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The role of the centroid dynamics in the transport of periodically focused particle beams is
investigated. A Kapchinskij–Vladimirskij equilibrium distribution for an off-axis beam is derived. It
is shown that centroid and envelope dynamics are uncoupled and that unstable regions for the
centroid dynamics overlap with previously stable regions for the envelope dynamics alone.
Multiparticle simulations validate the findings. The effects of a conducting pipe encapsulating the
beam are also investigated. It is shown that the charge induced at the pipe may generate chaotic
orbits which can be detrimental to the adequate functioning of the transport mechanism. ©2005
American Institute of Physics. fDOI: 10.1063/1.1848546g

I. INTRODUCTION

A common practice in the analysis of intense beam
transport in confining systems with periodical focusing is to
take the beam centroid as perfectly aligned with the system
axis.1–5 This is often a suitable assumption as the axis is an
equilibrium for the centroid. This equilibrium is even pre-
dominantly stable if smooth-beam approximations are em-
ployed where periodic fluctuatons of the focusing lattice is
averaged out.6 Parametric resonances involving the centroid
motion and the lattice can, however, affect stability when the
oscillatory frequency of the centroid and the lattice periodic-
ity are commensurable, which prohibits averaging tech-
niques. This sort of instability adds some operational restric-
tions to those already resulting from requirements on
stability of beam envelope dynamics, if stable regions for the
envelope dynamics overlap with unstable regions for the
centroid dynamics.

Pure envelope dynamics has been the subject of recent
studies searching for stable operational regions in a paramet-
ric plane defined by the focusing field profile and intensity,
which are relevant control parameters for this sort of
system.7 Drawing attention to solutions with the same peri-
odicity as the focusing lattice—we call these solutions
matched solutions—previous results point to the fact that
stable regions exist and are separated from each other by a
series of openings where the matched solutions are either
unstable or simply do not exist.8–10 Unstable regions of en-
velope dynamics are immediately discarded from the set of
operational regions for beam transport, so we are interested
in how thestableenvelope regions respond to the centroid
dynamics. Destabilization due to centroid should be viewed

as a further restriction, reducing the available operational
parameter space.

The idea here is therefore to perform an analysis of the
combined centroid and envelope motion under the influence
of a periodic focusing lattice. We first consider vacuum
propagation of a homogeneous density beam in solenoidal
focusing structure neglecting wall effects, since this model is
sufficiently generic to represent what happens in a variety of
similar situations.4,11 It is demonstrated that a Kapchinskij–
Vladimirskij sKV d equilibrium distribution exists for off-axis
beams, and the equations for the evolution of the centroid
and the envelope are derived accordingly. We show that re-
gions of unstable centroid dynamics can indeed overlap with
stable regions for the envelope dynamics alone, and that this
overlap is persistent as the profile of the focusing lattice is
varied from sinusoidal to sharp-edged shapes. As mentioned,
this instability results from the beating of lattice and centroid
periodicites; it does not exist in homogeneous systems but
must be treated with care in periodic schemes of confine-
ment. The analysis is supplemented with simulations involv-
ing a large number of macroparticles, which show that the
low-dimensional approach based on envelope and centroid
equations is quite precise.

On grounds of Gauss’ law and symmetry considerations
one concludes that influence of conducting pipes on the en-
velope dynamics is null in axisymmetric geometries with
exactly on-axis beams.12 Even in more complex and general
geometries, like those based on alternating gradient quadru-
poles, influence is found to be weak.13 Influence of pipes on
the centroid dynamics has been studied as well, but only
under smooth-beam approximations as mentioned earlier.6 It
is therefore appropriate to look at this latter issue when
smooth-beam approximations fail, and we develop the perti-
nent analysis in the last part of this paper. We show that the
centroid dynamics may become chaotic as the nonlinear ef-
fects of the conducting walls are included. The chaotic re-
gion does not extend down to the axis, but under some con-
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ditions can get very close to it threatening the nonlinear
stability of the transport scheme.

The paper is organized as follows. In Sec. II we define
the model and introduce the methods of analysis to be em-
ployed. In Sec. III we map various stable and unstable re-
gions both for the centroid and envelope motion, with help of
root finder algorithms and full multiparticle simulations. Fi-
nally in Sec. IV we summarize the work.

