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A fully kinetic model for the electron flow in a crossed field device is derived and used to

determine the system stationary states. It is found that for low injection temperatures, there is a

simultaneous presence of distinct stationary solutions and an abrupt transition between accelerating

and space-charge limited regimes. On the other hand, for high injection temperatures, there is only

a single stationary solution branch and the change between the regimes becomes continuous.

For intermediate temperatures, it is then identified a critical point that separates the abrupt and

continuous behaviors. It is also investigated how intrinsic space-charge oscillations may drive

stationary states unstable in certain parameter regimes. The results are verified with N-particle

self-consistent simulations. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4893313]

I. INTRODUCTION

Fully kinetic descriptions of long-range self-interacting

systems are generally very difficult to obtain because these

systems do not relax to the Maxwell-Boltzmann distribution

and the tools of equilibrium statistical mechanics cannot be

employed.1 This is the case of electron flows in the presence

of crossed electric and magnetic fields which are fundamen-

tal for the development of several advanced applications in

areas ranging from microwave sources2 to space propulsion,3

as well as in the semiconductor industry.4 The study of the

electron dynamics in such field configuration was pioneered

by Hull,5 who showed that a magnetic field may limit the

particle flow from the cathode to the anode. This result was

based on a single-particle model that assumes given external

electromagnetic fields. More recently, a large number of

papers have investigated the equilibrium and stability of

these systems by explicitly taking into account the particles

self-fields.6–15 The self-fields may play a major role in the

dynamics since they can also limit the particles flow from

the cathode to the anode as the current density exceeds a cer-

tain threshold and a space-charge limited (SCL) regime

emerges.6,10,16 However, given the afore mentioned com-

plexity that long ranged self-fields add to the problem, the

large majority of the theoretical analysis done so far are

based on models that assume that the electron flow is either

completely cold or is a fluid with an a priori postulated equa-

tion of state. In contrast to a kinetic description, these models

may not properly take into account the thermal effects.

In this paper, we derive a fully kinetic model for the

electron flow in a crossed field device. In particular, we

consider a nonrelativistic planar gap device.8,10,11,13,14 In the

thermodynamic limit, where the number of particles goes to

infinity while the total mass and charge are fixed, the elec-

tron flow is described by the Vlasov equation.17,18 A theory

is then developed to determine the stationary states of the

corresponding Vlasov-Poisson system. We find that for rela-

tively low injection temperatures, the system exhibits multi-

ple stationary solutions as one approaches the limiting

current, indicating the occurrence of a nonequilibrium first

order phase transition.19,20 On the other hand, for high injec-

tion temperatures, there is only a single stationary solution

branch and the conversion to the SCL regime is continuous.

For intermediate temperatures, we then identify a critical

point that separates the abrupt and the continuous behavior.

We also find that for vanishing small injection velocities,

some of the stationary solutions become unstable due to

space-charge oscillations. In this case, the system is driven

to a different stationary state which is also predicted by the

theory.

The paper is organized as follows. In Sec. II, we intro-

duce the model for the nonrelativistic planar crossed-field

gap and write the Vlasov-Poisson system that describes its

kinetic evolution. In Sec. III, we develop the theory to deter-

mine the stationary states for the kinetic equations. Special

attention is given to the transition between accelerating and

SCL regimes. We also present results from N-particle self-

consistent simulations that confirm the theoretical findings.

In Sec. IV, we investigate the particular case where the

injected electron beam presents particles with vanishing

small velocities. In this case, we find that the stationary solu-

tion described in Sec. III becomes unstable and the system is

driven to a different stationary state which can also be pre-

dicted by the theory. In Sec. V, we conclude the paper.

II. MODEL

A schematic diagram and field configuration of a nonre-

lativistic planar crossed-field gap is presented in Fig. 1. The

cathode at y¼ 0 is kept at zero electrical potential, and the

FIG. 1. A schematic diagram of a nonrelativistic planar crossed-field gap.

