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Nonlinear coupling between breathing and quadrupole-like oscillations
in the transport of mismatched beams in continuous magnetic
focusing fields

W. Simeoni, Jr.,a� F. B. Rizzato,b� and R. Pakterc�

Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051,
91501-970, Porto Alegre, RS, Brazil

�Received 19 December 2005; accepted 5 May 2006; published online 14 June 2006�

A nonlinear analysis of the transport of breathing beams considering nonaxisymmetric perturbations
is performed. It is shown that large-amplitude breathing oscillations of an initially round beam may
couple nonlinearly to quadrupole-like oscillations, such that the excess energy initially constrained
to the axisymmetric breathing oscillations is allowed to flow back and forth between breathing and
quadrupole-like oscillations. In this case, the beam develops an elliptical shape with a possible
increase in its size along one direction as the beam is transported. This is a highly nonlinear
phenomenon that occurs for large mismatch amplitudes on the order of 100% and is found to be
particularly relevant for space-charge-dominated beams with K�k0�, where K is the beam
perveance, k0 is the vacuum phase advance per unit axial length, and � is the emittance of the beam.
A simple model based on mapping techniques is used to clarify the mechanism that leads to the
energy exchange between the modes and is tested against results from direct integration of the
envelope equations. © 2006 American Institute of Physics. �DOI: 10.1063/1.2208293�

I. INTRODUCTION

There has been a lot of interest in the research of high-
intensity accelerators and vacuum electronic devices in order
to meet the needs in areas such as communication, heavy-ion
fusion, and basic science research. A key issue to be over-
come in the development of these devices is the prevention
of particle beam losses1,2 because they lower energy effi-
ciency and may be responsible for activation of the walls
surrounding the beam in accelerators3 and pulse shortening4

due to secondary electron emission in high-power micro-
wave sources. In order to achieve that, a crucial ingredient is
a better understanding of the beam transport stability. In that
regard, many studies have been made since the 1980s on the
linear stability of uniform and periodically focused beams,
where vanishing small deviations from the matched �equilib-
rium� solution were taken into account.5–11 They detected the
occurrence of different instability modes which compromise
beam transport for certain parameters of the system. Of par-
ticular relevance for axisymmetric solenoidal focusing is the
breathing mode that induces increasing-amplitude axisym-
metric oscillations of the beam envelope around its matched
�equilibrium� value; and the quadrupole-like mode that in-
duces elliptic oscillations of the beam, breaking its
symmetry.6,9,10 Studies of beams with finite mismatch ampli-
tude based both on collective mode analysis12–14 and on test-
particle dynamics15,16 were also performed, but the results
are restricted to axisymmetric beams. In particular, it was
shown that finite amplitude breathing modes may induce in-
stabilities, chaotic envelope dynamics, and halo formation.

In this paper, we perform a nonlinear analysis of the
transport of beams in continuous magnetic focusing fields
taking into consideration nonaxisymmetric effects. In par-
ticular, we investigate the nonlinear coupling between
breathing modes and quadrupole-like modes based on enve-
lope equations. It is shown that large-amplitude breathing
oscillations caused by some sort of mismatch may nonlin-
early couple to quadrupole-like oscillations for an initially
quasi-axisymmetric beam. In this case, the excess energy
initially constrained to the axisymmetric breathing oscilla-
tions is allowed to flow back and forth between breathing
and quadrupole-like oscillations, with the beam developing
an elliptical shape with a possible increase in its size along
one direction as the beam is transported. Generally, this may
induce beam losses, which are enhanced if conducting wall
effects are taken into account,17 and may also induce a de-
tuning in the wave-beam interaction in high-power micro-
wave tubes. This nonlinear process is found to be particularly
relevant for space-charge-dominated beams with K�k0�,
where K is the beam perveance, k0 is the vacuum phase
advance per unit axial length, and � is the emittance of the
beam, and occurs for large mismatch amplitudes on the order
of 100%, which are compatible, for instance, to mismatches
induced by current oscillations in high-power microwave
sources.18 A simple model is developed to clarify the basic
mechanism that leads to the energy exchange between the
modes and is numerically tested against results obtained
from direct integration of the envelope equations.

