
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ANDREY LUIS TIETBOHL PALMA

A Clustering-Based Approach for
Discovering Interesting Places in

Trajectories

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Luis Otávio Álvares
Advisor

Prof. Dra. Vânia Bogorny
Coadvisor

Porto Alegre, December 2008

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Palma, Andrey Luis Tietbohl

A Clustering-Based Approach for Discovering Interesting
Places in Trajectories / Andrey Luis Tietbohl Palma. – Porto Ale-
gre: PPGC da UFRGS, 2008.

78 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2008. Advisor: Luis Otávio Álvares; Coadvisor: Vânia Bo-
gorny.

1.Spatio-temporal 2.Clustering 3.CB-SMoT 4.Stops 5.Moves
6.Unknowns I. Álvares, Luis Otávio. II. Bogorny, Vânia. III. Tí-
tulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PPGC: Prof. Álvaro Freitas Moreira
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

A special thanks goes to my advisor, Luis Otavio Alvares, who helped me to grow
both as a researcher and as a person. His patience in keep me with the feet on the ground
while I was looking at the sky was very important during the master period.

I would like to thank Vania Bogorny, who always demonstrated an incredible motiva-
tion and passion in her work and inspired me to reach the same.

Thanks also to my colleagues of the laboratory 232, Fillipo Perotto, who always was
ready to a discussion or interchanging ideas. Ivan Medeiros, a rare person who knows a
lot about everything, my theory is that he wants to negate the bad fame of the people from
Bahia, and I think he is going to do it!

Family members had an important role, my mother Maria do Carmo Tietbohl and my
father Paulo José Palma, they hold my position as a master student, which is not an easy
task. An expressive part of this degree goes to them. My sister, Denise, for her actions
and attitudes. She teached me that sometimes it is easier to act than to think.

Other people that were always present in this period, my friends Fabiane Levemfous
and Marcelo Claro Zembrusky. They are examples of people who are always ready to
attenuate the stressing period of life. My girlfriend, Polliana Zocche, who tried to awake
my creative side in the first year of the master in order to get some good ideas.

I could not forget to thank the Instituto de Informática da UFRGS, the administra-
tive sector and the collegiate sector. They are always helping the students both in the
administrative questions or scientific ones.

Additionally, I would like to thank CNPQ for supporting me during my master stud-
ies.

“Intuitions without concepts are blind;
Concepts without content are empty.“

— IMMANUEL KANT

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 7

LIST OF FIGURES . 9

ABSTRACT . 11

RESUMO . 13

1 INTRODUCTION . 15

2 BACKGROUND AND BASIC CONCEPTS 19
2.1 Trajectories . 19
2.1.1 Conceptual Trajectories . 21
2.1.2 Stops and Moves . 22
2.1.3 Enriching Trajectories with Semantic Geographical Information 24
2.2 Clustering Methods . 28
2.2.1 DBSCAN . 31
2.2.2 DJ-Cluster . 33
2.2.3 ST-DBSCAN . 35
2.2.4 GDBSCAN . 36
2.2.5 ADBC . 36
2.2.6 T-Optics and TF-Optics . 37
2.2.7 Clustering Considerations . 38

3 THE PROPOSED METHOD: CB-SMOT 39
3.1 Clustering Step . 39
3.2 Giving Semantics to the Clusters . 44
3.2.1 Stops Discovering Algorithm . 46
3.2.2 Common Unknown Stops Among Trajectories 48

4 A PROTOTYPE: WEKA-STPM . 51
4.1 STPM Interface . 51
4.2 STPM Implementation . 55
4.3 Project Decisions . 57

5 EXPERIMENTS . 59
5.1 Clustering Parameters . 59
5.2 Clustering Experiments . 61

6 CONCLUSION . 69

REFERENCES . 71

APPENDIX A UMA ABORDAGEM BASEADA EM CLUSTERIZAÇÃO PARA
A DESCOBERTA DE LUGARES DE INTERESSE EM TRA-
JETÓRIAS . 75

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

CDF Cumulative Distribution Function

CHREST Chunk Hierarchy and REtrieval STructures

DBMS Data Base Management System

DBSCAN Density-Based Spatial Clustering of Applications with Noise

EM Expectation Maximization

EPAM Elementary Perceiver And Memorizer

GDPM Geographic Data Preprocessing Module

GID Geometric Identification

GPS Global Position System

MOD Moving Objects-Database

NNC Nearest Neighbor Clustering

STPM Semantic Trajectory Preprocessing Module

SML Spatial Mining Language

SRID Spatial Reference Identification

SRS Spatial Reference System

ST-DBSCAN Spatial-Temporal DBSCAN

TID Trajectory Identification

LIST OF FIGURES

Figure 1.1: The same set of trajectories being considered with and without geo-
graphic background (ALVARES et al., 2007) 16

Figure 2.1: In (a) the relations between trajectories and the environment; and (b)
relations between trajectories (BRAKATSOULAS; PFOSER; TRY-
FONA, 2004) . 21

Figure 2.2: Lifelines of three people showing the cities where they lived (MARK
et al., 1999) . 22

Figure 2.3: Different kinds of trajectory of an individual history (THERIAULT
et al., 2002) . 23

Figure 2.4: A trajectory and an example of application with four candidate stops
(ALVARES et al., 2007) . 25

Figure 2.5: Intersecting points of the trajectory must intercept the candidate stop
polygon (in gray) for a time period tb − ta ≥ ∆C 25

Figure 2.6: Candidate stops as polygons, stops in dark gray inside the polygons
and the light gray represents the four possible cases of moves 26

Figure 2.7: Between two consecutive stops there will be a move of two points. . . 27
Figure 2.8: Taxonomy of clustering approaches (JAIN; MURTY; FLYNN, 1999) 28
Figure 2.9: Deleting the largest edge in order to form two clusters (JAIN; MURTY;

FLYNN, 1999) . 30
Figure 2.10: Three datasets with its respective clusters (ESTER et al., 1996) 31
Figure 2.11: (a) Border and core points; (b) Directly Density Reachable illustra-

tion (ESTER et al., 1996) . 32
Figure 2.12: (a) Density Reachable definition; (b) Density Connected definition

(ESTER et al., 1996) . 33
Figure 2.13: Clusters with different granularities (ESTIVILL-CASTRO; LEE, 1999) 33
Figure 2.14: (a) Density Joinable definition; (b) DJ-Cluster formed by joining the

two neighborhoods in (a) (ZHOU et al., 2007) 34
Figure 2.15: Density Pad and Void Pad concepts (MA; ZHANG, 2004) 37
Figure 2.16: The ellipse neighborhood region adapts according to the distribution

of the neighbors (MA; ZHANG, 2004) 37

Figure 3.1: Slowest-Neighborhoods created given the starting points 41
Figure 3.2: Steps of the creation of a Connected-Neighborhood given the starting

point, minimum time, average speed limit and speed limit 42
Figure 3.3: Some possible cases of Known Stops and Unknown Stops. In (a) a

Known Stops may be in more than one cluster. In (b) a cluster that
generates a known stop and a unknown stop 45

Figure 3.4: The candidate stop will not form a Known Stop, since it has not a
continuous intersection with cluster points and the minimum time du-
ration is not satisfied in none of them 47

Figure 3.5: The unknown stops that intersect each other will have the same iden-
tification . 49

Figure 4.1: Screen in Weka where the STPM is called 51
Figure 4.2: STPM User Interface . 52
Figure 4.3: Trajectory table configuration screen 53
Figure 4.4: Generate arff file interface . 54
Figure 4.5: Main STPM Components . 55
Figure 4.6: GPSPoint high level class . 56
Figure 4.7: Where find the STPM in Weka java source 57
Figure 4.8: How STPM main class is instantiated from the PropertySheetPanel

class . 57

Figure 5.1: Trajectory clusters (in black) using different configurations for the
MinTime parameter . 62

Figure 5.2: Trajectory clusters (in black) using different configurations for the
avg parameter . 63

Figure 5.3: Effect of the inclusion of the sl parameter in the clusterization step of
CB-SMoT. (b) and (d) do not use the sl parameter 64

Figure 5.4: Trajectory clusters (in black) using different configurations for the sl
parameter . 65

Figure 5.5: Different trajectories and respective clusters in the same region 66
Figure 5.6: Stops computed by the method SMoT for a single trajectory 67
Figure 5.7: Stops generated by the method CB-SMoT for a single trajectory . . . 67

ABSTRACT

Because of the large amount of trajectory data produced by mobile devices, there is
an increasing need for mechanisms to extract knowledge from this data. Most existing
works have focused on the geometric properties of trajectories, but recently emerged the
concepts of semantic trajectories, in which the background geographic information is
integrated to trajectory sample points. In this new concept, trajectories are observed as a
set of stops and moves, where stops are the most important parts of the trajectory. Stops
and moves have been computed by testing the intersection of trajectories with a set of
geographic objects given by the user. In this dissertation we present an alternative solution
with the capability of finding interesting places that are not expected by the user. The
proposed solution is a spatio-temporal clustering method, based on speed, to work with
single trajectories. We compare the two different approaches with experiments on real
data and show that the computation of stops using the concept of speed can be interesting
for several applications.

Keywords: Spatio-temporal clustering, CB-SMoT, stops, moves, unknowns.

RESUMO

Uma Abordagem Baseada em Clusterização para a Descoberta de Lugares de
Interesse em Trajetórias

Por causa da grande quantidade de dados de trajetórias producidos por dispositivos
móveis, existe um aumento crescente das necessidades de mecanismos para extrair con-
hecimento a partir desses dados. A maioria dos trabalhos existentes focam nas pro-
priedades geometricas das trajetorias, mas recentemente surgiu o conceito de trajetórias
semânticas, nas quais a informação da geografia por baixo da trajetória é integrada aos
pontos da trajetória. Nesse novo conceito, trajetórias são observadas como um conjunto de
stops e moves, onde stops são as partes mais importantes da trajetória. Os stops e moves
são computados pela intersecção das trajetórias com o conjunto de objetos geográficos
dados pelo usuário. Nessa dissertação será apresentada uma solução alternativa a de-
scoberta de stops, com a capacidade de achar lugares de interesse que não são esperados
pelo usuário. A solução proposta é um método de clusterização espaço-temporal, baseado
na velocidade, para ser aplicado em uma trajetória. Foram comparadas duas abordagens
diferentes com experimentos baseados em dados reais e mostrado que a computação de
stops usando o conceito de velocidade pode ser interessante para várias applicações.

Palavras Chaves: clusterização espaço-temporal, CB-SMoT, stops, moves, unknowns.

15

1 INTRODUCTION

Thanks to current sensors and GPS technologies, large scale capture of the evolving
position of individual mobile objects has become technically and economically feasible.
This opens new perspectives for a large number of applications (from e.g. transportation
and logistics to ecology and anthropology) built on the knowledge of movements of ob-
jects (SPACCAPIETRA et al., 2008). The data provided by these technologies are raw
data and it becomes difficult to work in a better level of understanding. Usually these data
are made up of simple spatio-temporal points, in other words, the points have a spatial lo-
cation and a time associated. When we sort these simple points by its ascending time we
have intuitively a trajectory. Examples of possible trajectories could be the monitoring of
wild animals, birds, people, automobiles, airplanes, ships, a soccer player, etc.

Trajectories can be unidimensional, represented as a set of points, (e.g. individual
people, birds) or multi-dimensional, represented by a set of polygons or complex objects
(e.g. hurricanes, tsunamis, etc). In this dissertation we consider trajectories as a list of
points. For details about monitoring of two or more dimensional objects we suggest the
reading of Güting’s work (GÜTING; SCHNEIDER, 2005).

Usually, raw data are stored by companies only for operational purpose and are not
used to extract useful information for decision-making. These raw data are normally rep-
resented as a set of single spatio-temporal points, which is intuitively known as trajectory.
Usually the points are in the form (x,y,t) or (x,y,z,t), where x, y and z are the spatial dimen-
sion and t is the temporal one (KUIJPERS; OTHMAN, 2007). Examples of companies
that keep this kind of data are: insurance companies, vehicle tracker companies and mo-
bile carriers. Mobile carriers, despite not using GPS devices in order to obtain the raw
data, have a similar log of cell phones, like for instance, when a mobile changes from
one cell (range of a cellular antenna) to another. Logs keep records about which cellular
antenna each cell phone was associated at each time moment, and it might be used in a
similar way for the decision-making process.

When raw trajectory data are used in order to extract additional information, as oc-
curs in recent trajectory researches, only the physical properties (spatial and temporal
dimensions) use to be focused on (LEE; HAN; WHANG, 2007; GÜTING et al., 2000;
GÜTING; SCHNEIDER, 2005; LAUBE; IMFELD; WEIBEL, 2005; WOLFSON et al.,
1998). These approaches, which work with raw trajectory data may miss interesting infor-
mation, since the background geographic information of the trajectories is not considered.
If we relate the trajectory’s background geography, we are able to discover useful infor-
mation associated with the trajectory, like for instance the places visited by the trajectory
or even the transition between those places. In Figure 1.1 it is possible to see the same
set of trajectories considering the background geography and without considering it. So,
intuitively we may check that if we have a geographic background context we have more

16

options in order to aggregate more meaningful information than just consider the trajec-
tory as an isolated object in the space.

Figure 1.1: The same set of trajectories being considered with and without geographic
background (ALVARES et al., 2007)

By associating the background geography it is possible to work in a higher abstraction
level, a semantic one, closer to the human understanding. This recent approach was intro-
duced by Spaccapietra (SPACCAPIETRA et al., 2008). In that work he proposed two new
concepts, stops and moves, used to conceptually describe a trajectory. A stop represents
an important part of the trajectory and a move represents transitions between stops.

Spaccapietra in (SPACCAPIETRA et al., 2008) has not defined the criteria to create
stops, he has just concepted that a stop is a set of consecutive trajectory points. A recent
method, called SMoT (ALVARES et al., 2007) (Stops and Moves of Trajectories), uses
as criteria the intersection of trajectory points with a same place of interest for a given
amount of time in order to generate stops. However, in some applications this approach
could not be appropriate, since there are some events that are not related to any fixed place,
like a traffic jam. Therefore, we propose, in this dissertation, another method, called CB-
SMoT (Clustering-Based Stops and Moves of Trajectories), which uses another criterion
in order to assign stops: the speed of the trajectory. This approach is suitable to identify
the cases where the low speed is the main indicator of an interesting event, like in traffic
jam.

In addition to the speed criterion, CB-SMoT also uses the background geography in
order to aggregate geographic information, similarly to SMoT. Thereupon, CB-SMoT was
developed to be used where the speed is a factor as important as the geographic aspects
in the background geography. Differently from SMoT, which uses geographic aspects to
give semantics to trajectories, CB-SMoT uses speed, which is a spatio-temporal aspect
that is not related only to spatial places in the geography.

In order to evaluate the method CB-SMoT we developed a prototype, which is an
extension of Weka (WITTEN; FRANK, 2005), which is a well known software devel-
oped by University of Waikato and is used for several data mining purposes, like clus-
tering. This extension was originally developed in order to work with geographic data
(BOGORNY et al., 2006), and in this dissertation we extended it further for trajectories.
The prototype implements both SMoT and CB-SMoT algorithms.

This dissertation is organized in the following way: the next chapter presents the main
related works, subdivided in clustering works and trajectories works; Chapter 3 presents

17

the proposed method to find important points of trajectories. Chapter 4 presents the proto-
type implemented in order to validate the proposed method and how it was incorporated
in Weka. Chapter 5 shows the experiments performed in order to evaluate the method
CB-SMoT. For last, the conclusion presents a briefly summary about this dissertation, the
main contributions, and some directions for future works.

18

19

2 BACKGROUND AND BASIC CONCEPTS

This chapter introduces some works about both trajectory samples and semantic tra-
jectories, and presents the main clustering methods for trajectories.

2.1 Trajectories

From the users’ viewpoint, the concept of trajectory is rooted in the evolving position
of some object traveling in some space during a given time interval. Thus, a trajectory is
by definition a spatio-temporal concept. The concept of traveling object implies that its
movement is intended to fulfill a meaningful goal that requires traveling from one place
to another. Traveling for achieving a goal takes a finite amount of time (and covers some
distance in space), therefore trajectories are inherently defined by a time interval (SPAC-
CAPIETRA et al., 2008). A continuous trajectory can be formally defined as:

Definition 1. Continuous Trajectory. A continuous trajectory T is the graph of map-
ping I ⊆ < → <2 : t → α(t) = (αx(t), αy(t)), i.e., T = {(t, αx(t), αy(t)) ∈ < →
<2|t ∈ I}, where I is named time domain of T.

