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The role of the centroid dynamics in the transport of periodically focused particle beams is
investigated. A Kapchinskij—Vladimirskij equilibrium distribution for an off-axis beam is derived. It

is shown that centroid and envelope dynamics are uncoupled and that unstable regions for the
centroid dynamics overlap with previously stable regions for the envelope dynamics alone.
Multiparticle simulations validate the findings. The effects of a conducting pipe encapsulating the
beam are also investigated. It is shown that the charge induced at the pipe may generate chaotic
orbits which can be detrimental to the adequate functioning of the transport mechanizd@5©
American Institute of PhysicfDOI: 10.1063/1.1848546

I. INTRODUCTION as a further restriction, reducing the available operational
parameter space.

A common practice in the analysis of intense beam The idea here is therefore to perform an analysis of the
transport in confining systems with periodical focusing is tocombined centroid and envelope motion under the influence
take the beam centroid as perfectly aligned with the systemf a periodic focusing lattice. We first consider vacuum
axis!™ This is often a suitable assumption as the axis is aPropagation of a homogeneous density beam in solenoidal
equilibrium for the centroid. This equilibrium is even pre- focusing structure neglecting wall effects, since this model is
dominantly stable if smooth-beam approximations are emsufficiently generic to represent what happens in a variety of
ployed where periodic fluctuatons of the focusing lattice isSimilar situations.™ It is demonstrated that a Kapchinskij—
averaged ou.Parametric resonances involving the centroidV/adimirskij (KV) equilibrium distribution exists for off-axis
motion and the lattice can, however, affect stability when theeams, and the equatlon_s for the ev_olut|0n of the centroid
oscillatory frequency of the centroid and the lattice periodic—and the envelope are derived accordingly. We show that re-

ity are commensurable, which prohibits averaging tech-gionS of unstable centroid dynamics can indeed overlap With
: : : - . ._stable regions for the envelope dynamics alone, and that this
nigues. This sort of instability adds some operational restric- . . : i o
. . . overlap is persistent as the profile of the focusing lattice is
t|on§ _ to those already resultm_g fr_om requwgments Naried from sinusoidal to sharp-edged shapes. As mentioned,
stability of beam gnvelope dynqmlcs, if stable “99'0”3 for th‘:‘ihis instability results from the beating of lattice and centroid
envelope dynamics overlap with unstable regions for thegerjggicites: it does not exist in homogeneous systems but
centroid dynamics. must be treated with care in periodic schemes of confine-
Pure envelope dynamics has been the subject of recef{ent. The analysis is supplemented with simulations involv-
studies searching for stable operational regions in a parametg a large number of macroparticles, which show that the
ric plane defined by the focusing field profile and intensity,low-dimensional approach based on envelope and centroid
which are relevant control parameters for this sort ofequations is quite precise.
system’ Drawing attention to solutions with the same peri- On grounds of Gauss’ law and symmetry considerations
odicity as the focusing lattice—we call these solutionsone concludes that influence of conducting pipes on the en-
matched solutions-previous results point to the fact that velope dynamics is null in axisymmetric geometries with
stable regions exist and are separated from each other byexactly on-axis beant$.Even in more complex and general
series of openings where the matched solutions are eith@eometries, like those based on alternating gradient quadru-
unstable or simply do not exi&'° Unstable regions of en- Poles, influence is found to be weakinfluence of pipes on
velope dynamics are immediately discarded from the set ofie centroid dynamics has been studied as well, but only
operational regions for beam transport, so we are interestéd'der smooth-beam approximations as mentioned ediler.
in how thestable envelope regions respond to the centroidiS therefore appropriate to look at this latter issue when

dynamics. Destabilization due to centroid should be viewe®M0Oth-beam approximations fail, and we develop the perti-
nent analysis in the last part of this paper. We show that the

