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Abstract 

We will analyze the stationary frequency modulated (FM) process with the additive am­
bient noise 

Zt =Yi+t:t =Acos(wct+X(t)+<P)+t:t, fortE Z 

where 

X(t) = B sin(wo t + cp) (1.2) 

is the sinusoidalmodulatingprocess, A and B are constants, wc, wo E [0, 1r] are, respectively, 
the carrier· and the modulating frequencies and cp and <P are uniformly distributed random 
variables on ( -1r, 1r] independent of each other and of the noise process {t:t}tEZ· We will 
consider the noise process as being Gaussian and white for simplicity of the exposition. 
However, the results are similar for any stationary and ergodic process with continuous 
spectral density function. Here we will estimate the relevant parameters A, B, wc and 
w0 by an updating procedure based on HOC (higher order correlations) sequences in the 
fine tuning of parametric filters. \\7e will use two different parametric families of time 
invariant linear filters: the alpha and complex filters. Here we alleviate the assumption of 
Gaussianity for the signal and we prove its stationarity and ergodicity under appropriate 
conditions. 

Abbreviated T it le "Frequency Modulation". 

Key words and phrases : Stationary, sinusoidal frequency modulation, spectrum, in­
stantaneous frequency, recursive method, parametric filter, ergodicity. 

AMS Subject Classification Primary 62M10, secondary 62M07. 
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1. Introduction 

In this paper we want to apply the CM Method ideas to the frequency modulated 
(FM) process 

Zt = yt +ét = Acos(wc t + X(t) + </>) + ét, fortE Z (1.1) 

where 

X(t ) = B sin(wo t + <p) (1.2) 

is the sinusoidal modulating process, A and B are constants, wc, wo E [O, n) are, respectively, 
the carrier and the modulating frequencies and <p and </> are uniformly distributed random 
variables on ( -n, n) independent of each other and of the noise process {ét}tEZ· We 
consider the noise process as being Gaussian white noise for simplicity of the exposition, 
that is, €t "'N(O, u;), nonetheless for any stationary and ergodic process with continuous 
spectral density function f~(>,) the results follow similarly. 

Our goal isto estimate the instantaneous frequency, that is, the derivative with respect 
to the time of the instantaneous phase defined as 

w(t) = ~ (wc t + Bsin(wo t + <p) + </>) = Wc + B wo cos(wo t + <p), fortE Z (1.3) 

under the extra assumption that the modulating signal varies slowly compareci to the 
carrier, that is, 

Wc >> WQ. 

The instantaneous frequency varies about the unmodulated carrier frequency wc at 
the rate wo of the modulating signal and with a maximum deviation of B w0 radians. 

We will consider discrete time parameter set T = Z, but we point out that the results 
of Sections 2 and 3 also apply to the continuous time T = R . 

vVe also assume that 

-71" < Wc - B wo < Wc + B wo < 71" 

since we want the frequency support to be in [ -71", n] . The constant B is called the morl7.t­
lation index. 

In order to estimate the instantaneous frequency (1.3) we need to estimate the param­
eters wc, w0 and B. \Ve will also estimate the parameters A and Ue: . The novelty here is thc 

1 



updating procedure based on HOC (higher order crossings or higher order correlations, 
depending on what one chooses to observe, zero-crossing counts or correlations) analysis 
to produce these estimates. Here we will just consider higher order correlations. For the 
case of finite number of frequencies using this procedure see He and Kedem (1989), Lopes 
(1991), Kedem and Lopes (1991) and Lopes and Kedem (1991). 

The analysis of FM models is much more complicated than the case of finite frequencies 
(see Kedem and Lopes (1991)). In some sense we have to deal with an infinite and dense 
set of frequencies in ( -71", 1r] (see (3.9) and (3.10)) . 

It is well known that sine-wave modulations enable signals to be transmitted at fre­
quencies much higher than the signal-frequency components. 

The notion of sine-wave modulation means that we have available a source of sinusoidal 
energy with a carrier wave of the form 

Y(t) = Acos(wct + </>), tE Z. (1.4) 

Any of the parameters A, Wc or </> may be varied in accordance with the modulating 
signal. In FM systems one modulates the frequency in accordance with some information­
bearing signal. An advantage of FM systems over others is that the former provides better 
protection against interfering signals and noise. However, to obtain this improved response 
a wider bandwidth is required. We noted previously that increasing the amplitude of the 
modulating signal it should increase the bandwidth occupied by the FM signal. Increasing 
the modulated signal amplitude corresponds to increasing the modulation index B. So the 
bandwidth of the FM wave will depend on B. If the modulation index is zero, the resulting 
process 

Zt = Acos(wc t + </>) + €t, tE Z , 

is one sinusoid plus noise model. The CM M ethod applied to the multiple frequency 
version of this model was already pursued in some papers due to Benjamin Kedem and 
his collaborators. For an application of the CM Method under the point of view of fixed 
points of a certain mapping see Lopes (1991), Kedem and Lopes (1991) and Lopes and 
Kedem (1991 ). 

vVhen the parameter B in (1.2) is equal to zero we face the case of only one sinusoid 
with frequency Wc. In this case it is already known that the updating procedure based 
on HOC analysis works as it can be seen in He and Kedem (1989). ·when the parameter 
B in (1.2) is equal to one or it is already known a priori there is a simplification in our 
procedure as we will see at the end of Section 5.3. 

A careful analysis in the model ( 1.1) is needed before showing how to use the higher 
order correlations. 

Let {.Ce(·)}eee be a parametric family of time invariant linear filters, where 8 is a 
finite dimensional parameter in the parameter space 0. Denote by {Zt(O)}teT the filtered 
process 
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where {Zt}tET is the zero mean stationary process given in (1.1). 

Then {p1 ( B)} 8E0, defined by 

(
B) _ R{E[Z,(B)Zt+I(B)]} 

Pl - E[Z,(B)[2 

is a HOC family defined from a parametrized first order autocorrelation. Here and else­
where, a bar denotes complex conjugate and R{z} the real part of z. 

Let the updating scheme based on higher order correlations given by 

(1.5) 

be applied to the process (1.1) . 
We will choose a time series {Zt}f:1 of size N to give estimates for E[Zt(B)Zt+l(B)], 

for any B E e, when l = 1 orO. Therefore, the estimates of the autocovariance or variance 
of the process { Zt ( B)} tET, for any B E e) are 

o r 
N-1 
1~ -2 
N L..J [Zj(B)- Z(B)[ , 

j =l 

N-1 

~ L [Zj(B)- Z(B)][Zj+l(B)- Z(B)] 
j =l 

based on the time series zl, z2' . . . ) z N . Here the inner bar denotes the mean a ver age 
value. 

In Section 6 we will show that the estimates are consistent in the situation we are 
interested. 

We will analyze the efect of special filters applied to the time series that will make 
the updating procedure to converge to values that give us important information. For 
instance, ak will converge to Wc in Section 5.1. 

This paper is organized as follows. Section 2 contains the derivation of the auto­
correlation function and the spectral measure of the general process {Yi}tEZ as in (1.1), 
considered as the real part of a complex signal. In Section 3 the spectral distribution 
function of the sinusoidal modulating process as in (1.1) and (1.2) is presented (see also 
Subba-Rao and Yar (1982)). The first order autocorrelation of the alpha-filtered process 
Z,(a) _ .Ca(Z)t, where 

La(·)= (1- a)I +a .Ca(B) 

with I and B, respectively, the identity and the shift operators, is given in Section 4. In 
Section 5 we present the instantaneous freqttency estimate based on ideas related to the 
CM Method. This estimate is given in two different ways (the one in Section 5.4 is based 
on stretches of data). The ergodicity of the stochastic process (1.1), analyzed in Section 6, 
ensures the strong consistency of the estimator, used in Section 5.1, via Birkhoff Ergodic 
Theorem. 
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The content of this paper is part of the Ph.D. dissertation of the first author under 
the guidance of the second at the University of Maryland. 