In other words, a continuous trajectory is a tuple (x,y,t) where t is the time and (x,y)
are the spatial coordinates associated, where t is a strictly positive natural number. How-
ever, as important as delimiting the time interval of a trajectory is discretizing it, since it
is needed to restrict it to a finite list of points in order to work computationally. So, in
the following definition, a trajectory is limited to a discrete number of ordered time-space
points:

Definition 2. Trajectory. It is a list {(t0, x0, y0), (t1, x1, y1), (t2, x2, y2), ..., (tN , xN , yN)},
with ti, xi, yi ∈ < for i = 0, 1, 2, ..., N and t0 < t1 < t2 < ... < tN , where t0 is the instant
when the object starts the travel and tN is the instant when the travel terminates.

In definition 1, the trajectory is seen as a continuous list of points in the continuous
time dimension, and in definition 2, the trajectory is discretized.

Most existing works covering trajectories of moving objects only the spatial and tem-
poral dimensions are considered. Some focus on spatial properties, others on the temporal
ones, and only a few merge space and time. In general, the trajectory is as an isolated ob-

20

ject, associated with no other spatial entity, unless, in some cases, with other trajectories.
Güting (GÜTING et al., 2000; GÜTING; SCHNEIDER, 2005; BECKER; JENSEN;

SU, 2007) presents a full approach over modeling moving object databases (MODs). A
MOD is a database developed to store and provide useful operations to manipulate trajec-
tories, supporting both geometric and temporal properties. These works cover the whole
development of a MOD, from query languages, passing through generic spatio-temporal
data types and operations for these data. As MODs store moving objects and/or moving
regions, they have specific data types in order to represent such elements, like moving
points, multipoints, lines or regions. Some MODs use vectors in order to represent the
speed of an object in order to decrease the number of stored points.

Another important element in DBMS query languages are the operators. A MOD with
support for many different kinds of spatial and temporal operators use to have a richer
DBMS query language, since more options are available to perform queries. Examples of
common operators are intersection, which tests if some object intersects another; distance
calculates the euclidean distance between two elements; or semantic operators like may
and must, which indicate uncertainly of the location of a point in a polygon (WOLFSON
et al., 1998) or either in a cube in the (x,y,t) coordinates system.

New operators used in existing query languages are necessary to obtain information
about moving objects, like for instance, When and where was the spread of fires larger
than 500 km2? or How many taxis are at most 10 minutes from John’s house?. Addition-
ally, some uncertainty query mechanisms can be provided, since the locations of moving
objects may not be exact.

Wolfson (WOLFSON et al., 1998) tries to approximate the location of a moving ele-
ment storing the speed vector. So, in order to avoid frequent updates in the object position,
a vector that simulates the movement of the object is stored. As update the vector is less
constant than update the own object coordinates, that approach avoids a bottleneck in the
database. However, it is a tradeoff between the object precision location and the database
updates. As his option was to reduce the database updates, precision is lost in the object’s
coordinates, and the queries are not precise.

Brakatsoulas (BRAKATSOULAS; PFOSER; TRYFONA, 2004) combines trajectory
data with spatio-temporal information. The geographic place modeled is the city of
Athens. In their work they present a spatial mining language (SML) to answer queries
and provide useful information about states of their MOD.

In Brakatsoulas (BRAKATSOULAS; PFOSER; TRYFONA, 2004) model, each tra-
jectory is seen as a line that goes up the temporal axis in a 3-dimensional space-time co-
ordinate system. Additionally, the queries represent a polyedron in that spatio-temporal
axis, and depending on how the trajectories cross this region, they may or not be in the
query answer, as shown in Figure 2.1 (a). In the same figure, in (b), are presented some
basic spatial relations found between trajectories.

Another approach about trajectories is seen at Guting (GüTING; ALMEIDA; DING,
2004), where trajectories are seen over networks. As most routes scenarios can be mod-
eled by a graph (edges and nodes), a network was a useful way to see a trajectory. The
goal of that work is to provide a comprehensive data model and query language for mov-
ing objects in networks, supporting the description and querying of complete histories of
movement. The main characteristics are:

• The model has a explicit concept of network embedded in space.

• A moving object is described relative to the network rather than the embedding

21

Figure 2.1: In (a) the relations between trajectories and the environment; and (b) relations
between trajectories (BRAKATSOULAS; PFOSER; TRYFONA, 2004)

space.

• The user extends the network information using the facilities of the DBMS.

• The model supports static or moving objects only in relation to the network model.

• There exists a framework to represent and query objects moving freely in the space.

The use of a network as a model can be interesting because most trajectories happen
in a well defined place, like street, fly routes, etc. In this dissertation we do not focus
on network models because it is not generic enough to enclose all possible scenarios of
trajectories. For instance, in the scenario of bird migration, we dont’t have routes well
defined, as well as in a hurricane trajectory and other climatic scenarios.

2.1.1 Conceptual Trajectories

Some definitions about trajectories over both physical and semantic perspective are
presented in this section.

In Mark (MARK et al., 1999) trajectories are related to a large period of life (lifelines)
and are associated to individuals’ locations at regular or irregular temporal intervals. The
objective was to find spatial clusters in the past or to determine past environmental expo-
sures, like, for example, causes of diseases and exposure to toxic substances. The period
of life ranges from years to decades, since chronic diseases use to have as cause an ex-
tended exposure to an injurious antecedent. Figure2.2 shows three lifelines for several
decades.

Thériault (THERIAULT et al., 2002) followed a similar way building a spatio-temporal
database model for handling lifelines allowing statistic analysis of any pre-defined event.
Each lifeline is related to some aspect of the individual life, for instance, professional,
residential, household, and so on, and it is divided in episodes and events, as can be seen
in Figure 2.3. So, it is possible to find out evolution (or decision) patterns. For example,
if we discover that 70% of people which lived in a industrial region for at least 5 years,
would have, in a posterior moment of their life, some kind of cancer.

These works started giving semantics to trajectories some years ago. However, a more
recent approach came out, as will be explained in the next section.

22

Figure 2.2: Lifelines of three people showing the cities where they lived (MARK et al.,
1999)

2.1.2 Stops and Moves

A recent approach was introduced by Spaccapietra in 2007 (SPACCAPIETRA et al.,
2007, 2008). This approach defines a conceptual model for trajectories. A specific con-
cern is to model trajectories with semantic annotations, allowing users to define semantic
data to specific parts of the trajectory. This approach can be used by many applications
which need a more structured recording of the movement. (i.e. a temporal sequence of
journeys). These countable journeys are referred as trajectories, and denote the involved
object as the traveling object. Applications may use these trajectories and analyze them,
for example to derive mobility patterns to be used in some decision making process like,
for instance, knowledge for optimizing traffic management, bird trajectories, control the
implementation of transportation logistics, etc.

The exact information aggregated to the trajectory is related to the context of the
application, but essentially the trajectory is partitioned in smaller pieces, called stops and
moves, and the information added gives a more meaningful understanding to stops and/or
moves. For instance, in a study about migrations of birds, we could add the following
information to stops:

• the kind of stop: a briefly or a longer one (resting and eating);

• the time it happened;

• the weather condition.

So, we could study the reasons why these specific birds stop. On the other hand, in
the moves could be considered:

• the mean speed;

23

Figure 2.3: Different kinds of trajectory of an individual history (THERIAULT et al.,
2002)

• the altitude at which the birds are flying;

• the weather condition.

Similarly, it would be possible to discover the causes why the birds are flying higher
or faster, or any other characteristics, which will be dependent only on the information
recorded in that basic piece of trajectory.

Spaccapietra (SPACCAPIETRA et al., 2008) has not specified what information can
be aggregated to a stop/move, however he defined some characteristics about them:

Stop: A stop is a trajectory relevant time interval, such that:

• the user has explicitly defined this part of the trajectory to represent a stop;

• the temporal extent is a non-empty time interval;

• the traveling object does not move, as far as the application view of this trajectory
is concerned;

• all stops in a same trajectory are temporally disjoint, i.e. the temporal extents of
two stops are always disjoint.

Move: A move is a part of the trajectory, such that:

• The part is delimited by two extremities that represent either two consecutive stops,
or tbegin and the first stop, or the last stop and tend, or [tbegin, tend] (case when the
trajectory has no stops).

24

• The temporal extent [tbegin, tend] is a non-empty time interval.

• The spatial range of the trajectory for the [tbegin, tend] interval is the spatio-temporal
line (not a point) defined by the trajectory function.

Where tbegin is the initial point of the trajectory and tend is the final one.
The concepts of stops and moves are key ideas used in this dissertation when the tra-

jectory becomes viewed from different points of view, not looking at physical properties,
but at semantic properties.

2.1.3 Enriching Trajectories with Semantic Geographical Information

Spaccapietra (SPACCAPIETRA et al., 2008) has not defined any process to auto-
matically assign semantic information, he has just exemplified some scenarios where his
model could be used. This is because his research group focuses on conceptual modeling,
and they don’t care on how stops are computed. In Alvares (ALVARES et al., 2007), a
data preprocessing model and an algorithm is presented to add semantic information to
trajectories in order to facilitate trajectory data analysis in different application domains.
This work defines mathematically some concepts in order to instantiate the more abstract
work of Spaccapietra.

The first important concept is the Candidate Stop, which is defined as follows:

Definition 3. Candidate Stop. A candidate stop C is a tuple (RC ,∆C), where RC is a
(topologically closed) polygon or polyline in R2 and ∆C is a strictly positive real number.
The set RC is called the geometry of the candidate stop and ∆C is called its minimum
duration.

Definition 3 indicates what are the objects that may become a stop. Thus, it says that
a candidate stop has two properties, one spatial and one temporal. The spatial property,
RC , represents the location and shape of the place (e.g. polygon or lines). For instance, a
park would have a polygon as its RC and a street would have a line in this attribute. The
temporal aspect indicates the amount of time the object spends in that place. For example,
in a large museum, for instance, it is expected that people spend at least one hour in it, so
the museum parameter would be 1 hour. Hence, the temporal parameter avoids assigning
the candidate stop as an important place for objects that were only crossing the place.

Given a set of candidate stops and a set of trajectories it is possible to set aside as
stops those candidate stops that match the conditions. However, we may not be interested
in every place the trajectories visited, so it is interesting to limit the set of candidate stops
used in the search. This restriction is usually related to the application. For instance, in a
tourism application it is not interesting to characterize the stops of tourists at gas stations.
Therefore, gas stations will not be considered as candidate stops. In a similar way, in
a traffic application, the set of candidate stops could be limited only to streets (and av-
enues), traffic lights, viaducts, bridges, crossings, etc. For this reason, another restrictive
definition is needed, called application (ALVARES et al., 2007) (see Figure 2.4):

Definition 4. Application. An application is a finite set A = {CN = (RcN ,∆cN)} of
candidate stops such that each element has non-overlapping geometries,Rc1, Rc2, ..., RcN ,
with each other one.

25

Figure 2.4: A trajectory and an example of application with four candidate stops (AL-
VARES et al., 2007)

Given an application, it is possible to identify the stops with respect to the set of trajec-
tories. Alvares (ALVARES et al., 2007) defines a stop (with respect to a trajectory) based
on the amount of time of the continuous intersection of the trajectory with a candidate
stop, formally, given as:

Definition 5. Stop. Let T be a trajectory with time domain I and let A = ({C1 =
(RC1 ,∆C1), ..., CN = (RCN

,∆_CN)}) be an application. Let I0, I1, ..., In be the temporally-
ordered decomposition of I into time intervals where T is intersected by candidate stops
with respect to A. A stop of T with respect to A is a contiguous sub-trajectory of T over a
maximal concatenation of some ti, ti+1, ..., ti+` for which there is a (RCk

,∆Ck
) in A such

that:

• < (xi, yi, ti), (xi+1, yi+1, ti+1, ..., (xi+`, yi+`, ti+`)) > intersects RCk
.

• |ti+` − ti| ≥ ∆Ck

In other words, the maximum continuous intersection time of a trajectory with a can-
didate stop must be greater or equal to the candidate stop’s ∆C , in order to a candidate
become actually a stop with respect to that trajectory, as shown in Figure 2.5.

Figure 2.5: Intersecting points of the trajectory must intercept the candidate stop polygon
(in gray) for a time period tb − ta ≥ ∆C

The move definition used in Alvares (ALVARES et al., 2007) follows Spaccapietra
(SPACCAPIETRA et al., 2008). Figure 2.4 illustrates these concepts. In this example,
there are four candidate stops with geometries RC1 , RC2 , RC3 and RC4 . Let us imagine
that the spatial projection of the trajectory T is run through from left to right and the

26

black points are the time points of T. First, T is outside any candidate stop, so we start
with a move. Then T enters RC1 for three time points. if the duration of staying inside
RC1 is long enough, (RC1 , t1, t3) is the first stop of T. Next, T enters RC2 , but it does not
generate any time interval, so this is not a stop. We therefore have a move until T enters
RC3 and, after, RC4 , which could generate or not, according the intersection time period.
The trajectory T ends with a move. Figure 2.6 illustrates the four possible cases of moves
in light gray. In (1) the trajectory begins with a move. In (2) the move is between two
stops. In (3) the trajectory ends with a move. For last, in (4) there is no stop and the whole
trajectory is a move. That figure shows each case isolated, but they can merge among
them, like in (2), where in fact the trajectory begins with a move, has an intermediate
move (in light gray), and ends with a move.

Figure 2.7 represents a specific case of situation 2, where there are two consecutive
stops, but no intermediate trajectory points between them. So the move will be made up
of the two extreme intersection points of the stops. In this case these points will be both
move points as stop points. In a general way, the first stop point and the last stop point
of a candidate stop will be usually move points also. They are stop points since they are
inside a candidate stop and they are also move points because a move needs start/end in a
stop in order to be delimited.

Figure 2.6: Candidate stops as polygons, stops in dark gray inside the polygons and the
light gray represents the four possible cases of moves

The main purpose of using stops and moves is that it significantly facilitates trajec-
tory queries and analysis (ALVARES et al., 2007). Instead of working in a lower level of
comprehension, the semantic approach lets the structure of queries easier to the human
understanding, since it acts in a more abstract level and it provides a more powerful query
tool. Besides, the data mining and KDD can take advantage of it due to the more pow-

27

Figure 2.7: Between two consecutive stops there will be a move of two points.

erful semantic representation. Thus, those applications may take advantage of this new
approach in order to amplify the quality of semantic data being mined, as we describe in
(ALVARES et al., 2007).

The algorithm proposed by Alvares (ALVARES et al., 2007) in order to identify the
stops and moves of a trajectory with respect to an application is called SMoT, which stands
for Stops and Moves of Trajectories. The algorithm looks for continuous subtrajectories
that intersect the same candidate stop (with respect to an application) for its minimum
time duration.

The algorithm SMoT performs a loop in the trajectory points and tests if each point
intersects a candidate stop in the set of candidate stops (application). Whether there is
a continuous intersection of points with the same candidate stop then that intersection
duration is calculated and matched against the candidate minimum time duration. If this
intersection lasts at least for that candidate minimum time duration, this part of trajectory
will be a stop. This process is repeated for every point and at the end of the process we
will have the list of stops. The parts of a trajectory that are not stops are moves. A move is
defined by its start and end stops, and by the subtrajectory between these two consecutive
stops1.

There is an optimization in SMoT algorithm. It is possible to test if a following point
Pf (calculated based on the candidate stop’s minimum time) intersects the same candidate
stop of the current point (Pg). In the positive case, it is necessary to go back and test each
intermediate point between them, since it is needed to guarantee that the intersection is
continuous. Otherwise, the loop is advanced to Pf , because the continuous intersection
will fail for that point and it implies no stop would be created for such points.

SMoT’s complexity in the worst case occurs when:

1. The optimization is not useful: Each intersecting point has a following intersect-
ing point associated to the same candidate stop, but the intersection is not continu-
ous.

