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Simplified self-consistent model for emittance growth in charged beams
with mismatched envelopes

R. P. Nunes,a� R. Pakter,b� and F. B. Rizzatoc�

Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970,
Porto Alegre, RS, Brazil
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This paper analyzes the envelope dynamics of magnetically focused, high-intensity charged particle
beams. As known, mismatched envelopes decay into equilibrium with simultaneous emittance
growth. To describe the emittance growth we develop a simplified self-consistent macroscopic
model: emittance is evaluated in a partially analytical way which invokes the beam profile, with
self-consistency resulting from the inclusion of the emittance growth into the envelope equation.
The model is then compared with full N-particle beam simulations and the agreement is shown to
be quite reasonable. The model helps to understand the physics of the problem and is
computationally faster than full simulations. Other aspects are discussed in the paper. © 2007
American Institute of Physics. �DOI: 10.1063/1.2472294�

I. INTRODUCTION

Magnetically focused beams of charged particles can re-
lax from nonstationary into stationary flows with concomi-
tant emittance growth.1 Such is the case of beams with an
initially mismatched envelope, flowing along the magnetic
symmetry axis of focusing systems. Here the initial oscillat-
ing envelope relaxes into the equilibrium state with the cor-
responding growth of emittance. Gluckstern2 shows that mis-
matched beams induce formation of large scale resonant
islands3 beyond the beam border. Beam particles could be
captured by the resonant islands, departing from the beam
vicinity. That would cause the noticeable emittance growth,
along with the associated decay of the whole system into
equilibrium. At the final relaxed state the entire system could
be seen as formed by a dense core of cold particles plus a
tenuous population of hotter particles called halo. The natu-
ral splitting of the initial cold beam into a cold dense and hot
tenuous populations suggests describing the latter as a test
particle population. Further steps can be attempted to include
into the theory, under various degrees of approximation, the
reaction of the hot population on the cold one.

An initial approach to study the self-consistent dynamics
of the core plus halo is to make use of conservation laws for
the entire system formed by the beam particles and fields,
along with a few general assumptions on the beam aspect.
Some estimates on upper limits for the final relaxed state can
be thus obtained.1 This is most useful since with a discrete
amount of information based on initial conditions one can
predict experimentally relevant features like beam size, beam
emittance, and others. Such is the case of a recent investiga-
tion where mismatched space-charge dominated beams were
seen to relax into matched hotter beams for which emittance,
beam size, and the number of particles in the halo could be
evaluated.4

One additional issue would be on the decay rate of the
initial beam into the relaxed final state. We note here that in
order to describe the final state solely, no information on
beam evolution is actually needed. But if one wishes to study
in more detail the decay from the initial state, knowledge of
the mechanism controlling beam heating is needed.

The purpose of the present paper is to extend previous
results including those of Ref. 4, improving the estimates on
the characteristics of final relaxed beams and describing in
an approximate way the decay dynamics towards this relaxed
state. With regards to the latter issue, we intend to develop a
semianalytical method which, besides being much faster than
the direct fully numerical particle simulation, helps to under-
stand halo formation. Our model is based on a feedback loop
connecting the dynamics of a small group of test particles
representing the halo with its associated emittance, and a
single dynamical variable representing the average radius of
the particle distribution. The small number of dynamical en-
tities is critical in shortening the numerical runs.

The paper is organized in the following form: in Sec. II
we introduce the basic model as well as the macroscopic
model for beam dynamics. In Sec. III we study the micro-
scopic particle dynamics comparing result of the purely test
particle approach with full self-consistent simulations. In
Sec. IV we look into the dynamics of emittance growth and
let the test particles to react back on the core to allow for a
simple model encompassing self-consistent aspects of the
problem. In Sec. V we conclude the work. Full self-
consistent simulations make use of Gauss’s method with a
varying number of particles N, up to N=20000;5 all full
simulations start with round homogeneous beams �flat top
beams� without emittance �cold beams� in order to represent
space-charge dominated beams.

