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Abstract. Odor processing in the animal olfactory system is still an open problem in modern 
neuroscience. It is a common understanding that the spatial code provided by the activity distribution 
of the olfactory receptor cells (ORC) due the presence of an odorant is transformed into a spatio-
temporal code in the mitral cell (MC) layer in the case of mammals, or the projection neurons (PN) 
in the case of insects, that is decoded later along the neural path. The putative role of the spatio-
temporal coding is to disambiguate the stimulus putting it in a more robust representation that allows 
odor separation, categorization, and recognition. Oscillations due to lateral inhibition among MC's 
(or PN's) may play an important part in the code as well as neural adaptation. To shed some light on 
their possible role in the olfaction processing, we study the properties of a simple network model. 
Upon the presentation of a random distributed input it respond with a rich spatio-temporal structure 
where two distinct phases are observed. We discuss their properties and implications in information 
processing. 
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INTRODUCTION 

A very important discovery toward full understanding of olfactory coding was the fact 
that odor stimulation results in activation of patterns of glomeruli (spherical regions 
of neuropil gathering a huge amount of synapses) distributed across the surface of the 
olfactory bulb (OB). However, it is not completely clear how these patterns of glomerular 
activity are transformed by the circuitry of the bulb, or even which are the crucial 
elements in these circuits. 

Fig. 1 shows the basic circuits of the neuroepithelium in nasal cavity and the OB 
(the antennal lobe of some insects has a similar behavior, although the cells involved 
are different). The olfactory information starts at epithelium, when odor molecules 
get in contact with the olfactory receptor neurons' (ORNs) cilia. These neurons are 
morphologically uniforms, but their molecular phenotype is highly diverse. For this 
reason, men have about 100 - 200 different kinds of receptors [1] and rodents have more 
than 1000 [2]. Subsets of neurons expressing the same olfactory receptor are distributed 
in a (apparently) random pattern across the epithelium. However, ORNs expressing the 
same receptor converge their axons to one specific glomerulus inside the bulb, exciting 
dendrites of mitral cells (MCs), tufted cells (similar to mitral cells and not showed 
in Fig. 1), and periglomerular (PGCs). Then, MCs are going to transmit information 
to subsequent cortical regions. However, the information passing through glomeruli 

CP887, Cooperative Behavior in Neural Systems: Ninth Granada Lectures 
edited by J. Marro, P. L. Garrido, and J. J. Torres 

© 2007 American Institute of Physics 978-0-7354-0390-l/07/$23.00 

61 



FIGURE 1. Main elements of the olfactory bulb: olfactory receptor neurons (ORN), mitral cells (MC), 
periglomerular cells (PGC), and granule cells (GC). 

and, consequently, through MCs is heavily influenced by dendrodendritic connections 
between MCs and inhibitory interneurons of the OB. 

The dendrites within the glomerulus not only receive the sensory input but are also 
terminals. The most common patterns are dendrodendritic contacts both from MCs to 
PGCs (excitatory synapses) and PGCs to MCs (inhibitory). 

PGCs are the first type of inhibitory interneuron in OB because it also play an 
important role in the connection between glomeruli, since the axon of these cells makes 
inhibitory synapses onto the primary dendrites of MCs (and tufted) as they emerge 
from the glomeruli. MCs also have dendrodendritic reciprocal connections between 
their secondary dendrites and dendrites of granular cells (GRCs). These connections 
follow the same patter of MCs-PGCs synapses, that is, contacts from MCs to GRCs are 
excitatory and from GRCs to MCs are inhibitory. This kind of connection is responsible 
for lateral inhibition between glomeruli and MCs and may play an important role in odor 
coding and neural adaptation [3]. 

In this work, we investigate the possible function of lateral inhibition and adaptation 
on the olfaction processing. For this, we study the properties of a simple network model 
built as a coupled one-dimensional map [4]. 

MODEL 

As said in the previous section, the objective of this work is to examine the role lateral 
inhibition in odor coding inside the OB. However, it's easy to notice that pure and 
simple lateral inhibition doesn't characterize a real challenge in terms of codification. 
This would simply make the most active cell in a group of interconnected neurons fires 
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constantly while the rest of those neurons would be inhibited. But OB doesn't have 
just lateral inhibition. Connections between MCs and GRCs (or MCs and PGCs inside 
the glomerulus) also result in auto-inhibition. Fig. 1 shows that the activation of an 
inhibitory interneuron always results in an inhibitory stimulus to all MCs connected to 
this. 