II. MODEL AND METHODS

Consider an intense continuous beam transported with
constant axial velocity in a periodically focusing magnetic
channel in the absence of boundaries. When the beam is
perfectly aligned with the transport axis, which we take as
the z axis, the appropriate equation describing the envelope
rb reads

rb9ssd + kzssdrb = Fsrbd, s1d

where we introduce the common notations;z of physics of
beams, the primes denoting derivatives with respect tos. The
focusing field is characterized by the focusing strength pa-
rameterkzss+Sd=kzssd, whereS is the periodicity length of
the channel.kz is related to the magnetic fieldBzssd by
kzssd=q2Bz

2ssd /4gb
2bb

2m2c4, whereq, m, and gb=s1−bb
2d−1/2

are, respectively, the charge, mass, and relativistic factor of
the beam particles. The averagekz over one period of the
lattice is designed in the formkzssd;s1/Sde0

Skzssdds
;s0

2/S2; s0 is proportional to the rms focusing field and
measures the vacuum phase advance in the small field,
smooth-beam approximation. The “force”Fsrbd readsFsrbd
=e2/ rb

3+K / rb, where K=2q2Nb/gb
3bb

2mc2 is the beam per-
veance,e is the unnormalized emittance of the beam, andNb

is the number of particles per unit axial length. All informa-
tion about the focusing field is contained inkzssd. In particu-
lar, we show in Ref. 7 that a wide range of field profiles can
be adequately modeled by a suitable parametrization ofkz in
the form

kzssd =
s0

2

S2F1 + cosussd
N G , s2d

with the phase function given by

ussd = pH tan−1fDss̄+ h/2dg + tan−1fDss̄− h/2dg
tan−1fDs1 + hd/2g + tan−1fDs1 − hd/2gJ . s3d

N=1+s1/Sde0
Scosussdds is used as a normalization factor,

s̄=modss/S+1/2,1d−1/2 isperiodic ins and always lies in
the range −1/2ù s̄ù1/2, D.0 is the focusing field profile
parameter, and 0,hø1 is the filling factor. Functionkzssd
in Eq. s2d is constructed such that for smallD it resembles a
smooth sinusoidal function of period 1 ins, while for larger
D’s it develops sharper edges, eventually turning into a dis-
continuous periodic step function. In fact, one shows that
whenD!1

kzssd =
s0

2

S2F1 + cosS2p

S
sDG , s4d

and that whenD@1

kzssd = 50, h/2 , s/S, 1 − h/2

s0
2

hS2 , otherwise. 6 s5d

Note that for allD, the denominator in Eq.s3d guarantees
that the phase function completes a full cycle fromu=−p to
u=p as s̄ goes from −1/2 to 1/2, and consequentlykzssd is
always continuous at the lattice boundaries.

Now we proceed to show that even when the beam is not
perfectly aligned with the axis, Eq.s1d still describes the
beam envelope, the difference with respect to previous
analyses being an additional equation governing the centroid.
This results in part from the fact that the focusing term is
linear in the coordinates as we shall see now. Consider the
beam as formed by a group of macroparticle charged rods.
Each rod follows an equation of the form

r 9 = − kzssdr − ='csr ,sd s6d

in the rotating Larmor frame.2,4 r =r ssd=fxssd ,yssdg ,' se-
lects the transverse component of the gradient, andc denotes
the normalized electromagnetic potential felt by the macro-
particle under analysis. It is related to the electrostatic poten-
tial f through c=qf /gb

3mbb
2c2 and satisfies the Poisson

equation

¹'
2 c = − s2pK/Nbdnsx,y,sd. s7d

nsx,y,xd denotes the transversal particle density obtained in
the formn=efdx8dy8, and f = fsr ,r 8 ,sd is the particle distri-
bution function that must satisfy the stationary Vlasov equa-
tion df /ds=0.2,4 Summing Eq.s6d over all beam particles
srodsd and dividing by their total numberNb one arrives at

r o9 = − kzssdr o, s8d

wherer o;1/Nbo j=1
Nb r j is the averaged or beam centroid co-

ordinate, ando j=' jc=0 is used, based on the binary inter-
action structure of the electromagnetic interparticle potential
c.4 An equivalent derivation based on kinetic theory is given
in the Appendix. The pair of Eqs.s6d and s8d can be com-
bined into a single equation if one makes the further and
critical hypothesis that the beam is transversely homoge-
neous and extends up to a maximum radial sizerbssd, in
addition to being centered atr o. This is equivalent to saying
that inside the beamn=Nb/prb

2 and c=−ur −r ou2K /2rbssd2,
which we take as the profile for our potential. If we make
this hypothesis and subtract Eq.s8d from Eq. s6d we obtain

r d9 = − kzssdr d +
K

rbssd2r d, s9d

where the notationr d; r −r o is introduced. A schematic of
the assumed beam distribution and corresponding vectors is
shown in Fig. 1.

