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Combined centroid-envelope dynamics of intense, magnetically focused
charged beams surrounded by conducting walls

K. Fiuza,a� F. B. Rizzato,b� and R. Pakterc�

Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970,
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�Received 17 October 2005; accepted 9 January 2006; published online 8 February 2006�

In this paper we analyze the combined envelope-centroid dynamics of magnetically focused
high-intensity charged beams surrounded by conducting walls. Similar to the case where conducting
walls are absent, it is shown that the envelope and centroid dynamics decouple from each other.
Mismatched envelopes still decay into equilibrium with simultaneous emittance growth, but the
centroid keeps oscillating with no appreciable energy loss. Some estimates are performed to
analytically obtain characteristics of halo formation seen in the full simulations. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2170581�

I. INTRODUCTION

It has been established that in several situations magneti-
cally focused beams of charged particles relax from nonsta-
tionary into stationary flows with concomitant emittance
growth.1 Such is the case of beams with an initially mis-
matched envelope, flowing along the magnetic symmetry
axis of focusing systems. Here the initial oscillating envelope
relaxes into the equilibrium solution with simultaneous emit-
tance growth. Gluckstern2 shows that mismatched beams in-
duce the formation of large-scale resonant islands beyond the
beam border.3 Beam particles could be captured by the reso-
nant islands, departing from the beam vicinity. That would
cause noticeable emittance growth, along with the associated
decay into equilibrium.

It is also a matter of recent interest to understand the
dynamics of beams displaying some misalignment with re-
spect to the symmetry axis of the focusing system. In a series
of modern high-intensity vacuum electronic devices it is ex-
pected that off-axis beam dynamics develops as a result of
small deviations between the beam injection direction and
the magnetic axis.4 This is potentially hazardous since off-
axis dynamics can ultimately lead to collision between the
charged beam and the conducting walls surrounding the fo-
cusing system.4,5 Off-axis dynamics also represent a type of
beam mismatch and it is of interest to learn whether or not
off-axis beams can decay into equilibrium with accompany-
ing emittance growth.

In recent papers it has been determined that for linear
focusing, and in the absence of surrounding conducting
walls, envelope and centroid dynamics become totally un-
coupled in the sense that the relative dynamics of particles
with respect to the centroid is unaware of the centroid
dynamics.6,7 Under these conditions there is no available
channel along which the excess energy of a possible centroid
motion could be thermalized or converted into emittance,
which is ultimately associated with the rms size of the beam

envelope. The fact is that one has not the needed nonlinearity
to secure the coupling between the envelope and the cen-
troid.

But, as mentioned, this is so only in the absence of con-
ducting walls surrounding the beam. If walls are introduced
so as to represent more realistic settings, we shall see that the
essential feature added is the nonlinear interaction between
beam particles and the centroid. The question at this point
would be on the possible conversion of the energy associated
with centroid dynamics into beam emittance. Previous works
assume thermalization and obtain well-defined values for
emittance growth.1 However, it is not quite clear whether
thermalization can be actually realized in this instance. It is
true that one has a strong nonlinear interaction involving
centroid and beam particles, but we shall see that one impor-
tant ingredient missing here is the presence of large nonlin-
ear resonances induced around the beam, as it occurs for
mismatches envelopes.

We pursue the issue in the present paper and our analysis
finally reveals the perhaps unexpected result that centroid
oscillations are quite stable and do not decay into emittance
augmented beams, at least for computationally observable
times. We stress that this contrast between envelope and cen-
troid mismatches seems to be closely linked with the nonlin-
ear dynamics of beam particles under the action of those
mismatches. While in the former case large resonances form
around the beam, in the latter dynamical behavior is quite
regular.

To perform the investigation, we shall adopt the test par-
ticle approach.8 Centroid and envelope bulk motion shall be
initially described by approximate macroscopic governing
equations, and their action on particles shall be examined as
if particles were passive observers. Then, if the orbit of a
relatively large fraction of particles is substantially distorted
from the initially assumed beam location and shape, the mac-
roscopic state shall be expected to decay slowly. In addition,
we shall focus attention on high-intensity beams for which
the spatial charge distribution can be taken as homogeneous
and where emittance is initially negligible. Round beams and
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solenoidal field configurations for the focusing magnetic
field will be considered here.