The paper is organized as follows. In Sec. II, the model
equations are introduced and a simple model based on map-
ping techniques is developed to clarify the basic mechanism
that leads to energy exchange between breathing and
quadupole-like modes for large-amplitude mismatched
beams. In Sec. III, results obtained by direct integration of
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the envelope equations are presented and compared to results
from the simple model. In Sec. IV, the paper is concluded.

II. THE MODEL EQUATIONS

A. Envelope equations and the matched solution

We consider an axially long unbunched beam propagat-
ing with constant average axial velocity �bcêz along a uni-
form solenoidal magnetic focusing field B�x�=Bzêz, where c
is the speed of light in vacuo and Bz is constant. Since we are
dealing with solenoidal focusing, it is convenient to work in
the Larmor frame of reference,8 which rotates with respect to
the laboratory frame with angular velocity �L=qBz /2�bmc,
where q, m, and �b= �1−�b

2�−1/2 are, respectively, the charge,
mass, and relativistic factor of the beam particles. The beam
is assumed to have an elliptical cross section centered at
x=0=y and vanishing canonical angular momentum
P���xy�−yx��=0, where x and y are the positions of the
beam particles in the Larmor frame, the prime denotes de-
rivative with respect to s, and �¯� represents average over
beam particles. Although we restrict our analysis to a uni-
form focusing, the results are expected to be valid for peri-
odic focusing as well, as long as P�=0 and smooth-beam
approximations are valid.8 In the paraxial approximation, the
equations that dictate the beam envelope evolution are

d2a

ds2 + k0
2a −

2K

a + b
−

�2

a3 = 0, �1�

d2b

ds2 + k0
2b −

2K

a + b
−

�2

b3 = 0, �2�

where s=z is the propagation distance, a and b are the ellip-
sis semi-axes radii, k0=qBz /2�b�bmc2 is the vacuum phase
advance per unit axial length that measures the focusing field
strength, K=2q2Nb /�b

3�b
2mc2 is the beam perveance, Nb is

the number of particles per unit axial length, and � is the
unnormalized emittance of the beam. Equations �1� and �2�
can be derived in different frameworks, for instance from a
kinetic Vlasov-Maxwell description or by taking successive
momenta of a single particle equation of motion along with
convenient closure relations.8 In the former case, a�s� and
b�s� are the exact outermost radii of an uniform distribution
Kapchinskij-Vladimirskij equilibrium beam,19 whereas in the
latter, they are related to rms beam sizes along the x and y
axes.20

It is easy to verify that there is a particular solution of
the envelope equations �1� and �2� for which a�s�=b�s�
=rb0=const. This corresponds to the so-called matched solu-
tion for which a circular beam of radius rb0 preserves its
shape throughout the transport along the focusing field. The
matched radius is

rb0 = �K + �K2 + 4k0
2�2�1/2

2k0
2 	1/2

. �3�

Linear stability calculations show that small amplitude oscil-
lations around the matched solution are always stable.9 Our
purpose here, is to investigate what happens when large-
amplitude oscillations are taken into consideration. In the

next section we first develop an analytical approach to esti-
mate what will be seen later when we move to the appropri-
ate numerical procedures.

B. Large-amplitude mismatched oscillations

To analyze large-amplitude oscillations, we first note
that Eqs. �1� and �2� can be derived from a Hamiltonian
formalism

H�a,pa;b,pb� = Ha�a,pa� + Hb�b,pb� − 2K ln�a + b� , �4�

with

H� =
p�

2

2
+

k0
2�2

2
+

�2

2�2 , �5�

�=a ,b, and

da

ds
=

�H

�pa
= pa,

dpa

ds
= −

�H

�a
,

db

ds
=

�H

�pb
= pb,

dpb

ds
= −

�H

�b
.

It is clear from the Hamiltonian in Eq. �4� that for negligible
space-charge forces, i.e., K→0, the dynamics of a and b
become decoupled and nonlinear energy transfer between
these degrees of freedom is absent.

