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Quasilinear evolution of the weakly relativistic electron cyclotron
maser instability

L. F. Ziebella)
Instituto de Fı´sica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051,
91501-970 Porto Alegre, RS, Brasil

~Received 2 January 1997; accepted 16 April 1997!

This paper presents a quasilinear analysis of the relativistic electron cyclotron maser instability in
which the self-consistent set of equations governing the evolution of the particle distribution
function and the energy spectra of unstable waves is numerically solved for parameters typical of the
Earth’s auroral zone plasma, taking into account both resonant and non-resonant diffusions. The
results obtained show that only 0.1%;0.2% of the particle energy is converted into wave energy
by the loss cone instability, and also show that the saturation amplitude for the extraordinary mode
increases in proportion to the ratio between electron cyclotron frequency and electron plasma
frequency, in agreement with previous results obtained with numerical simulations. ©1997
American Institute of Physics.@S1070-664X~97!04407-8#

I. INTRODUCTION

In natural plasmas and in laboratory experiments insta-
bilities may be driven by inversion of the electron population
in the direction perpendicular to the ambient magnetic field.
For instance, this kind of instability is present in laboratory
microwave generation devices,1,2 and it is believed that it is
also responsible for the phenomenon known as the Earth’s
kilometric radiation.3–25 It has also been conjectured that the
same class of instabilities can be found in a variety of other
situations, such as in astrophysical radio sources,26–28 plan-
etary radio emissions,29–32 and solar microwave bursts.33–37

The theoretical analysis of this kind of instability requires
relativistic effects in the description of the wave-particle in-
teraction, and the instability is therefore called therelativistic
electron cyclotron maserin the literature.

The existing literature on the cyclotron maser instability
has usually emphasized linear features of the instability. The
discussions which incorporate nonlinear features have fre-
quently employed numerical simulation methods.10,11,20,22

Some attempts have been made, however, to study the non-
linear stage of the instability by the use of quasilinear
theory.34–36,4,21,23Among these attempts, particularly inter-
esting for the present investigation is the work developed in
Refs. 35 and 36, in which the set of fully self-consistent
quasilinear particle and wave kinetic equations has been nu-
merically solved, using the cold plasma dispersion relation
and assuming that the cold electrons support the waves while
the energetic population contributes to the growth of the
waves.

Another recent investigation about the quasilinear evolu-
tion of the cyclotron maser instability, which also assumed
that the instability is driven by a tenuous population of en-
ergetic electrons while a cold background plasma supports
the wave motion, has been developed in Ref. 38. The ap-
proach utilized in Ref. 38 makes use of a model time-
dependent distribution function and employs moments of the
quasilinear equation, in order to obtain the time evolution of

parameters of the distribution. The method has been em-
ployed for the study of a region of parameters for which the
competition between different wave modes may be very im-
portant, and the conclusion has been that the mode with
larger initial growth rate does not necessarily prevail over
modes with smaller initial growth rates, in the late stage of
the time evolution.38

The moment method has also been employed in another
investigation, which fully incorporated thermal effects as
well as the effect of the energetic electrons in the dispersion
relation.39 The method has been applied for parameters typi-
cal of the Earth’s auroral zone, for a situation in which the
relevant unstable modes are the fundamental extraordinary
and ordinary modes. The results indicate that in the case of
higher population of energetic electrons the fast diffusion
saturates early the instability, at a wave level which is not
very different from the level attained in the case of smaller
population of energetic electrons.