Our paper is organized in the following form: in Sec. II
we introduce the basic model as well as the macroscopic
model for beam dynamics. In Sec. III we study the micro-
scopic particle dynamics comparing the test particle ap-
proach with full self-consistent simulations. We first review
and add new information to the case of purely mismatched
envelopes and their corresponding resonant islands, in order
to set a reference with which we compare further results.
Then, the role of centroid dynamics in the problem of emit-
tance growth is investigated. In Sec. IV we conclude the
work. Full self-consistent simulations make use of the
Green’s function method with a varying number of particles,
N, up to N=20 000;6,7 all full simulations start with round
homogeneous beams �flat top beams� without emittance
�cold beams� in order to represent space-charge-dominated
beams.

II. THE MODEL

A. General model

Our system is formed by a beam of charged particles
moving along the inner channel of a circular conducting pipe
of radius rw; the beam is focused by a constant solenoidal
magnetic field. The beam centroid is allowed to swing
around the symmetry axis, so even beams with a circular
cross section will induce surface charges on the walls. Given
the fact that as the beam swings it generates and sees an
asymmetrical distribution of surface charges, one may expect
a complicated beam-envelope coupling that may not be easy
to deal with.

A simplified scheme of beam propagation is pictured in
Fig. 1, where we represent the cross section of a circular
cylindrical pipe containing a circular cylindrical beam of ra-
dius rb centered at the centroid coordinate r0�x0x̂+y0ŷ. In
general terms, the motion of a charged particle in the Larmor
frame of a homogeneous focusing solenoidal field is repre-
sented by the dimensionless dynamical equation for the res-
caled transverse coordinate, r= �x /rw�x̂+ �y /rw�ŷ �centroid
coordinates are normalized accordingly�,

r� = − r − ��� + Fimage. �1�

Note that the dimensionless pipe radius satisfies rw=1. For
fast particles the longitudinal velocity vz,0 along the z axis is
approximately constant, and primes denote derivatives with
respect to the longitudinal scaled coordinate s=�0

1/2 z=�0
1/2,

vz,0t. Here �0=qBz /2��mc2 is the vacuum phase advance
per unit axial length; it measures the focusing strength with
Bz as the external and constant solenoidal magnetic field. �
=vz,0 /c, �= �1−�2�−1/2 is the relativistic factor, q is the indi-
vidual charge of the beam particles, m their mass, and c is
the speed of light. Here �=��r ,s� is the dimensionless self-
field electromagnetic potential acting on each particle and
generated by the beam alone, which is obtained regardless of
the pipe and that can be written in terms of the electrostatic
potential � as �=q� / ��m�2c2rw

2 �0�. The associated force
reads as Fbeam�−��, Fimage=Fimage�r ,s� is the dimension-
less force generated by the surface charges whose structure,
although not yet known, may be determined by image charge
considerations, as one demands that the total electric field
generated by the beam alone and by the surface charges be
normal to the pipe surface. Here � is to be derived from the
Poisson equation,

��
2 � = −

2�K

N
n�r,s� , �2�

with K=2Nq2 /�3m�2c2rw
2 �0 as the beam perveance, N as the

total �and constant� number of particles per axial length, and
n�r ,s�rw

2 →n�r ,s� as the dimensionless beam density.
As the beam swings around the axis, � and Fimage un-

dergo complicated modifications that are unlikely to be eas-
ily cast into closed and exact analytical forms. One thing we
know for sure though is that when the walls are absent, cen-
troid and envelopes become uncoupled.6,7 Another key infor-
mation, given by Gauss’ law, is that even in the presence of
conducting walls, surface charges induced by circular beams
perfectly centered at the symmetry axis do not act in the
inner region r�rw. These two facts suggest that provided the
centroid oscillations are moderate, an initially circular beam
approximately preserves its circular shape at least during the
initial stages of the dynamics. In the Appendix we show that
this assumption is accurate enough. Then, given the fact that
one has a beam of known properties oscillating around the
symmetry axis, we may adopt a test particle approach with
which we shall examine the occurrence of a large resonant
island encircling the beam. The presence of resonances al-
lows beam particles to perform large excursions away from
the beam core, which would be highly suggestive of emit-
tance growth and thermal relaxation.

