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Using a variation of the celebrated Volkov solution, the Klein-Gordon equation for a charged parti-

cle is reduced to a set of ordinary differential equations, exactly solvable in specific cases. The new

quantum relativistic structures can reveal a localization in the radial direction perpendicular to the

wave packet propagation, thanks to a non-vanishing scalar potential. The external electromagnetic

field, the particle current density, and the charge density are determined. The stability analysis of

the solutions is performed by means of numerical simulations. The results are useful for the

description of a charged quantum test particle in the relativistic regime, provided spin effects are

not decisive. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945627]

I. INTRODUCTION

The analysis of systems in a very high energy density

needs the consideration of both quantum and relativistic

effects. This is certainly true in extreme astrophysical envi-

ronments like white dwarfs and neutron stars, where the de

Broglie length is comparable to the average inter-particle

distance, making quantum diffraction effects appreciable,

and where temperatures reach relativistic levels. In addition,

the development of strong X-ray free-electron lasers1 allows

new routes for the exploration of matter on the angstrom

scale, where quantum effects are prominent, together with a

quiver motion comparable to the rest energy. Optical laser

intensities of 1025 W=cm2, and above, are expected to trigger

radiation-reaction effects in the electron dynamics, allowing

to probe the structure of the quantum vacuum, together with

copious particle-antiparticle creation.2 We are entering a

new era to test fundamental aspects of light and matter inter-

action in extreme limits. In particular, there is the achieve-

ment of a continuous decrease of laser pulse duration

accompanied by the increase of the laser peak intensity,3

motivating the detailed analysis of fundamental quantum

systems under strong electromagnetic (EM) fields. The inter-

action of such strong EM fields with solid or gaseous targets

is expected4 to create superdense plasmas of a typical density

up to 1034 m�3. For instance, the free-electron laser Linac

Coherent Light Source (LCLS) considers powerful femtosec-

ond coherent soft and hard X-ray sources operating on wave-

lengths as small as 0:06 nm, many orders of magnitude

smaller than the conventional laser systems acting on the mi-

crometer scale.5 The nonlinear collective photon interactions

and vacuum polarization in plasmas,6 the experimental

assessment of the Unruh effect,7,8 and of the linear and non-

linear aspects of relativistic quantum plasmas9 are fruitful

avenues of fundamental research. Moreover, there is a

renewed interest on quantum relativistic-like models related

to graphene,10 narrow-gap semiconductors, and topological

insulators.11

In this work, we investigate the quantum relativistic dy-

namics of a test charge. Since typical test charges are elec-

trons and positrons (fermions), a complete treatment would

involve the Dirac equation. However, for processes where

the spin polarization is not decisive, a possible modeling can

be based on the Klein-Gordon equation (KGE). The adoption

of the KGE is a valid approximation in view of the analytical

complexity of the Dirac equation, especially if a strong mag-

netization is not present. For instance, the QED cascade pro-

cess that provides diverse tests of basic predictions of QED

and theoretical limits on achievable laser intensities is known

to be not strongly spin-dependent.12 Naturally, the scalar par-

ticle approach excludes problems like the collapse-and-re-

vival spin dynamics of strongly laser-driven electrons13 or

the Kapitza-Dirac effect,14,15 where the spin polarization is

essential. The analysis of spin effects will be left for a forth-

coming communication.

Recently, there has been much interest on KGE based

models. Examples are provided by the analysis of the

Zitterbewegung (trembling motion) of Klein-Gordon particles

in extremely small spatial scales, and its simulation by classi-

cal systems,16 the KGE as a model for the Weibel instability

in relativistic quantum plasmas,17 the description of standing

EM solitons in degenerate relativistic plasmas,18 the KGE as

the starting point for the wave kinetics of relativistic quantum

plasmas,19 the KGE in the presence of a strong rotating elec-

tric field and the QED cascade,20 the Klein-Gordon-Maxwell

multistream model for quantum plasmas,21 the negative

energy waves and quantum relativistic Buneman instabil-

ities,22 the separation of variables of the KGE in a curved

space-time in open cosmological universes,23 the resolution of

the KGE equation in the presence of Kratzer24 and Coulomb-

type25 potentials, the KGE with a short-range separable poten-

tial and interacting with an intense plane-wave EM field,26

electrostatic one-dimensional propagating nonlinear structures

and pseudo-relativistic effects on solitons in quantum semi-

conductor plasma,27 the square-root KGE,28 hot nonlinear

quantum mechanics,29 a quantum-mechanical free-electron

laser model based on the single electron KGE,30 and the

inverse bremsstrahlung in relativistic quantum plasmas.31
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Very often, the treatment of charged particle dynamics

described by the Klein-Gordon or Dirac equations assumes a

circularly polarized electromagnetic (CPEM) wave,31–40

mainly due to the analytical simplicity. However, the CPEM

wave is not the ideal candidate for particle confinement. It is

the main purpose of the present work to pursue an alternative

route, where a perpendicular compression is realized in terms

of appropriate scalar and vector potentials. We investigate the

possibility of relatively simple EM field configurations for

which exact solutions localized in a transverse plane are avail-

able, therefore providing new benchmark structures for the

KGE. For this purpose, the wave function will be described

by a modified Volkov Ansatz,41 incorporating an extra trans-

verse dependence as explained in Sec. II. Separability of the

KGE is then obtained for appropriate EM field configurations.