As discussed in Sec. I, we are interested in investigating
the transport of axisymmetric beams with a�s�
b�s� as they
undergo large-amplitude breathing oscillations around rb0.
For that sake, it is convenient to introduce new canonical
variables defined as

XS = �a + b�/�2, PS = �pa + pb�/�2, �6�

XA = �a − b�/�2, PA = �pa − pb�/�2, �7�

obtained from the generating function

F�a,b;PS,PA� =
�a + b�PS + �a − b�PA

�2
. �8�

Note that XS and PS are sensitive to symmetric oscillations
where a�s� and b�s� oscillate in phase: breathing modes. On
the other hand, XA and PA are sensitive to antisymmetric
oscillations where a�s� and b�s� oscillate with opposite
phases: quadrupole-like modes. The dynamics is then dic-
tated by the following Hamiltonian:

H�XS,PS;XA,PA� = HS�XS,PS� + HA�XA,PA� + HC�XS,XA� ,

�9�

where

HS =
PS

2

2
+

k0
2XS

2

2
− K ln XS

2, �10�

HA =
PA

2

2
+

k0
2XA

2

2
, �11�
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HC = 2�2 XS
2 + XA

2

�XS
2 − XA

2�2 . �12�

Observe that for high-brightness beams—when emittance ef-
fects are negligible ��→0�—the coupling Hamiltonian HC

vanishes. In this case, the symmetric and antisymmetric os-
cillations become uncoupled and integrable, and energy
transfer between these degrees of freedom is absent. Thus,
we note that in both limiting cases—when emittance effects
are negligible or when space-charge effects are negligible—
the pertinent degrees of freedom are decoupled and no en-
ergy is transferred between them.

In the new variables the matched solution is given by

XS�s� = XS0 � �K + �K2 + 4k0
2�2�1/2

k0
2 	1/2

, �13�

XA�s�= PA�s�= PS�s�=0. This corresponds to the minimum
energy H, obtained by imposing that the Hamiltonian deriva-
tives with respect to all canonical variables vanish. In this
sense, mismatched oscillations are excess energy given to the
system. In general, this excess energy may appear as oscil-
lations in both symmetric and antisymmetric degrees of free-
dom, and the nonlinear coupling created by HC may induce
exchange of energy between the two modes. Hence, an ini-
tially round beam undergoing breathing oscillations may, in
principle, start developing a quadrupole-like instability with
an exponential growth of XA as energy is transferred from
symmetric to antisymmetric oscillations. Eventually, the
growth nonlinearly saturates and the excess energy starts
bouncing back and forth from one mode to the other with the
beam cross section alternating from circular to elliptical. To
investigate the possible onset of this energy exchange, let us
consider a quasi-axisymmetric beam with XA,PA
0 and ex-
pand Hamiltonian �9�. To leading order in XA and PA we
obtain that the symmetric and antisymmetric dynamics are
dictated, respectively, by

HS�XS,PS� =
PS

2

2
+

k0
2XS

2

2
− 2K ln XS +

2�2

XS
2 , �14�

HA�XA,PA,s� =
PA

2

2
+

�2�s�XA
2

2
, �15�

where �2�s��k0
2+12�2 /XS

4�s�. In Eq. �15�, XS�s� is to be re-
garded as a particular solution obtained from Hamiltonian
�14�. Note that we have made no restriction on the XS�s�,
PS�s� dynamics.

Let us first examine the symmetric oscillations deter-
mined by Eq. �14�. HS is an autonomous one-degree-of-
freedom Hamiltonian that is known to be completely inte-
grable, yielding regular periodic trajectories for XS�s�. These
trajectories can be seen in a level plot of HS�XS , PS� as in
Fig. 1. There is one equilibrium solution corresponding to
the matched solution with XS=XS0, PS=0. Surrounding it we
find trajectories corresponding to mismatched solutions
where XS oscillates between a maximum XS max and a mini-
mum XS min with a given periodicity. To label different

mismatched solutions, we define a mismatch amplitude as
	�XSmax/XS0
1. Although we cannot write general ana-
lytic expressions for XS�s� some important characteristics of
its motion are known.21 For instance, the wave vector
kS�	� measuring the periodicity of each orbit varies from
a minimum value kS min=kS�	=1�= �K2+4k0

2�2−K�K2

+4k0
2�2�1/2�1/2 /� for small linear oscillations around the

matched solution to a maximum value kS max=kS�	→��
=2k0 as large mismatch amplitude orbits are considered.7

This latter class of orbits is of particular relevance here and
can be roughly described as harmonic-oscillator trajectories
blocked at XS
0.22 This is so because while for large XS the
focusing term in �14� �proportional to k0

2� dominates over
space-charge and emittance terms �proportional to K and �2,
respectively� and XS moves harmonically, for XS small, K
and � terms become dominant, acting as defocusing forces
that rapidly reflect XS back to increasing values.