Electronic mall: jsmoraes@if.ufrgs.br centroid dynamics may become chaotic as the nonlinear ef-
bElectronic mail: pakter@if.ufrgs.br fepts of the conducting walls are ingluded. The chaotic re-
®Electronic mail: rizzato@if.ufrgs.br gion does not extend down to the axis, but under some con-
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ditions can get very close to it threatening the nonlinear 0, pl2<sIS<1-7/2
stability of the transport scheme. k(s =1 o2 (5)
The paper is organized as follows. In Sec. Il we define z _802' otherwise.
Y

the model and introduce the methods of analysis to be em-

ployed. In Sec. lll we map various stable and unstable re-

gions both for the centroid and envelope motion, with help ofNOte that for alla, t_he denominator in Eq(3) guarantees
i ) S . ) .~ that the phase function completes a full cycle frém- to
root finder algorithms and full multiparticle simulations. Fi-

nally in Sec. IV we summarize the work. f=m ass goes from ~1/2 to .1/2’ and copsequentbf(s) Is
always continuous at the lattice boundaries.

Now we proceed to show that even when the beam is not

II. MODEL AND METHODS perfectly aligned with the axis, Eq1) still describes the
] ] ) _beam envelope, the difference with respect to previous

Consider an intense continuous beam transported WitQnajyses being an additional equation governing the centroid.
constant _axial velocity in a periodica_llly focusing magneticThiS results in part from the fact that the focusing term is
channel in the absence of boundaries. When the beam jgear in the coordinates as we shall see now. Consider the
perfectly aligned with the transport axis, which we take asheam as formed by a group of macroparticle charged rods.
the z axis, the appropriate equation describing the envelop&ch rod follows an equation of the form
ry reads

rp(s) + k(S)rp = F(rp), (1) r"=— k91 =V yir,9) (6)

where we introduce the common notaties z of physics of  in the rotating Larmor framé? r=r(s)=[x(s),y(s)], L se-
beams, the primes denoting derivatives with respest e lects the transverse component of the gradient,jaddnotes
focusing field is characterized by the focusing strength pathe normalized electromagnetic potential felt by the macro-
rameterk,(s+S) =k,(s), whereS s the periodicity length of particle under analysis. It is related to the electrostatic poten-
the channel.x, is related to the magnetic fielB,(s) by tial ¢ through ¢=q¢/yimpic? and satisfies the Poisson
Kk(S) =PB(9)/ 42B2mPc?, whereq, m, and y,=(1-83)7*2  equation

are, respectively, the charge, mass, and relativistic factor of

the beam particles. The averagg over one period of the V2 == (2mKINpN(X,Y,S). (7)
lattice is designed in the formxz(s)E(1/S)f§KZ(s)ds

505/32; o, is proportional to the rms focusing field and n(x,y,x) denotes the transversal particle density obtained in
measures the vacuum phase advance in the small fielthe formn=[fdx'dy’, andf=1(r,r’,s) is the particle distri-
smooth-beam approximation. The “force(r,) readsF(ry) bution function that must satisfy the stationary Vlasov equa-
=/r3+K/r,, where K=2¢?N,/y3B2mc is the beam per- tion df/ds=02* Summing Eq.(6) over all beam particles
veanceg is the unnormalized emittance of the beam, Algd  (rods and dividing by their total numbex, one arrives at

is the number of particles per unit axial length. All informa-

tion about the focusing field is contained(s). In particu- ro==—KAS)o, (8

lar, we show in Ref. 7 that a wide range of field profiles can N .

be adequately modeled by a suitable parametrization, of ~ Wherero=1/NpZ;2yr; is the averaged or beam centroid co-

the form ord.inate, and;V ;=0 is used, base_d on the pinary inter.—
) action structure of the electromagnetic interparticle potential
(s = 20 1+ cosd(s) 2) . An equivalent derivation based on kinetic theory is given
z 3 N ’ in the Appendix. The pair of Eq$6) and (8) can be com-

bined into a single equation if one makes the further and

critical hypothesis that the beam is transversely homoge-
tan YA(s+ 7/2)] + tan {A(s- 5/2)] neous and extends up to a maximum radial Sige), in

o(s) = tam [A(L + 7)/2] + tan AL - p)/2] | ©) addit_ion_ to being centered a,g.ZThis is equivalent to saying

that inside the beam=N,/ 71y and ¢=—|r —r[?K/2ry(s)?,

N=1+(1/9)f5cos6(s)ds is used as a normalization factor, which we take as the profile for our potential. If we make