Unlike in a vacuum, in ionized media the self-consistent

EM field is analog to a massive field, where the correspond-

ing effective photon mass is obtained from the plasma dis-

persion relation.32,42 Already in 1953, Anderson43 has

observed the formal analogy between the wave equations for

the scalar and vector potentials in ionized media, and the

evolution equations for a massive vector field. This has moti-

vated the concept of massive Higgs boson.44 In order to

achieve the development of the new exact solutions, the

appearance of an effective photon mass mph in a plasma will

be decisive. Observe that the photon mass in this case is an

effective one, not a “true” photon mass as proposed in alter-

native theories. The “real” value of the photon mass was

experimentally estimated45 to be as small as 10�49 kg, sev-

eral orders of magnitude smaller than the effective photon

mass in a typical ionized medium.

The paper is organized in the following way. In Sec. II,

the modified Volkov Ansatz is introduced, and the EM fields

compatible with it are determined, so that the KGE becomes

separable. The resulting structures are shown to be dependent

on the specific form of the scalar potential, entering as the

main input in the determining equation for the radial wave

function. In Sec. III, this determining equation is solved in

concrete cases. In this way, the oscillatory compressed test

charge density is explicitly derived. Sec. IV considers in more

detail the physical parameters relevant for the problem, from

extremely dense plasmas arising in laser-plasma compression

experiments to astrophysical compact objects such as white

dwarfs. The conservation laws of total charge and energy are

derived, and used to verify the numerical methods applied to

check the stability of the exact solution against perturbations.

Sec. IV presents some conclusions.

II. EXACT SOLUTION

We shall consider the problem of a charged scalar parti-

cle (charge q, mass M) coupled to the EM four-potential

Al ¼ ð/=c;AÞ. The metric tensor will be taken as gl� ¼
diagð1;�1;�1;�1Þ so that with a photon four-wave-vector

kl ¼ ðk0 ¼ x=c; kÞ in the laboratory frame and with xl

¼ ðx0 ¼ ct; rÞ, one has, e.g., the four-product k � x ¼ klxl

¼ k0x0 � k � r, with the summation convention implied. In

this setting and using the minimal coupling assumption, the

covariant form of the KGE reads

ðPl � qAlÞðPl � qAlÞW ¼ M2c2W; (1)

where Pl ¼ ðði�h=cÞ@=@t;�i�hrÞ is the four-momentum

operator and W is the complex charged scalar field.

Considering the Lorentz gauge

@lAl ¼ ð1=c2Þ @/=@tþr � A ¼ 0; (2)

using @l ¼ @=@xl, a more explicit form of the KGE is

�h2�Wþ 2i�hq
/
c2

@W
@t
þ A � rW

� �
� q2 /2

c2
� jAj2

� �
W

þM2c2W ¼ 0; (3)

where � ¼ ð1=c2Þ @2=@t2 �r2 is the d’Alembertian

operator.

A brief examination of the literature will be shown to be

suggestive. Numerous works31–40 on the KGE assume a

(right-handed) circularly polarized electromagnetic (CPEM)

wave. For a monochromatic field with four-wave-vector

kl ¼ ðx=c; 0; 0; kÞ, it amounts to

A ¼ A0ffiffiffi
2
p � eih þ ��e�ihð Þ ; / ¼ 0; (4)

where A0 is a slowly varying function of the phase

h ¼ k � x ¼ xt� kz; (5)

while � ¼ ðx̂ � iŷÞ=
ffiffiffi
2
p

denotes the polarization vector, with

the unit vectors x̂; ŷ perpendicular to the direction of light

propagation. The motivation for the CPEM assumption is due

to practical reasons, since it can be most easily implemented

in laser experiments, as well as to formal reasons, due to the

reduction of the quantum wave equation to a well-known ordi-

nary differential equation, namely, a Mathieu equation.39,40,46

In the case of a Dirac field in vacuum, a similar procedure

allows the construction of the celebrated Volkov solution,41

provided the four-vector potential depends on the phase only.

In the present work, a radically different avenue is cho-

sen. Instead of assuming ab initio a CPEM wave, the EM

field is left undefined as far as possible, requiring the KGE to

be still reducible to certain ordinary differential equations (to

be specified later). Nevertheless, most of the usual steps to-

ward the Volkov solution are maintained. As will be proved,

a large class of field configurations will be so determined.

The results put the Volkov solution into a perspective, and

considerably enlarge the class of fields for which benchmark

analytic results in a quantum relativistic plasma can be ac-

cessible in principle.

In a similar spirit of the derivation of the Volkov solu-

tion,41 it is now assumed

W ¼ exp � ip � x
�h

� �
w r?; hð Þ; (6)

where pl ¼ ðE=c; pÞ is the constant asymptotic four-

momentum of the particle, far from the EM field. The mass-

shell condition plpl ¼ ðE=cÞ2 � jpj2 ¼ M2c2 holds through-

out. Moreover, the transverse dispersion relation

042102-2 F. Haas and M. A. A. Manrique Phys. Plasmas 23, 042102 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  143.54.44.137 On: Mon, 18 Apr