2 . Angle Modulation Processes 

The general results of this section will be applied to the specific situation we want to 
analyze in Section 3. 

Let {Yi}tET be the angle modulated process 

yt =A cos(wc t + X(t) + </>), for tE T, (2.1) 

where T = R or Z, A is a constant, Wc E [0, 1r] is the carrier frequency, Xt is the mod­
ulating process and the phase <P "'U((-1r,1r]) is a uniform random variable on (-1r,1r] 
independent of Xt. 

The stochastic process {Yi}tET is called phase modulation (PM) of the carrier fre­
quency by the input process {Xt}tET· If the input process is itself formed by integrating 
another random process, say {Ut}teT, then the process {Yi}tET is called frequency modula­
tion (FM) of the carrier frequency by the process {Ut}tET· Angle modulation processes are 
extremely important examples of complex exponential modulation ( see Gray and Davisson 
(1986)). Notice that we can rewrite {Yi}teT as the process 

where 

1ft= exp{i(Xt + 1/>)} . 

It is well known that, for all t, s E T and t > s, 

• Rvv(t,s) = E[VtVs] = E[ei(X,-X,)] = <l>x,-x,(l), 
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where <J.> x,-x. (1) is the characteristic function of the increment of the process Xt between 
the two sample times. 

Our initial goal is to obtain the second order properties of the process {Yí}tET in 
terms of the process { Vt} tET. 

Observe that the autocovariance function of the process {VdteT is not, in general, 
symmetric but it is Hermitian, that is , Rvv(t,s) = Rvv(s, t) . Also, observe that for t f= s 

• E[VtVs] = E[exp{i(Xt + Xs)}]E[ei2 4>] =O= E[VtVs]· (2.2) 

Le mma 2.1: Let the process {Vt}tET be weakly stationary (e.g., if {Xt}tET is strictly 
stationary). Then, for all t, h E T , 

Pro o f: 

• E(Yt) =O 

A2 o I o h-=--~ 
• Ryy(h) = -{e1wc tRvv(h) + e-twc Rvv(h)}. 

4 

For any t E T, observe that 

From equalities in (2.2), for any t, h E T, 

Ryy(h) = E[Yt+hYí] = ~2 E[(eiwc(t+h)'Vt+h + e-iwc(t+h)Vt+h]) 

X (e-iwct'Vt + eiwct'Vt)] = ~
2 

{eiwchRvv(h) + e-i(2wct+wch)E['Vt+h'Vt] 

+ ei(2wct+wch) E[Vt+h Vt] + e-iwch Rvv(h)} 

Az . h . h---~ = 4{e1wc R,tv(h) + e-lwc Rvv(h)}. 

(2.3) 

• 
Denote the set of all frequencies by T' . Depending on T being the continuous or 

discrete time parameter set T' will be, respectively, the real line or the interval ( -1r, 1r]. 
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Lemma 2 .2: Let {Vt} tET be weakly stationary proccss with periodic spcctral distribution 
function Fv(>.) with period 21r. Then, the spcctral measure of the process {Yt}tET is given 
by 

A2 
dFy(>.) = - {dFv(>.- wc) + dFv( - À - Wc)}, for all À E T'. (2.4) 

4 

Pro o f: 
Since the process {Vt}tET is weakly stationary, we have 

fr, ei>.h dFy(>..) = Ryy(h) = ~
2 

{ eiwch Rvv(h) + e-iwch Rvv(h)} 

= A2 
{eiw0 h r eiwh dFv(w) + e-iwch r e-iwh dFv(w)} 

4 h' h' 
= A2 {r ei(w+wc)hdFv(w)+ r ei(-w-wc)hdFv(w)} 

4 Jr, Jr, 
= A

2 

{ r ei>.h dFv(>..- Wc) + r ei>.h dFv( -À - Wc)}. 
4 Jr, Jr, 

The last equality comes from changing variables ).. = w + Wc for the first integral and 
À = -w - Wc for the second one. 

Therefore, since 

the expression (2.4) follows from the uniqueness of the spectral representation of the au­
tocovariance function of the process {Yi} tET· 

• 
\"Ve mention here that 

Rvv(h) = Rvv( -h) 

since the process {VdtET is weakly stationary. Then, dFv(À) = dFv( ->..). 
The first term in expression (2.4) is the spectrum of the complex baseband wave Vi 

shifted by the carrier frequency +wc; while the second term is the spectrum of Vt shifted 
by -wc (see Rowe and Prabhu (1975)) . 

vVe can see that in order to analyze the real process {Yt} tET we only need to analyze 
the complex process {Vt}tET· This will be done in the next section. 
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3. Sinusoida l M o dulating Process 

In this section we will be interested in analyzing the modulated process {Yi}tET as in 
(2.1) when the modulating process X t is given by 

Xt = B sin(wo t + cp), fort E T, (3.1 ) 

where Bis a constant, cp "'U(( -1r , 1r]) and wo E [0, 1r]. Observe that the random variables 
cp and 4> are independent of each other and also independent of the noise process when it 
is present. Therefore, we are interested in analyzing the following stochastic process 

Yi =A cos[wc t + B sin(wo t + r..p) + 4>], fort E T. (3.2) 

Our main purpose here is to estimate consistently the real parameters A, B, Wc and 
w0 based on sample values. This will be explained in Sections 5 and 6 but first we address 
some preliminaries. 

D efinit ion 3 .1: The function 

w(t) = Wc + B wo cos(w0 t + <p ), for all t E T , 

is called the instantaneous frequ ency of the FM model {Yd tET· 

The results in Section 2 will be applied here for the input process {Xt}t ET given in 
(3.1). First we observe that {Xt} 1er is a strictly stationary process. 

The assumptions outlined in Section 2 are satisfied for the process (3.2). In fact, we 
know that the process in (3.1) is weakly stationary and, for the process {Vt} tET given by 

Vt = exp {i [ B sin( wo t + cp) + 4>)} (3.3) 

we have, for any t, h E T , 

• E(Vt) =O, 
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• E[Yt+hVt) = E[exp{iB[sin(tv•0 (t +h)+ .p) + sin(wot + <p)]})E[exp{i2<f>}] = O 

= E[Vt+h Vt]. 

In the next lemma. (see a.lso Subba-Rao anel Ya.r (1982)) we give the autocovariance 
function at lag h E T of the process { 1't} tET and we observe that this is a real and 
symmetric function of h even though the process Vt i tself is complex. 

Lemma 3 .1: The a1tiocovariancc fnnction (Lt la.g h E T o f the process { Vt} tET is given by 

00 

Rvv(h) = J0 (2B sin[~tv·0 h]) = L J~(B) cos(nwoh) (3.4) 
11 = - 00 

where for complex z with I arg zl < 1r a.nrl foT 11 E Z 

( - )?k 
J ( ) (:; )'' "'\"' )1.: ~ -

" z = 2 L..-(-
1 k! r (11 + k + 1) 

k>O 

is the Bessel function of the first l.:ind of order 11 ·with Jo(O) = 1 . 

Pro o f: 
Observe that, for any h E T, 

Rvv(h) = E(Vt+h Vt) = E[exp{iB sin(wo(f +h)+ <p] +i <f> } x exp{ - iB sin(wot + <p] - i<f>}) 

= E(exp{ iB[sin{w0 t + u.:u h+ .,;. ) - siu(wui + y) )]} ] . 