2. There are no stops: In this case, each trajectory point will be matched with every
candidate stop.

1If the trajectory starts or ends with a move, those moves will not have a start stop or end stop respec-
tively

28

In that case, suppose a trajectory with N points and the set of C candidate stops
arranged in a R-Tree structure. As the access to the candidate stop is O(LogC), the final
complexity in the worst case will be O(NLogC), when it is necessary to test each point
with each candidate stop2.

2.2 Clustering Methods

A cluster is a group of data that share similar properties previously chosen. Usually
each cluster is a subset of the whole dataset. The term ’clustering’ is used in several
research communities to describe methods for grouping unlabeled data (JAIN; MURTY;
FLYNN, 1999), figure 2.8 shows a taxonomy according these authors.

In Dubes and Jain (DUBES; JAIN, 1976), a set of admissibility criteria defined by
Fisher and Van Ness (FISHER; NESS, 1971) are used to compare clustering algorithms.
These admissibility criteria are based on: (1) the manner in which clusters are formed, (2)
the structure of the data, and (3) sensitivity of the clustering technique to change those do
not affect the structure of the data. There are several approaches to clustering data. The
most comom are hierarchical, partitional and density-based.

Figure 2.8: Taxonomy of clustering approaches (JAIN; MURTY; FLYNN, 1999)

The hierarchical clustering arranges the clusters into a hierarchical tree, where each
sub-level is a specialization of the upper one. In this kind of clustering, the hierarchical
tree may be constructed in two ways: bottom-up (agglomerative) or top-down (divisive).
The first begins with each pattern in a distinct (singleton) and successively merges clusters
together until a stopping criterion is satisfied. A divisive method begins with all patterns
in a single cluster and performs splitting until a stopping criterion is met. Most hierar-
chical clustering algorithms are variants of the single-link (SNEATH; SOKAL, 1973),
complete-link (KING, 1967), and minimum-variance (WARD, 1963; MURTAGH, 1983)
algorithms. The single-link and complete-link algorithms are the most popular. These two
algorithms differ in the way they characterize the similarity between a pair of clusters. In

2A R-Tree acts like a filter too, eliminating those candidate stops that dont’t belongs to the region
associated with the point. Hence the amount of candidate stops tested actually with each point will be a
subset of the whole set, which is much smaller than the total amount of candidate stops

29

the single-link the similarity between a pair of clusters is the shortest distance between all
pair of patterns (one from each cluster), on the other hand the complete-link is based on
the maximum distance between them (JAIN; MURTY; FLYNN, 1999).

The classification process of events, facts and observations without a teacher moni-
toring (non-supervised learning) is called conceptual clustering, and it was defined as a
machine learning task in the eighties by Michalski (FISHER, 1987). Conceptual cluster-
ing uses to be constructed in a tree like structure, since the knowledge classification is
normally hierarchical. Additionally, the clustering building has an incremental aspect, in
other words, each instance of data is presented one by one, so that the whole dataset is
not known a priori by the method.

Some concepts used in psychology, for instance the chunking idea (FERNAND GO-
BET PETER C. R. LANE; PINE, 2001), which is a unification mechanism of informa-
tion inherent in the human psychology, have influenced the initial works in conceptual
clustering, like Feigenbaum work (FEIGENBAUM EDWARD A., 1984, 1962; FEIGEN-
BAUM, 1963) and the model CHREST (Chunk Hierarchy and REtrieval STructures)
(FERNAND GOBET PETER C. R. LANE; PINE, 2001). Later, another model was cre-
ated inspired in the Feigenbaum’s model: UNIMEM (LEBOWITZ, 1987), which was cre-
ated by Lebowitz. UNIMEN is able to treat also numeric attributes in relation to Feigen-
baum’s model (EPAM), which is not able to do, as well as the symbolic ones. While
EPAM was used in verbal learning experiments, UNIMEM was used in more complex
tasks, such as natural language understanding and inference (GENNARI; LANGLEY;
FISHER, 1989). Besides, it is able to keep a pattern in more than one category (cluster).

An important hierarchical clustering algorithm has been developed by Fisher, named
COBWEB (FISHER, 1987). Despite it has not been created in order to be a psycholog-
ical model, it influenced the cognitive psychology field. Fisher’s model makes use of
probability in order to assign the importance of each category. The COBWEB’s function
tries to promote the inference potential by maximizing the intra-class similarity and the
inter-class differences. So, we have a trade off between predictability and predictiveness.

Other related hierarchical clustering methods are: CLASSIT (GENNARI; LANG-
LEY; FISHER, 1989), which is able to deal with numerical attributes; ARACHNE (IBA;
LANGLEY, 2001), which uses alternative heuristics in order to build the hierarchical tree;
LABYRINTH (THOMPSON; LANGLEY, 1991) that tries to integrate the best features of
the previous models; and OXBOW (IBA, 1991) that allows clustering data with temporal
domain and it is used to learn moving related concepts.

Partitional clustering algorithms obtain a single partition of the data instead of a single
structure, like the tree structure produced by hierarchical techniques. In other words they
start with the whole data set and create a partition in this dataset, each one representing
a cluster. A problem found in this approach is that the number of output clusters must
be known a priori. Usually the clusters are produced by optimizing a function defined
either locally or globally. Combinatorial search of the whole set for an optimum value of
a criterion is prohibitive.

The most common and intuitive criterion used is the squared error, which is to mini-
mize the feature distances between the elements of a cluster and its centroid. The function
that represents the quality of the cluster is the following (JAIN; MURTY; FLYNN, 1999):

e2(χ, ζ) =
∑K
j=1

∑nj

i=1 |X
(j)
i − Cj|2

Where χ is the dataset (with K clusters) and ζ is a clustering of it. X
(j)
i is the ith

30

element belonging to the jth cluster and Cj is the centroid of the jth cluster.
K-means (MACQUEEN, 1967) is the simplest and common algorithm that uses the

squared error as criterion. It operates by positioning the centroid pattern in a way that
the squared error is less or equal to some threshold. It is an efficient iterative clustering
algorithm, but this class of algorithms have an inherent issue, the number of clusters must
be known a priori. K-Means uses a parameter k representing the number of initial patterns
(centroids) which will move among the dataset in direction to the center of the clusters. It
iterates through each point, finds the nearest centroid, and assigns the point to that pattern.
This iteration is repeated until the error term is deemed small or not decreasing much. The
k parameter (the number of clusters) must be known a priori and this restriction makes the
method inadequate for our proposal.

Another approach is the graph-theoretic clustering, whose best-known algorithm is
based on the construction of the minimum spanning tree (MST) (ZAHN, Jan. 1971) of
the data, and then deleting the edges with largest lengths in order to generate clusters, as
shown in Figure 2.9.

Figure 2.9: Deleting the largest edge in order to form two clusters (JAIN; MURTY;
FLYNN, 1999)

A usual way to evaluate the quality of a clustering is to use a distribution function in
order to create the group of data (potential clusters). So, the goal of a clustering algorithm
is to group the instances of similar value in order to achieve the best value in that distri-
bution criterion function. Those instances, placed (by their scores) in a particular compo-
nent, would therefore be viewed as belonging to the same cluster. Traditional approaches
to this problem involve obtaining (iteratively) a maximum likelihood estimative of the
parameter vectors of the component densities (JAIN; DUBES, 1988). The Expectation
Maximization (EM) is a general purpose maximum likelihood algorithm (DEMPSTER;
LAIRD; RUBIN, 1977) for missing data problems. The EM procedure begins with an
initial estimate of the parameter vector and iteratively rescores the patterns against the
mixture density produced by the parameter vector. The rescored patterns are then used to
update the parameter estimatives (MITCHELL, 1997).

Similarity is a key notion in clustering algorithms. When the similarity criterion
becomes the distance among elements we have a nearest neighbor clustering (NNC)

31

method. An iterative procedure was proposed in Lu and Fu (LU; FU, May 1978); it
assigns each unlabeled element to the cluster of its nearest labeled neighbor, given that
the distance to that labeled neighbor is below a threshold. This process continues until
all patterns are labeled or no additional labellings occur (JAIN; MURTY; FLYNN, 1999).
When we work with clustering of spatial data, the physical distance uses to be an intuitive
criterion in order to generate clusters in NNC methods.

A clustering algorithm has other classifications, according its features. With respect
to the precision of an element in the cluster, they can be hard or fuzzy (also named soft).
A hard clustering approach labels an element to just one cluster, on the other hand, the
fuzzy technique allows an element to be in many clusters with a respective probability.
With respect to the full knowledge of the data to be clusterized, they can be incremental
or non-incremental. An incremental method does not known a priori the data set, and
the elements to be clusterized are presented as input one by one. In these techniques at
each time an element is presented as input, the method rearranges the cluster structure
in order to accommodate the new element, so the presentation order is important. A
non-incremental approach knows a priori all elements at the beginning of the clustering
process, it usually is a harder processing because it requires more memory.

In the next sections will be presented the main methods which influenced this dis-
sertation. Those clustering methods are density-based, in other words, they consider the
amount of points in a given region and try to expand the cluster by adding regions with
similar density.

2.2.1 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is an impor-
tant density clustering method. It was developed by Ester (ESTER et al., 1996) in 1996
and it has influenced many other density-based clustering methods. The main advantage
of DBSCAN is the capability to find clusters of many different shapes in a spatial dataset.
Figure 2.10 shows some datasets where it is able to discover the intuitive visual clusters.

Figure 2.10: Three datasets with its respective clusters (ESTER et al., 1996)

DBSCAN looks for some core cluster and tries to expand it by aggregating the nearest
neighbors that met some conditions. In order to understand what these conditions are, it
is necessary to present some related concepts. In fact, DBSCAN needs two parameters:
MinPts and Eps. MinPts is a density measure that indicates the amount of points needed
in a neighborhood of a point in order to assign that point and its neighbors to a cluster. Eps
is a distance used to delimiting the neighborhood. Formally the neighborhood is defined
as follows:

Eps-neighborhood of a point: The Eps-neighborhood of a point p, denoted byNEps(p)
is defined by NEps(p) = {q ∈ D|dist(p, q) ≤ Eps}, where D is the whole dataset.

The Eps-neighborhood of p represents all points inside a circle centered in p and with
radius Eps. The dist(p, q) is a function that returns the distance between the point p and

32

the point q, considering the Euclidean distance on a 2D surface. A simpler approach could
consider as a cluster every point which has a minimum MinPts inside its neighborhood,
but this approach fails because there are two kinds of points in a cluster: those in the
center and those in the border. The latter has less points than the former, as shown in
Figure 2.11 (a). To resolve it, they have created some other definitions that build step by
step the solution and is illustrated in figure 2.11 (b).

Directly Density Reachable: A point p is directly density reachable to a point q with
respect to Eps, MinPts if:

1. p ∈ NEps(q)

2. |NEps(q)| ≥MinPts (Core point condition)

A point which meets the second condition is called core point, otherwise it called
border point.

Figure 2.11: (a) Border and core points; (b) Directly Density Reachable illustration (ES-
TER et al., 1996)

The directly density reachable illustration is symmetric for pairs of core points, but is
asymmetric for a pair border/core points. The next definition relates every border point
with the core points, since there is a chain of directly density reachable points.

Density Reachable: A point p is density reachable to a point q with respect to Eps,
MinPts if there is a chain of points p1, p2, ..., pn; p1 = q, pn = p such pi+1 is directly
density reachable from pi.

Now it is necessary to relate two border points in the same cluster. Thus the density
connected definition provides it.

Density Connected: A point p is density connected to a point q with respect to Eps,
MinPts if there is a point o such that both p and q are density reachable from o with
respect to Eps and MinPts.

The density reachable and density connected definitions may be better visualized in
Figure 2.12.

With respect to the definitions above, it is possible to define both cluster and noise
according DBSCAN:

Cluster: LetD be a database of points. A clusterC, with respect toEps andMinPts,
is a non-empty subset of D satisfying the following conditions:

1. ∀p, q: if p ∈ C and q is density reachable from p with respect to Eps and MinPts
then q ∈ C. (Maximality)

2. ∀p, q: p is density connected to q with respect to Eps and MinPts. (Connectivity)

33

Figure 2.12: (a) Density Reachable definition; (b) Density Connected definition (ESTER
et al., 1996)

Noise: Let C1, C2, ..., Cn be the clusters of the database D with respect to Eps and
MinPts. Then is defined as noise the set of points in the database D not belonging to
any cluster Ci. Noise = p ∈ D|∀i : p /∈ Ci.

DBSCAN’s advantage is that it has a good performance on large spatial databases,
outperforming other density-based algorithms like CLARANS (NG; HAN, 1994). DB-
SCAN’s complexity isO(nlogn), considering the data on a R*-Tree (BECKMANN et al.,
1990) structure. It requires little knowledge about the spatial domain, since it needs only
two parameters in order to be performed: MinPts and Eps. Besides, the authors that
proposed DBSCAN proposed a method based on a graphic in order to estimate a good
value to the Eps parameter. In this method the MinPts is set to 4 and the Eps is calcu-
lated based in the sorted 4-dist graph. The user must look for a valley in the graph, which
represents the threshold point to be used as Eps 3.

The main disadvantage of DBSCAN is its difficulty to find clusters of different den-
sities, like those shown in Figure 2.13. That figure shows 4 distinct clusters, where the
cluster A has the greatest density among them and the cluster D has the lowest one. The
clusters B and C have intermediate densities.

Figure 2.13: Clusters with different granularities (ESTIVILL-CASTRO; LEE, 1999)

2.2.2 DJ-Cluster

DJ-Cluster (ZHOU et al., 2004, 2007) is an algorithm created after DBSCAN. It was
projected after some experienced problems with DBSCAN’s performance. According
to DJ-Cluster creators, for some Eps and MinPts, DBSCAN algorithm will generate a

3This process is not considered in the DBSCAN complexity

34

large number of points within its density definition, each of which could be further used
to generate its own density-reachable points. In such cases, it will use a lot of memory
and slow down considerably.

Where DBSCAN uses the connectivity notion of a clique graph, DJ-Cluster instead
uses the concept of connected components. This helps DJ-Cluster to avoid the perfor-
mance problems mentioned. However, DJ-Cluster is simpler than DBSCAN despite some
common definitions, like Eps-neighborhood. Two other definitions are necessary to define
a cluster according DJ-Cluster.

Density Joinable: NEps(p) is density joinable toNEps(q), denoted as J(NEps(q), NEps(p)),
with respect to Eps and MinPts, if there is a point o such that both NEps(p) and NEps(q)
contain o.

DJ Cluster: The density and join based cluster C is defined as follows: ∀p ∈ D, ∀q ∈
D, ∃NEps(p), NEps(q) such that ∃J(NEps(q), NEps(p)).

Figure 2.14 exemplifies both definitions. At Figure 2.14 (a) the neighborhoods of p
and q, which met the MinPts condition, share a common point o, so they are merged in
a larger single cluster, illustrated in Figure 2.14 (b).

Figure 2.14: (a) Density Joinable definition; (b) DJ-Cluster formed by joining the two
neighborhoods in (a) (ZHOU et al., 2007)

DJ-Cluster was used to discover personal gazetteers, and it has been more precise in
this task than the k-means clustering method. In this approach the baseline (important)
places are specified by the user, and DJ-Cluster checks if these places occur in the trajec-
tories. So, four possibilities may happen:

• Baseline places that were discovered.

• Baseline places that were not discovered.

• Discovered places that are interesting and significant to the person.

• Discovered places that are not interesting to the person.

DJ-Cluster is a very interesting clustering algorithm, but it does not bind automatically
the clusters to important geographical places, which are called personal gazetteers. In
some sense, it is a method to assign semantic information to the clusters, but it needs
user’s assistance.

The high level algorithm is presented in listing 2.1 (ZHOU et al., 2007).

35

Listing 2.1: DJ-Cluster Algorithm
IN P U T:

S : Sample dataset of points\\

1: WHILE there is at least one unprocessed point p I N sample S DO
2: Compute N(p) wrt Eps and MinPts.
3: I F N(p) is null (p is not I N a cluster) THEN
4: Label p as noise.
5: E L S E I F N(p) is density-joinable to an existing cluster THEN
6: Merge N(p) and all its density-joinable clusters.
7: E L S E
8: Create a new cluster C based on N(p).
9: E N D I F
10: ENDWHILE

The complexity of DJ-Cluster and DBSCAN is the same: O(n log n), using a R-Tree
based index.