s=mods/S+1/2,1)-1/2 isperiodic ins and always lies in  thjs hypothesis and subtract E@&) from Eq.(6) we obtain

the range -1/2s=1/2, A>0 is the focusing field profile

parameter, and € <1 is the filling factor. Functionc,(s) , K

in Eq. (2) is constructed such that for smallit resembles a 5= = KkASr 5+ @rﬁ' 9)

smooth sinusoidal function of period 1 & while for larger b

A’s it develops sharper edges, eventually turning into a disyhere the notatiom s=r -r, is introduced. A schematic of

continuous periodic step function. In fact, one shows thathe assumed beam distribution and corresponding vectors is

with the phase function given by

whenA <1 shown in Fig. 1.
2 - Equation(9) is solved with known techniques of physics
kA9 =—2| 1+ cos<—5) , (4)  of beams* Considering thex motion, let us write X

=AX§W(S)SiI’{ J3¢(s)ds+ ] and substitute this expression into
and that whem\>1 Eq. (9) to obtain the pair of equations
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[ll. STABILITY ANALYSIS
A. Low-dimensional modeling

To accomplish our goal outlined in the preceding section
we shall make use of the so-called Newton—Raphson stabil-
ity algorithm in two instances: to locate periodic solutions of
Egs.(8) and(13), and to establish the stability boundaries for
these periodic solutions. The code for stability boundaries
actually makes use of the code finding periodic orbits as a
subroutine. In the subroutine, orbits are characterized by
their stability indexa which lies on the intervdle| <1 if the
orbit is stable. The main code then takess determined by
some parametgr in the forma=F(p), which can be at least

FIG. 1. Schematic of the beam distribution and corresponding vedfors:
corresponds to the centroid position.

1 numerically obtained. For a givea one writesp=p+dp,
{9 = W wherep is a trial solution andsp is small. One finally ob-
tains dp~ Aa/(dF/dp)s with Aa= a—F(p) and refines the
w(s) 1 solution with P =P+ dp. This is the essence of the algo-
+ k(s)W(s) = 3 (10) rithm and the boundaries will be determined when we set
ds’ w(s) a==x1. We shall takep as the parameter measuring the in-

tensity of the focusing magnetic fieldy— oo, and will

search for stability regions in diagrams of the tygpgeversus

A. Although other parametric quantities can be used to rep-

xfs dx; dw )2 resent the present settifgpurs appear to be more manage-

W2 + ( ds EX'S) . (11 able in view of the various not so straightforward simulations
maping stability boundaries in the presence of nonlinearities

A similar calculation can be performed for themotion,  arising from perveance effects.

k()= k,(s)—K/ry(s)? and A, is a constant of motion that
can be expressed in the form

2
A =
Xs

from which one forms the equilibrium distribution As mentioned in the Introduction, several regions of sta-
L ) bility and instability for the envelope alone can be found as
f(r,r',s) = (Ny/ 7€) L (A, +AY) - 1] (120 &, changes. For sufficiently small values of the magnetic

field one can always find stable orbits which become un-

that automatically solves the Vlasov equation and generategaple when one crosses a period doubling threshold, diving
the previously assumed constant density distribution, proptg g region whereaeneope<—1. The unstable region is
videdw(s) =ry(s)/ Ve, which can be replaced into EQLO) t0  cleared as the magnetic field continues to increase bringing
yield the envelope equatiofl), written in its normalized pe stability index back tQxeneope>—1. As the field in-
form as creases further, a mechanism called gap bifurcation destroys

K 1 the matched solution aten,cope=+1 and recreates it at yet

rp=—k rp+—+, (13)  larger values:the cycle is then repeatéd.
T Tp As for the centroid motion, one can make some esti-

if s/S—s,ry/ \J‘J:SHrb,KZSZH x,, andSK/ e—K; the rescal- mates when one realizes that the governing equa8pis an

ing does not alter the form of E¢B). We see indeed that as €duation of the Mathieu type. Sinag(s) may be a compli-
far as the focusing forces are linear, an equilibrium KV dis-cat€d function due to the field profile we do not know in
tribution can be formed for which the beam envelope obey&€tail the behavior of Eq8), but given the general proper-
Eq. (1)—or its normalized form(13—with constant emit-  U€S of Mathlet_J’s equations, one can expect_stable spluuons
tance even when the centroid moves off-axjs¢ 0, follow- ~ While o remains sufficiently away from multiples of; in-

ing the dynamics dictated by E(). It is worth mentioning ~ Stability is therefore expected when one somehow ap-
that these results can be generalized to a rigid-rotor equilipProachesro~nm.