Our model is a coupled one-dimensional map, where cells have inhibitory connections 
to their immediate neighbors (first and last elements are also connected, creating a ring). 
We consider the case of "extreme inhibition" in the sense that once a cell fires it prevents 
its neighbors of firing it no matter how strong is their inputs. It is in a sense a local 
"winner-take-all". This concept is only possible if we are careful about the updating 
order of the maps. Normally the model of a neuron with continuous input would be 
a differential equation for the potential and auxiliary variables. Since the neuron has 
a finite membrane capacitance there is a finite integration time T between the input 
presentation and firing. Therefore neurons with larger inputs will fire before and win the 
competition with their neighbors. To incorporate this feature in a time discrete dynamics 
we proceed as follows, to decide the state of a network at t + 1, from its state at t 

• Only neurons with inputs hf(t) above certain threshold will fire at t + 1; 
• The firing order is given by neurons' hi(t), that is, the first neuron to fire is the one 

with the highest internal value, then the second highest value and so on; 
• A specific neuron will fire in a time t + 1 only if no other neighbor has fired yet in 

the update process. 

The input to a neural cell depends on the sum of the olfactory stimulus and adaptation 

ht(t) = Ii-ai(t) (1) 

We consider, as in [3], that the stimulus is logarithmic with the coverage of the available 
receptors in the olfactory epithelium. The coverage of a given receptor is proportional to 
the odorant concentration and its affinity to the odorant. We them write the stimulus as 

ii = & + C (2) 

where fy is an uniform random variable between 0 and 1 representing the intrinsic affin­
ity of the glomerulus / to the odorant and C is the logarithm of the odor concentration. 
We call C concentration for simplicity. The adaptation at(t), who works as the MCs' 
auto-inhibition, since we don't have granular cells in our model, varies according to 

*/(f+l) = at(t) + 8si{t+\) -D ( l - ^ + i ) ) (3) 

The parameters 8 and D are responsible for adaptation (or auto-inhibition) and adap­
tation recovery, respectively. Therefore, each time a neuron fires, it loses 8 from its 
internal value hf(t). If this new hf(t) is smaller than any neighbor's internal value or is 
smaller than 0, the neuron will not fire and its internal value will be increased by D. 
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FIGURE 2. Spatio-temporal structure showing two different regimes. In A the raster plot for a network 
of 50 neurons, in B the corresponding network activity. 

RESULTS 

Upon the presentation of a random distributed input at certain concentration our network 
responds with a rich spatio-temporal structure where two distinct regimes are observed: 
a transient and a periodic regime. It's also possible to split the transient regime in two 
parts. Fig. 2 shows that during the first steps of simulation some neurons fire constantly 
since they always win the firing contest. But, as said in the previous section, every time 
a neuron fires its adaptation (or auto-inhibition) value is increased by 8 and, eventually, 
its hf(t) will become smaller than its neighbors. At this point, the global behavior of the 
network will change to the second part of the transient regime where neurons alternate 
firing with neighbors. This is the check board like structure in Fig. 2A, where neurons 
spike every other time step. If the adaptation due a spike is larger than the subsequent 
recovery between spikes ( 5 > D ) the alternating competing neurons will continue to 
adapt until hj(t) becomes smaller than 0. The firing rate then decreases since once a 
neuron goes under the threshold it takes longer to recover back, this reflects in the overall 
network activity, see Fig. 2B. Eventually the dynamics pushes all neuron inputs to the 
the interval [0 — <5, 0 -\-D]. After that the regime changes from transient to periodic, and 
the firing pattern gets a specific spatio-temporal structure. Depending on the stimulus 
the pattern period can be a multiple of a minimal period given by 

Tm=a + b (4) 

where a and b are the lowest integers such that 8/D = a/b . Of course, if 8 and D 
are incommensurable the pattern is not periodic. In Fig. 3 we display the distribution for 
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FIGURE 3. Distribution of periods for 2000 random stimuli with concentration C = 0 in two networks 
of n = 50 (open circles) and n = 100 (solid squares) neurons, 8 = 0.03, D = 0.01, and threshold 6 = 0. 
Periods for T/Tm > 10 are not shown. 

the periods obtained upon the presentation of 2000 random stimuli with concentration 
C = 0 to two networks with n = 50 and n = 100 neurons, and parameters 8 = 0.10, 
D = 0.03 and threshold 0 = 0. The irregularity in the distribution is not result of poor 
sampling, and its shape is still a matter of investigation. As the network increase its size 
from n = 50 to 100 the distribution tends to larger periods. We observe that while for 
n = 50 more than 70% of the input stimuli produce a periodic pattern with the minimal 
period Tm, for n = 100 that fraction reduces to less than 30%. Periods for T/Tm > 10 are 
present but we do not display in the graph. 