II. THE MODEL AND GENERAL EQUATIONS

Our system is formed by a round beam of charged par-
ticles moving along the inner channel of a circular conduct-
ing pipe; the beam is focused by a constant solenoidal mag-

a�Electronic mail: rogerpn@if.ufrgs.br
b�Electronic mail: pakter@if.ufrgs.br
c�Electronic mail: rizzato@if.ufrgs.br

PHYSICS OF PLASMAS 14, 023104 �2007�

1070-664X/2007/14�2�/023104/7/$23.00 © 2007 American Institute of Physics14, 023104-1

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  143.54.44.137 On: Wed, 04 May

2016 17:47:24

http://dx.doi.org/10.1063/1.2472294
http://dx.doi.org/10.1063/1.2472294
http://dx.doi.org/10.1063/1.2472294


netic field and is aligned with the symmetry axis of the pipe.
The beam is initially cold, which means that its initial emit-
tance can be neglected. Since in this case we have a space-
charge dominated beam, and since space-charge beams are
fairly homogeneous,1 we suppose that the density distribu-
tion over the beam cross section initially obeys a flat top
profile

n�r� = �Const. if r � r0,

0 if r � r0.
� �1�

r is the radial variable measured from the symmetry center
and r0 denotes the initial value for the beam radius. As the
beam envelope evolves, particles are expelled from the core
and start to populate an extended hot halo surrounding the
cold core. At this point expression �1� is no longer valid
because not only particles are not restricted to live within r0,
but also because the density becomes inhomogeneous. Not-
withstanding the complexity of the dynamics, an exact gov-
erning equation can still be obtained, now for the evolving
beam envelope which we represent by rb. rb is related to the
rms radius �x2+y2�1/2 through

rb
2 	 2�x2 + y2� , �2�

where the brackets denote particle average or, equivalently,
phase-space average, the definition of which will be made
more precise and operational later. The envelope equation
itself reads6,7

d2rb�s�
ds2 = − �rb�s� +

K

rb�s�
+

�2�s�
rb

3�s�
, �3�

where �	�qB /2�m�c2�2 is the focusing factor, B denotes
the axial and constant focusing magnetic field. K
=2Nq2 /�3m�2c2 is the constant beam perveance, and ��s� is
the beam emittance, which can depend on the axial distance
s. N is the number of beam particles per unit axial length, q
denotes the beam particles charge, m is the corresponding
particle mass, �= �1−�2�−1/2 is the relativistic factor, �
=vz /c, where vz is the constant axial beam velocity, and c
denotes the speed of light. Beam emittance is defined in the
form

�2 = 4
�x2 + y2��x�2 + y�2� −
�x2 + y2��2

4
� �4�

where the primes indicate derivatives with respect to the
axial distance s. Equation �4� is only defining, but it can be
associated with the energy conserving relation6

1

2
�x�2 + y�2� +

�

2
�x2 + y2� + E�s� = Const. �5�

to provide information on emittance growth. In Eq. �5�, E�s�
is the average self-field energy per particle, E�s�
= �1/4�K�� 
��
2d2r, where � is the dimensionless scalar
electromagnetic potential governed by the Poisson equation

��
2 � = −

2�K

N
n�r,s� , �6�

and measured in units of �3m�2c2 /q.

If one now supplements Eqs. �3�–�6� with the initial con-
dition at beam entrance rb�0�=r0 augmented by a condition
of straight injection rb��0�=0, estimates on the final relaxed
state of an initially mismatched beam become possible. With
further information on the way particles are ejected from the
beam core, helpful information on the dynamics of the relax-
ing beam can also be obtained.

III. ESTIMATES AND SIMULATIONS
FOR THE RELAXED BEAM STATE

In this section we make use of the conserved quantities
discussed in the previous section to make predictions on the
final, or relaxed beam states, where variations of average
quantities vanish. Our basic assumption on the final state will
be of a matched cold core surrounded by a hot, but otherwise
stationary halo. In general the halo is taken to be produced as
the mismatched beam decays into its final matched state, but
halo structure must be better specified so we can obtain re-
fined information on this final state. A better specification of
the halo is one of the purposes of the present section.