2016 16:27:32



klkl ¼
x2

c2
� k2 ¼

m2
phc2

�h2
; (7)

is supposed, where mph is the effective photon mass

acquired due to screening in the plasma.42 The photon mass

can be self-consistently calculated using quantum electro-

dynamics47 but here will be considered mostly as an input

data. Unlike Volkov’s solution, a dependence of the enve-

lope wave function on transverse coordinates is allowed in

Eq. (6), where for light propagation in the z-direction one

has ẑ � r? ¼ 0. As a matter of fact, the extra transverse de-

pendence is found to be crucial in what follows. The direc-

tion of propagation of the wave packet reflected in the

proposed wave function breaks the isotropy. Although the

relation between x and k could be left completely unde-

fined, the transverse plasma dispersion relation is assumed

to keep resemblance with the previous analysis in the

literature.31–42

Substitution of the Ansatz (6) into the KGE, taking into

account the mass-shell condition and the dispersion relation

(7), gives

��h2r2
?wþ m2

phc2 @
2w

@h2
þ 2i�h qA� pð Þ � r?w

þ 2i�h
x
c2

q/� Eð Þ � k qAz � pzð Þ
� �

@w
@h

þ jqA� pj2 � 1

c2
q/� Eð Þ2

� �
wþM2c2w ¼ 0; (8)

where r? ¼ x̂ @=@xþ ŷ @=@y and A ¼ ðAx;Ay;AzÞ.
For the sake of reference, in the case of the CPEM field

(4), assuming r?w ¼ 0, and defining

~w ¼ exp � i�h

m2
phc2

xE
c2
� kpz

� �
h

" #
w; (9)

the result39,40 from Eq. (8) is the Mathieu equation,46

d2 ~w

d~h
2
þ 4

m2
phc2

� q2A2
0 þ

�h2

m2
phc2

xE
c2
� kpz

� �2

� 2qA0p? cos 2~hð Þ
" #

~w ¼ 0;

(10)

where

~h ¼ 1

2
h� h0ð Þ ; tan h0 ¼

py

px
; p? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

x þ p2
y

q
: (11)

In the general case, and shifting the four-potential

according to

Al ) ~Al ¼ Al � pl=q; (12)

transforms the KGE (3) into

�h2�Wþ 2ðq ~A
l þ plÞPlW� ðq ~A

l þ plÞðq ~Al þ plÞW
þM2c2W ¼ 0; (13)

and Eq. (8) into

��h2r2
?wþ m2

phc2 @
2w

@h2
þ 2i�hq ~A � r?w

þ 2i�hq
x~/
c2
� k ~Az

� �
@w
@h
þ q2 j~Aj2 �

~/
2

c2

 !
w

þM2c2w ¼ 0; (14)

the latter equation does not exhibit the asymptotic four-

momentum pl. In what follow, the tilde symbol over the four-

potential will be omitted, for simplicity. Notice that the

Lorentz gauge is still attended by the displaced four-potential.

Instead of sticking to the search of pure traveling wave

solutions as usually done, we want to investigate the possi-

bility of localized wave-packets in the transverse plane also.

This is a recommendable trend, having in mind (for instance)

the usefulness of laser fields having a dependence on the

transverse coordinates too, as in the case of focused beams.

To keep some simplicity, consider solutions with a definite z
angular momentum component

w ¼ eimuffiffi
r
p R rð ÞS hð Þ; (15)

where the factor 1=
ffiffi
r
p

was introduced just for convenience,

m ¼ 0;61;62; ::: is the azimuthal quantum number, and

ðr;u; zÞ are cylindrical coordinates, while R, S are real func-

tions to be determined. Naturally, Lz w � �i �h @w=@u
¼ m �h w. Differently from twisted plasma waves,48 here the

angular momentum is possibly carried by matter waves, not

necessarily by EM waves.

Substituting the proposal (15) into Eq. (14) gives

� �h2

R

d2R

dr2
þ

m2
phc2

S

d2S

dh2
þM2c2 þ �h2

r2
m2 � 1

4

� �

þ q2 jAj2 � /2

c2

� �
� 2m�hq

r
Au

þ 2i�hq

ffiffi
r
p

Ar

R

d

dr

Rffiffi
r
p
� �

þ 2i�hq
x/
c2
� kAz

� �
1

S

dS

dh
¼ 0;

(16)

where / ¼ /ðr; hÞ;A ¼ Arðr; hÞ r̂ þ Auðr; hÞ û þ Azðr; hÞẑ
with components supposed to be dependent on ðr; hÞ only,

for consistency.

It is natural to seek for separable variables solutions. For

this purpose, Eq. (16) must be the sum of parts individually

containing either r or h. Avoiding excessive constraints on R,

S at this stage, from inspection of the terms proportional to

dR/dr or dS=dh, and since uninteresting solutions (dS=dh ¼ 0

or R �
ffiffi
r
p

) are ruled out, the following necessary conditions

follow:

Ar ¼ ~Ar rð Þ; Az ¼
x

c2k
/þ ~Az hð Þ; (17)

where ~Ar and ~Az must be functions of the indicated argu-

ments. In this way, the prescription of R, S is postponed as

long as possible.
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More stringent conclusions follows since ~ArðrÞ does not

contribute neither to E or B. In addition, inserting Az in the

Lorentz gauge condition (2) gives d ~AzðhÞ=dh ¼ 0, so that ~Az

is a constant, with no contribution to the EM field also.