As for the antisymmetric oscillations, Hamiltonian HA in
Eq. �15� describes an harmonic-oscillator-type system with a
time-varying frequency �2�s�. Therefore, XA dynamics is dic-
tated by a Hill’s equation that is known to present unstable
solutions depending on the specific form of �2�s�.23 For the
case of interest here, linear calculations readily show that for
vanishing small amplitude oscillations around the matched
solution �	→1� the system is always stable because anti-
symmetric and symmetric degrees of freedom are not reso-
nantly coupled,9 such that �2�s� can be simply replaced by
an effective frequency �eff

2 
k0
2+12�2 /XS0

4 . However, if we
consider large mismatch amplitudes, the scenario may
change significantly. XS�s� then assumes the blocked
harmonic-oscillator-like trajectory discussed previously.
When XS is large and moving harmonically, its dynamics
does not affect XA because 12�2 /XS

4�s��k0
2 and �2
k0

2. As
XS gets close to 0 and is reflected by space-charge and emit-
tance forces, 12�2 /XS

4�s� becomes very large, and an abrupt
interaction between symmetric and antisymmetric oscilla-
tions takes place. Therefore, instead of the harmonic oscilla-
tion with effective frequency �eff found for small mismatch
amplitudes, for large 	 the dynamics of XA is better described
by a free harmonic oscillator that is periodically affected by
a swift, intense drive from XS dynamics. Despite our lack of
knowledge of the exact form of XS�s�, we can estimate how
it affects XA for large mismatch amplitudes by taking into
account a simple model. In particular, we replace the im-
pulses impinged by XS on the dynamics of XA by Dirac-delta

FIG. 1. Integrable orbits of the symmetric motion in the absence of anti-
symmetric dynamics �XA=0= PA� obtained from Hamiltonian HS in Eq.
�14�.
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functions; i.e., we assume in the model that the frequency in
Eq. �15� is

�2�s� = k0
2 + h�

n=1

�


�s − nS� , �16�

where

S �
2�

kS�	�
= 2


XS min

XS max dXS

PS�XS�
�17�

is the period of the mismatched orbit and

h � 12�2

s

s+S ds

XS
4 = 24�2


XS min

XS max dXS

XS
4PS�XS�

�18�

is the effective amplitude of each kick. In Eqs. �17� and �18�,
the function PS�XS� is given by

PS�XS� =
��	2XS0

2 − XS
2��	2k0

2XS
2XS0

2 − 4�2� − 4K	2XS
2XS0

2 ln�	XS0/XS��1/2

	XSXS0
, �19�

and represents the canonical momentum obtained from the
constant Hamiltonian HS for an orbit with a mismatch pa-
rameter 	, i.e., that contains the phase-space point XS=	XS0,
PS=0. XS min and XS max=	XS0 are zeroes of PS�XS�. Note
that S and h are functions of the parameters of the system;
namely, k0, K, �, and 	. Aside from the kicks, the antisym-
metric motion is a harmonic oscillator with �2�s�=k0

2 and it
is convenient to introduce canonical action-angle variables
�J ,�� defined by

XA =�2J

k0
cos � , �20�

PA = − �2k0J sin � , �21�

such that J is constant and d� /ds=k0 between two consecu-
tive kicks.24 At a kick, J and � suffer a discontinuous varia-
tion that can be calculated from the dynamics generated by
Hamiltonian �15� and Eqs. �20� and �21�. A symplectic map-
ping based on successive applications of appropriate canoni-
cal transformations can thus be constructed that gives the
action angle variables �Jn+1 ,�n+1� right after the �n+1�th kick
as a function of their values �Jn ,�n� right after the nth kick.
The mapping reads