For the present investigation on the quasilinear evolution
of the electron cyclotron maser instability, however, we de-
velop a formulation which does not make use of the moment
method, deriving instead a quasilinear equation which can be
numerically solved for the time evolution of the electron
distribution function, self-consistently with the spectra of un-
stable waves. Both resonant and non-resonant diffusion are
incorporated to the quasilinear equation. The formalism uti-
lizes a dispersion relation in which thermal effects are fully
taken into account, including the contribution of both the
background electronic population and the population of en-
ergetic electrons~it has been demonstrated that these thermal
effects can be important for the case of extraordinary mode
waves with frequency near the electron cyclotron
frequency6!. For the numerical application of the formula-
tion, we choose parameters motivated by the so-called au-
roral kilometric radiation~AKR!. As it is known, this radia-
tion phenomenon was first observed in the late 1960s and
early 1970s,40 and was successfully explained in terms of the
weakly relativistic maser instability by Wu and Lee,3 which
identified the source of the instability as the loss-cone elec-
trons that are formed when the energetic electrons injecteda!Electronic mail: ziebell@if.ufrgs.br
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from the geomagnetic tail region are reflected by the con-
verging geomagnetic field. We therefore assume a low-
temperature background electron component along with a
more energetic loss-cone population, and use a model loss-
cone distribution as the initial state of the energetic electrons,
along with a time-varying wave spectra in the unstable range
of frequencies.

The organization of this paper is the following. In Sec. II
we introduce the model electron distribution functions uti-
lized as starting conditions for the time evolution, outline the
derivation of the quasilinear equation and present a brief dis-
cussion on the dispersion relation for electromagnetic waves
and on the procedure for obtaining the growth rate of the
unstable waves. In Sec. III we briefly describe the method
employed for the numerical solution of the quasilinear equa-
tion, and present the results of a numerical analysis, made for
parameters typical of the auroral zones of the Earth. Finally,
Sec. IV summarizes and discusses the results.

II. GENERAL FORMULATION

We are interested in instabilities that operate in the vi-
cinity of the electron cyclotron frequency and/or its harmon-
ics. Due to the high frequency nature of the waves, the ion
response to any perturbation can be ignored, and therefore
the ions only provide for charge neutrality. The electrons are
assumed to feature a relatively cold component with density
nb and an energetic component with densitynh , possessing a
one-sided loss-cone structure in momentum space. The ge-
ometry is such that the ambient magnetic field lies along the
z direction (B05B0ez), with the wave vectork situated in
the x2z plane,k5k sinu ex1k cosu ez .

A. Initial electron loss-cone distribution

The cold background population is represented by a low
temperature Maxwellian distribution function

f b~u,m!5
1

p3/2ab
3 expS 2

u2

ab
2D , ~1!

whereab
252Tb /mec

2, with Tb being the temperature of the
background electrons measured in energy units andme the
electron mass. This background distribution is assumed to
remain stationary along the time evolution of the system.

As the initial distribution function for the energetic elec-
trons we assume the following model distribution function:38

f h~u,m,t50!5
1

p3/2a3~0!
expS 2

u2

a2~0! DG~m!, ~2!

where

G~m!5
1

12d tanh~1/d!F tanh2S m21

2d D G .
The parameterd is related to the loss-cone angleuLC ,

according to the following expression:39

uLC5cos21@11d ln~22A3!#. ~3!

The total thermal energy associated with the energetic
loss-cone electrons is given byE/mec

25nh^u
2/2&

53nha
2/4, where ^ . . . &52p*21

1 dm*0
`du u2 . . . f (u,m).

Using the relationE53nhTh/2 the effective temperature of
the loss-cone electrons can be related to the parametera as
Th5mec

2a2/2. Of course,a(0) appearing in Eq.~2! is the
initial value of the quantitya. The variablesu andm appear-
ing in Eqs.~1! and~2! are, respectively, the absolute value of
the normalized momentumu5p/(mec) and the cosine of the
pitch angle.