B. Modeling beam dynamics

To carry on the analysis one must thus first of all study
the dynamics of round beams of radius rb with homogeneous
charge distributions, moving in the channel of a grounded
circular conducting pipe of radius rw.

FIG. 1. Cross section geometrical aspects of the system.
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Considering the commented fact that the wall might
have little influence on the beam shape, we shall take the
envelope equation as the governing equation for the beam
radius rb=rb�s�:8,9

rb� = − rb +
K

rb
+

�2

rb
3 , �3�

where the emittance �=��s� may not remain constant for
mismatched beams. One feature of the envelope equation to
be used later is that it remains valid even if the round beam
is not homogeneous. For the space-charge-dominated beams
of interest here an approximate equilibrium of Eq. �3� can be
expressed in the form rb,eq

2 �K at the injection coordinate s
=0 when �→0, which is also another result to be used later
on.

The outer equipotentials of a round and axially symmet-
ric beam are identical to the equipotentials of an equivalent
beam with the same amount of charge but of radius rb→0.
This simple observation aided by image charge techniques
leads us to conclude that the image charge of the original
beam is a point-like, or actually a line-like charge placed at

rim = � 1

r0
�2

r0 �4�

and endowed with a perveance −K. Now, a particle arbi-
trarily located at a point r inside the pipe is submitted to a
total force, as represented by Eq. �1�, where, considering
beam homogeneity and shape, one can write

− ��� � Fbeam = 	K
r − r0

rb
2 , if 
r − r0
 	 rb,

K
r − r0


r − r0
2
, if 
r − r0
 
 rb,� �5�

as the direct force exerted on the particle by the beam alone.
As for the image force on individual particles, one can write

Fimage�r� = K
rim − r


r − rim
2
, �6�

where rim is expressed in terms of r0 by Eq. �4�. As an
intermediary result, the use of Eq. �6� enables us to evaluate
the average force exerted on the beam by the image charge,
Fimage→beam:

r0� + r0 =
1

N
�

beam
n�r�Fimage�r�d2r � Fimage→beam. �7�

We note in passing that the total self-force 
beamn�r�Fbeamd2r
vanishes, as required by momentum conservation, as shown
for the general case in Refs. 6 and 7. The integral in Eq. �7�
can be readily evaluated to yield the simple result

r0� = − r0 + K
rim�r0� − r0


r0 − rim�r0�
2
, �8�

which indicates that the image force is independent of the
beam transverse size, as long as the beam keeps its circular
shape. This is true even if the beam is thought of as a com-
position of core plus halo round distributions, or, in general,
as long as the distributions are axisymmetric with respect to

the beam center. Alternatively, arguments based on Gauss’
theorem could be invoked here: the image force on beam is
equal and opposite to the virtual beam force on the image,
and the latter, obtained directly by Gauss’ law in axisymmet-
ric cases, does not depend on beam size. In practical terms,
the beam-image interaction is totally equivalent to the inter-
action of two line-like charges with total perveance, K. This
fact had already been suggested in a previous paper, where
the authors actually conclude that the space-charge limit of
intense round beams is independent of beam size or beam
distribution.10

Equation �8� has equilibria at r0�=0. If one writes
r0=r0r̂, then the equilibria are located at

r0,eq = ��− K + 1 �unstable� ,

0 �stable� .
� �9�

However, given the fact that from the envelope equation it
follows that K=rb,eq

2 and that one must satisfy the filling con-
dition r0,eq+rb,eq�1, the first equilibrium of Eq. �9� cannot
be attained. This precludes the direct effects of the unstable
point on the centroid orbit in the present case of round beams
with a stationary envelope. However, one must still investi-
gate how individual particles are affected as the centroid
moves according to Eq. �8�, while the envelope dynamics is
governed by Eq. �3�.