Jn+1 = Jn�1 +
h2 cos2��n + k0S� + hk0 sin�2��n + k0S��

k0
2 � ,

�22�

�n+1 = tan−1�tan��n + k0S� +
h

k0
	 . �23�

Equation �22� tells us that depending on the particular value
of the phase �n, the action variation due to the kick, Jn+1

−Jn, may be positive or negative. In other words, during each
swift interaction of XA and XS, the antisymmetric oscillation
amplitude may increase or decrease depending on the rela-
tive phase of their motion. If the phase wanders from 0 to 2�
as the beam propagates, we expect no net energy to be trans-
ferred into the antisymmetric degree of freedom. If, on the

other hand, a coherent interaction occurs with �n going to-
wards a fixed value, an unstable growth of antisymmetric
oscillations may take place. An inspection of Eqs. �22� and
�23� leads to the conclusion that at least one attracting fixed
point of �n corresponding to an increasing Jn is present when
the effective amplitude h exceeds a threshold value

h* = − 2k0 tan� k0S

2
� . �24�

In the derivation of Eq. �24�, it has been used the fact that for
any set of parameters ��k0S��2�, what can be inferred
from the limiting values of kS max and kS min. Later on, the
condition h�h* for which effective energy exchange be-
tween symmetric and antisymmetric modes take place will
be tested against results obtained by direct integration of the
envelope equations, but it is already possible to verify two
limiting cases discussed previously. On one hand, when
emittance effects are negligible there is no energy exchange
because symmetric and antisymmetric oscillations are decou-
pled; the model agrees with that because h→0 for �→0
from the definition of h. On the other hand, when space-
charge effects are negligible the energy exchange is absent
because a�s� and b�s� oscillations are decoupled; the model
agrees again because as K→0, all mismatched orbits oscil-
late around XS0 with period S→� /k0 �this can be verified
from the values of kS max and kS min� and h*→�.

III. NUMERICAL ANALYSIS OF THE ENVELOPE
EQUATIONS

In this section we investigate the results obtained by di-
rect integration of the envelope equations. The analysis is
simplified if we normalize quantities according to

k0s → s, �k0/��1/2XS,A → XS,A. �25�

We are then left with only one parameter in the equations

063104-4 Simeoni, Rizzato, and Pakter Phys. Plasmas 13, 063104 �2006�

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  143.54.44.137 On: Wed, 04 May

2016 17:19:57



� �
K

k0�
, �26�

which measures the relative strength of space-charge to emit-
tance effects—when ��1 the beam is emittance-dominated,
whereas when ��1, it is space-charge dominated. From
what has been discussed, we know that both limits �→0 and
�→� are integrable and lead to no energy exchange be-
tween the relevant degrees of freedom. Note that in the nor-
malized quantities, the matched solution corresponds to

XS0 = ��

2
+ ��2

4
+ 1�1/2	1/2

. �27�

We begin our investigation by analyzing the
�XS , PS ;XA , PA� phase space. Because this is a two-degrees-
of-freedom system, Poincaré plots24 come in order. We
choose to plot �XA , PA� each time XS is maximum, i.e.,
PS=0 with dPS /ds�0, which is sufficient to ensure unique-
ness of trajectories in our plots. The initial conditions for a
single plot have to be picked such that all lead to the same
value of Hamiltonian H in Eq. �9�. Therefore, we first con-
sider the axisymmetric solution with mismatch amplitude 	
and compute its corresponding Hamiltonian value H�	�. We
then seek for other orbits with the same H�	�. As mentioned
before, the matched solution corresponds to the minimum of
the Hamiltonian, i.e., H�	�1��H�	=1�, and it is the excess
energy that allows for the coupling between symmetric and
antisymmetric oscillations. In Fig. 2, we present phase-space
plots obtained for �=3.0 and different values of the mis-
match amplitude 	. In the plots the axisymmetric periodic
breathing-beam solution corresponds to the fixed point at the
origin XA= PA=0. In Fig. 2�a�, for 	=1.8, the phase-space
presents some nonlinear features, such as resonant islands.
Notwithstanding, the resonances are far from the fixed point
and do not compromise its stability because nearby trajecto-

ries just rotate around it with no increase in XA and PA am-
plitudes. However, if we increase the mismatch amplitude to
	=2.4, as in Fig. 2�b�, we notice that the axisymmetric so-
lution becomes unstable and any small ellipticity of the beam
will grow to large XA. In other words, the initial symmetric
oscillation actively exchanges energy with the antisymmetric
mode inducing its growth. If we zoom in the fixed point
vicinity �not shown�, we see that it is immersed in a chaotic
region with many high-order nonlinear resonances surround-
ing it. By further increasing 	, we found that the axisymmet-
ric solution remains unstable and the chaotic region expands
in the phase space.