A distribution of periods is certainly a very interesting result for such a simple model. 
However, if the network is to be a coding stage of a larger network it cannot afford 
representations that are too wide in time, otherwise the next stage will take too long to 
process. On the other hand, it is conceivable that for a given pattern with period T = mTm, 
where m is an integer, not all the neurons have firing periods equal to T. Therefore there 
are some neurons that are responsible for the larger observed period. If they are few, 
well before t = T the network already has most of the information that is needed for 
making a decision. Furthermore if the next stage network has a form of error correction 
we expect that the effective period of the representation is smaller than T. 

In order to investigate that possibility we reprocessed our results introducing a toler­
ance in the algorithm that finds periods. Basically, we calculate the Hamming distance 
between two configurations and if it is smaller than the tolerance value, we assume that 
they are the same. Mathematically, T(e) is a period with tolerance e for a temporal pat­
tern if 

dH(s(t),s(t-\-T(e)) < e W (5) 
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FIGURE 4. The fraction of 100 random stimuli of concentration C = 0 that elicit stable periodic patterns 
with T = Tm = 13 as a function of tolerance ( in unities of number of cells) for a network of n = 50 and 
parameters 8 = 0.03, D = 0.01, and 6 = 0. 

where s = (s\ ,^2, •••?£#) is the network configuration and 

<fe(s(f),s(f')) 
N 

-*(0)2 

/=l 

Therefore, the large periodic pattern is just a group of very similar patterns. Fig. 4 shows 
the fraction of 100 random stimuli of concentration C = 0 that elicit stable periodic 
patterns with T = Tm = 13, given a certain tolerance, for a network of n = 50 and 
parameters 8 = 0.10, £> = 0.03, and 0 = 0. It indicates that for tolerances between 6 
and 20 unities all the stimuli generates periodic patters of firing with the minimal period 
Tm. Larger tolerances are very permissive, allowing the possibility of detection of smaller 
periods and eventually for tolerances equal to n the period is 1 for all possible stimuli. 

The conclusion coming from Fig. 4 is that if the next stage network is capable of 10% 
error correction all that is needed it to process the first 2Tm time steps after the transient 
to recognize the pattern. 

Another very interesting finding is the effect of concentration. Concentration as mod­
eled here is an additive constant to the stimulus value [3]. As we increase the concen­
tration of the stimuli we observe that there is a sharp transition where all large periods 
disappear. Fig. 5 shows that for 100 random stimuli and concentration varying from 0 to 
2. 

This spatio-temporal distribution at the periodic regime is our main concern here, 
since [5] proposes that OB (and insects' antennal lobe) uses a similar codification for 
real odors. 
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FIGURE 5. The effect of concentration on the fraction of a set of 100 stimuli presenting minimal 
response period. 

CONCLUSIONS 

Here we discuss the dynamical properties of a simple network with two ingredients: 
extreme lateral inhibition and adaptation. The network is a couple-map where each 
binary neural unity fires depending on its stimulus strength, its internal adaptation state 
and its competition with the neighbors. We have introduced a update rule where the 
neurons are updated in order of their input magnitude. Cells that have more input are 
updated first. This makes the competition between neurons more realistic and interesting 
since it can result in chain reactions, where the impact of having a neuron released from 
inhibition can affect neurons many synapses away. This phenomena is more pronounced 
in one dimensional systems like the one studied in this paper, but it is present in a two 
dimensional system that is a more realistic model for the olfactory system. In presence 
of a sustained external (olfactory) stimulus the activity of the network converge, after 
a transient, to a periodic attractor that can be considered as the network output. The 
period of the attractor depends on the particular stimulus, and it is always a multiple of 
a minimal period Tm, determined by the parameters S and D. For enough tolerance or 
concentration the activity of the network becomes Tm, independently of the stimulus. 

There still much to do to access the relevance of this model for odor processing. 
The preliminary results show that it produces a rich spatio-temporal response with very 
well defined transient and periodic phases. Given the model's simplicity the complete 
understanding on how it comes about is at hand. A rich response, though necessary, 
is not sufficient to generate a good representation for the odor space. We expect some 
robustness to noise, and the preservation in the responses of the topological relation of 
the stimuli. Those will be the next steps on our investigation. 
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