In order to show the first. ccpt<~ lity in ('Xprc•ssion (3.4) one mak<'s use of the fact that c.p 
is a uniformly distributed random varia blc on (-r., r.) and also ma.l~es use of the formula for 
the difference of sine at two different <~rgHm<'tlt.s anel the following formulas ( see formulas 
13 and 18 in Gradshteyn anel Hyzhik png<·' 402) 

jr. 1 
• cos [:; c os( .r)] c os( n.r) d:r = :27r c os( :) n1r) J n ( z) 

-11" -

(3.5) 

where Jn ( z) is the Besscl function o f tlw first ki ud o f o r der n E Z and z is any real number. 
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Using the above fact we have that, for any h E T, 

Rvv( h) = ~ 1 7T exp{ i2B sin( ~w0h) cos[ ~(2w0 t + w0 h + 2x )]} dx 
27r -7T 2 2 

1 17T 1 1 = - cos[2B sin( - w0 h) cos(wot + -woh + x )] dx 
27r -7T 2 2 

+ _z sin[2Bsin(-woh)cos(wot+ -woh+x)]dx. . 111' 1 1 
27r -'7T 2 2 

The second integral in the last equality is zero where one makes use of the second 
formula in expression (3.5) for n = O. For the first integral in this equality consider the 
change of variables 

z = 2B sin( ~woh) and 
1 

y = wo t + 2woh + x 

and use the fi.rst formula in expression (3.5), to obtain 

1 17T 1 1 1 1wot+ jwoh+ 7T 
2

7r cos[2B sin( 2wo h) cos( w0t + 2w0 h + x )] dx = 2 1 
cos[z cos(y )] dy 

-1r 7r wot+2woh-1r 
1 17T = - cos[z cos(y)] dy = Jo(z). 

27r -'7T 

Therefore, for any h E T, 

Rvv(h) = Jo(2B sin[~woh]). 

Now we want to show the second equality in expression (3.4). See Vlatson (1962) for 
the proof of the equality 

Jo( J (2 + z 2 - 2 (z cos( 1/;)) = 'L anln(()Jn(z) cos(n'if;) 

where (, z E R , 1/; E (-1r,1r] and 

an = { 
1

' 
2, 

9 

n>O 

if n =O 

if n f. O 

(3.6) 



Using the equality (3.6) for ( = z = B, 'lj; = woh and the fact that for any n E N , 

we can derive that 

{ 
ln(z), 

l-n(z) = _ ( ) Jn Z, 

00 

if n is even 

if n is odd 

Jo(2B sin[~woh)) = L J~(B) cos(nwoh). 
n=-oo 

Therefore, the expression (3.4) holds. 

• 
From Lemma 3.1 one concludes that the process {vt}ter is also weakly stationary. 

The results in expression (2.3) and Lemma 3.1 give that, for any t, h E T, 

• E(Yt) =O, 

(3.7) 

As expected, this autocovariance function is symmetric. Because 10(0) = 1, we men­

tion that Rvv(O) = 'i2

• From this we see that the average power associated with the 
frequency-modulated carrier is independent of the modulating signal and it is in fact the 
same as the average power o f the unmod~dated carrier. This result is tnte for any modulat­
ing signal whose highest frequency component is small compared to the carrier freq~tency. 
See Schwartz (1959). 

Since Rvv(h)= Rvv( - h) we have asymmetricmeasurefor the process {ViheT· Then, 
from the expression (2.4) in Lemma 2.2, the spectral measure of the process {Yt}tET is 
given by 

A2 
dFy(>.) = 4{ dFv(>.- wc) + dFv(>. +wc)}, for any À E T'. (3.8) 

Therefore, we have above a version of the expression (2.4) and due to the symmetry 
of the autocovariance function of the process {V't}teT, we have dFv( ->.) = dFv(>.). Hence 
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the spectrum of {Yt }ter is the sum of shifted components of dFv, where the shifts are 
determined by the carrier frequency Wc· 

We remark here that the results of the previous sections were proved for T discrete or 
continuous but they will be used, in the next sections, for the case when the time param­
eter set T is discrete and the set of all frequencies is T' = ( -1r, 1r ]. 

3.1 - Spectral Distribution Function of the FM Process 

We are interested in providing an explicit expression for dFy(>..). First notice that, 
from expression (3.7), Ryy(h) does not go to O when lhl ~ oo. Vie will show below 
(see expression ( 3.9)) that Fy contains jumps (a countable number of them) and this is 
another way to express the fact that Ryy(h) does not go to O when lhl ~ oo. Therefore, 
the spectral measure of the process {Yt}tez has atoms (see Subba-Rao and Yar (1982)). 
Since {Yt}tez has mixed spectrum, we can not write dFy(>..) = jy(>..) d>.., where jy is the 
spectral density function of Yt (we could have an equality of this type in a generalized 
sense for mixed spectrum cases where the generalized function jy is allowed to contain 
some Dirac delta functions ). 

Here one wants to obtain a representation of the spectral distribution function of the 
process {Yt}tez whose support is in ( -1r, 1r]. Notice that we are working with discrete time 
parameter set T and all frequency values are in (-1r, 1r]. 

Lemma 3.2: The spectral distribution function o f the process {Yt} tEZ is given by 

A2 = 
dFy(>..) = 4 :L J~(B){ó[>..- (wc + nwo)] + ó[>.. + (wc + nwo)]} d>... (3.9) 

n=-oo 

where >.. ± (wc + nwo) zs considered modultts 2 1r, that is, >.. ± (wc + nwo) E ( - 1r, 1r], for 
any n E Z. 

Pro o f: 

Using the second equality of the autocovariance function (in Lemma 3.1) of the pro­
cess {vt} tEZ associated to the process {Yt}tez and by invoking once more the spectral 
representation of Rvv(h), we have 
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;_: ei>.lt dFv(À) = Rvv(h) = f J~(B) cos(nwoh) 
n=-oo 

00 

= ~ L J~(B)(einwoh + e-inwoh) 
n=-oo 

1
7r 1 00 

= ei-\h"2 L J~(B)[8(>.- nwo) + 8(>. + nwo)] dÀ, 
-rr n=-oo 

where 8(>.) is the Dirac delta function. Then, 'for any À E ( -'iT, 'iT], 

1 00 

dFv(>.) = 2 L J~(B)[8(>.- nwo) + 8(>. + nw0 )] dÀ. 
n=-oo 

From equality (3.8) we obtain the desired expression for the spectral distribution function 
of the process {Yi}tEZ· 

• 
\V e refer the reader to Lopes (1991) for a different representation of the process in 

(3.2). We have shown there that the process {Yt}tET is equivalent (with probability equal 
to 1) to the process 

00 

Yt = L AJn(B) cos[(wc + nwo)t + ~n], (3.10) 
n=-oo 

where AJn(B) is a constant for each n E Z, the phases ~n are equal to n<.p + </> with <p 
(tnd </> independent random variables uniformly distributed on ( - 'iT, 7r]. Moreover, ~n are 
dependent random varíables uniformly distrib1tted on ( - 7!", 7r]. 

In order to prove this result we show in Lopes (1991) that EIYt - Yd 2 =O. 
Notice that, when wo is irrational, from (3.9) or (3.10) one can conclude that there 

exists adense set of jumps in the discrete part of the spectral distribution function of the 
process {Yt}tEZ· 
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4. First Order Autocorrelation of the Alpha-Filtered Process 

We recall that our main goal is to give an estimate of the instantaneous frequency 
w(t) (see Definition 3.1) for the zero mean stationary process {Yi}tEZ given by 

yt = A cos[wc t + B sin(wo t + <p) + <PJ, fortE T, 

where A and B are constants, wc,wo E [0, 1r), and the phases <p and <P "'U(( -1r, 1r]) are 
independent of each other and of the process { êt} t ET where the noise process is Gaussian 
and white with mean zero and variance cr;. 

In order to do that we need to compute the first-order autocorrelation function of the 
alpha-filtered process {Yi(a)}tEZ· First one recalls some definitions. 

Consider the stochastic process { Zt}tEZ as in (1.1). 