2.2.3 ST-DBSCAN

ST-DBSCAN (BIRANT; KUT, 2007) (Spatial-Temporal DBSCAN) is another density-
based clustering algorithm based on DBSCAN. While DBSCAN is able to treat only spa-
tial data, ST-DBSCAN is able to deal with non-spatial attributes, like the time. To do
it, ST-DBSCAN uses two distance metrics, Eps1 and Eps2, to define the similarity by
a conjunction of two density tests. Eps1 is used for spatial values to measure the close-
ness of two points geographically. Eps2 is used to measure the similarity of non-spatial
values.

Other two parameters are also used in ST-DBSCAN:MinPts and ∆E . MinPts has the
same meaning as in the two previous methods, and ∆E is used to prevent the discovering
of combined clusters with little differences in non-spatial values of the neighborhood
locations. The existing density-based clustering algorithms are adequate if the clusters
are distant from each other, but not satisfactory when the clusters are adjacent to each
other. If the values of neighbor objects have little differences, the values of border objects
in a cluster may be very different from the values of other border objects in opposite side.
In other words, the value of a border object may be very different from the value of the
farthest border object, since small value changes on neighbors can cause big value changes
between starting points and ending points of a cluster. However, cluster objects should be
within a certain distance from the cluster means. This problem is solved by comparing
the average value of a cluster with new coming value. If the absolute difference between
Cluster_Avg and Object_V alue is bigger than the threshold value, ∆E , then the new
object is not appended to the cluster. Cluster_Avg refers to the average or mean value
of the objects contained in the cluster. Object_V alue refers to the non-spatial value of an
attribute, such as the temperature of a location (BIRANT; KUT, 2007).

The other issue which ST-DBSCAN addresses is related to clusters of different den-
sities. It introduces a new definition of density-distance. It is calculated dividing the
density-distance-max by the density-distance-min, which are respectively the largest and
shortest distance between p and its neighbors. So, the density factor of a cluster can be
calculated. As follows:

DensityFactor(C) = 1/

∑
p∈C

density−distance(p)
|C|

The density factor of a cluster C captures the degree of the density of the cluster. If
C is a ’loose’ cluster, density-distance-min would increase, and so the density distance
would be quite small, thus forcing the density factor of C to be close to 1. Otherwise, if C

36

is a ’tight’ cluster, density-distance-min would decrease, and the density distance would
be large, thus forcing the density factor of C to be close to 0.

2.2.4 GDBSCAN

GDBSCAN (SANDER et al., 1998) is a generic version of DBSCAN, able to cluster
spatial and/or non-spatial objects. DBSCAN is a specialization of GDBSCAN, since only
the spatial attributes are used and it ’instantiates’ some abstract functions of GDBSCAN.
The idea of ’density-based clusters’ can be generalized in two important ways. First, we
can use any notion of neighborhood instead of an Eps-neighborhood if the definition of the
neighborhood is based on a binary predicate which is symmetric and reflexive. Second,
instead of simply counting the objects in a neighborhood of an object, we can as well use
other measures to define the ’cardinality’ of that neighborhood.

Although in many applications the neighborhood predicate will be defined by using
only spatial properties of the objects, the formalism is in no way restricted to purely spatial
neighbors. We can use non-spatial attributes and combine them with spatial properties of
objects to derive a neighborhood predicate.

GDBSCAN uses a kind of weight in the non-spatial attributes to calculate the cardinal-
ity of a set of objects. The old Eps-neighborhood function has been replaced by a generic
neighborhood function called Npred, which is a symmetrical and reflexive binary predi-
cate. Thus, the wCard function calculates a positive value of a set of objects that must
be greater or equal than the MinCard value in order to be a core object. For instance,
the expression wCard(S) ≥ MinCard generalizes the condition Eps-Neighborhood(o) ≥
MinPts in the definition of density-based clusters, where cardinality is just a special case
of a wCard function.

2.2.5 ADBC

Daoying (MA; ZHANG, 2004) proposes an algorithm similar to DBSCAN with some
modifications in order to improve the quality of the clustering. The method is called
Adaptive Density-Based Clustering (ADBC) and the adaptive word refers to use an flex-
ible ellipse instead a single circle in order to calculate the neighborhood region. This
minimizes the void pad and maximizes the density pad, which are two concepts related to
the cluster quality. They are defined as follows:

Density pad: A density pad is a convex region inside a circle with radius Eps that
includes all useful objects.

Void pad: A void pad is the region inside the circle with radius Eps that is not density
pad.

Both definitions are better visualized in the figure 2.15. The larger the void pad is,
the higher is the chance to include noise data into a cluster, since for that Eps, the cluster
assumes a format different from a single circle. Including points in the void region may
cause an undesirable chain effect, and the quality of density may be affected. Figure 2.15
shows how the structure of the points may affect the cluster quality according the concepts
of void pad and density pad. As the void pad in (b) is larger than in (a), the quality of
density in (b) is lower than that (a) (MA; ZHANG, 2004).

The method used to define the neighborhood region is very important to avoid void
pad in density-based clustering algorithms. Therefore, the neighboring region has to be
defined properly to reflect the data distribution of an object’s neighbor. Dynamic ellipse
is proposed to adjust with different radiuses and also rotate according to the distribution
of the neighbors of an object, as shown in Figure 2.16.

37

Figure 2.15: Density Pad and Void Pad concepts (MA; ZHANG, 2004)

Figure 2.16: The ellipse neighborhood region adapts according to the distribution of the
neighbors (MA; ZHANG, 2004)

2.2.6 T-Optics and TF-Optics

Nanni (NANNI; PEDRESCHI, 2006) adapted a density-based clustering method to
find trajectory clusters. His work is based on the well known Optics algorithm (ANKERST
et al., 1999), following the principle of using the reachability plot of the data in order to
identify the clustering structure. Nani adapted Optics to work with trajectories, so he
proposed a distance metric to evaluate the similarity among trajectories with respect to a
given time interval. The distance metric is the mean of the distances between each pair of
points of the same time moment, formally, the continuous mathematical expression is the
following:

D(τ1, τ2)|T =

∫
T
d(τ1(t),τ2(t))dt

|T |

Where τi is the trajectory, T is a time window, τi(t) is the point of the trajectory τi in
the time t and ‖T‖ is the T’s interval duration. Obviously, the computational case will be
a discrete set of points, so the integral operator could be replaced by the sum operator

∑
.

The goal of Nanni (NANNI; PEDRESCHI, 2006) is the discovery of clusters among
a set of trajectories with respect to a time window T . The clusters indicate direction and
position similarity among the trajectories in the same cluster. In order to achieve it, he

38

uses a quality function used to measure the clustering result. This function uses the stan-
dard high intra-cluster versus low inter-cluster similarity tradeoff principle, which could
be naturally translated into high-density clusters versus low-density noise rules. Highly
dense clusters can be considered interesting by itself, while having a rarefied noise means
that clusters are clearly separated. Put together, these two qualities seem to reasonably
qualify a good (density-based) clustering result (NANNI; PEDRESCHI, 2006).

2.2.7 Clustering Considerations

In this section was presented an overview about the clustering algorithms, and some
of them were more detailed, like DBSCAN and DJ-Cluster due to their greater influence
in this work. The main reason of the choice of DBSCAN in order to be extended to work
with spatio-temporal data is due to its simplicity and capacity of find cluster of arbitrary
sizes and shapes.

In chapter 3, the proposed model, which is inspired in DB-SCAN, is presented.

39

3 THE PROPOSED METHOD: CB-SMOT

The main objective of this dissertation is to present a new method to discover impor-
tant places of trajectories (stops).

SMoT (ALVARES et al., 2007) was the first algorithm proposed in order to discover
stops and moves of trajectories, i.e., to represent trajectories in a higher abstraction level.
The method proposed in this dissertation, called CB-SMoT (PALMA et al., 2008), extends
that work providing a second way to find stops and moves, based on the speed of the
moving object.

CB-SMoT stands for Clustering Based - SMoT and it uses a clustering technique in
order to identify stops, according to Spaccapietra’s (SPACCAPIETRA et al., 2008) stop
definition. CB-SMoT is an algorithm that identifies slower sections in a trajectory and
tries to associate them to known places in the background geography, in order to give
more human-comprehensive information about the trajectory.

This chapter presents the formal definitions for the method and the pseudo-code for
the algorithm. The method has two main steps: initially, using a new clustering method,
the important parts of trajectories are identified (section 3.1), and after these parts are
compared with the background geographic information to give additional semantics to
the clusters (section 3.2).

3.1 Clustering Step

The SMoT (ALVARES et al., 2007) algorithm presented in Chapter 2 matches every
trajectory point with every candidate stop in order to extract the stops and moves. How-
ever, for some applications, like for instance traffic management, a more important issue
is the speed of the moving object.

CB-SMoT intends to create clusters of slow speed parts before matching them with
the background geography. So, we use the own trajectories’ characteristics (speed) to
indicate the most probable interesting parts (sections). The clustering step is inspired
on the known clustering method DBSCAN (ESTER et al., 1996), following the same
principles but with modifications in the clustering method, since CB-SMoT is based on
speed instead of density.

DBSCAN looks for core points in order to start a cluster, later it tries to expand it by
adding near points. CB-SMoT follows the same principles, first it looks for core points
and then tries to expand them by aggregating other points in the neighborhood. The main
difference is in the core point definition and the aggregating criterion used to expand the
cluster. In order to understand these concepts some others have to be introduced:

40

Definition 6. Slower-Neighbor. The Slower-Neighbor of S, SlowerN(S), such that
S =< pi, pi+1, ..., pn >, is the point pj = (x, y, t) such that:

• pj = pi−1 if Speed(pi−1) <= Speed(pn+1) or

• pj = pn+1 if Speed(pn+1) < Speed(pi−1)

Where Speed(p) is the speed of the point p and S is a time ordered sub-trajectory. If
pn+1 or pi−1 does not exist then the slower-neighbor becomes automatically the remaining
point or is not defined if both do not exist.

The other definition is about the neighborhood of a point, called Slowest-Neighborhood
of a point pi. It is calculated by adding to each step, the slowest neighbor until it is impos-
sible adding more points due to the limits of the trajectory, or, when the neighborhood’s
duration reach the minimum time t. Formally, the slowest neighborhood is defined as
follows.

Definition 7. Slowest-Neighborhood. The Slowest-Neighborhood of a point pi with
respect to the minimum time t, SNt(pi), is defined as:

• SNt(pi) =< p1, p2, ..., pn >, where 1 ≤ i ≤ n and

•
∑n−1

i=1
d(pi,pi+1)

tn−t1 is minimal and

• tn − t1 ≥ t and |tn − t1| is minimal

Where d(a, b) is the euclidean distance between the point a and the point b and∑n−1

i=1
d(pi,pi+1)

tn−t1 is the average speed of the respective subtrajectory.
The Slowest-Neighborhood definition returns the neighborhood that has the minimum

speed for a given point pi. Figure 3.1 presents two examples of slowest-neighborhood. In
(a) the starting point is in a high speed section, and all slower-neighbors are to the right,
so the final slower-neighborhood will have only the lower speed points, which are at the
right side. In (b) the starting point is balanced among other points, so the neighborhood
will expand to both sides. Besides, we are interested in a special case of the slowest-
neighborhoods: when its average speed is less or equal to a given threshold, avg. The
neighborhood will be called core-neighborhood if this criterion is matched. Formally, a
core-neighborhood is defined as follows:

Definition 8. Core-Neighborhood. A Slowest-Neighborhood, SNt(pi), is called
Core-Neighborhood if meanSpeed(SNt(pi)) ≤ avg, where meanSpeed() is a function
that returns the average speed of that neighborhood.

To limit a cluster only by the MinTime parameter is not an interesting approach, since
a cluster should be a maximal sub-trajectory that satisfies the speed and time constraints.
Hence, it is necessary to expand the original core neighborhood by adding other interest-
ing points, which are those points which have a slow speed and are time-close to slowest-
neighborhoods. In order to add such points we check the impact of aggregating them in
existing core-neighborhoods and comparing the new average speed with the old one. Ini-
tially we used only this criterion, but for specific scenarios where the core-neighborhood
has a very low average speed, it allows the addition of points whose speed is higher than

41

Figure 3.1: Slowest-Neighborhoods created given the starting points

the desirable, but this addition keeps the average speed below the average speed limit, af-
fecting the quality of the final clusters. To avoid the creation of these undesirable clusters,
we propose an alternative criterion used to allow a point to be added in a neighborhood. It
consists of testing its speed against a upper limit related to the average trajectory’s speed.
If the point’s speed is lower than the limit, the point can be aggregated into the neighbor-
hood. Formally, we use two concepts in order to define this feature: the first one specifies
the general way of expanding a neighborhood S. The second uses that definition and
limits when it is used.

Definition 9. Limited-Neighborhood. The Limited-Neighborhood of S, LN sl
avg(S),

with respect to the average speed limit avg and the speed limit sl, is defined recursively
such that:

• LN sl
avg(S) = LN sl

avg(S
′) if MeanSpeed(S ′) ≤ avg and Speed(pn) ≤ sl, where

S ′ = S ∪ {pn|pn = SlowerN(S)}

• LN sl
avg(S) = S, otherwise

Where S is a continuous sequence of trajectory points. This definition is not used
directly and it is used as an auxiliary definition in order to simplify the next concept,
Connected-Neighborhood. Definition 9 is about sets of points that have the minimum
time duration and the speed criteria satisfied.

Definition 10. Connected-Neighborhood. A Connected-Neighborhood of S,CN sl
avg,t(S),

with respect to minimum time t, the average speed limit avg and the speed limit sl, is de-
fined as:

• CN sl
avg,t(S) = LN sl

avg(SNt(S)) if SNt(S) is a core-neighborhood, otherwise is

• {} (empty set).

As a core-neighborhood has by definition its average speed less or equal to the avg
parameter, the Limited_Neighborhood used will expand that neighborhood until the
speed criterion in definition 8 becomes unmatched. Intuitively, definition 9 connects to a
core neighborhood every slower neighbor which keeps the mean speed of the set below

42

the average speed limit parameter, and tests if the added point is not a non-desirable speed
point (when it has a high speed). Figure 3.2 exemplifies how a connected-neighborhood
is created. First, we start the set S with a single point shown in (a); then we calculate its
slowest-neighborhood in (b), as its mean speed is less than the speed limit parameter it
is a core-neighborhood; (c) we expand the core-neighborhood by adding neighbor points
that match the criteria used in definition 8.

Figure 3.2: Steps of the creation of a Connected-Neighborhood given the starting point,
minimum time, average speed limit and speed limit

There might exist many connected-neighborhoods in a same timestamp, so we need
to choose the best one, in other words, that whose mean speed is the slowest. The last def-
inition chooses among every connected neighborhood the best one in order to be labeled
as cluster. The criterion used to compare connected-neighborhoods is the mean speed.
So, if two or more connected-neighborhoods share a common point (they intersect each
other by this common point), we will call cluster the one whose mean speed is the slowest
among them, formally:

Definition 11. Cluster. A connected neighborhood CN is called cluster with respect
to average speed, speed limit and minimum time, if ∀p ∈ CN,∀p′ ∈ CN ′, CN 6= CN ′

and p = p′ ⇒ MeanSpeed(CN) ≤ MeanSpeed(CN ′), where CN and CN ′ are con-
nected neighborhoods of a trajectory.

The first part of CB-SMoT is the clustering step. In this phase we intent to find out
slow parts (clusters) in a trajectory in order to use them as input to the next step. Listing
3.1 shows the main steps of CB-SMoT in a pseudo-code.

43

Listing 3.1: CB-SMoT Clustering Algorithm

void SpeedClustering(T,avg,MT,sl)

IN P U T:
T: Trajectory
avg: average cluster speed limit
MT: cluster minimum time duration
sl: cluster speed limit

METHOD:
1:clusterId = 1;
2:T1 = T.sortBySpeed();
3:FOR EACH p IN T1 DO
4: IF p is UNPROCESSED THEN
5: IF Limited-Neighborhood(T,p,clusterId,avg,MT,sl) THEN
6: clusterId++;
7:ENDFOR

OUTPUT:
EACH p I N T labeled as the respective cluster id identification

The inputs are the trajectory points, the avg, MT and sl parameters. The sl parameter
is the speed limit of a candidate point that will be added into an existing neighborhood
created from the other two parameters. The clusterId is a cluster identifier that is incre-
mented each time a cluster is found. In line 2 the points of the trajectory are sorted by
ascending speed in order to be iterated at line 3. Therefore, we try to generate clusters
with the slowest points before. If a point has already been processed (it was set to a cluster
by the Limited-Neighborhood function) we jump to the next one.