Equations9d is solved with known techniques of physics
of beams.2,4 Considering thex motion, let us write xd

=Axd
wssdsinfeszssdds+z0g and substitute this expression into

Eq. s9d to obtain the pair of equations
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zssd =
1

wssd2 ,

d2wssd
ds2 + kssdwssd =

1

wssd3 . s10d

kssd;kzssd−K / rbssd2 and Axd
is a constant of motion that

can be expressed in the form

Axd

2 =
xd

2

w2 + Sw
dxd

ds
−

dw

ds
xdD2

. s11d

A similar calculation can be performed for they motion,
from which one forms the equilibrium distribution

fsr ,r 8,sd = sNb/p
2e2ddfe−1sAxd

2 + Ayd

2 d − 1g s12d

that automatically solves the Vlasov equation and generates
the previously assumed constant density distribution, pro-
videdwssd=rbssd /Îe, which can be replaced into Eq.s10d to
yield the envelope equations1d, written in its normalized
form as

rb9 = − kzssdrb +
K

rb
+

1

rb
3 , s13d

if s/S→s,rb/ÎeS→ rb,kzS
2→kz, andSK/e→K; the rescal-

ing does not alter the form of Eq.s8d. We see indeed that as
far as the focusing forces are linear, an equilibrium KV dis-
tribution can be formed for which the beam envelope obeys
Eq. s1d—or its normalized forms13d—with constant emit-
tance even when the centroid moves off-axis,r oÞ0, follow-
ing the dynamics dictated by Eq.s8d. It is worth mentioning
that these results can be generalized to a rigid-rotor equilib-
rium distribution3 to describe an off-axis beam whose par-
ticles exhibit a rigid rotation around the centroid position
with an arbitrary angular velocity. Note that the centroid mo-
tion and the envelope dynamics are uncoupled. In other
words, centroid dynamics does not affect the known stability
results for the envelope dynamics and is not affected by the
latter as well. Stability analysis can be thus performed inde-
pendently for envelope and centroid and our task is twofold:
we wish to establish common regions of stability for both
envelope and centroid, simultaneously determining whether
previously found stable regions for the envelope dynamics
are diminished by inclusion of centroid dynamics.

III. STABILITY ANALYSIS

A. Low-dimensional modeling

To accomplish our goal outlined in the preceding section
we shall make use of the so-called Newton–Raphson stabil-
ity algorithm in two instances: to locate periodic solutions of
Eqs.s8d ands13d, and to establish the stability boundaries for
these periodic solutions. The code for stability boundaries
actually makes use of the code finding periodic orbits as a
subroutine. In the subroutine, orbits are characterized by
their stability indexa which lies on the intervaluau,1 if the
orbit is stable. The main code then takesa as determined by
some parameterp in the forma=Fspd, which can be at least
numerically obtained. For a givena one writesp= p̃+dp,
where p̃ is a trial solution anddp is small. One finally ob-
tains dp,Da / s]F /]pdp̃ with Da;a−Fsp̃d and refines the
solution with p̃new= p̃+dp. This is the essence of the algo-
rithm and the boundaries will be determined when we set
a= ±1. We shall takep as the parameter measuring the in-
tensity of the focusing magnetic field,p→s0, and will
search for stability regions in diagrams of the types0 versus
D. Although other parametric quantities can be used to rep-
resent the present setting,14 ours appear to be more manage-
able in view of the various not so straightforward simulations
maping stability boundaries in the presence of nonlinearities
arising from perveance effects.