Hence, without loss of generality it can be set

~Ar ¼ ~Az ¼ 0: (18)

Summing up the results until now, Eq. (16) becomes

� �h2

R

d2R

dr2
þ

m2
phc2

S

d2S

dh2
þM2c2 � �h2

4r2

þ qAu �
�hm

r

� �2

þ
m2

phq2/2

�h2k2
¼ 0: (19)

In principle, Au and / can be functions of ðr; hÞ.
However, it can be observed that for transverse EM fields the

longitudinal components vanish so that

Ez ¼ �
@/
@z
� @Az

@t
¼ �

m2
phc2

�h2k2

@/
@h
� 0 ) / ¼ / rð Þ;

(20)

Bz ¼
1

r

@

@r
rAuð Þ � 0 ) Au ¼

F hð Þ
r

: (21)

Actually from Eq. (21), one derives

r� Au ûð Þ ¼
k

r

dF

dh
r̂ þ F hð Þd2 r?ð Þ ẑ; (22)

where d2ðr?Þ is the two-dimensional delta function in the

transverse plane, contributing a vortex line except if

FðhÞ ¼ 0. This choice will be adopted to avoid singularity at

this stage, so that Au ¼ 0.

Collecting results, we find

/ ¼ / rð Þ; A ¼ x
c2 k

/ rð Þ ẑ; (23)

and the final form of the re-expressed KGE is

� �h2

R

d2R

dr2
þ

m2
phc2

S

d2S

dh2
þM2c2 þ �h2

r2
m2 � 1

4

� �

þ
m2

phq2/2 rð Þ
�h2k2

¼ 0; (24)

which is obviously separable.

Denoting P2
0 > 0 as the separation of variables constant,

we get

m2
phc2 d2S

dh2
þ P2

0S ¼ 0; (25)

�h2 d2R

dr2
þ P2

0 �M2c2 � �h2

r2
m2 � 1

4

� �
�

m2
phq2/2

�h2k2

" #
R ¼ 0:

(26)

The requirement P2
0 > 0 is adopted to avoid constant or

unbounded solutions as h! 61. It should be noted that the

procedure makes sense only in a plasma medium (mph 6¼ 0)

to avoid triviality. Actually from the very beginning, the

limit mph=M! 0 changes the basic structure of the govern-

ing equations and should be treated as a singular perturbation

problem,49 as apparent from Eq. (8).

In specific calculations, like for calculations of cross

sections, the non-shifted four-potential is necessary. In view

of Eq. (23), we would have the original scalar potential given

by Mc2=qþ ~/ðrÞ, and the original vector potential given by

p=qþ ½x=ðc2kÞ�~/ðrÞ ẑ, where ~/ðrÞ is an arbitrary function

of r only. In this way, both the wavefunction given in Eq. (6)

and the four-potential will contain the four-momentum.

One can choose the origin of time so that Sð0Þ ¼ 0 so

that from Eq. (25) the longitudinal part of the wave function

can be written as

S hð Þ ¼ 1ffiffiffi
p
p sin nhð Þ ; n ¼ P0

mphc
: (27)

To sum up, Eq. (6) represents an exact solution for the

KGE for a charged scalar in the presence of a transverse

plasma wave, provided the traveling envelope function w in

Eq. (15) is defined in terms of RðrÞ; SðhÞ satisfying the

uncoupled linear system of second-order ordinary differential

equations (25) and (26). The corresponding static EM field is

E ¼ � d/
dr

r̂; B ¼ � x
c2k

d/
dr

û; (28)

with a Poynting vector

1

l0

E� B ¼ e0 x
k

d/
dr

� �2

ẑ; (29)

along the wave propagation direction as expected, and an

EM energy density

e0

2
jEj2 þ 1

2 l0

jBj2 ¼ e0 1þ 1

2

mph c

�h k

� �2
" #

d/
dr

� �2

; (30)

where e0; l0 are, respectively, the vacuum permittivity and

permeability. Notice the amplitude of the wave remains arbi-

trary, due to the linearity of the KGE.

For the sake of interpretation, we can examine the con-

served charged 4-current

Jl ¼
q

2M
W� Pl � pl � qAlð ÞWþ c:c:
� �

; (31)

associated to the particle, where c.c. denotes the complex

conjugate. The extra term �pl in Eq. (31) is needed in view

of the shift (12). Writing Jl ¼ ðcq; JÞ, one derives

q ¼ � q2/
Mc2
jWj2 ; J ¼ q

M

m�h

r
û � x q /

c2k
ẑ

� �
jWj2; (32)

where jWj2 ¼ R2S2=r. As can be verified, indeed @lJl ¼ 0

along solutions. From Eq. (32), it is seen that the charge den-

sity q associated to the test charge shows a radial dependence

allowing for radial compression, together with an oscillatory

pattern in the direction of wave propagation through SðhÞ.
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The density current J has a swirl provided m 6¼ 0, besides a

longitudinal component.

We observe that the force density is

q Eþ J� B ¼ � mph c

�h k

� �2

q E; (33)

opposite to the electric force density q E, possibly implying

a transverse confinement of the test charge, depending on the

properties of the scalar potential. This radial confinement is

certainly not possible in a vacuum, where the effective pho-

ton mass is exactly zero.

The charge density allows one to express the normaliza-

tion condition asð
dr q ¼ q )

ð1
0

/ rð ÞR2 rð Þ dr ¼ �M c2

q D
; (34)

where D is the longitudinal extension of the system, or

z 2 ½�D=2; D=2�.
The current density associated to the test charge should

not be confused with the current density Jext
l ¼ ðcqext; JextÞ

responsible for the external EM field. One finds

qext ¼ e0r � E ¼ �
e0

r

d

dr
r

d/
dr

� �
;

Jext ¼ 1

l0

r� B� 1

c2

@E

@t

� �
¼ xqext

k
ẑ; (35)

having a purely radial dependence, and a plasma flow in the

longitudinal direction only, corresponding to a z-pinch

configuration.