D efinition 4.1: A parametric family .Le of linear time invariant jilters is defined as the 
set of filters 

{.Le(·) ; B E 0}, 

where E> is the parameter space, with impulse response function { hn( B)} ~=-oo and transfer 
function H (>.; B) obtained from the Fourier Transform of the hn(B), that is, 

00 

H(>.; B) = L exp( -in>.)hn(B). 
n=-oo 

For this to happen we consider the following matching condition 

and that 

00 

n=-oo 

r IH(>. ; B)l2 dFz(>.) < oo, Jr, 

where T 1 = ( -1r, 1r] or R depending on the process being considered with discrete or 
continuous time parameter set T. 

Let us denote { Zt ( B)} tET the filtered process defined by the convolution 

00 

Zt(B) = .Le(Z)t = L hn(B)Zt-n = (he * Z)t 
n=-oo 
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where * denotes convolution. 
We shall consider a particular parametric family of linear filters. 

Definition 4.2: The alpha filter applied to the process {Zt}tEZ is defined as the time 
invariant linear transformation 

Zt(a) = (1- a)Zt +a Zt-l(a), for tEZ 

where -1 <a< 1, with impulse response function (see Kedem and Li (1990)) 

( ) {
(1-a)an, 

h n·a = ' o , 

The corresponding squared gain function is given by 

for n ~O 

otherwise 

IH(>.·a)l 2 - (
1 -a? -1<a<1 and -1r<À :::;1r. (4.1) 

' - 1- 2a cos(À) + a2' 

One can write the squared gain function above in a more convenient way as 

. . 

= (1 - a? { 2 sin( À )e i). ~1 - ae-i).] - 2 sin( À )e-i~ [1 - aei).]} 

ie-i). iei). 

= (1 - a )
2 

{ 2 sin( À )[1 - ae-i).] 2 sin( À )[1 - aei).]} 

= (1 - a? . ~ {e-i). "' ( ae-i).)m- ei). "' ( aei).)m} 
2sm(À) ~ ~ m;::::o m;::::o 

= (1 _ a)2 L . ~ {e-i(m+l)). _ ei(m+l)).}am 
2sm(À) 

m>O 

_ ( _ ·) 2 "' sin[(m + 1)À] m 
- 1 a ~ . (') a . 

Sll1 A m;::::o 

The expression (4.2) will be used later in Lemma 4.1. 

(4.2) 

From now on we do not consider the noise process and consider the zero mean sta­
tionary process {yt} tEZ given by (3.2) with autocovariance Ryy( h) given by (3. 7) and 
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generalized spectral density fy(À) (it contains Dirac delta functions corresponding to the 
points of jump in the spectral distribution function dFy(>..) of Y) given by (3.9) . 

Definition 4.3: The autocovariance at lag h of the filtered process {Yt( a) }tez is defined 
as 

where {Yt(a)}tEZ is a real process and dFY(cx)(>..) = IHa(>-.)12 dFy(>..) is symmetric and 
IHa(>-.)1 2 is given by the expression ( 4.2). 

Definition 4.4: The first-order autocorrelation function of the filtered process {Yi( a)} tEZ 
is defined as 

y E[Yt(a)Yi+I(a)] J::rr cos(>..)IHa(>-.)12 dFy(À) 
Pl (a)= E[Y?(a)] = J::rr IHa(>..) l2 dFy(>..) 

(4.3) 

where IHa(>-.)1 2 is given by ( 4.2). 
In what follows we derive a convenient representation for Pi (a). 
Using the expression (3.9), the autocovariance at lag 1 and the variance of the filtered 

process {Yt(a)}tEZ (respectively, h=l and h=O in Definition 4.3) are given by 

j
rr A? 00 

= cos(>..)IHa(>-.)12
__:_ L J~(B)[ó(Ã- (wc + nwo)) + ó(Ã + (wc + nwo))] 

-- 4 " n =-oo 

A2 oo 

= 2 L J~(B) IHa(wc + nwo)l2 cos(wc + nwo) (4.4) 
n=-oo 

anel 

A2 oo 

= 2 L J~(B) I Ha(wc + nwo)l2
. ( 4.5) 

n =-oo 
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The last equality in expressions (4.4) and (4.5) was obtained from the symmetry of 
the cosine function in (-1r,1r) with the square gain function IHa(..\)12 given by (4.2). 

Therefore, for any a E ( -1, 1) and any tEZ, 

00 

L J~(B)IHa(wc + nwo)l2 cos(wc + nwo) 
n =-oo 

Az oo 

• E[Y?(a)] = 2 L J~(B)IHa(wc + nwo)l2
. (4.6) 

n=-oo 

Our purpose in the end of this section isto write the above expressions as power series 
in a. This is clone in the next lemma. 

Lenuna 4.1: For any a E ( -1, 1), the autocorrelation ai lag 1 of the process {Yt(a)}tET 
is given by 

y( ) _ E[Yt(a)Yt+I(a)] 
PI a - E[Y?(a)] 

_ (1- a)2 ~{-f~~ I:j>O Jo(2Bsin[~(j + 1)w0])cos[(j + 1)wc]ai + r:-%z} 
- (1- a)2~2 

{ 1 _!a2 I:j;:::o Jo(2Bsin[!iwo])cos(jwc)ai- 1 _!a2 } 

(4.7) 

Pro o f: 
The proof of this lemma involves extremely long computations and we refer the reader 

to Lopes (1991) for it. 

• 
Vve need the above expression for an error estimation at the end of Section 5 ( see 

(5.12)) . 

5. Estimation Based on Sample Autocorrelation 

In this section we consider the stochastic process {Zt}tEZ given by (1.1) and (1.2) 
with wo < < Wc, that is, 
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Zt = Yt + êt = A cos[wc t + B sin(wo t + <.p) + <P] + ê t , fortE T, (5.1) 

where A and B are constants, Wc, wo E [0, 1r] with wo << Wc, and the phases c.p and 
cP "'U(( -1r, 1r]) are independent of each other and of the process {t:t}tET where the noise 
process is Gaussian and white with mean zero and variance a;. Later we will make some 
assumptions related to the modulation index B. 

We want to estimate the parameters of the model (5.1) through the sample autocorre­
lation based on a time series { Zt}~1 of N observations. The parameters are the amplitudes 
A and B, the carrier frequency Wc, the modulating frequency wo and the variance a; of the 
noise. The estimates of the above parameters are everything we need in order to estimate 
the instantaneous frequency of the signal Yt. 

The estimation of the parameters is based on the autocovariance function at lag h E T 
and variance of the time series {Zt}~1 and, tl~erefore, we need to know if the estimator is 
consistent. This is the reason for the considerations about ergodicity in Section 6. 

Vve shall consider another parametric family of linear filters different from the alpha 
filter introduced previously. Denote B(a) = cos-1 (a). 

Definition 5.1: The complex filter applied to the process {Zt}tez 1s defined by the 
transformation 

Zt(a,M)=(1+eiB(cr)B)MZ1, for tEZ, -1<a<1 and -1r< B(a) <1r, 

where M is a positive integer and Bis the shift operator BZt = Zt-l· We think of B(a) as 
the acenter o f the filie r". 

Clearly, 

M 

Z1(0< ,M) = ~ (~) e;o( olnz,_n, for tEZ, -or < 8(0<) <" and ME N- {O} (5.2) 

and the impulse response function is 

{ 
(/IIJ) iB(cr)n 

h( n; a, M) = n e ' 
for O ~ n ~ 1111 

O, otherwise 

The transfer function is 

H(>.; a, lvf) = (1 + ei(B(cr)->.))"1 , for - 1r < ).. ~ 1r 
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and the corresponding square gain function is 

IH( .X; B(a), M)l 2 = 4M cos2M (.X -;(a)), for -1r < .X,B:::; 1r and -1 <a< 1. (5.3) 

For properties of the complex filter see Lopes (1991) and Lopes and Kedem (1991 ). 
Let {Zt}~1M be a time series of length N + M obtained from the process (5.1) and 

Zt( a, 1\1) the correspondent complex-filtered time series version. We consider M fixed (in 
fact, M=1 will be used in Section 5.1). For each variable a E ( -1, 1), the first order 
autocorrelation function is given by 

z( ) _ z( M) _ R{E[Zt(a,M)Zt+I(a,M)]} 
PI a - PI a, - , E!Zt(a, M)l2 . 