III. PARTICLE DYNAMICS

A. Introductory remarks and envelope mismatches

Particle dynamics is thus to be described with the help of
dimensionless equations �1� and �2� augmented by the enve-
lope equation Eq. �3� and by the centroid equation, Eq. �8�.
In other words, particles shall be seen as test entities driven
by the bulk motion of the entire beam. And our program
here, already outlined earlier, is simple. One shall look for
large-scale resonances in particle phase spaces, x ,x� or y ,y�.
The presence of resonances shall be seen, as suggestive of a
mechanism capable of extracting particles from the beam
core, which would increase emittance relaxing the centroid
or envelope motion. Just to make it clear what we are talking
about, we first examine the more explored case of beams
with mismatched envelopes but no centroid motion. Fluctua-
tions of the beam envelope around the proper equilibrium
have been recognized by Gluckstern2 as a cause for reso-
nances around the beam. In the presence of resonances, par-
ticles undergo an evaporation-like process along the reso-
nances with simultaneous thermalization. In Fig. 2�a� we
represent in a Poincaré plot the x ,x� dynamics of a set of test
particles initially placed along the x axis, whose extension
slightly exceeds that of the beam �in 10%�; in the inner re-
gion of the beam the dynamics is purely linear and reso-
nances are absent. From the figure we note that large reso-
nances perceived by those particles just outside the beam
surround the core. Particles can be seen as moving away
from the beam surface along the resonance manifolds.
Here we use �=0, rb,eq=0.25, and K��=0�=rb,eq

2 along with
rb�s=0�=0.5, recording the phase coordinates whenever
rb�s�=rb,eq with rb��0. The full simulation of Fig. 2�b� dis-
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playing the x ,x� phase space of the various beam particles
reveals that the low-dimensional model is fairly accurate at
early times; both the Poincaré plot and full simulations run
up to s�110, which is much smaller than the relaxation time

to be discussed next. As times goes on, the beam core keeps
executing damped oscillations until it settles down to a value
approximately corresponding to the equilibrium envelope.
Meanwhile the excess energy is continuously converted into

FIG. 2. �a� x ,x� Poincaré plot. �b� x ,x� from full simulations. �c� and �d� Initial and final x ,y beam cross sections, respectively. �e� Decay of rrms. In all cases
here r0=0, rb�s=0�=0.5, K=rb

2 /4, �→0 in Poincaré plots and ��s=0�=0 in full simulations.
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the low-density halo until the process exhausts. Figure 2�c�
represents the initial beam in a full self-consistent simula-
tion, and Fig. 2�d� represents an asymptotic condition at s
�900, after which we do not detect substantial further
changes. Panel �e� displays the rms radius

rrms � �2�x2 + y2� �10�

�� � indicating an average over particles� as a function of s
and indicates asymptotic damping toward rrms�s→ +��
�rrms

* �0.353. Also shown in panel �e� is the emittance
growth obtained from full simulations; we use

�2 = 4�x�2 + y�2��x2 + y2� − �xx� + yy��2. �11�

In the final state the core occupies a region delimited by
r
rcore�rb,eq��=0� as mentioned above and at this point the
halo radius is seen to be the same as the resonance size,
rhalo�0.75. Now a crude estimate can be made to determine
rrms

* . Let us first introduce what we call the magnetic energy,
Emag as the average canonical energy in the Larmor frame
associated with the linear, or harmonic, term of Eq. �1�:
Emag���x2+y2� /2�=rrms

2 /4. We suppose that the excess mag-
netic energy per particle,

Emag,0 − Emag,f =
rb

2�s = 0� − rrms
*2

4
, �12�

which measures the corresponding difference between initial
and relaxed states, decays into thermal motion

Ekin,f = �x�2 + y�2� = rrms
*2 � , �13�

the last equality making use of the connection between the
average kinetic energy and emittance for stationary beams.8

The electromagnetic energy of self-fields is not involved,
since for large positive mismatches, r�rb,eq it does not de-
pend as strongly as the magnetic energy on the beam shape,
provided the beam is round and homogeneous. It is true that
slight changes on electromagnetic energy result from halo
production, but these are also small and are not included in
the estimate.

The next step is to make use of the envelope equation
applied for the stationary asymptotic state,

rrms
* � = 0 = − rrms

* +
K

rrms
* +

�2

rrms
*3 , �14�

which allows us to express the emittance in terms of rrms
* .