As the beam oscillates a small population of particles at
the beam borders sees the beam from the viewpoint of test
particles and basically are ejected via Gluckstern’s resonance
mechanism.2 For a perfectly round beam the dynamics is
purely radial and Fig. 1�a� reveals the phase-space appear-
ance for those test particles after a sufficiently long time. In
the figure we display a Poincaré plot of the dynamical vari-
ables r, r� after a large number of oscillations of a mis-

FIG. 1. Phase-spaces corresponding to a test particle population in �a�, and
to the results of a full simulation in �b�. In panel �c� we display the histo-
gram for halo particles computed from panel �b�; 	=0.18 is the bin size of
the histogram, used to scale the density nhalo to the number of particles per
bin.
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matched core. Test particles are initially distributed within a
small region I at beam border, I= �r0 ,r0�1+
��, where 

�1. As we mentioned, particles at the beam border are the
ones forming the halo. Cold particles initially well inside the
beam are actually part of the beam and tend to stay there, and
at large distances away from the beam densities are so small
that real particles cannot be found. This allows us to con-
clude that particles preferentially carried away by the reso-
nances are precisely those located close to the beam
borders.8 The dynamics of each test particle is then computed
from

r� = − �r − ����r,s� , �7�

with � as the potential solving a “test particle version” of the
Poisson equation �6�,

1

r

�

�r
r
��

�r
= �−

2�K

N

N

�rc
2 , r � �rc�s��

0, r � rc�s�
�; �8�

test particles are thus subjected only to the action of a bulk
flat top core of radius rc�s�. For the moment we suppose the
flat top core to be negligibly affected by the small ejected
population, so rc�s� representing the beam’s cold core enve-
lope is governed by an equation similar to Eq. �3� with � set
to zero. Since emittance then vanishes, the equilibrium beam
radius req is computed from Eq. �3� with �=0, as req

2 =K /�.
Now a relevant scaling issue. In the remaining, and in

particular to obtain the dynamics subjacent to the phase-
space pictured in Fig. 1�a�, we first rescale all transverse
coordinates so they are measured in units of req; in addition,
�1/2s→s. This is equivalent to set K→1, �→1, which ex-
plicitly leaves us with the only free parameter of the theory,
the initial mismatch r0 /req, now represented as the initial
radius r0. We note that under this scaling condition, the emit-
tance is measured in units of K /�1/2. We also take 
=0.04 in
the present case and record particle variables each time the
envelope attains a maximum. Under straight beam injection
rb��0�=0 this maximum naturally coincides with the initial
size r0 provided r0�req. We take here rmax=r0=1.6 without
any loss of generality and observe that these relatively large
mismatches �=60% in this instance� are quite appropriate to
describe the beam dynamics in new generation high-power
microwave sources.9 From the figure one readily obtains in-
formation on the halo dimensions. One sees that the halo
thus formed basically lies on the separatrix of the corre-
sponding dynamical system, occupying a narrow band deter-
mined by the resonance width.10 The separatrix has one
semicircular branch of average radius rseparatrix�2.0 in this
particular case, and a central horizontal segment extending
up to rseparatrix. For further investigation, we shall take the
resonance width and the particle density within the reso-
nance region as approximately constants, which seems to be
reasonably compatible with the aspect of Fig. 1�a�. One is
then referred to panel �b� where the result of a full self-
consistent simulation is displayed. Simulations are made
with help of Gauss’s law5 for a number up to N=20000 of
macroparticles; convergence is attained at somewhat smaller
values of N. This kind of simulation is very convenient for

round beams because it is based on collective effects; the
field at a certain radial coordinate r depends on the total
number of particles with coordinates smaller than r, which
precludes the effects of collisions between individual par-
ticles. Instabilities and profile distortions around the round
shape are small here,11,12 so the Gauss’s approach is indi-
cated. The beam is quite stable for small deviations around
the symmetry axis and centroid dynamics can be safely ig-
nored as well.13,14 Note that the seed for any linear or dy-
namical instabilities is provided by random positional beam
loading.

Panel �b�, constructed at time s�1000 approximately
corresponding to 150 envelope cycles, reveals similarity with
the test particle computations. The remarkable difference lies
on the aspect of the horizontal branch where the ultradense
thin line representing the cold core in the full simulations is
absent in the test particle approach �when comparing both
plots, we recall that Poincaré plots are cumulative while a
single snapshot represents results of the full simulation�. The
density of the tenuous population around the dense core is
small, so if one evaluates average quantities depending on
coordinates or velocities, these quantities tend to be domi-
nantly determined by the core. With this remark in mind, and
to simplify calculations, we will take the tenuous population
along the horizontal branch as only adding density to the
core but not affecting dynamical quantities corresponding to
the core, like its contribution to the total emittance for in-
stance. In other words we stick to the view that the core is a
flat top entity of radius rc. The halo itself shall be taken as
formed by the ejected population lying on the semicircular
branch of the separatrix, off the box indicated in the figure.