Let ak+I = p1(ak), for k E N, be the updating scheme applied to the process (5.1). 
The complex filter is used in Lopes and Kedem (1991) for the updating procedure 

based on correlations for the case of finite number of frequencies but not for FM models. 

5.1 - Carrier Frequency Estimation 

In this section we want to obtain the estimate of the carrier frequency wc. It will be 
based on the CM Method using the complexfilter (see Definition 5.1). Here we will consider 
the situation of a narrow band signal where the modulation index B is less than ~- Figure 
1 show the graph of ln, for any z E R and n = 0,1,··· ,4. Notice that lo(z) > ln(z), 
for all n E N- {0}, when z E (0, ~) (see Figure 1). So, among all possible frequencies 
Wc + nwo, for n E N, of the process {Yt}tET, Wc is the one with the largest amplitude (see 
expression (3.9)). 

Here we will need to iterate the map p1 ( · ). If we apply the complex filter with M = 1 
to the time series { Zt} f:: 1 , then the updated a in the i ter ative procedure will converge to 
Wc. \TVe explain now why this happens. 

vVhen there exists a finite number of frequencies the iterative procedure applied to 
the complex filter has a tendency to converge to the frequency closest to the initial value 
ao. The reason is that the weight in the weighted average (see Kedem and Lopes (1991) 
and Lopes (1991)) is larger for the frequency closest to the initial value ao. 

The situation when we have an infinite number of frequencies (see (3.9)) is different. 
There exists a dense set of frequencies. Therefore, the closest one to the initial value a 0 

does not exist. In this way, the iterative procedure has simply a tendency to converge to 
the frequency \Vith largest amplitude (the weighted average makes the iterative procedure 
to converge to the frequency with the largest amplitude). So, we can estimate wc, since 

this is the frequency with largest amplitude A
2

J~(B) (see (3.9)) when the modulation index 
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B is less than ~ (observe that J0 (z) > ln(z), for all n E N- {O} when z E (0, ~)as one 
can see in Figure 1 ). Notice that increasing M it attenuates the difference. Therefore, it 
is better to take M small (say, less than 10). The value M = 1 is optimal. 

Let {Zt(a,M)}tEZ be the complex-filtered version of the process (5.1) where a E 

( -1, 1) and M E N- {O} are the filter parameters. The first order autocorrelation function 
of the complex-filtered stochastic process {Zt(a,M)}tEZ is given by 

z( M) _ R{E[Zt(a,M)Zt+1 (a,M)]} 
Pl a, - EIZt( a, M)J2 

4M -1 A2 L::~=-oo J~(B){ cos2M (cos-\a)-8n) + cos2M (cos-\a)+8n)} cos(Bn) +a PÔ( a, M) 

4M-l A2 L:::~=-00 J~(B){ cos2M(Cos-l~a)-8n) + cos2M ( cos-l~a)+On )} +Pô( a, M) 
(5.4) 

where Bn = Wc + nwo, for any n E Z. 
Let {Zt}~iM be a time series of length N+M obtained from the process (5.1). Let 

Zt(a,M) be the correspondent complex-filtered time series version with a E (-1,1) and 
lvf E N- {O} being the filter parameters. We considera time series Gaussian white noise 
{et}f::1 . In the simulations we take N=3000. As we said before we use this time series to 
estimate pf(a,M). 

See Table 5.1 and Table 5.2 for the above updating procedure applied to the estimation 
of the carrier frequency. From Table 5.1 we observe that when M is equal to 1 ( the first 
possible value for the parameter M E N- {O}) it does not matter what the size of the 
time series is. The procedure works fine. If B is small, we always converge to wc in the 
case when the signal-to-noise ratio is suffi.ciently large. These tables show that our method 
works for solving the problem of finding the carrier frequency Wc. 

\r.;le observe that when M is large, even though B is small and the signal-to-noise ratio 
is large, the iterations ak+l = pf(ak,M) do not converge to Wc. 

5.2 - Modulating Frequency Estimation 

Now we want to estimate the modulating frequency w0 . First we apply a low-pass 
filter to the time series {Zt}f::1 in order to filter out the carrier frequency wc, supposing 
we have its estimated valu~ The spectral distribution function of the resulting time series 

( we will use the notation { Zt} f:: 1 for this time series) will have now at Wc + wo the highest 

amplitude and the value of this amplitude is given by A
2 

JJ(B) (see (3.9)) and note that 
now J1(B) > ln(B), for n 2 2 and B E (0, ~) as one can see in Figure 1). Then we 

a.pply the iterative procedure again to the resulting time series {Zt}f:1 using the complex 
filter (see Definition 5.1) with M=l. The convergence of this ptocedure for the time series 

{ Zt} f: 1 will give us the consistent estirnate of Wc + w0 by the same reasoning as in Section 
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5.1 when we wanted to find the frequency wc for the time series { Zt} ~1 . Since we already 
know the estimate wc, we can obtain w0 • This solves the problem of finding the modulating 
frequency wo. 

5.3- Estimation of the Remaining Parameters 

In order to estimate the true parameters A, Banda~, we need three pieces of informa­
tion involving them. This means that we need three equations involving A, B and a~. After 
we obtain these three equations, then with the help of a numerical method we will be able 
to get the estimates Â, Ê and Ô"~. For this section we consider the alpha-filtered version 
of the stochastic process {Zt(a)}teT (see Section 4). Let {Zt(a)}~1 be an alpha-filtered 
time series with length N. 

From the expression ( 4.8) and with Gaussian white noise, we have 

z( ) _ E[Zt(a)Zt+J(a)] E[Yt(a)Yt+l(a)] + E[t:t(a)ét+I(a)] 
P1 a - E[Zl(a)] - E[Y?(a)] + E[ér(a:)] 

f-(~){(1 + a:2
) I.:i>O Jo(2Bsin(t(j + 1)wo])cos[(j + 1)wc]a:i +a:}+ a; a~~-aa) 

'i2 

( ~+~){2 I.:n~o Jo(2B sin(tjwo]) cos(jwc)ai -1} +a';~+~ 
(5.5) 

Two informations can be obtained from the autocovariance and variance of the stochas­
tic process {Zt(a:)}tez when a= O, that is, when no filter is applied. From the numerator 
and denominator of the expression (5.5) above we have 

(5.6) 

and 

(5.7) 

Therefore, by taking samples of E[Zt(O)Zt+I (O)] and E[Zf(O)], we can find the re­
spective values Ê1 and Ê2 . Finally, we have the following two equations 
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A2 A A 1 A 

2 Jo(2B sin(2wo]) cos(wc) =E1 (5.8) 

and 

(5.9) 

The third equation is obtained from the expression E(Zt(a)Zt+1(a)], given as the 
numerator of equation in (5.5), with a fixed value a (say, a = ! ). Suppose that in this 
problem one stipulates a tolerance value é (for instance, é = 10- 4 ) for the error. Now we 
can choose k large enough such that 

Note that in order to find k above we need estimates for A2 (from (5.9) Â2 < Ê2 2) and 
for B (it is bounded by 1r; see Section 5.1). We can also choose a smaller a (for instance, 
a = 0.1) to have a smaller k. Therefore, by taking care of the tail part , the following 
expression 

k 

A2 {~ ?= J0(2Bsin[~ (j + 1)wo)) cos[(j + l)wc](~)i + ~} + <7; 
J = O 

(5.10) 

is a good approximation, up to an error é, to 

A
2 

{ ~ ?=> J0 (2B sin(~(j + 1)wo}) cos[(j + 1)wc)( ~)i + ~} + u;. 
}_0 

Now E(Zt(! )Zt+l (! )] is approximately equal to the expression (5.10). Hence, by 
taking samples of E(Zt(!)Zt+1(!)] we can find the value Ê 3 . The third equation based on 
expression (5.10) is given by 

(5.11) 

Fina.lly, the system of three equations and three unknowns is given by the expressions 
(5.8), (5.9) and (5.11). Now we solve this nonlinear system by a numerical method and we 
obtain the estimates Â, Ê and ;; . Recall that we already know the estimates Wc and w0 

from Sections 5.1 and 5.2, respectively. Note that if B is known a priori the estimation 
will be simpler since B is the most diffi.cult parameter to estimate. In any case we are 

21 



able to obtain the five parameters A, B, wc, wo and u;. Therefore, we can estimate the 
instantaneous frequency ( see Definition 3.1) by 

wc + Ê wo sin(wo t). 