The Limited-Neighborhood function (in line 5 of listing 3.1) is detailed in listing 3.2,
and works as follows. First (line 4), it tests if the slowest-neighborhood of a point p is a
core-neighborhood. If it is not, the function returns false and the next point in the main
loop is tested; otherwise its neighborhood is set with the given clusterId, and we try to
expand the cluster in the loop of line 8. Hence, we add one point each time into the new
generated cluster, testing the criteria in definition 8. This test warrants the quality of the
cluster, ensuring that always the cluster will have its mean speed less or equal to the avg
parameter and it will not have any point whose speed is too high.

Listing 3.2: Limited Neighborhood Function

boolean Limited-Neighborhood(T, p, clusterId, avg, MT, sl)

1:Seeds = {p};
2:Slowest-Neighborhood(Seeds,T,MT);
3:MeanSpeed = Seeds.meanSpeed();
4: I F (MeanSpeed > avg OR Seeds.duration() < MT)
5: return false;
6:E L S E
7: Seeds.setClusterId(clusterId);
8: WHILE (true)
9: AddedPoint = Slower-Neighbor(Seeds,T);

//Add the point at time ordered correct position
10: Seeds.add(AddedPoint);
11: NewMeanSpeed = Seeds.meanSpeed();
12: I F (NewMeanSpeed <= avg AND AddedPoint.speed() <= sl)
13: I F (AddedPoint is not I N a cluster) {
14: AddedPoint.clusterId = clusterId;
15: E L S E
16: break;
17: E L S E
18: break;
19: MeanSpeed = NewMeanSpeed;
20: ENDWHILE
21:E N D IF

44

22:return true;

The Slowest-Neighborhood function shown in listing 3.3, basically compares the
speed of the points immediately before and after of a given time-ordered set of points
(the initial calling set is the singleton with the point p) and adds the point whose speed
is slower. This process is repeated until the MT duration is reached or is impossible to
add more points into the set due to the limits of the trajectory or the points are already in
another cluster.

Listing 3.3: CB-SMoT Slowest-Neighborhood Function

void Slowest-Neighborhood(Seeds, T, MT)

1:DO
2: leftPoint = T[Seeds.firstPointIndex()-1];
3: rightPoint = T[Seeds.lastPointIndex()+1];
4: I F (leftPoint.speed <= rightPoint.speed AND

leftPoint is not I N a cluster)
5: Seeds.add(leftPoint); //Adds in the correct position
6: E L S E I F (rightPoint is not I N a cluster)
7: Seeds.add(rightPoint); //Adds in the correct position
8: E L S E
9: break;
10:WHILE (Seeds.duration() < MT);

Each point in the trajectory is analyzed only once, in order to label it as a cluster or
not, so the complexity of the clustering step is N (the number of points in the trajectory).
In order to find the neighbors of a given point it is only necessary to increment/decrement
the index in the trajectory, since the trajectory contains all points ordered in time.

3.2 Giving Semantics to the Clusters

The slower parts of the trajectory are discovered in the clustering step and labeled as
clusters. Those parts are interesting trajectory’s parts, so they are labeled as stops accord-
ing to our approach. However, we will divide them in two kinds: Unknown Stops and
Known Stops. In order to formally define these concepts we will use two other concepts
proposed by Alvares (ALVARES et al., 2007): Candidate Stop and Application, which
were defined in the previous chapter.

Definition 12. Known Stop. Let T be a trajectory with time domain I and let A =
({C1 = (RC1 ,∆C1), ..., CN = (RCN

,∆_CN)}) be an application. Let I0, I1, ..., In be
the temporally-ordered decomposition of I into time intervals where T is intersected by
candidate stops with respect to A. A known stop of T with respect to A is a contiguous
sub-trajectory of T over a maximal concatenation of some ti, ti+1, ..., ti+` for which there
is a (RCk

,∆Ck
) in A such that:

• < (xi, yi, ti), (xi+1, yi+1, ti+1), ..., (xi+`, yi+`, ti+`) > is in a cluster

• < (xi, yi, ti), (xi+1, yi+1, ti+1), ..., (xi+`, yi+`, ti+`) > intersects RCk
.

• |ti+` − ti| ≥ ∆Ck

An Unknown Stop is related to clusters (or cluster parts) that do not have intersections
that lasts MT with the same candidate stop with respect to the application. Thus, the
formal definition is the following:

45

Definition 13. Unknown Stop. Let T be a trajectory with time domain I and let
A = ({C1 = (RC1 ,∆C1), ..., CN = (RCN

,∆_CN)}) be an application. An unknown stop
of T with respect to A is a contiguous sub-trajectory of T over a maximal concatenation
of some ti, ti+1, ..., ti+` such that:

• < (xi, yi, ti), (xi+1, yi+1, ti+1), ..., (xi+`, yi+`, ti+`) > is in a cluster

• There is no point pn, i <= n <= i+ `, such that pn is in a Known Stop

• |ti+` − ti| ≥MT

There are some characteristics related with Known and Unknown stops: both defi-
nitions require that the points belong to a cluster, but a Known Stop may have points in
more than one cluster. Such extreme case occurs when the next point after the last one
of the first cluster is the first point of the next cluster, shown in Figure 3.3 (a)1. In other
words it means that all consecutive points that intersect a candidate stop are in a cluster.
Another peculiar case is related to Unknown Stops which do not necessarily use all points
in the cluster, because there are points in the cluster that belong to Known Stops, shown
in Figure 3.3 (b).

Figure 3.3: Some possible cases of Known Stops and Unknown Stops. In (a) a Known
Stops may be in more than one cluster. In (b) a cluster that generates a known stop and a
unknown stop

1In order to facilitate the visualization of the clusters, known stops and unknown stops were represented
as shapes, but in fact they are only the points inside these shapes. Only the candidate stop has an area
associated to it

46

The points which will form stops must necessarily be in a cluster. After found the
clusters, we identify Known Stops. For last we try do create Unknown Stops with the
remaining points. The remaining points after the discovery of the Known Stops will not
necessarily generate an Unknown Stop, since some criteria must be matched, like the
minimum time duration. A necessary condition to generate stops is that all points in the
same stop must be consecutive. In other words, there may not be any trajectory point
between two points in the same stop that is not in that stop.

3.2.1 Stops Discovering Algorithm

The second step of CB-SMoT is to try to associate the clusters found in the clustering
step with some features in the background geography. Some clusters or parts of clusters
will intersect candidate stops, and they will be called Known Stops. Clusters without any
mapped relation with the considered background geography will be labeled as Unknown
Stops.

The clustering step acts like a filter, selecting those trajectory points that we are in-
terested in, i.e., parts with low speed. The next step is to test if the cluster will intersect
a candidate stop for the respective minimum stop duration, otherwise the cluster will be
labeled as Unknown Stop.

This part is quite simple, but we need some care about the cases presented in Fig-
ure 3.3. A simpler way to do that is to treat adjacent clusters (like in Figure 3.3(a)), as
a single bigger cluster, despite they have been created at different moments. Therefore,
each time we create a new stop, we associate to it the cluster identifier of the point which
intersected it. So, each new point that would be in the same known stop must have the
same cluster identifier. In other words, they must be in the same cluster. This warranty
that all points in the same stop will be consecutive.

Another possible case is when there are two clusters with at least one point (which is
not in a cluster) between them, and a candidate stop whose intersection starts in the first
cluster, continues through this point, and it finishes in the next cluster. Such candidate stop
will not generate a Known Stop because there is no continuous intersection with cluster
points. This case is exemplified in Figure 3.42. In this example, we are considering that
the minimum time duration associated to the candidate stop is not satisfied in any cluster
separately. In other words, the sum of both cluster intersection time is not used in order
to test the intersection time with that candidate stop in order to generate a known stop.
However, if the minimum time duration is satisfied in each cluster separately, we will
have two known stops.

In listing 3.4 we present the complete high-level algorithm with the clusterization step
and the stops discovery.

Listing 3.4: CB-SMoT

void CBSMoT(T,avg,MT,sl,A)

IN P U T:
T : Trajectory
avg: Average Speed
MT : MinTime
sl : SpeedLimit
A : Application

1:SpeedClustering(T,avg,MT,sl);

2the cluster was presented as a circle in order to facilitate the visualization, but it is formed by only the
points inside the circle

47

Figure 3.4: The candidate stop will not form a Known Stop, since it has not a continuous
intersection with cluster points and the minimum time duration is not satisfied in none of
them

//Consider adjacent clusters as a bigger single one
2:T.unifyAdjacentClusters();
3:Points = T.clusterPoints();
4:FOR EACH p I N Points DO
5: I F p intersects some candidate stop C THEN
6: List.add(new Association(p,C));
7: E L S E
8: List.add(new Association(p,null));
9: E N D I F
10: ENDFOR
//Find the Stops
12:StopsDiscovering(List);

At line 1 the method performs the clustering step, but it changes the cluster identi-
fication at line 2 in order to treat the adjacent clusters as a bigger single cluster. After
(lines 4-10), it iterates through the points in a time ascendant order creating a list that as-
sociates each point with the candidate stop it intersects if it intersects any. By definition,
an application has no candidate stops that overlap each other, so a trajectory point inter-
sects either none or one candidate stop only. The algorithm is presented this way in order
to facilitate the understanding, but it may be easily extended in order to allow candidate
stops overlapping. The Association structure binds each point with the candidate stop(s),
if they exist.

Listing 3.5: StopsDiscovering

void StopsDiscovering(List)

IN P U T:
List : List of points associated with candidate stops

1:KnownStop = null; UnknownStop = null;
2:FOR (i=0;i<List.size;i++) DO
3: I F List[i].C != null THEN
4: I F List[i].C != KnownStop.C or

KnownStop.clusterId != List[i].p.clusterId THEN
5: I F KnownStop.duration >= MT THEN
6: KnownStops.add(KnownStop);
7: E N D I F
8: KnownStop =

new KnownStop(List[i].C,List[i].p.clusterId);
9: E N D I F
10: KnownStop.add(List[i].p);

48

11: E L S E
12: I F UnknownStop.clusterId != List[i].p.clusterId THEN
13: I F UnknownStop.duration >= MT THEN
14: Unknowns.add(UnknownStop);
15: E N D I F
16: UnknownStop =

new UnknownStop(List[i].p.clusterId);
17: E N D I F
18: UnknownStop.add(List[i].p);
19: E N D I F
20: I F KnownStop.duration >= MT THEN
21: KnownStops.add(KnownStop);
22: E N D I F
23: I F UnknownStop.duration >= MT THEN
24: Unknowns.add(UnknownStop);
25: E N D I F

The StopsDiscovering procedure, shown in listing 3.5, is used to generate Known and
Unknown Stops. The algorithm shows the case used when it is allowed at most one candi-
date stop by point. Whether more than one candidate stop is allowed, the procedure needs
to treat them separately, but this case will not be presented here. At the beginning of
the StopsDiscovering procedure two empty lists are created: KnownStops and Unknowns,
which will be filled along the procedure. The IF in line 3 tests if the point has an associ-
ated candidate stop. In positive case it may become a known stop, so the next IF (line 4)
tests the conditions required in order to it not be added in the existing KnownStop (if it
exists). If these conditions are not satisfied (it implies it belongs to the same KnownStop),
then the point is added to the existing known stop in line 10. Otherwise, it is necessary to
create a new KnownStop, but before that, we need test if the previous KnownStop is in fact
a KnownStop by matching its minimum time duration and adding it to the KnownStops
list in positive case (line 6). Adding it or not, it is necessary to create another KnownStop,
and it is done in line 8, where we pass to the constructor the candidate stop and the cluster
identification.

In case the test in line 3 is false, in other words the point has no candidate stops
associated to it, it only may become an UnknownStop. Thus, the next IF (line 12) tests
if the point’s cluster identifier is the same of the existing UnknownStop (if it already
exists). In positive case, the point is added to it (line 18), otherwise it is needed to test
if the previous one matches the minimum time duration (line 13) in order to add it to
the UnknownStops list. Matching this criterion or not, another UnknownStop needs to be
created (line 16), where only the cluster identification is passed into the constructor.

In lines 20 to 25 we test the pending KnownStop and UnknownStop in order to add
them into the respective lists, because they might not have being added due to the end of
the looping.

Considering processing time, the worst case in this part of the algorithm occurs when
every point is in a cluster. Thus, every point will need to be tested with the background
geography and the complexity becomes the same of the SMoT algorithm: O(N Log C),
where N is the number of points in the trajectory and C is the number of candidate stops.
The final complexity of CB-SMoT in the worst case is given by the sum of the complex-
ity of the clustering step added to the complexity of the matching with the background
geography. So it is O(N + N Log C), which is O(N Log C).

3.2.2 Common Unknown Stops Among Trajectories

The algorithm CB-SMoT, presented in this chapter, is used to find known and unknown
stops in a single trajectory. However, a more interesting approach is to use CB-SMoT in a
trajectory dataset and try to identify common patterns of stops. When we discover known

49

stops, each one is related to a place in the background geography, so that, if two known
stops of different trajectories take place approximately in the same location, they might
be related to the same geographic entity 3. In a similar way, the unknown stops may also
refer to the same geographic place.

We proposed a similar process in order to try to relate unknowns to each other, since
often unknown stops that take place approximately in the same location refer to the same
geographic entity or event. This approach is interesting later, when the CB-SMoT output
will be used to discover new patterns. Therefore, instead of trying to discover patterns by
treating each unknown in an isolate way, which will generate no patterns, we associate
them to each other by the same identifier.

The identification process is performed after applying CB-SMoT in the whole trajec-
tory dataset. It assigns identification id to the unknown stops. The same id is set to all
unknowns that are close to each other. The closeness criterion is based on the topological
intersection operation, i.e., for each unknown stop U, if it intersects 4 another unknown
stop which has already an id, U’s id becomes the same, otherwise U receives a new iden-
tification. Figure 3.5 illustrates this case, where unknown 2 is a stop in both trajectory A
and B.

Figure 3.5: The unknown stops that intersect each other will have the same identification

3The term entity is used to define some physical place in the background geography
4We define the shape of an unknown as a buffer involving the sub-trajectory represented by a cluster.

50

51

4 A PROTOTYPE: WEKA-STPM

In order to evaluate the proposed model, we implemented it as an extension of Weka
(WITTEN; FRANK, 2005), which is a well known open source tool that implements
many data mining algorithms. Weka is used in several groups in order to perform tra-
ditional data mining. Our research group had already extended Weka to pre-process ge-
ographical databases (BOGORNY et al., 2006). Now, Weka was extended in order to
pre-process spatio-temporal data by the addition of the Semantic Trajectory Pre-process
Module (STPM), which is described in this chapter.

4.1 STPM Interface

In order to support STPM we extended the Weka database connection interface. We
added the button ’Trajectories...’, shown in figure 4.1, which calls the STPM module.

Figure 4.1: Screen in Weka where the STPM is called

Figure 4.2 shows the visual interface of STPM. At the top of the interface, the user
needs to choose the schema in the database. After click on ’load’, all geographic tables in
that schema will be loaded into Trajectory Table combobox and into the RelevantFeatures
list. In the combo ’Trajectory Table’ the user should choose the trajectory table that will be
considered. In the list ’Relevant Features’, the user should choose the candidate stops. In
the granularity panel the user will define in which granularity level the output data will be
generated. Feature Instance level indicates that he is interested in the ’instances’/objects
of the relevant features. Feature type level indicates that he is interested in the class/type

52

Figure 4.2: STPM User Interface

of the relevant feature. For instance, if the user chooses as relevant feature ’hotel’, the
instance level will generate an output like ’hotel_Abadia’, ’hotel_Sheraton’, etc. On the
other hand, the feature type granularity will generate only the class as output, in that case
’hotel’. For more details, please see (BOGORNY et al., 2007). The parameter User Buffer
defines the size of the buffer operation that will be used for relevant features represented
as a point or line, in order to transform them in a polygon and them avoid problems of
imprecision. The RF Min Time parameter defines the minimum time duration in order
to a relevant feature be considered a stop. In the method panel, the user may choose
which method to use to generate semantic trajectories: SMoT or CB-SMoT, and define
its respective parameters.