rium distributiorf to describe an off-axis beam whose par- ~ We presently extend the technique applied in a previous
ticles exhibit a rigid rotation around the centroid position @nalysis performed on envelope stability aldred, as men-
with an arbitrary angular velocity. Note that the centroid mo-tioned earlier, draw the stability boundaries 1 now si-

tion and the envelope dynamics are uncoupled. In othefultaneously for both envelope and centroid equations in
words, centroid dynamics does not affect the known stabilityorder to map the profusion of stable and unstable regions of
results for the envelope dynamics and is not affected by théhe complete envelope-centroid system.

latter as well. Stability analysis can be thus performed inde- The corresponding distribution of unstable and stable re-
pendently for envelope and centroid and our task is twofoldgions is displayed in Fig. 2 where we talke=0.2, with A

we wish to establish common regions of stability for bothranging fromA=0.1 toA=10% As pointed out, small values
envelope and centroid, simultaneously determining whetheof A correspond to almost harmonic lattices, while large val-
previously found stable regions for the envelope dynamicsies associate to sharp-edged ones. What we see here can be
are diminished by inclusion of centroid dynamics. phrased as follows. Given the complete independence be-
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FIG. 2. Parametric diagram indicating stable envelope registashed 12] P
lines) and unstable centroid regioribackslashed lingsfor »=0.2 andK -
=5.0. 1.01
1)
0.87
tween envelope and centroid motion, stability regions pof 061
remain as calculated previougl)Stable regions for the en- 7;':""3":5:“
velope dynamics are represented here by slashed lines, and 040 150 150 200
unstable regions for the centroid are represented by back- s
slashed lines—former stable regions for the envelope which 14 ©
have been destabilized by the centroid are thus represented —_— ¢
by the crossing of these two types of line. The first region of . 121 —s:
stability for the envelope dynamics always bifurcates from Z
the 0y=0 axis for all lattice profiles and the centroid is al- E 10
ways stable there. As the magnetic field grows, one first
meets the period doubling region where the envelope be- 08
comes unstablé&lthough still existent For higher fields the
envelope regains stability and it is within this region of re- 080 50 100 150 200
s

stored envelope stability that the centroid becomes unstable

for the first time. This is thus one critical region of our analy- Fig. 3. Multiparticle simulations validating the low-dimensional results.
sis where the envelope alone is still stable but the centroidy,=8000.7=0.2,0,=155° A=10", andK=5.0. (a) The centroid dynam-
and the overall dynamics, no |0nger is; note that the destabics: (b) comparison of the envelope equatitB) and multiparticle simula-

lized regions occupies almost 50% of the previously stablé®
region. While the centroid is unstable the mechanism we call

gap bifurcation destroys the matched envelope orbit a”dAccordineg
recreates it for larger fields, when the centroid has alread}m :
ol

retrieved its stable dynamics; we see that the gap bifurcatio

ns, and(c) emittance as obtained by the multiparticle simulations.

as we start from very small values|of| and
Fig. 3a) reveals that the centroid motion develops the
NYpical exponential growth of unstable dynamics and Fig.

separate adjacent zones of existence for matched solutiongy,) shows that all the while the envelope is very precisely
From this point on, the same kind of behavior repeats, Wittyegcribed by the stable dynamics that results from(E§.

the unstable centroid dynamics occupying even more thap s, Fig. 30)

indicates that emittance is well conserved as

50% of the next previously stable region where it lays uponjme eyolves, an indicative that the envelope dynamics oper-
now. One can therefore conclude that the centroid dynamicg;ag 55 expected. Emittance is evaluated from

becomes influential within parametric regions where the en-

velope alone would be in operational conditions, which is = AOANXD -T2 x=x-%y-Yo (14
relevant information as one extends beam focusing schemeg,y the envelope from

beyond the strongry=90° period doubling envelope insta-

bility. In any case, it may be appropriate to emphasize that v =[2((x=X)*+ (y = yo) 31" (15

entire stable regions of all zones remain untouched by cenpe prackets indicating average over macroparticles. In gen-
troid instabilities, namely, the regions immediately following a1 one concludes that the dynamics indeed decouples into a

gap bifurcations and prior to the direct period doubling se~tgpje envelope dynamics and an unstable centroid dynam-
guences. ics.