To illustrate the onset of the nonlinear energy exchange
between the modes and how it may affect the beam transport,
we compare in Figs. 3 and 4 the evolution of XS�s�, XA�s�,
a�s�, and b�s� for initially quasi-axisymmetric beams when
energy exchange is absent and present, respectively. More
specifically, we launch beams with XS�0�=	XS0, PS�0�=0
= PA�0�, and a small XA�0�=10−2, and integrate the envelope
equations up to s=50.0. In Fig. 3, it is shown the results for
�=3.0 and 	=1.8, which are the same parameters as in Fig.
2�a� that corresponds to a stable fixed point in the Poincare
plot. Figure 3�a� shows that there is no effective coupling
between symmetric and antisymmetric degrees of freedom,
such that the energy of the breathing beam is never trans-
ferred into nonaxisymmetric oscillations, and XA is always
close to zero. Because of that, a and b are basically the same
throughout the simulation and we can hardly distinguish one
curve from the other in Fig. 3�b�. Figure 4 shows the results
for �=3.0 and 	=2.4, which are the same parameters as in
Fig. 2�b�, corresponding to a case wherein the breathing os-

FIG. 2. Poincaré plots of the phase space �XA , PA� obtained from Hamil-
tonian �9�. The parameters are �=3.0, 	=1.8 in �a� and �=3.0, 	=2.4 in �b�.
� is defined in Eq. �26�.

FIG. 3. Evolution of the envelopes obtained by direct integration of the
envelope equations for an initially quasi-axisymmetric beam with XS�0�
=	XS0, PS�0�=0= PA�0�, and a small XA�0�=10−2. In �a�, XS and XA are
represented by the solid and dashed lines, respectively. In �b�, a and b are
represented by the solid and dashed lines, respectively; note that in this case,
a and b curves nearly coincide. The parameters are the same as in Fig. 2�a�,
which presents a stable fixed point at XA= PA=0, corresponding to the ab-
sence of energy exchange between the modes. a and b are normalized to
�� /k0�1/2, the same way XS and XA are �see Eq. �25��.
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cillations of an initially round beam—represented by the
fixed point in Fig. 2�b�—become unstable. Now, it is clear
from Fig. 4�a� that there is an effective coupling between
symmetric and antisymmetric degrees of freedom. As the
beam starts oscillating, the initially small XA starts growing
at the expenses of the symmetric energy that is damped in
order to preserve the total energy in Hamiltonian �9�. Around
s=30, XA growth nonlinearly saturates and the energy begins
to return to the symmetric oscillations. For longer s, the en-
ergy keeps going back and forth from symmetric to antisym-
metric degrees of freedom as a consequence of their effective
coupling. Fig. 4�b� shows that XA growth corresponds to an
increasing disparity in the beam sizes along the two trans-
verse directions, with the beam cross section becoming an
ellipse with increasing eccentricity. In fact, the ratio a /b
grows from very close to the unity for s=0.0 to about 3
around s=30.0. Note also that as the beam becomes more
elliptic, the size along one transverse direction tends to grow.
In Fig. 4�b�, this growth is on the order of 30% and could be
responsible, for instance, for an enhance in particle loss if
walls surrounding the beam were taken into account.