Finally, we present the field invariants

E � B ¼ 0 ; jEj2 � c2jBj2 ¼ � mph c

�h k

� �2 d/
dr

� �2

: (36)

Although quite simple, the new explicit exact solution

has not been officially recognized in the past, to the best of

our knowledge. The reason perhaps is the need of an oscillat-

ing longitudinal part SðhÞ, which is possible only for a test

charge in a plasma (mph 6¼ 0). Moreover, the procedure has

shown the solution to be the only one satisfying the follow-

ing requirements: (a) extended Volkov Ansatz incorporating

the transverse dependence, as shown in Eq. (6); (b) the dis-

persion relation (7); and (c) separation of variables according

to Eq. (15). In Section III, illustrative examples are provided.

III. EXAMPLES

A. Compressed structures

Following an inverse strategy, instead of first defining

the scalar potential, for the sake of illustration we consider

the radial function

RðrÞ ¼ e�X=2 Xjmj=2þ1=4 UðXÞ; (37)

where X ¼ r2=ð2 r2Þ, r is an effective length, and U ¼ UðXÞ
satisfies Kummer’s equation46

X
d2U
dX2
þ 1þ jmj � Xð Þ dU

dX
þ aU ¼ 0: (38)

In addition, a is a parameter defined by

a ¼ 1

2
P2

0 �M2c2
� � r2

�h2
� 1� jmj � 1

H2

� �
; (39)

where

H ¼ �h2 k

mph jq /0j r
; (40)

is a dimensionless quantum diffraction parameter with

/0 ¼ /ð0Þ. Without loss of generality, k> 0 is assumed.

The form (37) has recently attracted attention in the

case of non-relativistic theta pinch quantum wires.50

Inserting Eq. (37) into the radial equation (26), taking into

account Kummer’s equation, and Eq. (39), we find the sim-

ple expression

/ ¼ /0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2X

2

r
; (41)

which according to Eq. (28) corresponds to

E ¼ � �h4 k2 r r̂

4 m2
ph r4 q2 /

; B ¼ � �h4x k r û
4 m2

ph c2 r4 q2 /
: (42)

The general solution to Eq. (38) is

U ¼ c1Mð�a; 1þ jmj;XÞ þ c2 Uð�a; 1þ jmj;XÞ; (43)

where c1;2 are integration constants,Mð�a; 1þ jmj;XÞ is the

Kummer confluent hypergeometric function, and Uð�a; 1
þjmj;XÞ is the confluent hypergeometric function. Since U is

always singular for X! 0, we set c2 ¼ 0. Therefore, from

Eq. (37) and taking into account46 the asymptotic properties

ofMð�a; 1þ jmj;XÞ, one has

R � C 1þ jmjð Þ
C �að Þ eX=2X�a�3

4
�jmj

2 1þO 1=Xð Þð Þ; (44)

where C is the gamma function. In addition, R is well-

behaved at the origin, with Rð0Þ ¼ 0.

In view of Eq. (44), it follows that the solution is

unbounded for large X, unless the infinite series defining the

Kummer confluent hypergeometric function terminates. It is

apparent that this happens if and only if 1=Cð�aÞ ¼ 0,

implying a ¼ l ¼ 0; 1; 2; :::. In this case, Mð�l; 1þ jmj;XÞ
becomes proportional to a Laguerre polynomial. Hence, we

derive the quantization condition

P2
0 ¼ M2c2 þ �h2

r2
1þ jmj þ 2lþ 1

H2

� �
> M2c2 : (45)

Since P0 ¼ nmphc [see Eq. (27)], and in view of the small

value of the photon mass, in general a large n is necessary to

fulfill Eq. (45).
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In conclusion, the radial function is given by

RðrÞ ¼ R0e�X=2 Xjmj=2þ1=4Mð�l; 1þ jmj;XÞ; (46)

where R0 is a normalization constant. Equations (34), (41),

and (46) give

R2
0 ¼ �

ffiffiffi
2
p

M c2

D r q /0

" ð1
0

dX 1þ H2 X

2

� �1=2

� e�X Xjmj M �l; 1þ jmj;Xð Þð Þ2
#�1

: (47)

The integral on the right-hand side of Eq. (47) can be

numerically obtained for specific values of H, m, l. For con-

sistency, R2
0 > 0 implies q /0 < 0. The radial wave function

is everywhere well-behaved, and has lþ 1 nodes as apparent

in Fig. 1.

From Eq. (35), we have

qext ¼ qext
0

/0

/

� �3

1þ H2 X

4

� �
; qext

0 ¼ �
e0 /0 H2

2 r2
; (48)

showing that the /0 > 0 corresponds to a negative external

charge density, and reciprocally. Asymptotically, one has

qext � 1=r for r 	 r. Similar expressions can be found for

the external current density.

The external charge density is a monotonously decreas-

ing function of position as seen in Fig. 2. On the other hand,

the charge density associated to the test charge is found from

Eq. (32) to be

q ¼ q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2 X

2

r
e�X Xjmj M �l; 1þ jmj;Xð Þð Þ2 sin2 n hð Þ;

q0 ¼ �
q2 /0 R2

0ffiffiffi
2
p

p M c2 r
: (49)

Figure 3 shows the transverse compression for H ¼ 0:5;
m ¼ 0; l ¼ 1; n ¼ 2.