As mentioned in the Introduction, several regions of sta-
bility and instability for the envelope alone can be found as
s0 changes. For sufficiently small values of the magnetic
field one can always find stable orbits which become un-
stable when one crosses a period doubling threshold, diving
into a region whereaenvelope,−1. The unstable region is
cleared as the magnetic field continues to increase bringing
the stability index back toaenvelope.−1. As the field in-
creases further, a mechanism called gap bifurcation destroys
the matched solution ataenvelope= +1 and recreates it at yet
larger values;9 the cycle is then repeated.8

As for the centroid motion, one can make some esti-
mates when one realizes that the governing equations8d is an
equation of the Mathieu type. Sincekzssd may be a compli-
cated function due to the field profile we do not know in
detail the behavior of Eq.s8d, but given the general proper-
ties of Mathieu’s equations, one can expect stable solutions
while s0 remains sufficiently away from multiples ofp; in-
stability is therefore expected when one somehow ap-
proachess0,np.

We presently extend the technique applied in a previous
analysis performed on envelope stability alone,7 and, as men-
tioned earlier, draw the stability boundariesa= ±1 now si-
multaneously for both envelope and centroid equations in
order to map the profusion of stable and unstable regions of
the complete envelope-centroid system.

The corresponding distribution of unstable and stable re-
gions is displayed in Fig. 2 where we takeh=0.2, with D
ranging fromD=0.1 toD=104. As pointed out, small values
of D correspond to almost harmonic lattices, while large val-
ues associate to sharp-edged ones. What we see here can be
phrased as follows. Given the complete independence be-

FIG. 1. Schematic of the beam distribution and corresponding vectors:C
corresponds to the centroid position.
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tween envelope and centroid motion, stability regions ofrb

remain as calculated previously.7 Stable regions for the en-
velope dynamics are represented here by slashed lines, and
unstable regions for the centroid are represented by back-
slashed lines—former stable regions for the envelope which
have been destabilized by the centroid are thus represented
by the crossing of these two types of line. The first region of
stability for the envelope dynamics always bifurcates from
the s0=0 axis for all lattice profiles and the centroid is al-
ways stable there. As the magnetic field grows, one first
meets the period doubling region where the envelope be-
comes unstablesalthough still existentd. For higher fields the
envelope regains stability and it is within this region of re-
stored envelope stability that the centroid becomes unstable
for the first time. This is thus one critical region of our analy-
sis where the envelope alone is still stable but the centroid,
and the overall dynamics, no longer is; note that the destabi-
lized regions occupies almost 50% of the previously stable
region. While the centroid is unstable the mechanism we call
gap bifurcation9 destroys the matched envelope orbit and
recreates it for larger fields, when the centroid has already
retrieved its stable dynamics; we see that the gap bifurcations
separate adjacent zones of existence for matched solutions.
From this point on, the same kind of behavior repeats, with
the unstable centroid dynamics occupying even more than
50% of the next previously stable region where it lays upon
now. One can therefore conclude that the centroid dynamics
becomes influential within parametric regions where the en-
velope alone would be in operational conditions, which is
relevant information as one extends beam focusing schemes
beyond the strongs0=90° period doubling envelope insta-
bility. In any case, it may be appropriate to emphasize that
entire stable regions of all zones remain untouched by cen-
troid instabilities, namely, the regions immediately following
gap bifurcations and prior to the direct period doubling se-
quences.

B. Full multiparticle simulations

We validate our low-dimensional findings with numeri-
cal simulations involving a large numberNb=8000 of mac-
roparticle charged rods interacting via a pairwise electromag-
netic interaction.5 The choices0=155° ,D=10−1 places us
right in a region where envelope is stable but centroid is not.

Accordingly, as we start from very small values ofur ou and
ur o8u, Fig. 3sad reveals that the centroid motion develops the
typical exponential growth of unstable dynamics and Fig.
3sbd shows that all the while the envelope is very precisely
described by the stable dynamics that results from Eq.s13d.
Also, Fig. 3scd indicates that emittance is well conserved as
time evolves, an indicative that the envelope dynamics oper-
ates as expected. Emittance is evaluated from

ex = 4fkx2lkx82l − kxx8l2g1/2, x = x − x0,y − y0 s14d

and the envelope from

rb = f2ksx − xod2 + sy − yod2lg1/2 s15d

the brackets indicating average over macroparticles. In gen-
eral one concludes that the dynamics indeed decouples into a
stable envelope dynamics and an unstable centroid dynam-
ics.

IV. INFLUENCE OF CONDUCTING PIPES

We now investigate the influence of a cylindrical con-
ducting pipe encapsulating the beam. Conducting pipes iso-
late the beam and exert action over beam transport due to the
buildup of induced charges over its surface. We know that
the influence on the pure envelope dynamics is in general

FIG. 2. Parametric diagram indicating stable envelope regionssslashed
linesd and unstable centroid regionssbackslashed linesd for h=0.2 andK
=5.0.