B. Quasilinear formalism

We have assumed stationary background distribution.
However, the energetic electron distribution may evolve in
time. If the wave level is sufficiently small, this evolution
may be described by the quasilinear approach. Following a
standard textbook procedure, it is possible to arrive to the
following expression for the quasilinear kinetic equation for
the energetic electron component:

]t f h5
1

u2
]uH ~12m2!Fu2SDuu]uf h2

1

u
Dum]m f hD G J

2
1

u
]mH ~12m2!FDmu]uf h2

1

u
Dmm]m f hG J , ~4!

where

Dab52p2uVeu (
n52`

` E
2`

`

dqE
0

`

dwUẼwq

B0
U2uâk•Pnu2

3
g

uvu
d~g2nY2Nium!DaDb ,

Du51,Dm5m2
Niu

g
,

and where summation over unstable modes is implicit.39 The
quantityt is the normalized timet[uVeut, Ni is the parallel
component ofN5ck/v, Ve is the electron cyclotron fre-
quency, andY5uVeu/v. Some details of the derivation of
Eq. ~4! appear in the Appendix, including the expression for
uâk•Pnu2 in terms of the components of the dielectric tensor.

In Eq. ~4! the spectral wave energy density has been
expressed as a function of the normalized quantities
q[cki /uVeu andw[v/uVeu. The spectral density is a time
dependent quantity, which evolves in time according to

d

dt
uẼwqu252wi uẼwqu2, ~5!

where the normalized growth ratewi5Im(w) can be self-
consistently obtained from the dispersion relation. The per-
pendicular component of the wave vector (N'), appearing in
uâk•Pnu2, can also be obtained from the dispersion relation
as a function ofNi andw, with Ni given byNi5q/w.

In the derivation leading to Eq.~4! vanishing growth
rates have been assumed, and therefore only the effect of
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resonant diffusion remains operative in the quasilinear evo-
lution. However, non-resonant diffusion can be introduced at
this stage, by the following procedure:41

p
g

uvu
d~g2nY2Nium!

5pdS v2
nuVeu

g
2
ckiui

g D
5 lim

v i→01

v i

S v2
nuVeu

g
2
ckiui

g D 21v i
2

5 lim
wi→01

1

uVeu
wi

Sw2
n

g
2
qui

g D 21wi
2

.

Therefore, considering that for the unstable waves the
growth rates are small but finite, the components of the dif-
fusion tensor appearing in Eq.~4! can be written as follows:

Dab.2p (
n52`

` E
2`

`

dqE
0

`

dwUẼwq

B0
U2uâk•Pnu2

3
wi

Sw2
n

g
2
qui

g D 21wi
2

DaDb . ~6!

Moreover, for small growth rate, it is possible to approxi-
mateDab.Dab

r in the resonant region, where

Dab
r 52p2 (

n52`

` E
2`

`

dqE
0

`

dwUẼwq

B0
U2uâk•Pnu2

3
g

uwu
d~g2nY2Nium!DaDb . ~7!

On the other hand, for (w2n/g2qui /g)
2@wi

2 , the
imaginary part ofw can be neglected in the denominator and
the non-resonant contribution to the diffusion tensor is ob-
tained,

Dab
nr52p (

n52`

` E
2`

`

dqE
0

`

dwUẼwq

B0
U2uâk•Pnu2

3
wi

~w2n!2
DaDb , ~8!

where we have further approximated (w2 (n/g)
2 (qui /g))

2.(w2n)2.

C. Dispersion relation

The dispersion relation is written as

L~k,v!5AN'
41BN'

21C50, ~9!

whereA, B andC are coeficients depending of the compo-
nents of the dielectric tensor and onNi . Explicit expressions
for A, B and C can be found in Ref. 39 and will not be
repeated here. The components of the dielectric tensor are
denoted as« i j , and can be written as follows:

« i j5d i j1d i3d j3e331N
'

d i31d j3x i j , ~10!

where

e335(
a

XaE d3u
ui] f a /]ui

g2Niui
,

x i j5(
a

Xa

Yd i31d j3 (m51

` SN'

Y D 2~m21!

3 (
n52m

m

si j ~n,m!I a~n,m,d i31d j3!,

and where the summation overa is over electron species.
For these expressions, we have defined

I a~n,m,l !5E d3u
ui
l u'

2m21

g2nY2Niui

1

g
@~g2Niui!]u'

1Niu']ui
# f a ,

andXa5vpa
2 /v2, wherevpa5(4pnae

2/me)
1/2 is the elec-

tron plasma frequency for speciesa @We define the total
electron plasma frequency byvpe5(4pnTe

2/me)
1/2, where

nT5(ana is the total electron density.# The coefficients
si j (n,m) can also be found in Ref. 39 and will not be re-
peated here.

