instantaneous frequency is like a
constant function equal to cos(w;) and we are facing the case where the model looks very
much like the mixed spectrum model with one frequency w; and cos(w;) is in the interval

Q' = [w(Tip), w(Tio41)]-

In fact, a more correct model would be the one whose discrete part of the spectral
measure is an infinite sum of Dirac delta functions on frequencies (see (3.10)) that are in
the interval Q' = [w(T},),w(Ti,+1)] which has very small length. These frequencies should
be of the form w. +nwy, n € Z, as we had before in expression (3.9), but contained in Q'.

Now using Theorem 5.1 for Q' = [w(T},),w(Tiy+1)] we have that for any « € (—1,1),
there exists N € N such that pJ(a) € Q' for all n > N. In this way, we can estimate a
value in the range of the instantaneous frequency in the stretch [T;,, Ti,+1]. This justifies
the very good performance of CM Method (see also Li and Kedem (1991)). See Figures 2
and 3 where the instantaneous frequency is very well estimated in both examples.
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5.5 - Conclusion

From the above we conclude that, for any initial condition ag € (—1,1), the iterated
sequence aky+; = p1(ar), for some large k, will reach the interval of possible frequencies in
the stretch and will stay there.

Notice that if w, >> wp then the instantaneous frequency has a small interval range
and we are able to obtain a good approximated value for this interval with the iterative
procedure. In the case where w. < wp, the instantaneous frequency will oscillate very
much and the method will not give any useful information. This explain the reason for
assumption (3).

If the stretch interval [T},,T%,+1] is small then the interval Q' will also be small.
In this case we have a situation where the model in this stretch looks very much like
the mixed model with one frequency w; and cos(w;) € Q' or several ones in the inter-
val [cos(wa,cos(wp)]. By Theorem 5.1, using the alpha filter, we will have that large
iterates of any initial condition ag will hit, in a finite number of steps, the region
Q' = [cos(wq), cos(wp)]-

After we obtain the graphic by the method of stretches (see Figure 2, for instance) we
can estimate the parameters w., B and wy in the following way:

(1). wo s determined by the distance between peaks of the graph in the z-azis.

(2). B 1is determined as half of the distance between the highest and the lowest points in
the y-azis.

(3). we 1s the mean value of the highest and lowest points in the y-azis.

6. Ergodicity of the Stochastic Process

In this section, we want to analyze the ergodic properties that are necessary for the
justification of taking the empirical autocovariance and variance as estimates for the au-
tocovariance and variance of the process {Y;}¢z in the frequency modulated (FM) model
given by

Y, = Acoslwct + B sin(wot + @) + ¢], for all t € Z. (6.1)

Let (2, 7, P) be the probability space where 2 is the sample space, F is the o-algebra
of Borel sets and P is a probability function on 2. Consider 7 a transformation defined
from Q to itself, so that 7 is measurable and also measurably invertible.
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Definition 6.1: We say that P is an invariant measure for T or T is measure-preserving

if P(7T71(A)) = P(A), for any Borel set A € F.

Definition 6.2: We say that P is ergodic for T, if for any Borel set A such that
T-1(A) = A, we have that P(A) =0 or P(4) = 1.

A very important result is the Birkhoff Ergodic Theorem (see Skorokhod (1989)). We
next state this theorem.

Birkhoff Ergodic Theorem: Suppose V is an integrable random variable on Q, P 1is
a probability invariant measure on §) and T is a measurable transformation on Q. Let G
be the smallest o-algebra of sets in F with respect to which all random variables W with
W(TYw)) = W(w) for P-almost all w and for t > 0 are measurable. Then,

N-1
lim — 3 V(T4w)) = E(V/G)w) P - as.
N—eco N =

When P is ergodic (that is, G is trivial) then E(V/G) reduces to E(V) = constant
and the above result essentially says that for the typical trajectory with respect to P, time
average of V converge to spatial average of V.

In terms of stochastic processes, we are considering in the above setting the stationary
process X¢(w) = V(T!(w)), w € Q and t € Z. This is the standard way to transfer results
from transformations with invariant measures to stationary processes (we refer to Lamperti
(1977), chapter 5 for further details). Basically, one has to consider on the space QN the
product measure generated by P on 2 and the above defined stochastic process X;. We
remark here that P will be a product measure in the case of independent and identical
distributed coordinates.

Remark 1: Suppose that [ V(w)P(dw) = 0. Then, in this case, if the probability is
ergodic, the autocovariance at lag k

/ V(w)V(TH(w)) P(dw)

can be obtained as the almost-sure limit of the mean

N-1
;Ji_rflo% g V(T W)V(THH(w)), for k>0.