The Trajectory Table Config button was designed to adjust the trajectory table con-
sidering some limitations of the prototype. This table should have an attribute called Tid
of type integer that is used as the trajectory identification, and the attribute that stores the
time information of the trajectory point should be called time and be of type timestamp.
Figure 4.3 shows the interface to configure the trajectory table. It presents two examples
of scripts that can be adapted to these transformations and can be executed from this in-
terface. One of the scripts may be used in order to generate the numeric tid, based on any
trajectory identification type. The other one may be used in order to generate a time of
type timestamp, based on a numeric field that represents the time dimension.

The Generate Numeric Tid script is presented in listing 4.1. First it creates a new
sequence and a temporary table. The next step is to select all distinct values of the tra-
jectory identificator field selected by the user and put them into that table associating it
with a number of that sequence. After, a ’tid’ column is added in the trajectory original
table and an update is performed by looking the respective identification of the record and
updating the new ’tid’ field with the sequence number existing in that. Last, the sequence
and the temporary table are dropped.

Listing 4.1: Generate Numeric Tid

53

Figure 4.3: Trajectory table configuration screen

BEGIN;
CREATE SEQUENCE serial;
CREATE TABLE traj_temp (gid integer,nome character varying) WITHOUT OIDS;
INSERT INTO traj_temp(gid,nome)

SELECT DISTINCT ON (tipo) nextval(’serial’), tipo FROM trajectories;
ALTER TABLE trajectories ADD COLUMN "tid" integer;
UPDATE trajectories A SET

tid = (SELECT t.gid FROM traj_temp T WHERE T.nome = A.tipo LIMIT 1);
DROP TABLE traj_temp;
DROP SEQUENCE serial;
COMMIT;

The Generate Timestamp from Int script is simpler, since it is a more specific script,
as shown in listing 4.2. It must be used when the time format is an integer. First it adds
the time attribute in the trajectory table. After it uses a composed function which ’casts’
the integer in a timestamp format. Of course, these scripts should be adapted according
to the input data.

Listing 4.2: Generate Timestamp from Int

BEGIN;
ALTER TABLE trajectories ADD COLUMN "time" timestamp without time zone;
UPDATE trajectories SET time = CAST((’2006-06-’||

(1 + (substr(time,1,6)::int)/86400) ||’ ’||
(substr(timeStr,1,6)::int)\%86400/3600 ||’:’||
(substr(timeStr,1,6)::int)\%86400\%3600 / 60 || ’:’ ||
(substr(timeStr,1,6)::int)\%86400\%3600 \% 60) as timestamp);

COMMIT;

The output of STPM module are two tables in the database: a stop table and a move
table. The stop table contains all stops (Knowns and Unknowns) found. Each record in
this table has the stop identification, the stop’s start_time, end_time and its geometry.

54

The stop identification is composed by the trajectory identification (tid), the stop number
of that trajectory (stopid) and it has associated a stop name(stop_name), which can be
feature type or feature instance granularity level. The move table contains in each record
the detailed description about a move, the trajectory identifier, the start and end time, the
start stop and the end stop (if they exist).

Figure 4.4: Generate arff file interface

Besides, STPM can create arff files (native Weka text files) to be used by Weka for
data mining purposes. This is done by the Generating Arff File button in figure 4.2. Fig-
ure 4.4 shows the interface with the parameters necessary to generate the arff file. In
that screen the user chooses the stop table of the respective database schema and defines
how the item will be generated by combining the elements in the Item panel and the Time
panel, i.e., defining the type of aggregation used. Name Only specifies that time will
not be considered. When time is considered, the Time panel specifies how the time will
be aggregated. This interface allows the user to aggregate the data in different granular-
ity levels, what is very important for data mining. For details, please see (BOGORNY;
KUIJPERS; ALVARES, 2008).

Arff files have two distinct sections. The first section is the Header information, which
is followed by the Data information. The Header of the arff file contains the name of the
relation and a list of the attributes (the columns in the data), and their types. The data
body contains the information of each instance of data, where each column is an attribute
of the header. An example of an arff file looks like the listing 4.3.

Listing 4.3: Arff File

@RELATION Stops

@ATTRIBUTE tid NUMERIC
@ATTRIBUTE 139_bairro {yes}
@ATTRIBUTE 140_bairro {yes}
@ATTRIBUTE 64_bairro {yes}
@ATTRIBUTE 1_unknown {yes}
@ATTRIBUTE 152_bairro {yes}
@ATTRIBUTE 151_bairro {yes}
@ATTRIBUTE 149_bairro {yes}
@ATTRIBUTE 150_bairro {yes}
@ATTRIBUTE 109_bairro {yes}

55

@ATTRIBUTE 154_bairro {yes}
@ATTRIBUTE 41_bairro {yes}
@ATTRIBUTE 39_bairro {yes}
@ATTRIBUTE 0_unknown {yes}
@ATTRIBUTE 60_bairro {yes}
@ATTRIBUTE 19_bairro {yes}
@ATTRIBUTE 65_bairro {yes}

@DATA
873,?,?,?,?,?,?,?,?,?,?,?,yes,?,?,?,?
804,?,yes,?,?,?,yes,yes,yes,?,yes,yes,?,yes,?,?,yes
802,?,yes,?,?,?,yes,yes,yes,?,yes,yes,?,?,?,yes,yes
800,?,yes,?,?,?,yes,yes,yes,?,yes,yes,?,?,?,yes,yes
846,yes,yes,?,yes,yes,yes,yes,yes,yes,yes,yes,?,?,?,yes,yes
799,?,yes,?,?,?,yes,yes,yes,?,yes,yes,?,?,yes,?,yes
798,?,?,yes,?,?,?,?,?,?,?,?,yes,?,?,?,?
844,yes,yes,?,yes,?,yes,yes,yes,?,yes,yes,yes,?,?,?,yes
843,yes,yes,?,yes,yes,yes,yes,yes,?,?,yes,?,?,?,yes,yes

4.2 STPM Implementation

Figure 4.5 shows the main components of STPM. Most of the STPM functionality is
provided by the Functional Module. It uses the data read by the interface, and performs
the processing using the data in the appropriated format of STPM. This module contains
static methods which are called from the interface. The main methods of this module are:

• smot: performs the SMoT algorithm given the trajectory, the application and the
parameters.

• speedClustering: is responsible for clustering the given trajectory according the
given parameters. It corresponds to the first step of CB-SMoT.

• stopsDiscovery: gives semantics to the clusters. Corresponds to the second step of
CB-SMoT.

• saveStops: It is a method used to save into the database the stops found by CB-
SMoT or SMoT method.

Figure 4.5: Main STPM Components

56

An important part used in the communication between the interface and the functional
module is the structure GPSPoint, shown in Figure 4.6. It represents a class with the
information of the points read from the trajectory and it has some methods used in the
functional module. It is built in the interface module when the trajectory data is loaded.
When the clustering method is performed, the clustering information is aggregated to this
structure, which contains the essential data for the communication between the two main
modules.

Figure 4.6: GPSPoint high level class

The attributes of the GPSPoint class are:

• tid. the trajectory identification;

• gid. the geographic identification;

• time. the timestamp of the point;

• point. the coordinates of the point;

• cluster. an enumeration indicating if the point belongs to {CLUSTER, NONE,
MOVE};

• clusterId. an identification of the cluster if it is in a cluster;

• speed. the speed of the point.

The methods are compareTo(GPSPoint), which is used in order to sort the points by
tid, time; and distance(GPSPoint), which is used in order to measure the spatial distance
to the given GPSPoint.

The insertion of STPM into Weka, follows the same principle used to insert GDPM
into Weka. The PropertySheetPanel file is inserted in the GUI package of Weka. Figure
4.7 shows how the STPM module is inserted in the Weka program structure. The Prop-
ertySheetPanel is a class in the Weka package and this file has been modified in order to
aggregate the STPM. It was modified by adding an instanceQueryAdapter class at the end
of the file, which is responsible to instanciate the STPM main class, passing the respective
parameters. Figure 4.8 shows how this class calls the STPM main class. The instance-
QueryAdapter needs the PropertySheetPanel in order to see its scope and be able to pass
to the TrajectoryFrame the three parameters used to connect to the database: user, pass
and url. After this, the TrajectoryFrame is an independent program.

57

Figure 4.7: Where find the STPM in Weka java source

Figure 4.8: How STPM main class is instantiated from the PropertySheetPanel class

4.3 Project Decisions

As used to happen, first a theoretical model is proposed, and in the implementation
process some decisions need to be taken in order to fit the real world. In the theoretical
model, Alvares (ALVARES et al., 2007) limits some aspects like, for instance, the relevant
features can not overlap each other. This approach is useful because it facilitates the pre-
cise definition of stops and moves. However, not all relevant features are non-overlapped.
For instance, street is a relevant feature that may cross other streets.

To solve this problem, we decided to consider only the first relevant feature that in-
tersects a point of a cluster, i.e, when a point of a cluster intersects a relevant feature,
the verification of intersection is finished (the intersection is not tested with other rele-
vant features). With this decision, we consider that a relevant feature instance does not
intersect any other, but if it does, the program will ignore this fact.

The Known Stops geometric identification has changed along the cycle of develop-
ment. Initially, the Known Stops geometry was the own candidate stop, but it is imprac-
ticable when we work with streets being a single line. When a trajectory intersects a

58

street, if we associate the whole street as geometry, we will loose the information about
which part of the trajectory in fact intersected the street. So, we decided to create a buffer
around the points which intersected the street in order to be more precise to locate where
the intersection occurred. Then, we can visually identify the stops.

To give a label to Unknown stops is not a trivial task. When an Unknown stop U
that will be labeled (receive an identifier) intersects two or more distinct and already
labeled unknows (e.g. unknown-1 and unknown-2), we need to decide which label of
the already labeled unknowns we will use for U. It was a difficult choice, because many
considerations have to be taken into account, such as the greatest intersection, the closest
centroids, etc. Hence, we opted for giving the minor integer identification by its simplicity
(e.g. unknown-1).

The visual interface was projected in order to be as generic as possible. Application
definition consists in a set of relevant features, thus we opted by loading all relevant
features from the database and let the user choose which ones he will use. In other words,
the user will define his own applications given the available relevant features.

As some spatial operations are easily performed inside the database and other ones are
easily programed in an outside program (the STPM module), some decisions were taken
in order to facilitate the programming and accelerate the program development. The clus-
tering procedure was developed outside of the database, since a more flexible and high
level language (we used the Java language) would let the programing task easier than pro-
gramming in a database language. However, some aspects are inherent from geographic
databases, like the geographic operations. Thus, in the geographic operations we took ad-
vantage of the database facilities (spatial SQL) and the STPM was programmed using its
facilities. Thereupon, the STPM module alternates the processing between the program
written in Java and the facilitates provided by the database. This decision accelerated the
program development but it let it not completely optimized. The best approach probably
would be implement the whole process in one side only.

59

5 EXPERIMENTS

This chapter presents the experiments performed to validate the proposed method. In
these experiments we used trajectory data collected in Rio de Janeiro city, by the Traffic
Engineering Company of Rio de Janeiro. This dataset contains more than 2 thousand
trajectories. Initially, we had to prepare the trajectory data to fit our needs. This was not
an easy task. For instance, the raw data were obtained from the real world by a GPS
device. However, the trajectories were not clearly delimited, and we needed to limit them
fixing an amount of time as an interval from one trajectory to another. This time interval
was defined as 1 hour. After identify the trajectories a problem was pointed. Sometimes,
the GPS was turned off, and then turned on, after a period less than 1 hour, in another
place. This fact generated a straight line in the trajectory, which might pass through
mountains or other places where there are no streets. As relevant features we have some
elements of the Rio de Janeiro’s dataset. The elements used are a table of streets in Rio
de Janeiro and the table of districts. The districts table was according our specifications
and we had no problem to treat with them. However the streets table was not according
the specifications. Each record in that table was a section in the street and not the whole
street and we need to adjust that table in order to prepare it for our experiments.

5.1 Clustering Parameters

The clusters were formally defined in section 3, but it is difficult to formally evaluate
the quality of a cluster. Many clustering algorithms are evaluated through a visual repre-
sentation. In a similar way, we use a visual representation of the trajectory and present
the clustering result in a visual representation as well. Obviously clusters are important
in order to show the quality of the clustering method. However, these clusters should not
be obviously delimited in order to evaluate the influence of the clustering parameters in
their quality.

According to the application domain, the values of the parameters average speed (avg)
and speed limit (sl) will change, i.e., the most appropriate values of them for one trajectory
dataset may not be the same for another dataset. Trying to minimize this problem, instead
of using an absolute value for avg and sl (for instance avg = 30km/h and sl = 40km/h),
we used relative parameters, which will allow to calculate the appropriated absolute value
for each trajectory. Hence, in our experiments, we used a percentual of the average tra-
jectory speed in order to define the avg and sl parameters. So, avg = 0.8 means the avg
parameter is 80% of the respective trajectory mean speed. For instance, if a trajectory
mean speed is 41,25 km/h, and we use an avg = 0.8, then the absolute avg parameter
for this trajectory represents a speed of 33 km/h. The same principle is used for the sl
parameter.

60

The minimum time duration (MinTime) indicates the minimum time necessary to
generate a cluster. It is calculated by subtracting the timestamp of the first point in the
cluster from the last point’s timestamp in the same cluster 1. Figure 5.1 shows 4 distinct
configurations fixing the parameters avg and sl and varying the parameter MinTime.
The avg parameter was set to 0.8 and sl was set to 1.0. In 5.1(a) the MinTime value
is 90 seconds, in 5.1(b) is 120 seconds, in 5.1(c) 150 seconds and 180 seconds in 5.1(d).
As 5.1(a) represents the minimum time value among them, that figure shows the largest
number of clusters, five. Little values in this parameter represents more flexibility in order
to find clusters. In 5.1(b) and 5.1(c) the number of clusters decreased when MinTime
is increased, which is the intuitive behavior of this parameter. However, in 5.1(d) it was
found one more cluster than in 5.1(c). This occurred because the MinTime parameter is
used in the first step of the clustering. In that step, the limits of points which are looked
for in order to be put in the connected-neighborhood is defined by MinTime. When that
parameter was set to a greater value, the neighborhood becomes greater and the possibility
of passing through high speed points and reach a lower speed zone changes, changing the
average speed of the cluster. In 5.1(d) the two last clusters of figure 5.1(a) become only
one.

The most important parameter is avg. This parameter indicates the percentual of the
average speed of the trajectory which will be used as threshold in order to delimit a cluster.
Figure 5.2 shows four distinct configurations of this parameter. The MinTime parameter
was set to 30s in order to unaffect the generations of clusters. The sl parameter was set
to 1 in order to affect as less as possible the evaluation of the avg parameter. In 5.2(a)
the avg value is 0.5, in 5.2(b) is 0.6, in 5.2(c) is 0.7 and 0.8 in 5.2(d). The avg parameter
has a strict behavior, since the number of clusters increases as greater is its value. This
behavior may be seen at Figure 5.2.

At the beginning of CB-SMoT’s development, only two parameters were used, MinTime
and avg (cluster average speed). However, these parameters were not enough to gener-
ate good clusters in trajectories, since there were some cases where high-speed points
were added to a cluster. When a very low-speed sub-trajectory occurs it will decrease
significantly its average speed, so in the next moment, when we try to expand the cluster,
high-speed neighbors might be added (since this addition keeps the average cluster speed
less than the provided by the avg parameter) and the quality of the cluster might be re-
duced. Figure 5.3 exemplifies this case. In 5.3(a) and 5.3(c) the sl parameter is used and
in 5.3(b) and 5.3(d) this parameter is not used2. As can be seen in figure 5.3, (a) and (c)
keep the cluster centered in the low speed points, and in (b) and (d) the cluster tends to
aggregate higher speed points. In 5.3(d) the addition of such points affects significantly
the quality of the cluster.

With the creation of the parameter sl (Speed Limit), which indicates the highest speed
allowed of a point in order to add it to the cluster, we obtained a better quality in the
clusters generated using it than those that do not use the parameter. This parameter is used
only at the expansion process, so a point whose speed is greater than the speed provided
by the sl parameter might be in the set returned by the slowest-neighbor function. If we
had not used the sl parameter it would create a cluster with lower quality. The creation of
the sl parameter limits the expansion and the addition of non-desirable points.