FIG. 3. Multiparticle simulations validating the low-dimensional results.
Nb=8000,h=0.2,s0=155° ,D=10−1, andK=5.0. sad The centroid dynam-
ics, sbd comparison of the envelope equations13d and multiparticle simula-
tions, andscd emittance as obtained by the multiparticle simulations.
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small;13 in cases with solenoidal geometry like ours it is
virtually null. On the other hand, the influence of pipes on
the centroid dynamics was analyzed in smooth regimes
where the lattice is approximately described as an average
continuous entity.6 In this regular case it has been shown that
the pipes introduce a nonlinear effect capable of destabilizing
the centroid equilibrium only for a relatively restricted range
of small values ofs0. We are willing to go beyond the
smooth-beam approximation and see what happens when the
lattice periodicity is fully preserved in the model. We actu-
ally expect to see some degree of nonintegrable dynamics,
since our system becomes a nonlinear one with one and a
half degree of freedom. The central issue is to find out
whether or not the presence of nonintegrable trajectories can
affect substantially the corresponding phase space.

In the absence of conducting pipes the governing equa-
tion for the centroid is simply the linear equations8d. When
the pipe is present, the induced charge over its surface can be
represented as an image charge placed beyond the cylindrical
walls. Assume again that the beam is a thin filament located
along thex axis. The technique of image charges then allows
us to conclude that its image is located atximagessd=a2/xssd,
where a is the pipe radius, and charged with the opposite
charge of the beam itself.12 This concludes the construction
of the image. The potential of a cylindrical rod placed atxo is
proportional to lnsx−xod, from which one finally obtains the
force acting on the beam due to its image as +Kx/ sa2−x2d
where we recall thatK is the perveance. The governing equa-
tion for the centroid is therefore augmented into the follow-
ing form:

xo9 = − kzssdxo +
Kxo

a2 − xo
2 . s16d

We analyze Eq.s16d numerically via Poincaré plots and for
simplicity omit the qualitatively similaryo dynamics. In Fig.
4sad we display a typical phase plot for the beam centroidxo8
versusxo at D=0.1 ands0=140°, with the pipe radiusa
chosen as approximately five times larger than the corre-
sponding maximumrb,a/ srbdmax<5.0, so as to represent the
usual condition of pipes reasonably larger the encapsulated
beams. What we observe is that although the very central
region xo→0 is free of chaotic orbits, its surroundings are
already heavily occupied by the presence of nonintegrable
orbits which extends up to the walls. For comparison we also
display situations where approximations are made: walls are
removed in panelsbd, and the smooth-beam approximation
kz=const is used in panelscd. In both cases of panelssbd and
scd the dynamics becomes regular, so we may have a good
notion about the relevant role of chaotic motion in the sys-
tem. The conclusion is clear: one must be careful to place the
beam aligned and close to the central axis, for otherwise
particles can be swept away due to chaotic diffusion. Of
course, even with the beam located near the axis, one still
has to observe the criteria analyzed in previous sections to
secure stability.

V. FINAL REMARKS

We have investigated the role of centroid dynamics in
the stability of charged beams transported along periodical
focusing channels.

Analysis has been directed to KV beams for which we
show that the centroid and envelope dynamics become ex-
actly uncoupled if focusing forces are linear in the coordi-
nates. As the focusing intensity and profile are varied, we
show that unstable centroid regions in the appropriate param-
eter space can partially overlap with stable envelope regions.
This indicates that overall stable regions are certainly smaller
than the ones described in the previous analysis of envelope
dynamics alone.7

As our results indicate, unstable centroid dynamics de-
velops in parametric regions where the pure envelope dy-
namics retrieves its stable motion after period doublings di-
rect and inverse sequences. Previous analysis of the pure
envelope dynamics already point to the fact that in these
regions the envelope can be unstable against symmetry
breaking quadrupolelike perturbations, not included in the
axisymmetric approach used here.15 Full multiparticle simu-
lations show that small emittance growth may also be present
in these very same regions.5 Emittance growth is very small

FIG. 4. Poincaré plots ofxo8 versusxo as obtained from Eq.s16d. In sad,
h=0.2,s0=140° , D=10−1, K=5.0, anda=5.0. In sbd, the pipe is removed
sa→`d and, inscd, the smooth-beam approximationkz=const. is used. The
other parameters are the same as insad.
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and quadrupolelike perturbations are confined to relatively
narrow regions, so these instabilities are not of immediate
concern if one is willing to operate there. However, centroid
dynamics occupies substantially large fractions of these re-
gions, from which we conclude that care should be taken to
avoid the centroid instabilities mostly. All low-dimensional
results based on envelope and centroid equations are fully
corroborated by multiparticle simulations.