In this way, we can say that the sample autocovariance (the case k=1) and variance (the
case k=0) are consistent estimators.
In our case we will need to consider = (==, x| X (=, 7] and the mapping

T :(—m,7] x (=7, 7] = (—=,7] X (=7, 7]
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given by 7 (¢,¢) = (we + ¢, wo + ).

We consider the probability measure P as the product measure obtained from the
Lebesgue measure on (—, 7|2, Without loss of generality, we will suppose that w. and wqg
are irrational and rationally independent. In this case, the probability P is ergodic with
respect to the above defined map 7.

Now we consider the random variable V(¢, ) given by

V(¢,¢) = Acos(¢ + B sin(p)).
We can now applied the Ergodic Theorem to the variable V. Note that

V(T ¢,¢)) = Acos(wet + B sin(wo t + @) + ¢).

Therefore, by the Ergodic Theorem, we can use the samples
1 N-1
L VT GV (T (6,0)
t=0
and
1 N-=1
S VT )P

=0

as consistent estimators for the autocovariance
[v@ew @, eneiwe)

and the variance

[, o2 Pldo,e))

If we introduce an additive Gaussian white noise {¢¢}ez to the process (6.1), then
from the Ergodic Theorem, the fact that the noise has mean zero and variance o2, and
the fact that the random variable V is uniformily bounded, we conclude that the empirical
autocovariance and variance are consistent estimators for the autocovariance and variance
of the process Z; = Y; + ;.

This concludes the considerations about consistency for the estimates of the variance

and autocovariance of the FM model.
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Figure 1: Bessel function J,(z), = € R.for n =0,1.--- ,4.
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Table 5.1: Carrier Frequency Estimation. A = 1, N = 3,000, 6y € (—m,n] is the
algorithm initial valve and SN I? = 20log,, (M) dB. Number of iterations = 5.

stel. noise

Convergence | A B | o. | SNR(dB)| w. wo | 0o D
yes 5.0 | 0.30 | 0.1 30.97 0.8 0.07 | 0.5 0.80084
yes 10.0 | 0.01 | 0.3 | 27.45 -|0.942 | 0.00126 | 0.8 | 0.94350
yes 10.0 | 0.01 | 0.3| 27.45 | 0.942|0.00126 | 0.3 | 0.94350
yes 6.0 |0.01 03| 2301 0.942 | 0.00126 | 0.5 | 0.94580
yes 6.0 (0.10]0.3| 23.01 2.5 0.8 |0.5]2.49089
yes 6.0 [0.01 03| 2301 2.0 0.5 |0.5]1.99794
yes 4.0 1 0.01 {0.3 19.49 2.0 0.5 |0.5]1.99528
yes 3.0 (03004 14.49 1.5 0.3 |0.5]1.50362
yes 2.0 [0.20] 0.4 10.97 1.6 0.4 |0.5]1.59875
no 20 |0011.0 3.01 2.5 0.8 | 0.5] 2.14349
no 2.0 | 1.00 | 1.0 3.01 2.5 0.8 J0.5 2.05060
no V2 1030/ 1.0 0.0 2.5 0.8 10.5] 1.98686
no v2 |030[1.0] 0.0 2.5 0.8 |2.0] 1.98686
no 1.0 030 1.0 -3.01 2.5 0.8 | 2.0 | 1.84851

Table 5.2: Carrier Frequency Estimation. M = 5, N = 3,000, 6, € (—=,w| is the
algorithm initial value and SNR = 20log,, (M) dB.

std. noise

B [ o. [SNR(dB)| w | wo | 6o e

0.30 | 0.1 30.97 [0.8]0.07]0.5(0.80135
0.10 1 0.3 | 23.01 2.5(0.80 | 0.5 | 2.48944
0.01 | 0.3 19.49 2.0 [ 0.50 | 0.5 | 1.99483
0.20 | 0.4 10.97 1.6 | 0.40 | 1.0 | 1.58843
1.00 | 1.0 3.01 2.5|0.80 | 0.5 | 2.04778
0.30 | 1.0 0.0 2.5 | 0.80 | 2.0 | 1.98619
0.30 | 1.0 -3.01 2.5(0.80 | 2.0 | 1.84938

— BN IO = Oy O
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Figure 2: The Instantancous Frequency w(t) = 0.9424-238(0.001250) c0s(0.001256 ¢) and
its estimated by the method based on stretehes of data.

N = 10,000, N; = 20 nonoverlapping stretehes with A = 500 observations. Gaussian
white noise with . = 1.0, A = V2 and ¢ = o=

v wit)= (67P1/20) + (238+0.00126) = Cos{d, 0Ll2ez]
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Figure 3: The Instantancous Frequency w(t) = 0.5 + 500(0.00094) cos(0.00094 ) and its
estimated by the method based on stretches of data.

N = 20,000, N; = 40 nonoverlapping stretches with N, = 500 observations. Gaussian
white noise with o, = 1.0. 4 = V2 and ¢ = = L
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