5.4 - Insta ntaneous Frequency D etection Based on 'Stretch es of D ata 

In this section we want to estimate, by another method, the instantaneous frequency 
(see Definition 3.1) for the sinusoidal frequency modulated model contaminated by an 
independent additive Gaussian white noise component (see expression (5.1)). The main 
goal is t o estimate the instantaneous frequency by the Contraction M apping ( CM) M ethod 
(see Kedem (1990)) based on sample autocorrelation and demodulate the baseband signal 
{Yí}tET· The novelty here isto apply CM Method stretch by stretch (see Yakowitz (1990) 
and Kedem and Yakowitz (1990)). The analysis is based on a single time series {Zt}~1 of 
N observations. This time series is divided into severa! nonoverlapping stretches of data, 
each stretch containing the same number of observations. The CM Method is applied to 
each stretch using the alpha filter. 

We need the following assumptions. 

Assumptions : 

(1 ). The model is considered in the discrete time where t E T = Z. 
(2). The random variables </> and cp are uniformly distributed on ( -rr, rr] independent o f 

each other and o f the process { €t} tET· 

(3). The modulating signal varies slowly compared to the carrier (wc > > w0 ). 

The reason for ass1tmption (3) will be e>..1Jlained later on in the conclusion, in Section 
5.5. 

Now we will outline the CM M ethod applied to the time series { Zt} t~ 1 . Our main goal 
isto estimate the instantaneous frequency w(t) (see expression (1.3)). In a simulated model 
we consider A = v'2, B = 238, Wc = 0.942, w0 = 0.00126, </> = <p = O and N = 10,000 
observations. VI/e recall, from assumption (3), that w0 < < wc and, since we want two 
complete oscillations, we consider wo 10,000 = 47r. VI/e divide the time series {Zt} ~1 
into N1 = 20 nonoverlapping stretches with Nz = 500 observations each and we consider 
Gaussian white noise with u'; = 1.0. 

R emark 1: We will denote the left hand side of each stretch by Ti = 500 i, for O ::; i ::; 20. 

In each stretch [Ti, Ti+ I], for O::; i ::; 20, with initial condition a:0 = 0.5, we calculate the 
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first order autocorrelation of the alpha-filtered time series and we obtain 

( ) 
_ E[Zt(ao)Zt+I(ao)] 

Pl ao - E[Zl(ao)] 

Remark 2: In practice, we obtain p1 (ao) based on a time series of N 2 = 500 observations. 

With a 1 = p1(a0 ) as the updated filter parameter we estimate again the first order auto­
correlation of the alpha-filtered time series and we obtain 

In an analogous way we obtain a 2 from a 1 with the same updating procedure. In each 
stretch we obtain, by induction, the sequence 

ak+l = PI(a k), for k = O, 1, · · · , 15. 

For our purposes to iterate sixteen (16) times is good enough. 
We take a 16 as the best estimate for the instantaneous frequency in that stretch. 

Notice that the final value a 16 can change from stretch to stretch (the instantaneous 
frequency is not a constant function of t ). The polygonal line in Figure 2 represents the 
plot of the best estimate &16 in each stretch. The graph of the instantaneous frequency 

w(t) = 0.942 + 238 (0.00126) cos(0.00126 t) 

and its estimated by the method presented here are shown in Figure 2. 
Another example is given in Figure 3 where we estimate the instantaneous frequency 

w(t) = 0.5 + 500 (0.00094) cos(0.00094t) 

by the method presented here. vVe considera simulated model with A = .)2, B = 500, 
Wc = 0.5, wo = 0.00094, </> = <p = O and N = 20, 000 observations. We divide the time 
series {Zt}~1 into N1 = 40 nonoverlapping stretches with lVz = 500 observations and we 
consider Gaussian white noise with O"e = 1.0. 

Now we state a useful result to justify our above procedure. 

Theorem 5.1: Consider {Zt}tET a real-valued zero-mean stationaTy process given by 

Zt = yt + êt 

where the signal {Yt} tET has spectml mcas1tre as a sum o f an infinite number o f Dirac delta 
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fnnctions ai frequencies W j with amplitudes Cj, for j E N- {0}, and it is uncorrelated 
with the Gaussian white noise component {et}tET with êt "'N(o,a;). Let {Zt(a)}tET be 
the alpha-filtered process. Lei the first-order autocorrelation of Zt be 

z j:_1r e i>-Fz( d>.) 

P1 = j:_tr Fz( d>.) 

where T'=( -7r,7r] is the frequency domain and Fz(d>.) is the spectral measure associated 
with {Zt}tET· 
S1tppose also that the support o f the discrete spectral measure Fy( d),) is in the interval 
[wa ,wb] Ç [0,7r]. 
Then, for any a E ( -1,1), given 6 >O there exists N E N such that for n ~ N 

p~(a) E [cos(wb)- 6,cos(wa) +6] 

where p1(a) is thefirst-order autocorrelationfunction ofthe alpha-filtered process {Z,(a)}tET· 

The theorem says that any a E ( -1, 1) will be attracted by iterations of the mapping 
p1 to the support of the discrete part of the spectral distribution function of the process 
{ Zt}tET· 

We point out that the claim of Theorem 5.1 is true for a general filter as longas the 
first-order autocorrelation function of the process {Zt(B)}teT, for any B E 8, is a convex 
combination of B and the cosine of the frequencies (as in (5.12) below). 

For the case o f fini te number o f frequencies we refer to Theorem 1 in Kedem and Li 
(1989). 

The proof of the above theorem will be given after some lemmas. The first lemma 
requires that the process { Zt}tET shall satisfy all assumptions outlined in Theorem 5.1. 

Note that the atoms of the discrete spectral distribution function dFy(>.) are denoted 
by w i , for j E N - {O}. Therefore, ali w i satisfy 

Lenuna 5.1: Let {ZdteT be a stochastic process as in Theorem 5.1. Lei {Zt(a)}teT 
be the alpha-filtered process. Then, the first-order autocorrelation function of the process 
{Zt(a:)}teT is given by 

= ~Aj(a)cos(wj) + A0 (a)a 
j~l 

24 

(5.12) 



where 

and 

with IHa(>-)12 given by expression (4.2) and the frequencies Wj, for j E N- {0}, are the 
atoms of the spectral distribution function of the process {Zt}teT· 

Pro o f: 
From the assumptions of this lemma ( also of the Theorem 5.1) we know that the 

spectral measure of the process Zt is given by 

':vhere Cj 2:: O are constants and Wj E [0, r.). Consider T' = ( -1r, 1r] the frequency domain. 
Then, from the definition of the alpha filter, we have 

E[Zt(a)Zt+l(a)] = ;_: cos(.X)IHa(.X)I2 Fy(d>.) + ;_: cos(.X)IHa(>-)1 2 Fe(d>.) 

=L CjJHa(wi)l 2 cos(wj) +a-; a: 
1

- <l' . 
. >1 1 + <l' 
)_ 

Therefore, we have 

where 

and 
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• 
Rem a r k 3: Note that for any a E ( - 1, 1), L:j>o Aj(a) = 1 where Aj(a), for j ;:::: O, is 
defined as above. Therefore, the expression (5.12) shows that, for any a E ( -1, 1), p1(a) 
is a weighted average of cos(wj), j ;:::: 1, and a. This property will be essential for our 
reasoning in what follows. 