If we therefore take the halo as formed by this outermost
semicircular branch and assume phase-space density and
resonance width as approximately constants, as discussed
above, the radial density of the halo population can be cast
into the form

nhalo�r� 	 2�
r1�

r2�

�r,r��dr� �

2
rhw

�rh
2 − r2

, �9�

where w is the resonance width assumed to be small, r2�−r1�
measures the vertical extension of the resonance strip at co-
ordinate r, 
�r ,r��=
 is the phase-space density within the
resonance width associated with the halo population, and the
factor of 2 stems from the mirror symmetry across the hori-
zontal axis. Coefficient 2
rhw can be expressed in terms of
the halo fraction f 	Nhalo /N as we write Nhalo

=�r=0
rh nhalo�r�dr; the final expression reads

nhalo�r� =
2fN

��rh
2 − r2

. �10�

As a quantitative test we compare Eq. �10� with results
of a full simulation. We display a histogram of the final
population discarding the central region which, as remarked
earlier, is dominated by the core. The comparison is found in
Fig. 1�c� where one sees that the agreement is relatively good
for rh=rseparatrix=2.0. In particular, radial densities really tend
to peak at r=rh owing to the geometrical aspects of the par-
ticles distribution along the resonances.
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Given the nice agreement, which in turn suggests that
the halo is well defined this way, we now turn to obtaining
characteristics of the final relaxed states both from estimates
and from full simulations. In order to do so we will need to
break up all the statistic summations into two pieces: one
coming from the cold core and the other coming from the
halo particles. To be specific, we shall represent an average
quantity �G� of a one-particle quantity Gn=Gn�rn ,rn�� in the
form

�G� 	 �
n

Gn�rn,rn��
N

, �11�

where the sum extends over all the N particles present in the
system. Expression �11� can be cast into the form

�G� 	
Ncore

N
�
core

Gn�rn,rn��
Ncore

+
Nhalo

N
�
halo

Gn�rn,rn��
Nhalo

, �12�

where we explicitly divide the right-hand side into contribu-
tions from the core and halo particles, respectively, N
=Ncore+Nhalo. The final form for the average of G is thus

�G� = �1 − f��G�core + f�G�halo, �13�

where the fraction f =Nhalo /N was introduced earlier. At this
point it is interesting to evaluate the squared beam envelope
rb

2, which was defined in Eq. �2� as twice the rms beam
radius,

rb
2 	 2�r2� = �1 − f�2�r2�core + f2�r2�halo. �14�

We specialize the calculation to the case of cores with uni-
form density. Then, as we evaluate the averages equivalently
from integral over particle densities, we obtain

2�r2�core�s� =

2�
0

rc


core�s�2�rr2dr

�
0

rc


core�s�2�rdr

= rc�s�2. �15�

For the halo, looking at the asymptotic relaxed state and thus
making use of expression �10� for the radial halo density one
obtains

2�r2�halo�s → �� 	

2�
0

rh

nhalo�r�r2dr

�
0

rh

nhalo�r�dr

= rh
2. �16�

The final result for the relaxed state can be simply written in
the form

rb
2 = �1 − f�rc

2 + frh
2. �17�

This form is identical to the one used in a previous paper4

where, however, uniform density for the halo component was
assumed. We will see shortly that splitting of the averaged
radial coordinate is critical to evaluate fraction f , and the
similar aspects of the previous and present approaches in
regard to the halo density suggests that both results fortu-
nately should agree numerically. Slight discrepancies arise
owning to the halo inhomogeneity and also owning to the

fact that, for sake of completeness, the self-field energy of
the halo is included in the present investigation but left out in
the previous. However, halo density is so small that the dis-
crepancies are almost negligible. We also observe that
throughout the paper we use the fraction f as its asymptotic
value; f = f�s→��. This is equivalent to saying that halo par-
ticles are such from the start, but the assumption may not be
completely accurate. The fact is that although most of the
halo particles are indeed ejected from beam borders at early
stages of the dynamics, some of them come from inner re-
gions more gradually.8 Even so, taking f constant and equal
to the asymptotic value provides an easy way to reach fairly
precise values as shall be shown here. We elaborate more on
this point in our final remarks.