Finally, from Eq. (33) the confining force density on the

test charge in the example is

q Eþ J� B ¼ � �h2

4 M r4
jWj2 r r̂: (50)

Although the effective photon mass does not explicitly

appear in Eq. (50), it plays a role in several steps of the deri-

vation. For instance, the EM field in Eq. (42) becomes singu-

lar if mph ! 0.

B. Radial electric field and azimuthal magnetic field
of constant strengths

Supposing a linear scalar potential

/ ¼ �E0r; (51)

where E0 is a constant, from Eq. (28) one has the radial

electric field E ¼ E0r̂ , and the azimuthal magnetic field

B ¼ ½E0x=ðc2kÞ�û, both of constant strength. This configu-

ration provides a confinement in the radial direction.

FIG. 1. Radial function R as defined from Eq. (46), in terms of X ¼ r2=ð2r2Þ. In the left panel, l¼ 0, 1, 2 for a fixed m¼ 0. In the right panel, m¼ 9, 10 for a

fixed l¼ 3. We note that always Rð0Þ ¼ 0.

FIG. 2. External charge density from Eq. (48) as a function of X ¼ r2=ð2 r2Þ
for different values of the quantum diffraction parameter H in Eq. (40).

Upper curve (line): H¼ 0.3; middle curve (dashed): H¼ 0.6; lower curve

(dot-dashed): H¼ 1.0.
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Defining the new variable

X ¼ mphjqE0jr2

�h2k
; (52)

and the transformation

R ¼ eX=2Xjmj=2þ1=4UðXÞ; (53)

the result from Eq. (26) is

X
d2U
dX2
þ 1þ jmj þ Xð Þ dU

dX

þ 1

2

k P2
0 �M2c2

� �
2mphjqE0j

þ 1þ jmj
 !

U ¼ 0; (54)

which is a Kummer equation also, identical to Eq. (38) after

the replacement X! �X. Proceeding as in Subsection III A,

one derives the regular solution

R ¼ R0eX=2Xjmj=2þ1=4Mð1þ jmj þ l; 1þ jmj;�XÞ; (55)

whereMð1þ jmj þ l; 1þ jmj;�XÞ is the Kummer confluent

hypergeometric function of the indicated arguments and

where the quantization condition

P2
0 ¼ M2c2 þ 2mphjqE0j

k
1þ jmj þ 2lð Þ ; l ¼ 0; 1; 2;…;

(56)

holds.

In addition, working as in the last example we find the

normalization constant

R2
0 ¼

2mphMc2

�h2kD

�
ð1

0

dXeXXjmjþ1=2 M 1þ jmjþ l; 1þ jmj;�Xð Þð Þ2
� ��1

;

(57)

the external charge density

qext ¼ e0E0=r; (58)

the test particle charge density

q ¼ q0 eXXjmjþ1=2ðMð1þ jmj þ l; 1þ jmj;�XÞÞ2 sin2ðnhÞ;
q0 ¼ qjqE0jR2

0=ðpMc2Þ; (59)

and the force density

qEþ J� B ¼ � 1

M

qE0mph

�hk

� �2

jWj2rr̂ : (60)

IV. CONSERVATION LAWS, STABILITY ANALYSIS,
AND NUMERICAL RESULTS

In this section, we investigate the stability of the solutions

found by direct comparison with the numerical simulation of

the KGE. For the validation of the simulations, it is important

to verify the conservation laws dQ=dt ¼ 0; dH=dt ¼ 0, where

Q ¼ q

2 M c2

ð
dr i�h W�

@W
@t
�W

@W�

@t

� �
� 2 q /þ Eð Þ jWj2

� �
;

(61)

H ¼ 1

4 M

ð
dr

�
�h2

c2

@W�

@ t

@W
@ t
þ �h2rW� � rW

þ M2 c2 � q Al þ plð Þ q Al þ plð Þ
	 


jWj2

þ i �h qAþ pð Þ � W�rW�WrW�ð Þ
�
; (62)

are, respectively, the total charge and Hamiltonian functionals

associated to the test charge, where W satisfies Eq. (13), and

where Al in Eqs. (61) and (62) is the shifted four-potential

according to Eq. (12). These conservation laws are a conse-

quence of the Noether invariance of the action functional

FIG. 3. Scaled charge density q of the

test charge, from Eq. (49) for y¼ 0, as a

function of x=ð
ffiffiffi
2
p

rÞ and h. Parameters:

H¼0:5; m¼0; l¼1; n¼2. A rela-

tively small n is chosen for clarity of the

graphic.
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Sact W;W�½ � ¼
ð

d4xL;

L ¼ 1

4 M
�h @lW� � i q Al þ plð ÞW�ð Þ

� �h @lWþ i q Al þ plð ÞW
� �

�M c2

4
jWj2;

(63)

under local gauge transformations and time translations (in

our case, Al is time-independent). It is a simple matter to

show that the functional derivatives d Sact=dW� ¼ 0 and

d Sact=dW ¼ 0 generate Eqs. (13) and its complex conjugate,

respectively, and that the Legendre transform from Eq. (63)

produces the Hamiltonian (62).