1the cluster ordered by timestamp
25.3(a) and 5.3(b) avg parameter is set to 0.7 and MinTime is set to 30s, in 5.3(a) the sl parameter is

set to 0.9; 5.3(c) and 5.3(d) avg parameter is set to 0.8 and MinTime is 30s, in 5.3(c) the sl parameter is
1.0. In 5.3(b) and (d) the sl parameter are not used

61

Figure 5.4 show four distinct configurations in the parameter sl. The parameters
MinTime and avg are fixed as 30 seconds and 0.7, respectively. The parameter sl is
a moderator parameter and its creation was used in order to avoid the effect seen at fig-
ure 5.3. Looking at the central cluster of figure 5.4 it is possible to better see its effect. It
acts avoiding the inclusion of points of high speed to the cluster. In 5.4(a), the sl was set
to 0.8, 5.4(b) is set to 0.9, 5.4(c) to 1.0 and 1.1 in 5.4(d). So, the greater the sl parameter
is, the faster can be the points be added to the clusters.

5.2 Clustering Experiments

After selecting a limited subset of trajectories that pass through Copacabana, a district
in Rio de Janeiro city, we used part of this scenario in order to evaluate our experiments.
The whole dataset contains trajectories of sensor cars in Rio de Janeiro at different periods
of time. The whole set consists of around 7 million points and 2 thousand trajectories.
The subset used consists of 31 trajectories that took place in Copacabana.

Figure 5.5 shows four different trajectories taken from different time periods and with
distinct speed. Figure 5.5(a) shows a trajectory that occurred in the period from 04:00 PM
to 04:10 PM, (b) occurred in the period from 05:46 PM to 06:00 PM, (c) in the period
from 09:02 AM to 09:14 AM, and (d) from 08:04 AM to 08:10 AM.

Over these trajectories we applied the method CB-SMoT 3. As can be seen in Figure
5.5, the number, the size and the position of the clusters have a big variation from one
figure to another. Depending on the application, the clusters can be labeled with the name
and position of the street where they occur, with the name of the district, etc.

We performed a briefly comparison between SMoT and CB-SMoT, showing the dif-
ferent outputs of both methods applied in a single trajectory.

Figure 5.6 shows the stops found by the SMoT method with minimal time duration
parameter = 60 seconds and districts as relevant feature. As the trajectory spends more
than 60s to cross each district, every district crossed by the trajectory will be a stop. So,
there are 5 stops: Vidigal, Leblon, Ipanema, Copacabana and Botafogo.

Figure 5.7 shows the same trajectory, but with the stops found by the CB-SMoT
method with parameters MinTime = 60 seconds, avg = 0.5 and sl = 0.7. In this case
we have one stop labeled Vidigal, four stops labeled Copacabana and two stops labeled
Botafogo.

3The parameters used to extract these pictures were avg:0.5; MT:60s; sl:0.7

62

Figure 5.1: Trajectory clusters (in black) using different configurations for the MinTime
parameter

63

Figure 5.2: Trajectory clusters (in black) using different configurations for the avg pa-
rameter

64

Figure 5.3: Effect of the inclusion of the sl parameter in the clusterization step of CB-
SMoT. (b) and (d) do not use the sl parameter

65

Figure 5.4: Trajectory clusters (in black) using different configurations for the sl param-
eter

66

Figure 5.5: Different trajectories and respective clusters in the same region

67

Figure 5.6: Stops computed by the method SMoT for a single trajectory

Figure 5.7: Stops generated by the method CB-SMoT for a single trajectory

68

69

6 CONCLUSION

The increasing amount of location based data, specifically trajectory data, emerged the
necessity of intelligent analysis and knowledge discovery from these data. The analysis of
trajectory sample points is very limited for several applications. Recently, a new approach
based on the notion of interesting places of trajectories (stops) has emerged as a promising
way for more meaningful analysis on trajectories.

The usual approach to work with raw trajectory data is separated from any context, and
therefore it is impossible to discover semantic patterns. In order to give semantics to these
data, a method called SMoT (ALVARES et al., 2007) has been developed to give seman-
tics according to an application domain. The application context is made up of relevant
features, and the user may choose which relevant features he is interested in. A relevant
feature is any spatial object that is relevant for an application, like a shopping center, a
touristic place, ans so on. The SMoT technique is based on the Spaccapietra’s (SPAC-
CAPIETRA et al., 2008) stops and moves approach. Briefly, it is a way to give semantics
separating the trajectory in two semantic aspects of interest, stops and moves. The first
one is related to some intrinsic geographic aspect where the object being tracked is con-
sidered stopped. For instance, in a bird migration scenario a stop could be when the birds
stop flying in order to feed (they are fixed in some place). The other concept, move, is
related to transitions between the stops. The SMoT method was the first algorithm devel-
oped to give semantics to trajectories given a set of relevant features, but the speed is not
taken into account in this method.

In this dissertation we have introduced a new approach to discover interesting places
in trajectories. It is a speed-based method to find clusters in single trajectories. In general,
the main contributions of this dissertation include:

• A new spatio-temporal clustering algorithm, which is inspired in DBSCAN, where
the distance between points is calculated along over the trajectory, instead of the
traditional euclidean distance. We consider the notion of minimal time instead of
minimal number of points for a region to be considered dense;

• The discovery of interesting places which are not known a priory by the user (un-
known stops);

• The generation of stops only in regions where the speed of the trajectory is low;

The goal of this dissertation was to develop a method able to give semantics to trajec-
tories in application domains where low speed needs to be considered. Thus, we created
the CB-SMoT (PALMA et al., 2008) method (Clustering-Based SMoT), which uses clus-
tering techniques in order to discover the low speed parts of a single trajectory (clusters).

70

Obviously, this intrinsic semantics limits the method to application domains where speed
is important.

CB-SMoT looks for similar speed points in a spatio-temporal context in order to ag-
gregate them into a cluster, which is given additional semantics in a posterior step in a
similar way of SMoT, when the clusters are matched against the background geography.
Two kinds of stops can be created: Known stops and Unknown stops. The Known stops
are the low speed parts of the trajectory that have a direct association with the background
geography. On the other hand, the Unknown stops are also low speed parts of the tra-
jectory, but the association with the background geography is not directly related to the
important features defined by the user in his application.

Additionally to the new method presented in this dissertation for extracting interesting
places from trajectories, we implemented both methods SMoT and CB-SMoT in Weka,
with a friendly GUI for trajectory data analysis and knowledge discovery.

In future works, a wide range of possibilities becomes possible in applications related
to traditional data mining and a new recent approach associated with sequential data min-
ing. The semantic approach of trajectories is becoming an important data source for novel
research, mainly in the knowledge discovery field. Using classical data mining techniques
it is possible to find semantic patterns in a set of semantic trajectories. For instance, dis-
cover move sequences (transition sequences) which may be useful for public transport
planning or many other kinds of application. In general, the knowledge extracted will
be dependent on the objectives of the application and could be a list of places interesting
to the scenario or the most used route of a determinated profile of people. Using a stop
approach, for example, in a tourism application where the tourists are equipped with GPS
devices, so, in their routes, algorithms like SMoT and CB-SMoT would indicate the prob-
able touristic points of the region visited. Additionally, it may be interesting to perform
knowledge discovery over the places found out by those methods and the moving relations
among them. Another field that may take advantage of this approach is any information
system designed to support social or environmental analysis or decision-making (MARK
et al., 1999; THERIAULT et al., 2002), like environmental health sciences, where the
lifelines of individuals are analysed in order to find possible causes of diseases related to
the spatio-temporal background.

A more direct future work would be investigate how to incorporate other kinds of
semantics into trajectories, besides the geographical one (spatial semantics) and the low
speed (spatio-temporal semantics), e.g. provided by CB-SMoT. For instance, other spatio-
temporal semantics that might be used would be the low/high acceleration of a trajectory.

The discovery of clusters in regions where sample points are missing is theoretically
supported, like, for instance, when a moving object enters in a building and the signal is
lost. However, we did not perform direct experiments in order to show that, so it worth to
do it as future work.

Another aspect which would be interesting to improve is related to how to give the
better label to intersecting Unknown Stops. In this dissertation we opted to give the mi-
nor Unknown identification of the already labeled intersecting Unknowns. However this
approach is quite simple, and more sophisticated methods might be used.

71

REFERENCES

ALVARES, L. O.; BOGORNY, V.; KUIJPERS, B.; MACEDO, J. A. F. de; MOELANS,
B.; PALMA, A. T. Towards Semantic Trajectory Knowledge Discovery. [S.l.]: Hasselt
University, 2007.

ALVARES, L. O.; BOGORNY, V.; KUIJPERS, B.; MACEDO, J. A. F. de; MOELANS,
B.; VAISAMA, A. A Model for Enriching Trajectories with Semantic Geographical In-
formation. In: ACMGIS, 2007. Proceedings. . . [S.l.: s.n.], 2007. p.162–169.

ANKERST, M.; BREUNIG, M. M.; KRIEGEL, H.-P.; SANDER, J. OPTICS: ordering
points to identify the clustering structure. In: SIGMOD 1999, PROCEEDINGS ACM
SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, JUNE
1-3, 1999, PHILADEPHIA, PENNSYLVANIA, USA, 1999. Proceedings. . . ACM Press,
1999. p.49–60.

BECKMANN, N.; KRIEGEL, H.-P.; SCHNEIDER, R.; SEEGER, B. The R*-Tree: an
efficient and robust access method for points and rectangles. In: ACM SIGMOD INTER-
NATIONAL CONFERENCE ON MANAGEMENT OF DATA, ATLANTIC CITY, NJ,
MAY 23-25, 1990., 1990. Proceedings. . . ACM Press, 1990. p.322–331.

BIRANT, D.; KUT, A. ST-DBSCAN: an algorithm for clustering spatial-temporal data.
Data Knowl. Eng., Amsterdam, The Netherlands, The Netherlands, v.60, n.1, p.208–221,
2007.

BOGORNY, V.; KUIJPERS, B.; ALVARES, L. O. ST-DMQL: a semantic trajectory data
mining query language. International Journal of Geographical Information Science,
[S.l.], 2008.

BOGORNY, V.; PALMA, A. T.; ENGEL, P.; ALVARES, L. O. Weka-GDPM: integrat-
ing classical data mining toolkit to geographic information systems. In: WAAMD, 2006.
Proceedings. . . SBC, 2006. p.9–16.

BOGORNY, V.; PALMA, A. T.; KUIJPERS, B.; ALVARES, L. O. Spatial Data Mining:
from theory to practice with free software. In: WSL INTERNATIONAL WORSHOP OF
FREE SOFTWARE, 2007. Proceedings. . . Nova Prova Gráfica e Editora, 2007. p.205–
212.

BRAKATSOULAS, S.; PFOSER, D.; TRYFONA, N. Modeling, Storing, and Mining
Moving Object Databases. In: IDEAS, 2004. Proceedings. . . [S.l.: s.n.], 2004. p.68–77.

72

DEMPSTER, A. P.; LAIRD, N. M.; RUBIN, D. B. Maximum Likelihood from Incom-
plete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), [S.l.], v.39, n.1, p.1–38, 1977.

DUBES, R. C.; JAIN, A. K. Clustering techniques: the user’s dilemma. Pattern Recog-
nition, [S.l.], v.8, n.4, p.247–260, 1976.

ESTER, M.; KRIEGEL, H.-P.; SANDER, J.; XU, X. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In: SECOND INTER-
NATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING,
1996. Proceedings. . . AAAI Press, 1996. p.226–231.

ESTIVILL-CASTRO, V.; LEE, I. AMOEBA: hierarchical clustering based on spatial
proximity using Delaunay triangulation. Callaghan 2308, Australia: [s.n.], 1999. (99-05).

FEIGENBAUM, E. A. The simulation of verbal learning behavior. Computers and
Thought, [S.l.], p.297Ű309, 1963.

FEIGENBAUM EDWARD A., S. H. A. A theory of the serial position effect. Br. J. Psy-
chol., [S.l.], v.53, p.307Ű320, 1962.

FEIGENBAUM EDWARD A., S. H. A. EPAM-like Models of Recognition and Learning.
Cognitive Science: A Multidisciplinary Journal, [S.l.], v.8, p.306–336, 1984.

FERNAND GOBET PETER C. R. LANE, S. C. P. C.-H. C. G. J. I. O.; PINE, J. M.
Chunking mechanisms in human learning. Trends in Cognitive Science, [S.l.], v.5, n.6,
p.236–243, 2001.

FISHER, D. H. Knowledge Acquisition via Incremental Conceptual Clustering. Machine
Learning, [S.l.], v.2, n.2, p.139–172, 1987.

FISHER, L.; NESS, J. W. V. Admissible clustering procedures. Biometrika, [S.l.], v.58,
n.1, p.91–104, 1971.

GENNARI, J. H.; LANGLEY, P.; FISHER, D. H. Models of Incremental Concept For-
mation. Artif. Intell., [S.l.], v.40, n.1-3, p.11–61, 1989.

GüTING, R. H.; ALMEIDA, V. T. D.; DING, Z. Modeling and querying moving objects
in networks. VLDB J, [S.l.], v.15, p.2006, 2004.

GÜTING, R. H.; BÖHLEN, M. H.; ERWIG, M.; JENSEN, C. S.; LORENTZOS, N. A.;
SCHNEIDER, M.; VAZIRGIANNIS, M. A foundation for representing and quering mov-
ing objects. ACM Trans. Database Syst., [S.l.], v.25, n.1, p.1–42, 2000.

GÜTING, R. H.; SCHNEIDER, M. Moving Objects Databases. [S.l.]: Morgan Kauf-
mann, 2005.

IBA, W. Learning to Classify Observed Motor Behavior. In: IJCAI, 1991. Proceedings. . .
[S.l.: s.n.], 1991. p.732–738.

IBA, W.; LANGLEY, P. Unsupervised Learning of Probabilistic Concept Hierarchies.
Lecture Notes in Computer Science, [S.l.], v.2049, p.39–70, 2001.

73

INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM
2007), MANNHEIM, GERMANY, MAY 7-11, 2007, 8., 2007. Proceedings. . . IEEE,
2007.

JAIN, A. K.; DUBES, R. C. Algorithms for clustering data. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1988.

JAIN, A. K.; MURTY, M. N.; FLYNN, P. J. Data clustering: a review. ACM Comput.
Surv., New York, NY, USA, v.31, n.3, p.264–323, 1999.

KING, B. Step-wise clustering procedures. Journal of the American Statistical Associ-
ation, [S.l.], v.69, p.86–101, 1967.

KUIJPERS, B.; OTHMAN, W. Trajectory Databases: data models, uncertainty and com-
plete query languages. In: ICDT, 2007. Proceedings. . . [S.l.: s.n.], 2007. p.224–238.

LAUBE, P.; IMFELD, S.; WEIBEL, R. Discovering relative motion patterns in groups
of moving point objects. International Journal of Geographical Information Science,
[S.l.], v.19, n.6, p.639–668, 2005.

LEBOWITZ, M. Experiments with Incremental Concept Formation: unimem. Machine
Learning, [S.l.], v.2, n.2, p.103–138, 1987.

LEE, J.-G.; HAN, J.; WHANG, K.-Y. Trajectory clustering: a partition-and-group frame-
work. In: SIGMOD CONFERENCE, 2007. Proceedings. . . ACM, 2007. p.593–604.

LU, S.-Y.; FU, K. S. A Sentence-to-Sentence Clustering Procedure for Pattern Analysis.
Systems, Man and Cybernetics, IEEE Transactions on, [S.l.], v.8, n.5, p.381–389,
May 1978.

MA, D.; ZHANG, A. An Adaptive Density-Based Clustering Algorithm for Spatial
Database with Noise. icdm, Los Alamitos, CA, USA, v.00, p.467–470, 2004.

MACQUEEN, J. B. Some Methods for Classification and Analysis of MultiVariate Ob-
servations. In: BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND
PROBABILITY, 1967. Proceedings. . . University of California Press, 1967. v.1, p.281–
297.

MARK, D.; EGENHOFER, M.; BIAN, L.; HORNSBY, K.; ROGERSON, P.; VENA,
J. Spatio-temporal GIS analysis for environmental health using geospatial lifelines.
1999.