Inclusion of image charge effects due to the presence of
conducting walls of pipes enclosing the beam is also consid-
ered. It is shown that although image charges do not affect
centroid stability at the central equilibrium, large chaotic ac-
tivity is generated in its vicinity due to the nonlinear terms
associated with the image electromagnetic potential. Chaotic
activity is not present in smooth-beam approximations and
arises from the nonlinear beating of the lattice periodicity
with the natural frequency of the centroid oscillations. The
conclusion on this latter issue is that in order to avoid diffu-
sion due to nonintegrable effects, beams must be injected
with sufficient proximity to the axial region.
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APPENDIX: DERIVATION OF CENTROID DYNAMICS
BASED ON KINETIC THEORY

Consider the Vlasov–Maxwell system governing a two-
dimensional distribution functionf = fsr ,r 8;v ,sd:

] f

]s
+ v · = f + s− kzr − = cd · =vf = 0, sA1d

¹2c = − 2pK/Nbnsr ,sd, sA2d

n =E f dv. sA3d

If one multiplies Eq.sA1d by r and integrates over phase
space one gets

r̄ 8 = v̄, sA4d

wheresr̄ , v̄d;Nb
−1esr ,vdf dr dv, with the normalizing inte-

gral Nb;ef dr dv. In addition to that, if one now multiplies
the same Eq.sA1d by v and integrates over phase space, one
has

v̄8 = − kzr̄ − =c, sA5d

where =c;Nb
−1e ¹cf dr dv is obtained by integration by

parts of the=v—term in velocity space. Note that Eq.sA5d
has the same statistical origins as Eq.s8d of the main text so
what remains to be shown is that=c=0 on kinetic grounds.
To this end we first use Eq.sA3d to write

=c = Nb
−1E = cf dr dv

= Nb
−1f− Nb/s2pKdg E = c¹2c dr . sA6d

Then we note that the integrand of the last integral of Eq.
sA6d can be cast into the more appropriate form

=c¹2c = = · f=c = c − I s=cd2/2g, sA7d

where the unit dyadicI readsI ; x̂x̂+ ŷŷ, wherex̂ and ŷ are
the versors alongx and y. Finally, given that=c→0 asx2

+y2→` for beams in free space, Gauss theorem then shows
that ¹c=0, sov̄8=−kzr̄ .

For bounded but nearly symmetric beams,=c
= ± n̂u=cu at the pipe walls, wheren̂ is the unit vector nor-
mal to the wall, and the surface integral still vanishes since
u=cu is approximately constant there. This is useful informa-
tion in bounded systems when the beam is not yet exces-
sively displaced from the central axis.

The centroid therefore obeys an equation of the form

r̄ 9 = − kzr̄ sA8d

if f obeys the Vlasov equation.
What we do next is to construct the beam centered atr̄

fwhich we denote byr ossd in the textg, i.e., around the cen-
troid, to show that the quantitiesAxd

and Ayd
are conserved

quantities with which one can form the argument of the KV-
like distribution. The KV-like distribution defined this way
consequently solves the Vlasov equation precisely because it
depends on conserved quantities. Finally we reach the con-
sistency conditionw=rb/Îe by demanding that the density
drops to zero beyondrb and is flat otherwise. We finally
point out that for the KV-like distribution of the present pa-
per, defined by Eq.s12d and depending on functionr ossd, it is
easily seen that if one calculates averaged coordinates and
velocities one obtains

r̄ ; Nb
−1E r fKVdr dv = r ossd, sA9d

v̄ ; Nb
−1E vfKVdr dv = r o8ssd. sA10d

One concludes that iffKV is a solution of the Vlasov–
Maxwell set,r o must obey an equation like Eq.sA5d as we
impose in the text from the start. There is nothing prohibiting
the centroid to move, provided Eq.sA8d be satisfied.
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