Lemma 5.2: Let D/ be the interval [cos(w11), cos(wa)] = [c, d). Thcn, p1 (Q') C Q 1 and, m 
particular, P1 ( cos(wa)) E Q' and p1( cos(wb)) E Q'. 

Pro o f: 
Suppose ao ;:::: c= cos(wb)· Since cos(wb) ~ cos(wj) for all j E N - {O} such that 

Wj E n = [wa,wb], then 

Therefore, i f ao ;:::: c then a1 = Pl (ao) ;:::: c. 
Similarly, i f ao ~ d = cos( Wa) then 0:} = Pl (ao) ~ d. Therefore, Pl (n/) c Q'. In 

particular, 

i.e., Pl(cos(wb)) E Q'. Similarly, PI(cos(wa)) E Q'. 

• 
Remark 4: Notice that, in the situation of this Lemma 5.2 (that is, when a 0 E [c, d)), we 
ca.n not say that a 1 > ao or a:1 < a:o. 

Lemma 5.3: Therc exists a constant J( E (0, 1) sttch that for all a:0 E ( -1, 1) 

PI(ao)- cos(wb) , 
• if ao < c= cos(wb) then ( ) < l\. < 1. 

ao- cos wb 

P1 (ao)- cos(wa) 
• if ao > d = cos(wa) then ( ) < J( < 1. 

ao - cos Wa 
(5.13) 

Pro o f: 
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The proof will be given only for the first part. For the second pa.rt, it follows in a 
similar way. 

Suppose a 0 < c = cos(w6). Since Wj ~ w6, for a.ll j 2:: 1, by monotonicity of the 
function cos(x) on [O, 1r], we ha.ve 

p1 (a0)- cos(wb) _ Lj>I Aj cos(wj) + Aoao- cos(wb) 

ao - cos(wb) ao - cos(wb) 

Lj>I Aj(cos(wj) - cos(wb)] 
= +Ao< Ao. 

ao - cos(wb) -

Notice that the first term in the last sum is nonnegative. Therefore, there exists a. consta.nt 
J( =Ao < 1 such tha.t a 1 - cos(wb) < K(ao- cos(wb)). 

• 
Remark 5: Notice tha.t in Lemma. 5.3, when ao 1:. (c, d] a.nd ao < c, from expression 
(5.11), we ha.ve p1 (a0 ) = a 1 >ao (that is, the sequence is monotone). When ao f/:. (c,d) 
a.nd a 0 > d then p1 ( a 0 ) = a 1 < ao. This is different from the situa.tion in Rema.rk 4. 

Lenuna 5.4: p1 is a map onto ( -1, 1). 

Pro o f: 
From Lemma 5.1, p1 (a) is a. weighted avera.ge of cos(wj), for j 2:: 1, a.nd a. Let a be 

in ( -1, 1). Since 

PI(-1) = - 1 and Pt(1) = 1 we conclude that PI is a map onto ( -1, 1). 

Now we will give the proof of Theorem 5.1. 

Proof of Theorem 5.1: 
Let a be in ( - 1, 1) and let 8 be greater than O. Suppose a < c 

p1(a·) E f2' = [c, d], for all n E Z, then from Lemma 5.1 

and the result follows. If there exists 1n E N such that pr(a) E f2' then 

pf( a) E f2' C f26, for all n 2:: m. 

:\.gain the result follows for N = 1n. 
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Now suppose pf(a) f; D.' for all mE N. From Lemma 5.2, the sequence {pf(a)}m>l 
is monotone and bounded. Notice that its limit, say a*, is equal to -

a*= supp~(a). 

If a* =c then, from Lemma 5.1, 

PI (a*) E Int(D.) = (c, d) 

and, therefore, there exists 1 E N such that Pi (a) E Int( 0.). This is a contradiction. If 
a* < c then, from Lemma 5.2 (see Remark 4), 

Pt(a*) >a* 

and, therefore, there exists l E N such that Pi (a) > a*. This is again a contradiction. 
Therefore, there exists N E N, such that for all n 2: N, p}( a) E 0.6. 

The proof is similar when a> d = cos(wa)· 

• 
Now we shall apply the above theorem in each stretch [Ti, Ti+I], for O :::; i $ 20. Let 

i o E {O, ... , 20} be fixed and consider the stretch [Tio, Tio+I] in order to fix the ideas. The 
justification of why CM M ethod works well for the FM model is the following: recall that 
in each stretch we consider ,ô~6 (ao) with ao = 0.5 (in fact O'o could be any point in (-1,1)) 
as a good approximation for the instantaneous frequency. 

Notice that, if Wc > > w0 then the instantaneous frequency has a small interval range. 
For the fixed stretch [Tio, Tio+l] we apply the CM M ethod and, heuristically speaking, the 
time series does not know what happens in the other stretches. Therefore, if the stretch 
[T;0 , Tio+d is relatively small then in this interval the instantaneous frequency is like a 
constant function equal to cos(wi) and we are facing the case where the model looks very 
much like the mixed spectrum model with one frequency w 1 and cos(w1 ) is in the interval 

In fact, a more correct model would be the one whose discrete part of the spectral 
mcasure is an infinite sum of Dirac delta functions on frequencies (see (3.10)) that are in 
the interval 0.' = (w(Ti0 ), w(Tio+d] which has very smalllength. These frequencies should 
be of the form wc + nwo, n E Z, as we had before in expression (3.9), but contained in 0.'. 

Now using Theorem 5.1 for n' = [w(Ti0 ),w(Tio+ d] we have that for any a E ( -1, 1), 
therc exists N E N such that p}( a) E 0.' for all n ~ N. In this way, we can estimate a 
va.lue in the range o f the instantaneous frequency in the stretch [Tio, Tio+ 1]. This jus ti fies 
the very good performance of CM Method (see also Li and Kedem (1991)). See Figures 2 
a.ncl 3 wherc the instantaneous frequency is very well estimated in both examples. 
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5.5 - Conclusion 

From the above we concluele that, for any initial conelition a 0 E ( -1 , 1), the iterateel 
sequence ak+I = p1(ak), for some large k, will reach the interval of possible frequencies in 
the stretch anel will stay there. 

Notice that if Wc > > w0 then the instantaneous frequency has a small interval range 
and we are able to obtain a good approximateel value for this interval with the iterative 
procedure. In the case where Wc < wo, the instantaneous frequency will oscillate very 
much anel the methoel will not give any useful information. This explain the reason for 
assumption {3). 

If the stretch interval (Tio, Tio+I] is small then the interval D.' will also be small. 
In this case we have a situation where the moelel in this stretch looks very much like 
the mixeel moelel wi th one frequency w1 anel cos( w1 ) E D.' or several ones in the inter­
vai [cos(w4 ,cos(wb)]. By Theorem 5.1, using the alpha filter, we will have that large 
iterates of any initial condition a 0 will hit, in a finite number of steps, the region 
D.' = (cos(wa), cos(wb )]. 

After we obtain the graphic by the methoel of stretches ( see Figure 2, for instance) we 
can estimate the parameters wc, B anel wo in the following way: 

(1). w 0 is determined by the distance between peaks of the graph in the x-axis. 
(2). B is determined as half of the distance between the highest and the lowest points in 

the y-axis. 
(3). Wc is the mean value of the highest and lowest point.s in the y-axis. 

6 . Ergodicity of the Stochastic Process 

In this section, we want to analyze the ergoelic properties that are necessary for the 
justifica.tion of taking the empirical autocova.riance anel variance as estima.tes for the au­
tocova.ria.nce anel variance of the process {Yt}tEZ in the frequency moelulateel (FM) model 
given by 

Yí = Acos[wc t + B sin(wo t + <p) + <P], for all tEZ. (6.1) 

Lct (D., F, P) be the probability space where D. is the sample space, F is the a -algebra 
of Borel sets anel P is a probability function on n. Consider T a transformation elefineel 
from n to itsclf, so that Tis measurable anel also measurably invert.ible. 
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Definition 6.1: We say that P is an invariant measure for T or T is measure-preserving 
if P(T-1 (A)) = P(A), for any Borel setA E F. 