MITCHELL, T. Machine Learning. [S.l.]: McGraw-Hill Education (ISE Editions),
1997.

MURTAGH, F. A Survey of Recent Advances in Hierarchical Clustering Algorithms.
Comput. J., [S.l.], v.26, n.4, p.354–359, 1983.

NANNI, M.; PEDRESCHI, D. Time-focused clustering of trajectories of moving ob-
jects. Journal of Intelligent Information Systems, [S.l.], v.27, n.3, p.267–289, Novem-
ber 2006.

74

NG, R. T.; HAN, J. Efficient and Effective Clustering Methods for Spatial Data Mining.
In: INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, SEPTEM-
BER 12–15, 1994, SANTIAGO, CHILE PROCEEDINGS, 20., 1994, Los Altos, CA
94022, USA. Proceedings. . . Morgan Kaufmann Publishers, 1994. p.144–155.

PALMA, A. T.; BOGORNY, V.; KUIJPERS, B.; ALVARES, L. O. A clustering-based
approach for discovering interesting places in trajectories. In: SAC ’08: PROCEEDINGS
OF THE 2008 ACM SYMPOSIUM ON APPLIED COMPUTING, 2008, New York, NY,
USA. Proceedings. . . ACM, 2008. p.863–868.

SANDER, J.; ESTER, M.; KRIEGEL, H.-P.; XU, X. Density-Based Clustering in Spa-
tial Databases: the algorithm gdbscan and its applications. Data Min. Knowl. Discov.,
Hingham, MA, USA, v.2, n.2, p.169–194, 1998.

SNEATH, P. H. A.; SOKAL, R. R. Numerical Taxonomy. [S.l.]: Freeman, 1973.

SPACCAPIETRA, S.; PARENT, C.; DAMIANI, M. L.; MACEDO, J. A. de; PORTO, F.;
VANGENOT, C. A conceptual view on trajectories. Data Knowl. Eng., Amsterdam, The
Netherlands, The Netherlands, v.65, n.1, p.126–146, 2008.

SPACCAPIETRA, S.; PARENT, C.; DAMIANI, M.-L.; MACEDO, J. A. F. de; PORTO,
F.; VANGENOT, C. A Conceptual View on Trajectories. [S.l.]: Ecole Polytechnique
Federal de Lausanne, 2007.

THERIAULT, M.; CLARAMUNT, C.; SEGUIN, A.; VILLENEUVE, P. Temporal GIS
and Statistical Modeling of Personal Lifelines. In: ADVANCES IN SPATIAL DATA
HANDLING, 2002. Proceedings. . . Springer-Verlag, 2002. p.433–449.

THOMPSON, K.; LANGLEY, P. Concept formation in structured domains. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1991. 127–161p.

WARD, J. H. Hierarchical Grouping to Optimize an Objective Function. Journal of the
American Statistical Association, [S.l.], v.58, n.301, p.236–244, 1963.

WITTEN, I. H.; FRANK, E. Data Mining: practical machine learning tools and tech-
niques. 2.ed. [S.l.]: Morgan Kaufmann, 2005. (Morgan Kaufmann Series in Data Man-
agement Systems).

WOLFSON, O.; XU, B.; CHAMBERLAIN, S.; JIANG, L. Moving Objects Databases:
issues and solutions. In: STATISTICAL AND SCIENTIFIC DATABASE MANAGE-
MENT, 1998. Proceedings. . . [S.l.: s.n.], 1998. p.111–122.

ZAHN, C. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters.
Computers, IEEE Transactions on, [S.l.], v.C-20, n.1, p.68–86, Jan. 1971.

ZHOU, C.; FRANKOWSKI, D.; LUDFORD, P. J.; SHEKHAR, S.; TERVEEN, L. G.
Discovering personally meaningful places: an interactive clustering approach. ACM
Trans. Inf. Syst., [S.l.], v.25, n.3, 2007.

ZHOU, C.; FRANKOWSKI, D.; LUDFORD, P.; SHEKHAR, S.; TERVEEN, L. Discov-
ering personal gazetteers: an interactive clustering approach. 2004.

75

APPENDIX A UMA ABORDAGEM BASEADA EM CLUS-
TERIZAÇÃO PARA A DESCOBERTA DE LUGARES DE IN-
TERESSE EM TRAJETÓRIAS

A crescente quantidade de dados provenientes de dispositivos móveis, sejam eles
de localização, tais como GPS, ou comunicação, como celulares, acarreta um potencial
imenso de dados possíveis de ser usados em várias áreas da informática. Principalmente
no campo de descoberta de conhecimento (data mining), onde esse novo tipo de dado,
trajetórias de objetos móveis, possibilita uma gama enorme de possíveis aplicações. Essa
perspectiva demanda novos métodos especializados para serem aplicados a fim de se con-
seguir obter um nível mais alto de conhecimento.

Em vista desse novo campo, novos modelos conceituais e algoritmos estão sendo
criados. Em um desses modelos conceituais (SPACCAPIETRA et al., 2008), os pontos
das trajetória são divididos em trechos de interesse, chamados stops e moves. No trabalho
dessa dissertação exploramos uma característica que achamos ser intuitiva nos stops, a
baixa velocidade, e propusemos um algoritmo que procura trechos de baixa velocidade
na trajetória a fim de nomeá-los como stops e mais tarde atribuir outros tipos de semântica.

No Capítulo 2 são apresentados os principais trabalhos relacionados à pesquisa desen-
volvida. São apresentadas a intuição do que é uma trajetória e a definição que é utilizada
no restante do trabalho. As trajetórias passam de um nível mais bruto (formado apenas
pelos dados na forma (x,y,t) provenientes dos dispositivos) para um nível de abstração
mais elevado (composta de stops e moves).

A atribuição de semântica às trajetórias é um campo novo na informática e teve seu
começo com o modelo de stops e moves. Esses novos conceitos particionam a trajetória
em segmentos que são um dos dois conceitos expostos. Os stops, de acordo com Spac-
capietra, são trechos de interesse naquela trajetória. Entretanto Spaccapietra não define
como a semântica é atribuída a esses trechos/conceitos.O SMoT (Stops and Moves of
Trajectories) (ALVARES et al., 2007) foi o primeiro algoritmo definido para gerar auto-
maticamente stops e moves. O SMoT é baseado na atribuição de semântica considerando
a geografia por onde passa a trajetória. Ele usa a geografia a fim de identificar os aspectos
geográficos que estão relacionados com os stops e, dessa forma, atribuir uma semântica
aos mesmos.

Para a atribuição de semântica pelo SMoT faz-se necessário a definição de alguns
conceitos básicos, entre eles o candidate stop. O candidate stop é uma tupla (Rc,∆c),
onde Rc define uma área que representa a geometria de um objeto geográfico, e ∆c repre-
senta a quantidade de tempo mínima de intersecção com uma trajetória para que o objeto
seja considerado de interesse (stops). Para que um candidate stop venha a ser um stop, é
necessário que:

76

1. A trajetória tenha intersecção com o Rc do candidate stop

2. O tempo de intersecção contínua com o Rc deve ser maior que o ∆c do candidate
stop

Os dois itens combinados dizem que se uma trajetória intercepta um candidade stop
em algum momento então o tempo de intersecção deve ser maior que o ∆c do candidate
stop. Adicionalmente todos os pontos desse trecho devem obrigatoriamente interceptar
o mesmo Rc do candidate stop. Dessa forma, o candidate stop passa a ser um stop para
aquela trajetória.

Para explorar o uso da baixa velocidade e descobrir os trechos lentos, fez-se o uso de
técnicas de clusterização. Dessa forma a maioria dos trabalhos relacionados são algorit-
mos desse campo. É dada uma ênfase maior para o DBSCAN (ESTER et al., 1996), que
é o trabalho que mais influenciou a proposta dessa pesquisa. DBSCAN é um algoritmo
de clusterização de pontos baseado em densidade que usa a quantidade de pontos como
base para a geração de clusters. Quando a densidade de determinado ponto satisfazer
alguns requisitos, como, por exemplo, a quantidade mínima de pontos, a área vizinha é
expandida, agrupando-se outros pontos chaves. Dessa forma é possível obter clusters das
mais variadas formas.

O método CB-SMoT (Clustering-Based SMoT), proposto nessa dissertação, no Capí-
tulo 3, tem duas etapas principais: clusterização e atribuição de semântica. Na parte de
clusterização, CB-SMoT foi inspirado pelo algoritmo baseado em densidade DBSCAN.
Usando conceitos espaço-temporais ao invés de apenas a abordagem clássica de densi-
dade para a criação de clusters, CB-SMoT considera adicionalmente o tempo no processo
de clusterização, de forma que os clusters correspondem a trechos em que a velocidade é
lenta.

Com o desenvolvimento do método CB-SMoT as trajetórias não são analisadas com
base apenas na geografia e contexto que existem no espaço físico em que ocorrem. Outra
característica é levada em conta: sua velocidade. Dessa forma temos dois aspectos en-
volvidos com a trajetória: o primeiro é relacionado apenas com a trajetória, que é sua ve-
locidade; e o segundo é o contexto espacial que existe por detrás da trajetória, a geografia.
Cada aspecto é tratado de uma maneira independente, o primeiro utiliza clusterização para
definir os aspectos de interesse na trajetória, que no caso do CB-SMoT são os trechos de
menor velocidade. O segundo aspecto usa a geografia de fundo, de uma maneira similar
ao SMoT para uma atribuição de semântica. Este aspecto relaciona a trajetória com um
contexto que depende dos candidate stops de interesse do usuário.

A semântica atribuída pelo CB-SMoT é dada em cada um desses passos. No passo de
clusterização, com a descoberta dos trechos lentos da trajetória, a primeira questão semân-
tica é envolvida, já que se atribui uma semântica de baixa velocidade. Esse primeiro passo
diz respeito apenas a trajetória e não considera o espaço onde a trajetória está inserida.
Adicionalmente ele é um filtro das partes importantes que devem ser levadas em conta
no segundo passo. Inicialmente é obtida uma vizinhança com duração mínima igual ao
parâmetro MinTime. Essa vizinhança parte de um ponto e os pontos vizinhos mais lentos
vão sendo adicionados até que se atinja o tempo mínimo requerido. Depois de obtida a
vizinhança de tempo MinTime, chamada de slowest-neighborhood, verificamos se a ve-
locidade média dela é inferior ao parâmetro avg, se for ela é considerada uma vizinhança
núcleo (core-neighborhood). As vizinhanças núcleo são expandidas em um segundo mo-
mento, tentando-se agregar outros pontos de baixa velocidade. Dessa forma, vão sendo
adicionados os pontos vizinhos que tenham velocidade inferior ao parâmetro sl e que

77

mantenham a velocidade média total da vizinhança abaixo do parâmetro avg. Termi-
nada a expansão da slowest-neighborhood chama-se essa nova vizinhança de connected-
neighborhood (vizinhança conectada) e o próximo passo é escolher as vizinhanças com
menor velocidade para se tornarem clusters. Quando duas ou mais vizinhanças conec-
tadas compartilham ao menos um ponto em comum, torna-se um cluster aquela que tiver a
menor velocidade média. Na implementação do algoritmo começa-se analisando os pon-
tos de menor velocidade de forma que o processo de descoberta de clusters fica otimizado.

O segundo passo, a atribuição de semântica geográfica, diz respeito ao contexto ge-
ográfico da trajetória. Nesse momento os trechos de interesse provenientes do passo an-
terior são analisados e procura-se agregar novas informações semânticas baseadas em seu
contexto espacial. Dessa forma pode-se ter dois tipos de stops: known stops e os unknown
stops. Os primeiros estão relacionados a pontos de interesse do usuário que existem na
base de dados de candidate stops. Os unknown stops, por outro lado, são pontos que
foram capturados no primeiro passo como trechos com alto potencial semântico (devido
a sua baixa velocidade), mas que pela seleção de interesse do usuário ou falta de candi-
date stops na base de dados não está relacionada a nenhuma entidade/evento geográfico
diretamente.

No Capítulo 4 é apresentado o protótipo desenvolvido, o módulo STPM (Seman-
tic Trajectory Preprocessing Module. Esse módulo foi agregado ao Weka (WITTEN;
FRANK, 2005), que é um programa bem conhecido na área de mineração de dados. No
módulo STPM o usuário tem a opção de escolher os candidate stops que ele está interes-
sado e também escolher as trajetórias em questão. No módulo ele tem a opção de rodar
tanto o SMoT quanto o CB-SMoT, que por final vai gerar uma tabela de stops. Essa tabela
ainda pode ser usada para criação de arquivos do tipo arff (uma parte também implemen-
tada no módulo) e assim possibilitar o uso da mineração tradicional de dados, que é parte
nativa do Weka.

No Capítulo 5, são apresentados alguns experimentos tanto para a parte de clusteri-
zação quanto para a parte de atribuição de semântica. Os experimentos iniciais são real-
izados com dados sintéticos para enfatizar os efeitos de cada parâmetro na geração dos
clusters. Dessa forma varia-se os parametros avg, MinTime e sl a fim de se obter um
retorno visual da sua influência. O parâmetro avg possui um comportamento linear, ou
seja, conforme é aumentando seu valor, aumentamos a velocidade média de tolerância do
cluster, dessa forma seu aumento tende a um aumento na quantidade de clusters encon-
trados. O parâmetro MinTime diz respeito a duração do cluster, dessa forma, temos um
comportamento praticamente linear também, conforme aumentamos seu valor estamos
sendo mais criteriosos na duração do cluster e, dessa forma, a quantidade de cluster tende
a diminuir. O parâmetro sl age na clusterização como um moderador, indicando quais
pontos podem ser adicionados ao cluster. Ele age considerando a velocidade dos pontos,
de forma que não é permitido adicionar pontos que tenham sua velocidade acima desse
limite. O parâmetro sl é importante nos casos onde existe um trecho de velocidade muito
baixa e de longa duração (fazendo a velocidade média do trecho ser baixa). Nesse caso
a média é puxada para baixo e abre-se uma brecha para adicionar pontos de alta veloci-
dade, já que a inclusão desses pontos deixaria a média total ainda abaixo da média limite
(parâmetro avg) e diminuiria a qualidade do cluster.

Nessa dissertação as principais contribuições estão relacionadas à parte de clusteriza-
ção do CB-SMoT e a atribuição de semântica. A clusterização é uma nova abordagem
espaço-temporal, que utiliza a velocidade como critério de geração do cluster. Outros
métodos costumam considerar apenas aspectos espaciais (dados (x,y) dos pontos), como

78

a grande maioria dos métodos baseados em densidade. Dessa forma, CB-SMoT integra a
clusterização em um conceito espaço-temporal de fato, ou seja, a velocidade. No aspecto
de atribuição de semântica, aspectos geográficos desconhecidos pelo usuário (unknown
stops), que são trechos de baixa velocidade mas sem informação geográfica, podem ser
descobertos.

Adicionalmente, os unknown stops são partes potenciais de interesse pelo usuário,
já que são partes lentas da trajetória. Entretanto apenas rotular como possível ponto de
interesse não seria muito prático de um ponto de vista mais amplo, como mineração de
dados. Dessa forma, procuramos nomear os unknowns de acordo com sua proximidade
espacial, tentando buscar relações a entidades aparentemente sem nenhuma ligação. Essa
abordagem permite em aplicações mais específicas uma maior facilidade de descoberta
de padrões, já que rotulamos os unknowns de acordo com uma relação geográfica entre
eles, e não apenas como simples instâncias independentes uma das outras.

As áreas que mais ganham com o desenvolvimento do CB-SMoT é a de clusterização,
que ganha um método totalmente espaço-temporal. Com isso é possível considerar a ve-
locidade em aplicações onde esse aspecto é relevante, como por exemplo, uma aplicação
de trânsito, onde trechos de baixa velocidade podem indicar congestionamentos. Dessa
forma podemos atribuir semântica a esses trechos, fazendo com que o stop em questão
seja mais especializado do que se aplicássemos um algoritmo que leva em conta apenas
geografia por onde passa a trajetória. Adicionamente, a parte de mineração de dados fica
com uma nova ferramenta para a descoberta de padrões, principalmente no campo de
padrões sequenciais, que é caracterizada pela descoberta de padrões ao longo do tempo.
Como os stops e moves são unidades semânticas de grande interesse em trajetórias, eles
podem ser usados como entrada nesse promissor campo de pesquisa.