From Eqs. �12�–�14� one readily obtains rrms
* �0.352 and �

�0.088, which agrees very well with the simulations. Not
only that, but if one breaks up the defining equation for the
average radius, Eq. �10�, into its contribution coming from
the core and from the halo,

rrms
2 = �1 − f�rcore

2 + frhalo
2 , �15�

one can actually determine the fraction f �nhalo /N of particle
evaporated into the halo. To arrive at Eq. �15� one assumes
homogeneous spatial distributions both for the high-density
�core� and low-density �halo� components of the particle dis-
tribution whose x ,x� projection is seen in Fig. 2�b�. Under
the uniformity condition, the rms and extreme radii for core
and halo distributions coincide. Note that part of the halo

population also occupies the core r�rb,eq, only that in this
region the corresponding velocities are large.

For the numbers we are using here, the fraction reads as
f �0.12, again in nice agreement with the one obtained in
the simulations, �0.15. To determine the number of particles
in the halo from the simulations, we plot N�r� /N vs r from
the asymptotic data of Fig. 2�e�. N�r� is the number of par-
ticles with a radial coordinate smaller than r. Then we fit the
curve so obtained for r�rcore �beyond the core� with a para-
bolic shape �assuming halo density approximately constant�
and find the intersection N0 /N of the parabola with r=0. N0

is the number of particles in the core and the quantity
��N−N0� /N� yields an estimate of the total population within
the halo. The procedure is graphically displayed in Fig. 3.
The assumption on the homogeneity of the halo distribution
is the simplest and is based on the tendency of space-charge-
dominated beams toward uniform distributions. It is also
compatible with the parabolic behavior of N�r� outside the
core since for constant density, N�r��r2. Furthermore, if one
removes particles simultaneously populating the high-density
central region of Fig. 2�b� and the corresponding region on
the y ,y� space, one shows that the population left �halo�
follows a parabolic distribution also for r�rb,eq.

Figure 2�c�, in fact, tells us that the halo component of
the beam becomes a little distorted toward an elliptical shape
as times advances. This is expected and has to do with non-
linear anisotropic instabilities �as opposed to the more well-
known linear instabilities11–13� occurring for largely mis-
matched beams,14 but does not seem to largely affect the
agreement between simulations and estimates.

B. Mismatched centroids with matched envelopes

We now investigate the case where the envelope is ini-
tially set to its equilibrium value rb,eq��=0� but the centroid
is set to move. We take as initial conditions r0�=0 along with
r0=0.2x̂, which is a large value for the centroid mismatch.
Our intention is simply to magnify effects and determine
some sort of upper bound for the action, if any, of the cen-
troid on the relaxation processes. The centroid has zero an-
gular momentum, and this represents a large class of settings
where the beam does not rotate in the Larmor frame.

We start by depicting the relative phase coordinates
x−x0, x�−x0� in Fig. 4�a�, the subscripted variables denoting

FIG. 3. Parabolic fitting to determine the halo fraction f .
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the position and velocity of the beam centroid, as defined
earlier. We record the variables whenever x0=0, x0��0;
analysis of y ,y� dynamics yields similar conclusions. The
surprising result is that despite the nonlinear forces on the
beam particles arising from the image charges, no large-scale
resonance is seen in the phase plots. This fact strongly sug-
gests that centroid oscillations simply do not find any chan-
nel along which to decay with the subsequent thermalization
and emittance growth, as it occurred in the previous case. To
look at this issue in some detail, consider Fig. 4�b�. In the
figure we plot the rms radius, now defined relative to the
centroid coordinates, over a long time interval containing
many centroid oscillations, which are also represented there.
The centroid oscillations are obtained both from full simula-
tions and from our low-dimensional model, Eq. �8�, and we
display results corresponding to the very initial and very final
cycles of a relatively long computer run. As the figure re-
veals, quite at variance with the previous case, no changes
are seen in rrms as a function of the propagation coordinate s.
Emittance, also seen in Fig. 4�b�, does not grow, staying
nearly zero for the entire run. As for the centroid, we note
that no significant energy losses do occur for this variable as
well. In particular, the agreement between full simulations
and the low-dimensional model is remarkable. What one
learns at this point is thus that as long as the beam envelope
is matched, centroid and envelope dynamics are uncoupled,
just like in the case where walls are absent.6,7