Definition 6.2: We say that P is ergodic for T, if for any Borel set A such that 
T - 1(A) = A, we have that P(A) =O or P(A) = 1. 

A very important result is the Birkhoff Ergodic Theorem (see Skorokhod (1989)). Vle 
next state this theorem. 

B irkhoff Ergodic Theorem: Suppose V is an integrable random variable on n, P is 
a. probability invariant measure on n and T is a measurable transformation on n. Let Ç 
be the smallest u-algebra of sets in F with respect to which all random varíables W with 
TiV(Tt(w)) = W(w) for P-almost all w and for t > O are measurable. Then, 

. 1 N-1 

hm N "'V(Tt(w)) = E(VfÇ)(w) P _ a.s .. 
N-oo ~ 

t=O 

\iVhen P is ergodic (that is, Ç is trivial) then E( V JÇ) reduces to E(V) = constant 
a.ncl the above result essentially says that for the typical trajectory with respect to P , time 
average of V converge to spatial average of V. 

In terms of stochastic processes, we are considering in the above setting the stationary 
process Xt(w) = V(Tt(w )), w E n and tE Z. This is the standard way to transfer results 
from transformations with invariant measures to stationary processes (we refer to Lamperti 
(1977), chapter 5 for further details). Basically, one has to consider on the space nN, the 
product measure generated by P on n and the above defined stochastic process Xt. We 
rema.rk here that P will be a product measure in the case of independent and identical 
distributed coordinates. 

Remark 1: Suppose that JV(w) P(dw) = O. Then, in this case, if the probability is 
ergodic, the autocovariance at lag k 

f V(w)V(Tk(w))P(dw) 

can be obtained as the almost-sure limit of the mean 

N-1 

lim Nl "' V(Tt(w ))V(Tt+k(w )), for k 2:: O. 
N ->oo ~ 

t = O 

In this wa.y, we can say that the sample autocovariance ( the case k= 1) and varia.nce ( the 
case k=O) are consistent estimators . 

In our case we will need to consider n = ( -1r, 1r] x ( -1r, 1r] and the mapping 
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given by T(</>,c.p) = (wc + </>,wo + c.p). 
'""-'e consider the probability measure P as the product measure obtained from the 

Lebesgue measure on ( -'lf , 7r]2. \i'Vithout loss of generality, we will suppose that wc and w0 
are irrational and rationally independent. In this case, the probability P is ergodic with 
respect to the above defined map T. 

Now we consider the random variable V(</>, <p) given by 

V(</>,cp) = Acos(</> + B sin(c.p)). 

'""-'e can now applied the Ergodic Theorem to the variable V. Note that 

Therefore, by the Ergodic T heorem, we can use the samples 

N-1 

~ L V(Tt(</>,c.p))V(Tt+ 1 (</>,cp)) 
t=O 

a.nd 

N-1 

~ L [V(Tt (</>,cp))f 
t=O 

a.s consistent estimators for the autocovru·iance 

f V(</>, c.p )V(T( </>, c.p )) P( d( </>, c.p )) 

and the variance 

f [V(</>, c.p )] 2 P ( d( </>, cp) ). 

If we introduce an additive Gaussian white noise {t:dtEZ to the process (6.1), then 
from the Ergodic Theorem, the fact that the noise has mean zero and variance a;, and 
the fact that the random variable Vis uniformily bounded, we conclude that the em pirical 
autocovariance and vru·iance are consistent estimators for the autocovariance and variance 
of the process Zt = Yt + êt · 

This concludes the considerations about consistency for the estimates of the variance 
anel autocovariance of the FM model. 
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Figure 1: Dcssel function .!,(::) ,::E R . for 11 = 0,1. · · · ,4. 
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T a ble 5.1: Ci\rri er Freqnenry Estim n.tion .. H = l. N = 3,000, 80 E (- 7r , 1r] is the 

1 . 1 .. . l 1 l S ;-.· D ) 1 (sld "t):_nal) lfl N 1 f· · a g·on t un 1111 l lét va. ue anc N 11. = :..O ou·10 · 1· ·. c . um )er o Ilerat10ns = 5. 
n SI< . U Cll'e 

Con vergence A B Clc SNR(dB) w c wo O o V..' c 

ycs 5.0 0.30 0.1 30.97 0.8 0.07 0.5 0.80084 
yes 10.0 0.01 0.3 27.45 0.942 0.00126 0.8 0.94350 
yes 10.0 0.01 0.3 27.45 0.942 0.00126 0.3 0.94350 
yes 6.0 0.01 0.3 23.01 0.942 0.00126 0.5 0.94580 
yes 6.0 0.10 0.3 23.01 2.5 0.8 0.5 2.49089 
yes 6.0 0.01 0.3 23.01 2.0 0.5 0.5 1.99794 
yes 4.0 0.01 0.3 19.49 2.0 0.5 0.5 1.99528 
yes 3.0 0.30 0.4 14.49 1.5 0.3 0.5 1.50362 
yes 2.0 0.20 0.4 10.97 1.6 0.4 0.5 1.59875 
no 2.0 0.01 1.0 3.01 2.5 0.8 0.5 2.14349 
no 2.0 1.00 1.0 3.01 2.5 0.8 0.5 2.05060 

no -12 0.30 1.0 0.0 ') -
- -~ 0.8 0.5 1.98686 

no J2 0.30 1.0 . 0.0 2.5 o.s 2.0 1.98686 
no 1.0 0.30 1.0 -3.01 2.5 o.s 2.0 l.S4S51 

Table 5 .2 : Carricr Frcqucncy E~tima.tion. j\J = 5 , N = 3, 000, 80 E ( - 7T, íi j is the 

:dn·ol'itlun initinl va !uC' n11d SNR = 20log (~td . si &~•al) dfl. 
b 10 ~ld . 11 0 1"<' 

A B Gc SNR(dB) Wc wo O o W c 

5 0.30 0.1 30.97 0 . .8 0.07 0.5 0.80135 
6 0.10 0.3 23.01 2.5 0.80 0.5 2.48944 
4 0.01 0.3 19.49 2.0 0.50 0.5 1.99483 
2 0.20 0.4 10.97 1.6 0.40 1.0 1.58843 
2 1.00 1.0 3.01 2.5 0.80 0.5 2.04778 

Vi 0.30 1.0 0.0 2.5 0.80 2.0 1.98619 
I 0.30 1.0 -3.01 2.5 0.80 2.0 1.84938 
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Figure 2 : The Inst<mtaneons FreqiH'n<:y w(t) = 0.94:2 + :23S(0.00125u) cos( 0.001256 t) anel 
its est.imClled by lhe metlwd bascd uu st.ret.dws o f d<1 r'" 
N = 10,000, N 1 = 20 lH>llO\'C"rl;lJ>piu.~ st.rct.dws "'ir h N 2 = 500 ob~crnttious. Gaussian 

white noise with a~ = 1.0. A = J2 and 4'> = :..p =O. 

0.7• 

wfcJ= r6 •Pii20J ... (238 " 0.00!26! • Ccs(~.o~_~2_E_··_:_.~---> 
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o.c -----------~--------+-----~---4--------~~-----------~~ o 2000 t OOO GOOO SOOC :0000 

Figure 3: The Instnnta.ncous Frequcucy w(t) = 0.5 + 500(0.00094) cos(0.00094t) and its 
estimated by the methocl based on stret.ches of clat.n. 

N = 20,000, N 1 = 40 nonoverlapping stretches wit.h N 2 = 500 obscrvations. Ga.ussiau 
wl1ite noisc wit.h a~ = 1.0. A = J2 anel<!>= <.p =O. 
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