For the exact solution of Sec. II, the charge conservation

is equivalent to Q ¼
Ð

drq, where the aforementioned test

charge density q is given by Eq. (32). On the other hand, the

energy conservation law (62) for p ¼ 0 explicitly reads

H ¼ D
2 M

ð1
0

dr

(
�h2 dR

dr

� �2

� R

r

dR

dr

" #

þ
"

M2c2 þ �h2

r2
m2 þ 1

4

� �
þ n2 �h2 x2

c2
þ k2

� �

� 2 M q/þ x2

c2 k2
� 1

� �
q2 /2

c2

#
R2

)
: (64)

A few algebraic steps consider integrating by parts the first

two terms in Eq. (64) assuming decaying boundary condi-

tions, plus the use of the dispersion relation (7), the KGE

(13), the radial equation (26), the definition (27), and the nor-

malization condition (34). In such way, we finally derive the

simple expression

H ¼ M c2 þ D n2 �h2 x2

M c2

ð1
0

dr R2; (65)

which is valid in this particular case. In Eq. (65), the second

term �x2 shows in a transparent way the contribution of the

plasma wave to the energy. In a frame where the asymptotic

momentum p 6¼ 0 the form of H is a little more complicated

due to coupling between translational and rotational degrees

of freedom, and hence will be omitted.

For the numerical simulations, consider q, M as the elec-

tron charge and mass and the solution in Sec. III A. Rewrite

the quantization condition (45) as

n2 ¼ M2

m2
ph

þ �h2

m2
phc2r2

1þ jmj þ 2lð Þ þ q2/2
0

�h2k2c2
; (66)

where n ¼ 1; 2; 3; :::; m ¼ 0;61;62; :::; l ¼ 0; 1; 2; :::.
Equation (66) has several free parameters. For definite-

ness, we chose the three terms on the right-hand side (respec-

tively, proportional to M2; �h2, and q2 to be of the same

magnitude). This corresponds to similar contributions from

the rest energy, the kinetic energy, and the EM field energy.

In this case, n ¼
ffiffiffi
3
p

M=mph. One might estimate32,42 the

effective mass of transverse photons by the Akhiezer-Polovin

relation mph c2 ¼ �h xp, where xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 q2=ðMe0Þ

p
is the

plasmon frequency and n0 is the number density n0. A more

detailed, QED calculation of the photon mass in presence of a

CPEM wave can be found in Ref. 47. For n¼ 1000, one finds

n0 ¼ 5:7� 1032 m�3, which is in the limit of today’s laser

facilities.34,35 For n¼ 100, one has n0 ¼ 5:7� 1034 m�3,

while n¼ 10 deserves n0 ¼ 5:7� 1036 m�3 (white dwarf).

Moreover, for m ¼ 0; l ¼ 0 one has r ¼ kC=ð2pÞ ¼ 3:9
�10�13 m, where kC ¼ 2p�h=ðMcÞ is the electron Compton

length, besides a quantum diffraction parameter H¼ 1.

Finally, to satisfy M=mph ¼ jq/0j=ð�hkcÞ some free choices

are still available. To avoid pair creation, we set a not too

large energy jq/0j ¼ 0:1Mc2 ¼ 0:05 MeV and calculate the

wave-number k. The results are shown in Table I, where the

wavelength k ¼ 2p=k and the angular frequency x are also

displayed. We find a range from the extreme ultraviolet to the

hard X-ray radiation. Notice that it is not unusual to consider

highly oscillating solutions to the KGE. For instance, consider

the discussion of higher harmonic solutions of the KGE with

a large n, in the context of a charged particle propagation

under strong laser fields in underdense plasmas.51 Possible ex-

perimental realization of the confining EM fields would

involve high-intensity-laser-driven Z pinches as described in

Ref. 52. As apparent from Eq. (35), necessarily a longitudinal

external current should be set up, with the adequate radial de-

pendence to fit the four-potential.

For definiteness, choosing a frame where the test charge

is at rest at infinity, one has p ¼ 0; E ¼ Mc2, which is

adopted in the following. In order to simulate the problem,

we use Spectral Numerical Methods to solve the KGE (13)

in four-dimensional space with the analytic solution given in

Sec. III A as initial condition. We used box lengths Lx ¼
Ly ¼ 3 in the x and y dimensions, both normalized to

ffiffiffi
2
p

r,

Lz¼ 5 in the z direction (where periodic boundary conditions

apply), normalized to 1=k. We take the conditions of Table I.

The spatial derivatives were approximated with a Fourier

spectral method, performed with an implicit-explicit time

stepping scheme. The space was resolved with 100 grid

points in the x and y directions and with 200 grid points in

the z direction, and the time step was taken to be Dt ¼ 10�6,

where time is normalized to x�1.

In Figs. 4, 5, and 6, we have plotted the numerical result

of the charge density of the test particle for y¼ 0, as a func-

tion of x=ð
ffiffiffi
2
p

rÞ and h, for the case of interest shown in

Table I, namely, n¼ 10, 100, 1000. We used the parameters

m¼ 0, a ¼ l ¼ 0, and H¼ 1, showing an increase in the os-

cillation periods for rising n.

To validate the simulations, the conservation laws of

charge and total energy (61) and (62) were verified, as shown

TABLE I. Parameters for m ¼ 0; l ¼ 0 together with equal strength of the

three terms on the right-hand side of the quantization condition (66), for

jq/0j ¼ 0:1Mc2.

n n0 ðm�3Þ mph=M k ðm�1Þ k ðmÞ x ðrad=sÞ

10 5:70� 1036 0.173 4:49� 1010 1:40� 10�10 1:35� 1020

100 5:70� 1034 0.017 4:49� 109 1:40� 10�9 1:35� 1019

1000 5:70� 1032 0.002 4:49� 108 1:40� 10�8 1:35� 1018
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in Fig. 7. Fluctuations are small and differ from the exact

values in about 5% for the state ðm ¼ 0; n ¼ 10; l ¼ 0Þ.
To numerically check the stability of the exact solution,

we added random perturbations to the phase h calculated at

t¼ 0, with aleatory angles between 0.1 rad and 0.05 rad.