In qualitative agreement with the model discussed in
Sec. II B, the phase-space analysis shows that antisymmetric
oscillations indeed become unstable with an initial exponen-
tial growth of XA for some large-amplitude mismatched
beam. In particular, there is a threshold mismatch amplitude
	th above which instability takes place. To determine with
more accuracy 	th and how it varies with �, we adopt the
following procedure. For a given �, we integrate numerically
over a long propagation length sf the coupled envelope equa-
tions for initial conditions of the form XS�0�=	XS0, PS�0�
=0, and J�0�= �XA

2�0�+ PA
2�0�� /2=J0�1. If during the inte-

gration J�s�= �XA
2�s�+ PA

2�s�� /2 exceeds J0 by a large factor
�, i.e., J�s���J0, we consider the solution to be unstable; if
not, the solution is considered stable. By ratcheting up 	
from 1, we determine 	th��� as the minimum value for which

the solution is unstable. Specifically, we take sf =100,
J0=10−3, and �=100. The results are presented in Fig. 5 by
the circles connected by a solid curve. 	th increases in both
limits �→0 and �→�, as expected, presenting a minimum
	th
1.96 close to �=1. For ��1, it steeply increases;
hence, the nonlinear mode coupling is expected to have little
effect on tenuous beams where space-charge effects are
small. This is confirmed if one analyzes the envelope evolu-
tion in this regime, which shows that even when the nonlin-
ear energy exchange occurs, XA growth is typically very
small. On the other hand, 	th increases much more slowly for
��1. In fact, it grows less than 30% of its minimum value
as we move to very intense beams with �=20.0. Therefore,
devices that operate with space-charge-dominated beams un-
dergoing large-amplitude mismatched oscillations are likely
to be affected by the nonlinear mode coupling.

In order to verify the validity of the mechanism de-
scribed in Sec. II B for the onset of the energy exchange
between symmetric and antisymmetric modes, we determine
	th��� from the model developed there. We solve the XS in-
tegrals in Eqs. �17� and �18� to find S and h, and determine
	th from the condition h=h*. The results are presented by the
dashed curve in Fig. 5. As seen in the figure, the model is
very accurate for large � which corresponds to space-charge-
dominated beams. For small � the agreement is poor, as
observed in the inset of the figure, which shows the results as
a function of ln �. Nevertheless, the model still predicts the
steep increase of 	th in this regime, indicating that the non-
linear mode coupling is expected to have little effect on tenu-
ous beams as discussed previously.

IV. CONCLUSIONS

We performed a nonlinear analysis of the transport of
beams in continuous magnetic focusing fields taking into
consideration nonaxisymmetric effects. In particular, we in-
vestigated the nonlinear coupling between breathing and
quadrupole-like modes based on envelope equations. It
was shown that large-amplitude breathing oscillations caused
by some sort of mismatch may nonlinearly couple to
quadrupole-like oscillations for an initially quasi-
axisymmetric beam. In this case, the excess energy initially
constrained to the axisymmetric breathing oscillations is al-

FIG. 4. Equivalent to Fig. 3, but here the parameters are the same as in Fig.
2�b� which presents an unstable fixed point at XA= PA=0, corresponding to
the occurrence of an effective energy exchange between the modes.

FIG. 5. The threshold mismatch amplitude 	th above which the quadrupole-
like mode becomes unstable as a function of the parameter � defined in Eq.
�26�. The linked circles are the results obtained by direct integration of the
envelope equations �1� and �2�, and the dashed line is the result obtained
from the model �see Eqs. �16�–�18� and �24��. The inset presents the results
as a function of ln � in order to show the small-� regime in more detail.
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lowed to flow back and forth between breathing and
quadrupole-like oscillations, with the beam developing an
elliptical shape with a possible increase in its size along one
direction as the beam is transported. Generally, this may in-
duce beam losses, which are enhanced if conducting wall
effects are taken into account,17 and may also induce a de-
tuning in the wave-beam interaction in high-power micro-
wave tubes. This nonlinear process was found to be particu-
larly relevant for space-charge-dominated beams with
K�k0� and occurs for large mismatch amplitudes on the
order of 100% �	�2�, which are compatible, for instance, to
mismatches induced by current oscillations in high-power
microwave sources.18 A simple model was developed to
clarify the basic mechanism that leads to the energy ex-
change between the modes and was tested numerically
against results obtained from direct integration of the enve-
lope equations. It is worth mentioning that for beams with
large mismatch amplitudes, effects such as instabilities5,13,14

and halo formation15 are generally expected to occur. Hence,
in practice these effects will compete with the nonlinear
mode coupling investigated here. To determine for which
system parameters and applications which of these phenom-
ena prevails is an interesting point that deserves further
analysis.
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