The curves correspond to the trajectories of test electrons emitted from the

cathode with zero velocity in the case (a) V0>VH and (b) V0<VH.
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anode at y¼L is held at a potential V0, generating a uniform

electric field E0 ¼ �ðV0=LÞŷ in the gap region 0< y< L. In

this region, there is also an applied uniform constant mag-

netic field B0 ¼ �B0ẑ. Examples of trajectories of test elec-

trons that enter in the gap region with vanishing velocities

are also shown in Fig. 1. The electrons are accelerated along

the y direction by E0 and deflected clockwise by B0. If the

accelerating potential satisfies V0>VH, where VH ¼ eB2
0L2=

2m is the Hull potential, m and �e are mass and charge of

the electron, then the electron gains enough energy to reach

the anode [trajectory (a)]. On the other hand, if V0<VH then

the magnetic field force is strong enough to push the electron

back to the cathode [trajectory (b)]. Once an electron reaches

the cathode or the anode, it is absorbed and leaves the

system.

Due to the system symmetry, during operation, the cath-

ode is assumed to emit not single electrons but infinite

charge sheets parallel to the x–z plane. Hence, the one parti-

cle distribution function in phase space f(r, p, t) will only

depend on the y spatial coordinate. Its evolution is dictated

by the Vlasov equation18

df

dt
¼ @f

@t
þ @H

@py

@f

@y
� @H

@y

@f

@py
¼ 0; (1)

where H ¼ ðpþ eAÞ2=2m� e/ is the single particle

Hamiltonian and A and / are the vector and scalar electromag-

netic potentials. The scalar potential is self-consistently deter-

mined from the particle distribution by the Poisson equation

@2/
@y2
¼ e

�0

n yð Þ; (2)

satisfying the boundary conditions /ð0Þ ¼ 0 and /ðLÞ ¼ V0,

where nðyÞ ¼
Ð

f ðy; pÞ dp is the electron density. The back-

ground magnetic field is derivable from a vector potential

A0 ¼ �B0yx̂, such that B0¼r�A0. It is clear that the elec-

trons generate current densities with both x and y compo-

nents (see Fig. 1). These currents create a self-magnetic field

that tend to screen B0. Nevertheless, if we assume that the

gap region is sufficiently thin, we can safely neglect the

self-magnetic fields13 and take A¼A0. The single particle

Hamiltonian is then given by

H ¼ 1

2m
px þ eB0yð Þ2 þ p2

y þ p2
z

h i
� e/ yð Þ: (3)

Because the Hamiltonian does not depend on x and z, the

canonical momentum components px and pz are constants of

motion. Their values are determined by the electron velocity

when entering the gap region. For simplicity, we assume that

the electrons are injected with velocities normal to the cath-

ode, such that px¼ pz¼ 0. Note that this condition does not

imply that the velocity parallel to the cathode is always zero.

In fact, because velocity and canonical momentum are

related by ¼ (pþ eA)/m, the particles are accelerated in the

x direction, such that vx¼ eB0y/m. Finally, it is worth noting

that because the convective derivative of f(y, py, t) vanishes

according to the Vlasov equation (1), the system evolves

over the phase space as an incompressible fluid.

III. STATIONARY STATES AND TRANSITION TO
SPACE-CHARGE LIMITED REGIME

As the device is turned on and electrons start to flow in

the gap region, the system is expected to reach a stationary

state after some transient time. Our aim is to determine this

stationary state and, particularly, if it is in the accelerating

regime or in the SCL regime—when the self-fields are large

enough to screen the accelerating field at the cathode. Let us

consider that the electrons are injected from the cathode

according to a given velocity distribution. Namely, a water-

bag satisfying

f y ¼ 0; pyð Þ ¼
n0

p0max � p0min
; (4)

for p0min� py� p0max and zero elsewhere, where n0 is the

particles density at the cathode. The parameters n0, p0min,

and p0max completely determine the injected beam. The

technique employed here can be readily generalized to other

velocity distributions by approximating them by a series of

waterbags.21 Once the stationary state has been achieved, all

the quantities become time independent, in particular the

single electron Hamiltonian (3). It is thus straightforward to

write the momentum of a given electron as

pyðp0; yÞ ¼ 6½p2
0 þ 2em/ðyÞ � e2B2

0y2�1=2; (5)