Let us now apply the conservation laws linking initial
and final states to obtain information on the state of the re-
laxed beam. As mentioned earlier, we suppose that an ini-
tially mismatched, space-charge dominated beam, decays
into a matched beam with simultaneous emittance growth.
Also as commented before, to simplify matters, and given
the space-charge dominance, we neglect the initial emittance
as a vanishing small quantity. In addition, the space-charge
character of the initial distribution allows us to accurately
represent the initial beam as a flat top charge distribution
with uniform density, Eq. �1�. Then, as the beam evolves the
flat top quality is lost, emittance grows and the beam attains
a matched state where the rms radius evolves to rb�s→��
�rb�s=0�	r0.

In analytical terms the self-field energy is simply evalu-
ated via Gauss’ law. For the initial state the beam is a flat
cold distribution of initial radius r0, and at final state the
beam is to be taken as the superposition of a cold flat com-
ponent of radius req and perveance K�1− f� plus the hot halo.
Halo density given by Eq. �10� is nonuniform but still pre-
serves azimuthal symmetry, which allows application of
Gauss’ law. We can input all the variables into the energy
conserving expression Eq. �5� from which, in association
with the asymptotic stationary forms of Eqs. �3� and �4� plus
expression �14� or �17�, a final numerical result can be ob-
tained for the fraction f . Further details of the steps needed in
the analytical approach to evaluate f can be found in the
Appendix.

On the simulation side, we let the self-consistent full
code run for a long enough time to at least reach approximate
equilibrium. From that state, we numerically compute the
fraction f according to the scheme advanced earlier: we dis-
card particles populating the central region of the respective
phase-space, those inside the box of Fig. 1�b�, and count the
remaining particles as the halo. The definition of the box is a
bit arbitrary, but once one defines it such as to remove the
central population leaving the semicircular branch fairly un-
touched, results are not much affected by the arbitrariness.
Our results are condensed in Table I, from which is seen that
the analytical estimates match nicely the results arising from
full simulations.

Up to this point all the analysis has been focused on the
connection involving initial and final states of the dynamical
system. With further information on halo dynamics we may
create a simple model describing the decay dynamics to-

023104-4 Nunes, Pakter, and Rizzato Phys. Plasmas 14, 023104 �2007�

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  143.54.44.137 On: Wed, 04 May

2016 17:47:24



wards the relaxed state. This is done in the next section.

IV. DECAY DYNAMICS TOWARD THE FINAL
RELAXED STATE

Once again let us observe that what has been done so far
was to predict the final state from initial conditions with the
help of conserved quantities. If one wishes to go a step fur-
ther and study the decay process itself, some dynamics must
be incorporated into the theory. We will do this in two stages.
As a first and simpler step we shall investigate emittance
growth in the field of a given oscillating cold core. Then we
shall attempt to construct a self-consistent model which in-
cludes the feedback effects of emittance growth on the beam
dynamics. In both cases, the halo particles shall be treated
like a test particle population.

A. Emittance growth driven by a periodically
oscillating cold core

As mentioned before, it is reasonable to suppose that as
the beam core oscillates, particles in the vicinity of the beam
border are ejected according to the Gluckstern’s mechanism.2

The overall emittance for the whole beam system is defined
in Eq. �4�. As we did earlier for the beam envelope, Eq. �14�,
we divide the summation of the velocity term in Eq. �4� into
its core and halo components. The resulting expression takes
the form

�2 = rb
2��1 − f�rc�

2 + 2f�r�2�halo − rb�
2� , �18�

where the connection between rb and rc is defined by Eq.
�14� and where the averages subscripted with halo now de-
note averages only over the test particle population, which is
the one modeling the halo,

�G�halo →
1

Ntest particles
�
test

particles

Gi. �19�

The core is governed by Eq. �3� with � set to zero, and the
dynamics of each test particle is simply governed by Eqs. �7�
and �8�. We still have to decide what value should be as-
signed to the fraction 
 associated with the radial interval
containing the test particle population. Fortunately the an-
swer is not involved. We simply observe that since we al-
ready know the fraction f of emitted particles and since we
also know that the initial beam profile is a flat top one, it is
easy to conclude that 
= f /2.