The I a(n,m,l ) integrals defined in Eq.~10! can be sepa-
rated into real and imaginary parts, with the real part given
by the principal part of the integral and the imaginary part
being the contribution of the resonance@ I a(n,m,l )
5I a8 (n,m,l )1 i I a9 (n,m,l )#. As it is known, the imaginary
part I a9 (n,m,l ) is very sensitive to features of the distribution
function along the resonance curve in momentum space. The
exact position of the resonance curve is very important for
the correct description of wave particle resonance, and rela-
tivistic effects must be incorporated for the correct evalua-
tion of the imaginary parts. Therefore, the modifications in
the distribution function of energetic electrons which happen
along the time evolution must be taken into account in the
evaluation of the imaginary parts ofI a . In our formulation
these integrals are evaluated numerically at each time step of
the evolution, using the actual distribution function. Due to
the azimuthal symmetry of the distribution function and to
the delta function appearing inI a9 (n,m,l ), only theui inte-
gral must be numerically performed.

On the other hand, the principal parts are dependent
upon the integrated distribution and usually can be regarded
as rather insensitive to detailed features in the distribution,
unless some peculiar circumstances are satisfied.42 This vir-
tual independence on detailed features of the distribution jus-
tifies further approximations, which contribute very much to
speeding up the quasilinear code. When evaluating the prin-
cipal part of the integralI a(n,m,l ) for the energetic distri-
bution we neglect them dependence of the distribution,
thereby considering a Maxwellian distribution. Moreover, in
order to avoid repeated evaluations, for the principal part we
assume that the temperature of the distribution is constant
along time evolution~a hypothesis which can be verifieda
posteriori, after application of the quasilinear procedure!.
These are the same hypotheses made in Ref. 39, and there-
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fore the principal part of the integralI h(n,m,l ) for the ener-
getic population can be given by Eq.~19! of Ref. 39, and
does not need to be repeated here. Similarly, the quantity
e33 for the energetic particles can be given by Eq.~21! of
Ref. 39.

For the case of the background distribution, which re-
mains stationary throughout the time evolution, the same
considerations can be made. Therefore,I b8(n,m,l ) and e33
are given by the two Eqs.~22! of Ref. 39. The imaginary part
I b9(n,m,l ), which does not evolve in time, can be given by
Eq. ~23! of Ref. 39.

D. Derivation of the growth rates

The instantaneous growth rate, which is necessary for
quasilinear evolution of the wave, is obtained from the solu-
tion of the dispersion relation. However, the dielectric tensor
which appears in the coefficients of Eq.~9! exhibits a com-
plex dependence onv, when thermal effects are taken into
account. As a consequence, the obtainment of the wave fre-
quency as a function ofk, for a given mode, is not a trivial
task, requiring sophisticated and time-consuming numerical
procedures. In order to overcome this difficulty and to make
the present quasilinear treatment tractable, we employ an ap-
proximate procedure, which turns out to be quite satisfactory
as far as the frequency range in which significant growth
occurs is not in the range of anomalous dispersion, and as far
as the group velocity does not approach zero. The procedure
has already been explained in Ref. 39, and will be only
briefly exposed here.

We obtain the growth rate as follows. The dispersion
relation as given by Eq.~9! is formally written as a quartic
equation, withN' as the unknown. Therefore, the roots can
be formally written as

N'
25

2B6AB224AC

2A
, ~11!

where the coefficientsA, B, andC are in general functions of
N' .

An iterative procedure is applied to Eq.~11!, starting
with the evaluation of the cold plasma root corresponding to
a specific mode, for a given value of the real wave fre-
quency. The quantityNi is treated as a parameter, since in
the slab geometry the parallel component of the refraction
index is constant along the trajectory of the radiation. Since
away from the resonance the refraction index is real, the
constancy ofNi along the ray in the proposed geometry as-
sures that it is a real parameter.