where p0 is its momentum at the cathode and the plus

(minus) sign refers to an electron that is moving towards the

anode (cathode). All the particles are distributed in the phase

space region between the least and most energetic trajecto-

ries py(p0min, y) and py(p0max, y). Moreover, because the

Vlasov equation (1) imposes that the electron flow is incom-

pressible in the phase space, the distribution everywhere

inside this region has the same density as that of y¼ 0,

namely n0/(p0max � p0min). We concentrate on magnetic insu-

lated cases where V0 < VH � p2
0max=2me, and all the particles

ejected from the cathode eventually return to it. Taking all

these points into consideration, we can finally write the den-

sity of particles as

n yð Þ ¼ 2n0

jpy p0max; yð Þj � jpy p0min; yð Þj
p0max � p0min

; (6)

where the factor “2” accounts for the fact that there is an

equal number of particles moving to and from the cathode

and py(p0max, y) and py(p0min, y) are real functions to be con-

sidered zero whenever they become imaginary. Substituting

this in Eq. (2), we obtain a closed equation for the electric

potential /ðyÞ in the stationary state.

It is convenient to define dimensionless parameters

�0 ¼ V0=VH; g0 ¼ en0L2=�0V0; �p0 ¼ ðp0min þ p0maxÞ=2eB0L,

and T0 ¼ ðp0max � p0minÞ2=12e2B2
0L2 which measure, respec-

tively, the normalized accelerating potential and the electron

density, the average momentum, and the temperature

(momentum spread) at injection. To determine if a certain

stationary solution is accelerating or SCL, we compute the

electric field at the cathode Ec ¼ �@/=@yjy¼0. In Fig. 2, we

plot Ec as a function of the normalized electron density for

�0 ¼ 0:8; �p0 ¼ 0:2, and T0¼ 8.3� 10�4. When g0 ! 0, the
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electron density is so small that the normalized potential

approaches the vacuum solution of Eq. (2), /ðyÞ ¼ V0y=L,

and Ec�E0� –V0/L. As g0 increases, Ec/E0 decreases

because progressively more charge is present in the gap

region, depleting the accelerating electric field. On the other

hand, for large values of the normalized electron density,

above g0� 0.84, the amount of charge in the gap becomes

large enough to completely screen the accelerating field and

a single stationary solution that corresponds to SCL states

with Ec/E0< 0 is found. In the intermediate region

0.820< g0< 0.835, we find the presence of three different

stationary solutions, indicating that the system may jump
from one solution branch to the other with a small variation

of g0. Because the system is not in thermodynamic equilib-

rium—it evolves according to Vlasov equation instead of

Boltzmann equation—such a jump corresponds to a nonequi-

librium first order phase transition19,20 between accelerating

and SCL regimes.

To verify this scenario, we run N-particle self-consistent

simulations. In the simulations, charge sheets are injected

from the cathode according to Eq. (4). The dynamics of the

ith sheet inside the gap region is derived from the

Hamiltonian (3) as y
::

i ¼ �X2
cyi � eðE0 þ Ei

sÞ=m, where the

dots stand for time derivatives, Xc¼ eB0/m is the cyclotron

frequency, and Ei
s is the self electric-field acting upon the ith

sheet due to the interaction with the remainder charges in the

systems, which can be readily obtained using Green’s func-

tions.22 To model the charging process in real devices, we

initialize the simulation with an empty gap region and com-

pute the electric field at the cathode Ec(t) as the charge builds

up in the system. In Fig. 3, we present the time evolution of

the cathode field obtained from the simulation for two values

of g0. In both cases, Ec(t)/E0 starts at unity, corresponding to

an empty gap, and quickly drops as charge starts to flow into

the system. After some transient time, Ec(t) saturates, indi-

cating that the system has reached a stationary state. Note

that while for the lower normalized density case g0¼ 0.78,

the stationary regime is characterized by an accelerating

cathode field with a saturated value Ec(t)/E0> 0, for the

higher density g0¼ 0.88, the system becomes SCL in the sta-

tionary regime with a saturated value Ec(t)/E0< 0, in agree-

ment with the theoretical results of Fig. 2.