Figure 8 shows the maximum relative error in charge density

fluctuations e ¼ jðq� qnumÞjmax=qmax, where q follows from

the analytical result in Sec. III A, qnum is the numerical solu-

tion, and qmax is the maximum value of the charge density

analytically calculated, as a function of time, for the state

ðm ¼ 0; n ¼ 10; l ¼ 0Þ.
Similarly, Fig. 9 shows the maximum relative error in

charge density fluctuations for the state ðm ¼ 0; n ¼ 100;
l ¼ 0Þ. The numerical solution almost exactly follows the ana-

lytic solution, without substantial changes throughout the sim-

ulation. For the case of the states ðm ¼ 0; n ¼ 10; 100; 1000;
l ¼ 1Þ, there is a 5% relative error with stable oscillatory

behavior. This result is maintained for different values of the

random perturbations. Hence, the compressed structures seem

to be stable enough to be observable in experiments at least in

the cases studied. Similar conclusions hold for the example of

Sec. III B.

In order to substantiate the numerical results, we also

perform an analytical stability check, as follows. Assuming a

phase perturbation according to

W ¼ exp � ip � x
�h

� �
eimuffiffi

r
p R rð ÞS hþ dhð Þ; (67)

plugging into Eq. (13), where R(r) and SðhÞ satisfy Eqs. (25)

and (26) with a four potential given by (23), and linearizing

for dh ¼ dhðr;u; z; tÞ, gives a large equation which we

refrain to show here. To maintain the generality, the coeffi-

cients of dR/dr, dS=dh, and S should vanish in this equation;

otherwise, only certain specific solutions for Eqs. (25) and

(26) would be selected. We also adopt a reference frame

FIG. 4. Numerical simulation results for

the charge density, obtained from the

KGE (13), in the h� x plane at y¼ 0,

for the states m ¼ 0; n ¼ 10; l ¼ 0: (a)

two-dimensional; (b) three-dimensional.

FIG. 5. Numerical simulation results for

the charge density, obtained from the

KGE (13), in the h� x plane at y¼ 0,

for the states m ¼ 0; n ¼ 100; l ¼ 0: (a)

two-dimensional; (b) three-dimensional.

FIG. 6. Numerical simulation results for

the charge density, obtained from the

KGE (13), in the h� x plane at y¼ 0,

for the states m ¼ 0; n ¼ 1000; l ¼ 0:

(a) two-dimensional; (b) three-

dimensional.
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where p ¼ 0. For an arbitrary scalar potential /ðrÞ and after

some simple algebra, it can be shown that dh ¼ dhðuÞ,
satisfying

d2dh
du2
þ 2 i m

ddh
du
¼ 0; (68)

possessing (for m 6¼ 0) oscillatory solutions of the form dh ¼
c0 þ c1 expð�2 i m uÞ for constants c0, c1. The conclusion is

that in this case, we have linearly stable solutions. It should

be noted that the restricted form of the perturbation (67) and

the associated consistency analysis make the findings some-

how limited. A full analytical stability check is beyond the

scope of the present work.

V. CONCLUSION

In this work, a new exact solution for a quantum relativ-

istic charged scalar test charge was derived. As an alternative

to the traditional Volkov assumption, the quantum state con-

tains a stringent dependence on the radial coordinate, medi-

ated by the scalar potential /ðrÞ appearing in the

fundamental equation (26). The procedure can work only in

a plasma medium, which implies a non-zero photon mass.

However, by definition the setting is not of a quantum

plasma, but of a quantum relativistic test charge under a clas-

sical plasma wave. As discussed in Sec. III, for specific sca-

lar potentials a quantization condition results from the

requirement of a well-behaved radial wave function. The sta-

bility analysis of the solutions was numerically investigated

by means of spectral methods. In a sense, the approach is

complementary to the CPEM case, which assumes scalar and

vector potentials, respectively, given by / ¼ 0;A ¼ A?, as

shown in Eq. (4), while in the present work / 6¼ 0;A? ¼ 0.

Applications for transverse compression in laser plasma

interactions in the quantum relativistic regime or dense astro-

physical settings with a high effective photon mass [or a

large n compatible with the quantization condition (45), for

instance] were discussed. The treatment is useful as a start-

ing point for the collective, multi-particle coherent aspects of

relativistic quantum plasmas. In this case, the EM field has

FIG. 8. Relative deviation of the nu-

merical solution from the exact ana-

lytic solution for random phase

perturbations of the exact state

ðm ¼ 0; n ¼ 10; l ¼ 0Þ. (a) Phase vari-

ation of 0.1 rad; (b) phase variation of

0.05 rad.

FIG. 9. Relative deviation of the numerical solution from the exact analytic

solution for random phase perturbations of the exact state ðm ¼ 0; n ¼
100; l ¼ 0Þ for a phase variation of 0.1 rad.

FIG. 7. Left: time-evolution of the global charge Q in Eq. (61), normalized to the elementary charge jej, for the state ðm ¼ 0; n ¼ 10; l ¼ 0Þ. Right: time-

evolution of the global energyH in Eq. (62), normalized to Mc2, for the state ðm ¼ 0; n ¼ 10; l ¼ 0Þ.
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to be calculated in a self-consistent way and not taken as an

external input like in the present communication. Finally, the

extension of the analysis to include spin is left to future

work.
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