The iterative procedure provides a complex value of
N' ~or k' , since these quantities are proportional!. For a
finite group velocity, negative imaginary part of the wave
vector implies that the wave amplitude grows convectively.
Due to the finite group velocity, the growth along the ray
path can be expressed equivalently as a temporal growth.
This leads to an approximate expression for the growth rate,

v i.2kivgx , ~12!

wherevgx is thex component of the group velocity, andki is
the imaginary part ofk' .

III. NUMERICAL ANALYSIS AND RESULTS

Here the formalism developed in the previous section is
applied to a situation typical of the auroral zones of the
Earth. The parameters which are relevant for the application
are the ratio of electron plasma to electron cyclotron fre-
quency,h[vpe /Ve , the ratio between the energetic elec-
tron density and the background electron density,
r[nh /nb , the background electron temperatureTb , and the
initial values of the effective temperature of the energetic
electrons,Th , the loss cone angle, and the ratio between
wave energy and particle energy.

In the auroral regions, it is recognized the existence of a
population of hot electrons of magnetospheric origin, with
effective temperature near 4 keV, which prevails over the
cold population forz*1.5RE , whereRE is the radius of the
Earth, while the cold population dominates at low altitudes.
It is also known that the ratio of plasma to cyclotron fre-
quency is lower thanh50.1 for 1.1RE&z&2RE , ap-
proachingh51 for z→4RE , with recent observations em-
phasizing the occurrence of low density plasmas
(ne,1 cm23) in the source region of the AKR.43,44

Taking these conditions into account, we do not assume
any predominant electron population, usingr51 in the ap-
plication which follows. The background temperature is as-
sumed to beTb50.2 keV, the energetic temperatureTh54
keV, and the loss-cone angle is taken asuLC530° ~corre-
sponding tod50.1017304). With these assumptions, we in-
vestigate the quasilinear evolution of the instability for low
values of the parameterh, a situation which may be relevant
for the AKR.

A. Numerical implementation of the quasilinear
formalism

The solution of the dispersion relation for the initial con-
ditions shows that the relevant modes are the fundamental
X andO modes. The harmonics of these modes could be
included in the analysis, in principle, but they are only
weakly unstable when compared with the fundamental
modes, and will therefore be neglected. TheW mode is also
stable, as well as theZ mode, which can play a very relevant
role for higher density cases.38

We therefore proceed with the quasilinear evolution of
the waves and the electron distribution function. We assume
that the distribution of the spectral energy is uniform over
the initially unstable region in (w,q) space, and vanishes
outside of this region. The initial amplitude of the wave en-
ergy for each mode is determined by the initial value of the
integrated spectrum,Ewave(0). Since only the fundamental
X andO modes are relevant, they are the only modes in-
cluded in the formulation. For the sake of simplicity, we
assume the same initial level of wave energy for each mode,
choosing the wave energy such thatEwave

X (0)/Eparticle(0)
5Ewave

O (0)/Eparticle(0)51.031024, where Ewave
X (0)/

Eparticle(0) andEwave
O (0)/Eparticle(0) are, respectively, the ini-

tial values of the ratio between wave energy in theX and
O modes and particle energy associated with the energetic
electrons,
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Ewave

Eparticle
5

*d3k~ uẼku21uB̃ku2!/~8p!

nhmec
2*d3u~u2/2! f h

5
4p

3a2S 11
nb
nh

D Ve
2

vpe
2 E

2`

`

dqE
0

`

dwUẼwq

B0
U2

3@11uNu2~12uâk• k̂u2!#, ~13!

wherek̂ is a unitary wave vector.
The time evolution proceeds by taking into account the

unstable range of the wave field, for the evaluation of the
diffusion coefficient utilized in the quasilinear equation, Eq.
~4!. The wave energy therefore increases while there is an
unstable region in (w,q) space. Re-absorption of wave en-
ergy by the particles is not included in the analysis, and
spontaneous emission has not been considered.