C. Fully mismatched beams

We are now in the position of asking what would happen
if the envelope and centroid were initially injected simulta-
neously away from their respective equilibrium, or matched,
values. As suggested by the previous case of matched enve-
lopes, we may expect a negligible effect coming from the
image charge forces acting on a beam particle. Again, this
follows from the fact that centroid dynamics does not perturb
the dynamics of particles far from the beam. To make sure
that this is what happens we initially represent in Fig. 5�a�
the x ,x� surface-of-section phase space of an initially mis-
matched beam with rb=0.5, rb,eq��=0�=0.25 and r0=0.2x̂,

r0�=0. Once again, just like in Sec. III A we record at
rb=rb,eq and rb��0 the relative phase coordinates x−x0 and
x�−x0�. What is seen is that the halo is again shaped accord-
ing to the envelope nonlinear resonances alone, similar to the
case analyzed in Sec. III A. The resonances sizes arising
from the envelope dynamics alone are still determining to
what extent a particle can move off the beam. Since these
off-beam excursions are what essentially induces emittance
growth, we are then inclined to conclude that even for fully
mismatched beams, emittance growth is still essentially gov-
erned by the envelope mismatch.

Our last goal in this paper is thus to check the validity of
these last comments. In Fig. 5�b� we depict from full simu-
lations the decay of radial oscillations when walls are acti-
vated, for the same parameters and initial conditions used in
the Poincaré plot of Fig. 5�a�. As the figure reveals, the decay
is similar to the one previously studied in the context of
centered beams with mismatched envelopes, as represented
in Fig. 2�e�. In the inset we explicitly display the agreement
of rms radial oscillations for both cases, at large values of s.
Emittance growth exhibits the very same sort of strong simi-
larity with the one of Fig. 2�e�. Figure 5�c� shows the emit-
tance growth for the fully mismatched beam and the inset
once again reveals how similar is this present case to the one
of fixed centroid as represented by the emittance growth
curve seen in Fig. 2�e�. Figure 5�d� finally displays the stable
oscillations of the centroid. This last panel �d� also reveals
once again how good is the agreement between full simula-
tions and calculations based on the low-dimensional model,
Eq. �8�. The conclusion is that the coupling of the centroid
and envelope dynamics is absent in the present case of beams
surrounded by conducting walls, similar to what happens
when walls are not present.6,7 It should be remarked that
while the beam preserves axisymmetry with respect to its
own center, it cannot exchange energy with the centroid mo-
tion, since under this symmetry condition the centroid is un-
aware of the beam size; Eq. �8�. This feature would indeed
suppress centroid damping or growth, in agreement with the
present results, which indicate axisymmetric beam distor-
tions.

FIG. 4. �a� x−x0, x�−x0� Poincaré plot. �b� rrms and x0 as functions of s. Here x0�s=0�=0.2, rb�s=0�=0.25, K=rb
2=0.25. Emittances as in Fig. 2.
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A final word should be said about the limits of the
present analysis. As the beam particles approach the wall, the
beam tends to become a little distorted and one might per-
haps expect to see some collective instabilities within the
beam body. This is the precise situation represented in Fig. 5,
where �x0�max+rh�0.2+0.75=0.95�1.0=rw. However,
even under such extreme conditions, test particle models still
agree with full simulations, as can be seen from panel �d� of
Fig. 5. Other regimes have been tested like that of higher
centroid mismatches combined with matched envelopes,
�x0�max+rb,eq=0.7+0.25=0.95, and agreement is still excel-
lent. This in fact indicates the absence of important collective
instabilities. As for centroid instabilities they have already
been ruled out as a result of condition �9� along with the
accompanying comments.

IV. CONCLUSIONS

In the present paper we analyze the combined envelope
and centroid dynamics of magnetically focused intense
charged beams surrounded by conducting cylindrical walls.
Even for the extreme cases investigated, no coupling involv-
ing these macroscopic quantities has been noticed.

In particular, when the envelope is initially set at its

matched equilibrium value, it stays there no matter how large
might be the mismatched centroid excursions. This means
that the centroid dynamics cannot decay, delivering its ex-
cess energy to internal energy of the beam, which would
cause thermalization and emittance growth. Once the cen-
troid is set to swing around the symmetry axis, it keeps its
oscillatory motion at least within the computational time
scales of our runs. Complementarily, if the envelope and cen-
troid are both initially mismatched, the envelope dynamics
decays toward its matched equilibrium, exhibiting emittance
growth and other typical features like halo production, but
the centroid simply keeps oscillating again.