B. Full multiparticle simulations IV. INFLUENCE OF CONDUCTING PIPES

We validate our low-dimensional findings with numeri- We now investigate the influence of a cylindrical con-
cal simulations involving a large numb&l=8000 of mac- ducting pipe encapsulating the beam. Conducting pipes iso-
roparticle charged rods interacting via a pairwise electromaglate the beam and exert action over beam transport due to the
netic interactior?. The choiceo,=155° A=10"! places us buildup of induced charges over its surface. We know that
right in a region where envelope is stable but centroid is notthe influence on the pure envelope dynamics is in general
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small}® in cases with solenoidal geometry like ours it is

virtually null. On the other hand, the influence of pipes on
the centroid dynamics was analyzed in smooth regimes
where the lattice is approximately described as an average
continuous entitf?.ln this regular case it has been shown that
the pipes introduce a nonlinear effect capable of destabilizing
the centroid equilibrium only for a relatively restricted range
of small values ofo,. We are willing to go beyond the
smooth-beam approximation and see what happens when the
lattice periodicity is fully preserved in the model. We actu-
ally expect to see some degree of nonintegrable dynamics,
since our system becomes a nonlinear one with one and a
half degree of freedom. The central issue is to find out
whether or not the presence of nonintegrable trajectories can
affect substantially the corresponding phase space.

In the absence of conducting pipes the governing equa-
tion for the centroid is simply the linear equati®). When
the pipe is present, the induced charge over its surface can be
represented as an image charge placed beyond the cylindrical
walls. Assume again that the beam is a thin filament located
along thex axis. The technique of image charges then allows
us to conclude that its image is Iocatemg{age(s):azlx(s),
where a is the pipe radius, and charged with the opposite
charge of the beam itself. This concludes the construction
of the image. The potential of a cylindrical rod placedcais
proportional to liix—x,), from which one finally obtains the
force acting on the beam due to its image #&#a—x?)
where we recall thaf is the perveance. The governing equa-
tion for the centroid is therefore augmented into the follow-
ing form:

-12.0

2:5 5.0

FIG. 4. Poincaré plots ok, versusx, as obtained from Eq(16). In (a),
7=0.2,0,=140, A=10", K=5.0, anda=5.0. In(b), the pipe is removed
(a—) and, in(c), the smooth-beam approximatiap=const. is used. The

KXo other parameters are the same asain

a’-

/e

Xo

— KAS)Xo + 3 (16)

XO
V. FINAL REMARKS

We analyze Eq(16) numerically via Poincaré plots and for We have investigated the role of centroid dynamics in

simplicity omit the qualitatively similay, dynamics. In Fig.
4(a) we display a typical phase plot for the beam centodjd
versusx, at A=0.1 andoy=140°, with the pipe radius

the stability of charged beams transported along periodical
focusing channels.
Analysis has been directed to KV beams for which we

chosen as approximately five times larger than the correshow that the centroid and envelope dynamics become ex-
sponding maximunmy,,a/(r,)max= 5.0, S0 as to represent the actly uncoupled if focusing forces are linear in the coordi-
usual condition of pipes reasonably larger the encapsulategates. As the focusing intensity and profile are varied, we
beams. What we observe is that although the very centrahow that unstable centroid regions in the appropriate param-
region x,— 0 is free of chaotic orbits, its surroundings are eter space can partially overlap with stable envelope regions.
already heavily occupied by the presence of nonintegrabl&his indicates that overall stable regions are certainly smaller
orbits which extends up to the walls. For comparison we alsghan the ones described in the previous analysis of envelope
display situations where approximations are made: walls argynamics aloné.