The equation for the time evolution of the distribution
function is transformed into a set of finite difference equa-
tions in the (u,m) space, using centered derivatives for the
points inside the grid, and special equations using forward
and backwardm derivatives at the extremes of them inter-
val. We have considered a grid of 61331 points in this
space, for 0<u<ulim ~assuming ulim50.5), and for
21<m<1. Since for the unstable waves the wave-particle
resonance occurs for small values ofu, it is expected that the
significant modifications of the distribution function will be
restricted to this region, and therefore the distribution func-
tion is assumed to remain constant atu5ulim . For the wave
spectra, we have used a 31331 grid in (w,q) space, concen-
trated in the region where the growth rates are significant.
For the solution of the finite difference equations, we have
used the method ADI~implicit in alternated directions!,
which leads to a tri-diagonal system of equations that can be
solved by conventional methods.45,46 In the dispersion rela-
tion we have neglected harmonics and utilized the small Lar-
mor radius approximation.

B. Results of the numerical analysis

We start the analysis by considering that both resonant
and non-resonant diffusion are taking place. Although the
values of the non-resonant diffusion coefficient are expected
to be negligible when compared to the values of the resonant
diffusion coefficient, non-resonant diffusion may be never-
theless effective, causing re-distribution of the particle popu-
lation modified by the resonant interaction.

Initially we consider the case ofh50.01, and show in
Figs. 1 and 2 the normalized growth rates for theX andO
modes, versus normalized frequencyw and cos21q. The
quantity cos21q approximately coincides with the propaga-
tion angle, forw.1 and refractive index.1, which is the
case except near the cut-offs. The time step utilized in the
calculation has beenDt5500. Considering the magnitude of
the normalized growth rates, this value guarantees that the
wave fields evolve very little in each time step, as required
for the validity of the quasilinear treatment.

Figure 1~a! shows the initial values of the normalized
growth rates for theX mode. It is seen that the absolute
values of the growth rates are very small as compared to the

values of the real frequencies, which is a requirement for the
use of quasilinear theory. Figures 1~b! and 1~c! show, respec-
tively, the normalized growth rates for theX mode at
t52.03104 and att55.03104. When comparing with the
corresponding values att50 in Fig. 1~a!, it is noticeable the
reduction of the normalized growth rates, especially in the
regions of (w2q) space where they were more conspicuous
at t50. Similar considerations can be made about theO
mode growth rates, appearing in Fig. 2.

The time evolution of the distribution function for mag-
netospheric electrons can be observed in Fig. 3, where we
display three-dimensional surface plots off h , for the same
caseh50.01. Panel~a! shows the initial distribution func-
tion, att50, and panel~b! shows the distribution function at
t52.03104. It is possible to see the partial filling of the
loss-cone region, which continues and becomes more pro-
nounced, as shown by panel~c! of Fig. 3, for t55.03104.
The evolution at this time is already quite slow, and the
partial filling of the loss-cone region remains visually almost
unchanged for larger values oft. These results show that the

FIG. 1. Three-dimensional surface plots of the normalized growth rate for
the X mode, for h50.01. Parameters of the electron population:
uLC530°, Th54.0 keV, Tb50.2 keV; Ewave(0)/Eparticle51.031024. ~a!
t50.; ~b! t52.03104; ~c! t55.03104.
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distribution function stabilizes asymptotically with a remain-
ing degree of anisotropy which does not disappear due to the
maser instability. The ‘‘hole’’ appearing for small values of
u is not really a hole in the total distribution function, since
it is filled up by the low temperature background particles.