Our results for emittance growth in this case where core
oscillation does not decay are summarized by comparisons
of Figs. 2�a� and 2�b�. In panel �a� we plot the results of full

simulations and in panel �b� we plot results for the rms en-
velope radius of our simplified model, all for the initial mis-
match r0=1.6-rms envelope, rb, on the left vertical axis and
emittance, �, on the right vertical axis. We promptly notice
from panel �b� that as soon as phase-mixing takes place due
to the chaotic dynamics of the ejected test particles, emit-
tance ceases to grow even though the core continues its os-
cillatory dynamics. Emittance approximately tends to the
value predicted by full simulations, albeit exhibiting much
larger oscillations around the average asymptotic value, the
latter being in fact slightly larger than in the full case. This is
to be expected because the oscillatory amplitude and energy
of the driving core do not decay in this particular instance.
The rms radius obtained from Eq. �14� tends to grow instead
of recede because the core oscillates with fixed amplitude
and the halo grows. The observed rms growth is clearly a
wrong result which must be fixed. Fortunately this can be
done when the feedback cycle is closed like in panel �c� with
the backwards effect of a growing emittance on the rms en-
velope. This is the subject of the next subsection.

B. Closing the feedback loop

As emittance becomes noticeable, some effect on the
cold core should be noticed. One expects that the extra ki-
netic energy of halo particles must affect the initial energy
source which is the oscillating beam core. The inclusion of

TABLE I. Comparison of full simulations, and analytical estimates for
asymptotic states based on conserved quantities.

r0 �analytical �simulation fanalytical fsimulation

2.0 1.443 1.408 0.124 0.120

1.6 0.768 0.715 0.102 0.091

1.2 0.208 0.187 0.026 0.025

FIG. 2. Emittance growth and envelope �rb� dynamics in: �a� full simula-
tions; �b� the case where the core rc oscillates with fixed amplitude �rb

→rc and �→0 in Eq. �3��; �c� in the self-consistent simplified model.
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coupling involving the core and the halo is done in a simple
way, building on the approach of the previous subsection. In
other words, what we do to close the feedback loop is simply
to take into proper account the emittance term in the exact
envelope equation for rb�s�, Eq. �3�; the emittance itself is
again evaluated by means of Eq. �18� where now the cold
core oscillatory behavior slowly decays as its energy is
drained by the test particles representing the halo population.
In more precise terms, the core rc is no longer governed by
Eq. �5� with �→0. Rather, it can be obtained at any particu-
lar instant from Eq. �14� as

rc�s� =�rb
2�s� − f�r2�halo�s�

1 − f
, �20�

the dynamics of each test particle being again governed by
Eqs. �7� and �8�. Emittance evaluated from Eq. �18� is carried
into the envelope equation Eq. �3� for rb�s�, from which one
is enable to solve the system in a self-consistent fashion. The
point here is that once the emittance term is turned on in the
envelope equation, one converts the system from one where
the envelopes oscillates freely into one where the rms beam
radius rb�s� couples with the kinetic energy associated with
the emittance term. The coupling is exactly represented by
Eq. �3�. Emittance growth is associated with halo production
and in our simplified approach the dynamics of the test par-
ticles representing halo is evaluated on basis of the interac-
tion of these particles and the dense core with radius rc as
commented earlier—the weak interaction of halo particles
among themselves is neglected. We thus have to write rc in
terms of rb which is now the variable naturally coming from
the differential equation �3�, and �r2�halo coming from the
statistics of test particles. The connection involving these
quantities is provided by the above expression �20� which
comes from Eq. �14� rb

2= �1− f�rc
2+ f�r2�halo.

Our simplified procedure has advantages over a full
simulation: the core component is represented by one single
variable rc and the halo can be represented by a relatively
small number of test particles—typically, 1000 test particles.
In addition, owning to the small number of variables, nu-
merical runs are much faster than in the case of full codes.