removed in pane(b), and the smooth-beam approximation As our results indicate, unstable centroid dynamics de-
k,=const is used in panét). In both cases of pane(b) and  velops in parametric regions where the pure envelope dy-
(c) the dynamics becomes regular, so we may have a goodamics retrieves its stable motion after period doublings di-
notion about the relevant role of chaotic motion in the sys+ect and inverse sequences. Previous analysis of the pure
tem. The conclusion is clear: one must be careful to place thenvelope dynamics already point to the fact that in these
beam aligned and close to the central axis, for otherwiseegions the envelope can be unstable against symmetry
particles can be swept away due to chaotic diffusion. Otreaking quadrupolelike perturbations, not included in the
course, even with the beam located near the axis, one stidlxisymmetric approach used hérerull multiparticle simu-

has to observe the criteria analyzed in previous sections tiations show that small emittance growth may also be present
secure stability. in these very same regioR€mittance growth is very small
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and quadrupolelike perturbations are confined to relatively ___
narrow regions, so these instabilities are not of immediate V#= Nﬁlf V yf dr dv
concern if one is willing to operate there. However, centroid
dynamics occupies substantially large fractions of these re-
gions, from which we conclude that care should be taken to
avoid the centroid instabilities mostly. All low-dimensional ) )
results based on envelope and centroid equations are fullj"€n we note that the integrand of the last integral of Eg.
corroborated by multiparticle simulations. A6) can be cast into the more appropriate form

Inclusion of image charge effects due to the presence of vy y2y= v .[VyV y-1(Vy?2/2], (A7)
conducting walls of pipes enclosing the beam is also consid- o . A
ered. It is shown that although image charges do not affechere the unit dyadit readsl =xx+yy, wherex andy are
centroid stability at the central equilibrium, large chaotic ac-the versors along andy. Finally, given thatV¢—0 asx®
tivity is generated in its vicinity due to the nonlinear terms +y°— = for beams in free space, Gauss theorem then shows
associated with the image electromagnetic potential. Chaotihat V¢y=0, sov’'=-«,r.
activity is not present in smooth-beam approximations and For bounded but nearly symmetric beam¥y
arises from the nonlinear beating of the lattice periodicity==M|V ¢l at the pipe walls, wheré is the unit vector nor-
with the natural frequency of the centroid oscillations. Themal to the wall, and the surface integral still vanishes since
conclusion on this latter issue is that in order to avoid diffu-| V ¢ is approximately constant there. This is useful informa-
sion due to nonintegrable effects, beams must be injecteion in bounded systems when the beam is not yet exces-

with sufficient proximity to the axial region. sively displaced from the central axis.
The centroid therefore obeys an equation of the form

= N[ Ny/(27K) ] f V yV2ydr. (AB)
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What we do next is to construct the beam centered at

[which we denote by ,(s) in the texd, i.e., around the cen-
troid, to show that the quantitie%x‘s and Ay, are conserved
quantities with which one can form the argument of the KV-
like distribution. The KV-like distribution defined this way
Consider the Vlasov—Maxwell system governing a two-consequently solves the Vlasov equation precisely because it
dimensional distribution functiofi=f(r ,r’' =v,s): depends on conserved qyantities. Finally we reach the con-
sistency conditiorw=r,/Ve by demanding that the density
of drops to zero beyond, and is flat otherwise. We finally
=TV Vi+(-kr - V-V, f=0, (A1) point out that for the KV-like distribution of the present pa-
per, defined by Eq12) and depending on functian(s), it is
easily seen that if one calculates averaged coordinates and

APPENDIX: DERIVATION OF CENTROID DYNAMICS
BASED ON KINETIC THEORY

V2 == 2aKINGN(r,9), (A2)  velocities one obtains
T= Nglf r i dr dv=r(s), (A9)
n= f f dv. (A3)
T — N1 —
If one multiplies Eq.(A1) by r and integrates over phase =Ny JVfKVdr dv=r4(s). (A10)

space one gets
One concludes that iffxy, is a solution of the Vlasov—
T =V, (A4)  Maxwell set,r, must obey an equation like E¢AS) as we
impose in the text from the start. There is nothing prohibiting

where (r,v) =N,/ (r ,v)f dr dv, with the normalizing inte- the centroid to move, provided EGA8) be satisfied.
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