The modification of the distribution function can be seen
from a different point of view in Fig. 4, in which we show
the evolution of the parametera(t) as a function of normal-
ized time t, for three values ofh (h50.01, 0.03, and
0.05). Forh50.03 and 0.05 the time steps utilized have
beenDt5167 andDt5100, respectively. This parameter
a is related to the energy content of the energetic distribution
function (E is proportional toa2), and the result indicates
the relatively small decrease in the energy content of the
magnetospheric electron distribution, due to the maser insta-
bility, for the three cases considered. The small decrease in
the temperature of the energetic electrons justifies the as-
sumption of constant temperature, made for the evaluation of
the Hermitian part of the dielectric tensor.

The time evolution ofEwave/Eparticle(0) is displayed in
Fig. 5. Panel~a! shows the case of theX mode, and panel~b!
the case of theO mode. The asymptotic value of
Ewave/Eparticle(0) for theX mode appears to be nearly pro-

FIG. 2. Three-dimensional surface plots of the normalized growth rate for
the O mode, for h50.01. Parameters of the electron population:
uLC530°, Th54.0 keV, Tb50.2 keV; Ewave(0)/Eparticle51.031024. ~a!
t50.; ~b! t52.03104; ~c! t55.03104.

FIG. 3. Three-dimensional surface plots of the model distribution function
for energetic electrons, forh50.01 and other parameters as in Fig. 1.~a!
t50.0; ~b! t52.03104; ~c! t55.03104.

FIG. 4. Time evolution of the parametera(t), for three values ofh and
other parameters as in Fig. 1. Bold line,h50.01; normal line,h50.03; thin
line, h50.05.
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portional toVe /ve , similarly to what has been obtained
with numerical simulations conducted in the same range of
electron energies21. The growth of theO mode waves has
been negligible, as indicated by panel~b! of Fig. 5.

These results indicate that the evolution is qualitatively
similar in the whole range of values ofh considered in the
present application. The quantitative difference is the satura-
tion level of the wave energy, which increases with the de-
crease ofh, and the time scale for the evolution. The diffu-
sion time is larger for smallerh, due to the smaller growth
rates. The amplitude of the wave field therefore grows at a
slower pace, and the ensuing slow diffusion keeps the waves
growing longer time than in the case of largeh. For the
parameters considered, only 0.1%;0.2% of the particle en-
ergy is finally converted into wave energy by the instability,
an efficiency similar to that obtained with another quasilinear
approach using a cold plasma dispersion relation.35

At this point it is useful to comment upon some of the
properties of the code utilized. As it is well known, quasilin-
ear theory conserves the number of particles, as well as mo-
mentum and energy of the wave-particle system. However,
some approximations have been introduced in the present
quasilinear approach, and it is useful to analyze the outcome
of the calculations.

For instance, considering the case ofh50.05, we have
tested the code and verified that the normalization of the
distribution decreases by a factor.1.531023, for t be-
tween 0 and 1.03104. This small decrease could be none-
theless relevant for the energy content of the distribution,
since the efficiency of energy conversion is expected to be
less than 1% of the total particle energy. Therefore, we in-
troduced a renormalization of the distribution function at
each time step, which assures the property of conservation of
number of particles, as required by quasilinear theory. The

results presented in this section have been obtained using this
renormalization along the time evolution.

As far as energy conservation is concerned, we have
obtained results which are qualitatively consistent but quan-
titatively sensitive to small changes in the parameters of the
numerical solution, due to the very small relative modifica-
tion in particle energy~less than1%). Theloss of energy by
the particles may be evaluated from the initial and present
values ofa

DEparticle5~a2/a0
221!Eparticle~0!,

while the increase in the wave energy comes directly from
the addition of theX andO contributions as given by Fig. 5,
at each value oft.

In Fig. 6 we plot the quantity uDEp /DEwu, for
h50.01, 0.03, and 0.05, where the indexesp andw stand for
‘‘particle’’ and ‘‘wave,’’ respectively. The case ofh50.01
is shown in Fig. 6~a!, where the bold line indicates the result
obtained when non-resonant diffusion is taken into account
along the quasilinear evolution. It is seen that, after a tran-
sient phase, the quantityuDEp /DEwu stabilizes very near
unity, indicating good properties of energy conservation. If
the calculation is made for the same parameters without tak-
ing into account the non-resonant diffusion, we obtain the
result denoted by the thin line in Fig. 6~a!. This result is

FIG. 5. Time evolution ofEwave/Eparticle, for three values ofh and other
parameters as in Fig. 1. Bold line,h50.01; normal line,h50.03; thin line,
h50.05. ~a! X mode;~b! O mode.