As mentioned above, the results of the model are dis-
played in panel �c� of Fig. 2. The overall aspect of the results
is very similar to the full simulations seen in panel �a�, so we
conclude that the main aspects of these full simulations can
be reproduced with the aid of our simplified self-consistent
model. We point out that inclusion of emittance in the enve-
lope equation is a nontrivial matter. Halo particles must ac-
curately have the right relative phase with respect to the core
so the core can really decay, delivering energy to the halo;
our model reproduces well the effect. We note however that
matching between model and full simulations is not perfect.
The most prominent discrepancy is perhaps the faster decay
towards the final relaxed state seen in the model, albeit the
final states of model and full simulation are virtually the
same. Apropos of this issue we recall that in our model we
take all the halo particles siting slightly away from the out-
ermost beam border. This is not true in the real system, as it
has been observed that a fraction of the halo comes from

inner regions of the beam due to inhomogeneous
instabilities.8 The dominant population forming the halo still
is that population at the borders, but the small fraction com-
ing from the inner regions delays the ejection process and
may smooth out the abrupt growth of emittance. Aside from
this feature, agreement is nice.

V. CONCLUSIONS

The present investigation develops a simplified, but self-
consistent model to describe emittance growth in the dynam-
ics of space-charge dominated beams. Initial emittance is
negligible and the beam starts from a flat top homogeneous
radial profile. As emittance starts to grow due to nonlinear
resonances whose presence results from beam mismatch, en-
ergy is extracted from the cold core which thus relax its
vibrational state into a stationary one. Taking into account
the typical profile of the final states, we first make use of the
macroscopic constraints of the system to derive useful infor-
mation on these final states. We then observe that emittance
can be divided into a contribution from the core and another
from the hot halo particles. With that on view we set up a
simple technique to evaluate emittance growth. As a first
step, given an oscillating core acting like a constant ampli-
tude periodic driver, we investigate emittance behavior to
conclude that after a certain amount of time needed to gen-
erate phase mixing, emittance stops to grow. The final emit-
tance levels are comparable to those predicted by full simu-
lations, but the everlasting core dynamics is incorrect and
must be refined. To improve the description, we simply close
a feedback loop by considering the envelope equation Eq. �3�
with the emittance term previously calculated turned on.
What we obtain is a very simple semianalytical model that
captures the basic aspects of the relaxation process. Agree-
ment between simulations and the model is accurate, a fea-
ture that not only enables to make predictions on asymptotic
states, but also allows us to predict the time scales for the
decay process. This is of practical interest because the model
runs orders of magnitude faster than the full code, so one can
obtain useful information within shorter periods of real time.
We recall that the practical aspects result from the fact that
the model operates with a small number of test particles that
do not interact among themselves. Certain details can of
course be improved. We notice, for instance, that in the
model the time stretch during which emittance grows to its
final state is a bit shorter than in the full simulations. This
appears to be related to the way particles are extracted from
the beam core; in the model the halo population is already
placed on beam borders while in the real system some of the
particles come from inner regions. While we can improve the
model by taking this feature into account, the overall agree-
ment between the present version of the model and full simu-
lations is already nice. We shall therefore stop here and defer
further investigation on this theme for future papers.
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APPENDIX: OBTAINING THE FRACTION f
WITH THE ANALYTICAL APPROACH

�1� Start with given values of r0, rc, and rh: in our case we
took r0=1.6, rc=1.0, and rh=2.0. We can right away
construct the expression for the relaxed beam radius as a
function of the yet unknown fraction f , as in Eq. �17�:
rb

2�f�= �1− f�rc
2+ frh

2.
�2� For the initial beam assume round flat top cold distribu-

tion of radius r0 and perveance K. For the relaxed beam
assume round flat top cold core of perveance �1− f�K
and radius rc plus halo of radius rh with radial density
given by expression �10�.

�3� Evaluate the potential ��r� for initial and final relaxed
states with help of: Poisson equation, Eq. �6�; assump-
tion of azimuthal symmetry; the densities obtained from
the preceding item �2�.

�4� Evaluate the conserved energy given by expression �5�
both for the initial and relaxed state. In doing so, note
that 2�x2+y2� 	rb

2�f��r0
2� for the relaxed �initial�

state.
�5� Use conserved energy of the preceding expression to

obtain �x�2+y�2� for the relaxed state in terms of the
given initial conditions and the yet undetermined frac-
tion f; for the initial state, �x�2+y�2�initial state=0.

�6� Use expression �4� to write � in terms of f through the

preceding expression for �x�2+y�2�. Note that for the
relaxed state, �x2+y2��=0.

�7� Substitute � from item �6� into expression �3� �with rb�
→0� to finally obtain a closed expression for f whose
roots can be obtained numerically.
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