In order to investigate the stationary state attained by

the system for different normalized electron densities, we

performed a series of N-particle simulations for different g0

and computed the saturated values of the cathode electric

field. The results are shown by the symbols in Fig. 2. We see

a very good agreement with the results predicted by the

theory. In particular, in the region with multiple solutions,

the system follows the upper (accelerating) branch of the the-

oretically predicted stationary solutions. At g0¼ 0.836, this

branch ceases and the system jumps from the accelerating

(Ec/E0¼ 0.2) to the SCL regime (Ec/E0¼�0.05), character-

izing the first-order phase transition. In Fig. 4, we compare

the stationary distribution of charge sheets in phase-space

obtained from the simulation right before and after the transi-

tion. We also present in the figure, the theoretical py(p0min, y)

and py(p0max, y) curves to show that they agree very well

with the boundaries of the particles distribution from the

simulation. While in panel (a) for g0¼ 0.835 the charge dis-

tribution is nearly semiannular, for the slightly higher value

g0¼ 0.836 of panel (b), it becomes much thicker in the cen-

ter of the gap (y� 0.5), occupying most of the empty inner

region of Fig. 4(a). This leads to an increase of the total

charge in the gap of 22% which is responsible for the onset

of the SCL regime. In the simulations, we observe that as

FIG. 2. Normalized electric field at the cathode for the stationary state as a

function of the normalized electron density g0 for T0¼ 8.3� 10�4, �0¼ 0.8,

and �p0 ¼ 0:2. The solid line corresponds to results from the theory, whereas

the symbols—results from the simulation. As a consequence of the existence

of multiple stationary solutions, the system suffers an abrupt transition from

the accelerating (Ec/E0> 0) to the SCL (Ec/E0< 0) regime.

FIG. 3. Time evolution of the normalized electric field at the cathode for

two simulation runs with the same parameters as in Fig. 2 and two different

normalized electron densities: g0¼ 0.78 (black solid curve) and g0¼ 0.88

(red dashed curve). After a transient time, the cathode field saturates as the

system reaches the stationary state. For g0¼ 0.78, the stationary state corre-

sponds to an accelerating regime with Ec/E0> 0 for large t, whereas for

g0¼ 0.88, it corresponds to a SCL regime with Ec/E0< 0 after saturation.

FIG. 4. Snapshots of the phase space obtained from the simulation after the

stationary state has been attained. The parameters correspond to those of

Fig. 2 in the vicinity of the abrupt transition. A slight change in the normal-

ized electron density from (a) g0¼ 0.835 to (b) g0¼ 0.836 drives the system

from the accelerating to the SCL regime, producing a dramatic change in the

charge distribution. Thick solid lines correspond to the charge distribution

boundaries predicted by the theory. Position and momentum are normalized

to L and qB0L, respectively.
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soon as the electrons start to be injected in the initially empty

gap, they always tend to form a semiannular distribution

similar to that of Fig. 4(a), regardless of the value of g0. This

corresponds to the quick drop of Ec/E0 seen in Fig. 3 up to

Xct� 10 for both cases presented. If g0 is below the phase

transition value (black solid curve in Fig. 3), this distribution

is very close to a stationary state of the system and Ec/E0

soon saturates. On the other hand, if g0 is above the phase

transition value (red dashed line in Fig. 3), the semiannular

distribution does not correspond to a stationary solution any-

more and the charge continues to slowly build up in the gap

until the SCL stationary regime is finally reached.

Let us consider a case with a larger injection tempera-

ture. In Fig. 5, we plot the stationary cathode electric field as

a function of g0 for T0¼ 3.3� 10�3. In contrast to the case

of Fig. 2, now the theory (solid line) predicts a single station-

ary solution branch and consequently, a continuous change

from accelerating to SCL regime as the Ec¼ 0 axis is

crossed. This is confirmed by the N-particle simulations

(symbols). This suggests the existence of a critical injection

temperature T0c which separates the continuous and the

abrupt behavior. To verify this, we construct a phase-

diagram g0 vs. T0, determining for which parameters we find

multiple stationary solutions and for which the change is

continuous. The results are shown in Fig. 6 where a critical

injection temperature T0c� 1.4� 10�3 is found. For temper-

atures above T0c, the dashed line corresponds to the points

where Ec¼ 0 and the system is switching continuously from

the accelerating to the SCL stationary regime. Below T0c, the

region between the dotted and the solid line corresponds to

parameter values for which multiple stationary solutions are

found. In this case, the system suffers an abrupt transition to

the SCL regime as it crosses the solid line.