The present results extend the previous investigation on
the coupling of envelope and centroid dynamics in the ab-
sence of surrounding walls.6,7 In these previous works it has
been possible to show formally the uncoupled nature of the
combined dynamics. Here we make use of analytical esti-
mates as well as Poincaré plots and full simulations to con-
clude likewise.

Although a good deal of research may be necessary
along the lines presented in the paper, it seems possible to
look at some implications of the present findings. Once one
is able to inject beams with matched envelopes, the centroid
can be set to relatively large excursions without incurring

FIG. 5. �a� x−x0, x�−x0� Poincaré plot. �b� Decay of rrms. �c� Emittance growth. �d� x0 as a function of s: simulations represented by circles and the
low-dimensional model, Eq. �8�, by the solid line. x0�s=0�=0.2, rb�s=0�=0.5, K=rb

2 /4=0.252. Emittances as in Fig. 2.
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into the danger of beam losses via emittance growth. That
might be useful in the design of oscillating devices in
vacuum electronics.
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APPENDIX: BEAM SHAPE DISTORTIONS DUE
TO CHARGE INDUCED AT THE CONDUCTING WALL

We consider a space-charge-dominated beam with a
nearly matched radius rb�rb,eq and a centroid that swings
around the system symmetry axis along a given transverse
axis in the Larmor frame, namely, the x axis, such that
r0=x0�s�x̂. In this case the beam image charge due to the
conducting wall is also located at the x axis with xim=1/x0

�assuming a dimensionless pipe radius rw=1�. Because the
image charge has an opposite sign, it attracts beam particles,
forcing them vertically toward the x axis and horizontally
toward xim. As a consequence, the beam is distorted, flatten-
ing along the y axis and stretching along the x axis in a sort
of tidal effect, since the force is stronger for particles closer
to the wall.

To estimate the magnitude of the beam envelope distor-
tions, we take into consideration a cold-fluid description of
the space-charge-dominated beam. The normalized steady-
state cold-fluid equations for stationary flow are8,15

�n

�s
+ �� · �nv�� = 0, �A1�

�v�

�s
+ �v� · ���v� = − r − ��� + Fimage, �A2�

in accordance with Eq. �1�, where � solves the Poisson equa-
tion �2�. If we assume that the beam particles do not extend
too far from the symmetry axis, such that x0x�1 and x0y
�1 the force due to the image of the beam in Eq. �6� is
approximated to first order by

Fimage = Kx0��1 + x0x�x̂ − x0yŷ� . �A3�

Taking into account the way the beam is distorted by the
image effects, as discussed above, we seek a solution for
Eqs. �A1� and �A2� that corresponds to an elliptical beam
centered at �x ,y�= �x0 ,0�, i.e.,

n�r,s� = 	N/�ab , if
�x − x0�2

a2 +
y2

b2 	 1,

0, if
�x − x0�2

a2 +
y2

b2 � 1, � �A4�

where a�s� and b�s� are the semiaxes of the ellipsis. Solving
the Poisson equation �2�, one obtains

��r,s� =
K

a + b
� �x − x0�2

a
+

y2

b
� , �A5�

in the beam interior. The continuity equation �A1� is auto-
matically solved for a flow velocity of the form

v��r,s� = �x0� +
a�

a
�x − x0��x̂ +

b�

b
yŷ . �A6�

Using these results in the force, Eq. �A2�, and collecting like
powers of x and y, we obtain that the beam centroid and
envelopes evolve according to

x0� = − x0 + Kx0�1 + x0
2� , �A7�

a� = − a +
2K

a + b
+ Kx0

2a , �A8�

b� = − b +
2K

a + b
− Kx0

2b . �A9�

Equation �A7� is equivalent to the centroid equation �8� valid
for small x0 up to cubic terms. Equations �A8� and �A9�
show that because of the image effects, a nearly matched
beam with rb�rb,eq=K1/2 will start developing small elliptic-
ity with semiaxis a and b oscillating around the unperturbed
equilibrium values aeq=beq=rb,eq. In terms of order of mag-
nitude,

a � rb,eq�1 + rb,eq
2 x0

2� , �A10�

b � rb,eq�1 − rb,eq
2 x0

2� . �A11�

Since rb,eqx0�xx0�1, we see that the beam envelope
distortions—proportional to �rb,eqx0�2—are indeed very
small.
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