IV. INSTABILITY FOR INJECTION WITH VANISHING
SMALL VELOCITIES

When one considers the limit p0min ! 0, another inter-

esting dynamical feature emerges. This is illustrated in Fig. 7

where we present results for p0min¼ 0, �p0 ¼ 0:4, �0¼ 0.8,

and g0¼ 0.6. For this set of parameters, Eq. (2) with a den-

sity given by Eq. (6) predicts a single stationary solution

with Ec/E0¼ 0.645, which is represented by the green dashed

line in panel (a) and whose corresponding py(p0min, y) and

py(p0max, y) curves are shown in panels (b) and (c). The solid

line in panel (a) is Ec(t) obtained from the simulation. We

notice that Ec(t)/E0 quickly drops from the unity and

approaches the theoretical predicted value, where it reaches

a sort of plateau, as expected. However, at longer times

(Xct� 103), Ec(t)/E0 starts to deviate, reaching a new plateau

at Ec(t)/E0� 0.37.

To clarify what is happening, we show snapshots of the

phase space obtained at different times in Figs. 7(b)–7(d).

While for Xct¼ 102 (b) the borders of the N-particle distribu-

tion agree with the theory, for Xct¼ 2� 103 (c), some

particles start to populate the region inside py(p0min, y). This

occurs because the charges that enter in the system with

vanishingly small momentum closely follow the py(p0min, y)

curve in phase space. In the absence of any perturbation,

they would return to the cathode and reach it with a corre-

spondingly small momentum. However, because of

FIG. 5. Normalized electric field at the cathode for the stationary state as a

function of the normalized electron density g0 for T0¼ 3.3� 10�3. The re-

mainder parameters are the same as in Fig. 2. The theory (solid line) predicts

a single stationary solution branch and a continuous change from accelerat-

ing to SCL regime, which is verified by the simulation (symbols).

FIG. 6. Parameter space T0 vs. g0 showing where the conversion between

accelerating and SCL regimes is continuous (dashed line) or abrupt (solid

line), and the critical point (solid dot) that separates them. The region

between the solid and the dotted line corresponds to the region of multiple

stationary solutions.

FIG. 7. Results for p0min¼ 0. In (a), the time evolution for the cathode elec-

tric field. The lines are theoretically predicted values. In (b)–(d), the phase

space at different times. Solid lines correspond to the charge distribution

boundaries predicted by the theory. Position and momentum are normalized

to L and qB0L, respectively.
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oscillations in the electron distribution, some of these sheets

loose energy while traversing the system and are unable to

reach back the cathode, becoming trapped inside the gap

region. This process continues on and on, building progres-

sively more charge in the system. It only ceases when the

region inside py(p0min, y) is completely filled to the maxi-

mum density allowed by the Vlasov equation. Hence, for the

final stationary state of Fig. 7(d), we can write the particles

density as given by Eq. (6) with py(p0min, y)¼ 0, i.e.,

n yð Þ ¼ 2n0

jpy p0max; yð Þj
p0max

: (7)

Substituting Eq. (7) in the Poisson equation (2), we then

obtain a closed equation for the final stationary state attained

by a system with vanishing small velocities. For the parame-

ters of Fig. 7, this final stationary state is predicted to have

Ec(t)/E0¼ 0.371 [red dotted line in Fig. 7(a)]. The corre-

sponding theoretical py(p0max, y) curve is also shown in

Fig. 7(d). Both results clearly agree with the simulation. This

process that unstabilizes the stationary state of Fig. 7(b) is

similar to the modulational instability discussed in Ref. 11 in

the context of cold electron flows. The main difference is

that there, the instability is driven by an external ac voltage

added to V0, whereas here, it is driven by intrinsic oscilla-

tions of the electron distribution.

V. CONCLUSION

To conclude, we have investigated a fully kinetic model

for the electron flow in a crossed field device and developed

a theory to determine its stationary states. We found that

depending on the parameters of the system, it may present ei-

ther a single or multiple stationary solutions as the limiting

current is approached. While in the former case the conver-

sion from accelerating to SCL regime is continuous, in the

latter case, it is abrupt, characterizing a nonequilibrium first-

order phase transition. It was then identified a critical point

that separates the continuous and the abrupt behavior. We

also found that some stationary states become unstable due

to space-charge oscillations if there are particles injected

with vanishing velocities. Results were verified with

N-particle self-consistent simulations. The phase transitions

discussed here add to the already known rich behavior in the

parameter space of the planar crossed-field gap.6,10 Given

these rich properties, it is anticipated that this model may

also be used as a test bed for the study of phase transitions in

driven long-range interacting systems.
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