FIG. 6. Time evolution of the parameteruDEp /DEwu, for three values of
h and other parameters as in Fig. 1. Bold line, calculation including non-
resonant diffusion; thin line, calculation without non-resonant diffusion.
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qualitatively similar to that obtained with non-resonant dif-
fusion, but stabilizes arounduDEp /DEwu.1.15, indicating
worst energy conservation.

For other values ofh the time evolution is similar, as
shown by Figs. 6~b! and 6~c! for h50.03 andh50.05, re-
spectively. It can be seen that the asymptotic value of the
ratio uDEp /DEwu is progressively more distant from unity. It
can also be seen that this ratio is larger when non-resonant
diffusion is not taken into account in the quasilinear equa-
tion. Therefore, the results shown in Fig. 6 indicate that the
approximations introduced in the present treatment, either
analytically or numerically, are progressively less adequate
as the parameterh is increased. However, although the en-
ergy conservation feature of the code becomes very poor for
increasingh, other features of the quasilinear evolution are
similar to those obtained in the case of smallh, and therefore
the results obtained in the whole range ofh can be regarded
at least as qualitative indications upon the actual behaviour
of the solution.

One of the qualitative features which emerge from the
results obtained is indeed the effect of non-resonant diffu-
sion. The results show that the energy conservation is more
strongly violated when non-resonant diffusion is neglected
than when it is taken into account, specially for larger values
of h ~when the growth rates are larger!. The comparison
between the asymptotic values indicated by the bold lines
and the thin lines in Fig. 6 indicates that a significant part of
the energy lost by resonant particles is not really going into
wave growth but is redistributed among the particles by non-
resonant diffusion. This redistribution of energy by non-
resonant diffusion has already been recognized in simpler
situations, as in the textbook case of the ‘‘bump-in-tail’’
instability,41 but it is usually not taken into account in qua-
silinear calculations.

Finally, it is interesting to compare the asymptotic dis-
tribution function obtained for the energetic electrons with
the distribution obtained in a quasilinear analysis using mo-
ments of the quasilinear equation.38,39 As expected, some
features of the quasilinear evolution obtained with the sim-
plified moment approach are qualitatively similar to those
obtained with the present full numerical solution, but inter-
esting details of the evolution of the distribution function are
described here which can not be observed with the simplified
approach. The difference is visually observable in the shape
of the asymptotic distribution function, in three-dimensional
~3D! plots like those of Fig. 3. The anysotropy depicted in
Fig. 3~c! is different from the residual anisotropy which can
be seen in Fig. 1~c! of Ref. 39, for instance. There are also
other quantitative differences in the results, like the smaller
efficiency of the energy diffusion and the smaller growth of
the wave field obtained with the present approach, when
compared with the previous moment method~as in the case
with h50.05 andr51, in Ref. 39!. Another important dif-
ference is that the time scale for saturation appears to be
much faster in the present full numerical approach than ob-
tained in the case of the moment method.39

IV. SUMMARY AND CONCLUSIONS

In the present paper we have carried out a quasilinear
analysis of the electron cyclotron maser instability driven by
a loss-cone population, introducing thermal effects and using
the full dispersion relation in the quasilinear treatment of the
loss-cone instability. As an application of the formalism, we
have chosen a set of parameters typical of the Earth’s auroral
zone plasma, which may be relevant to the description of the
auroral kilometric radiation. For the parameters chosen, the
ratio between electron plasma frequency and electron cyclo-
tron frequency is sufficiently small in order that the only
relevant unstable modes are the fundamentalX and O
modes. In the present investigation, we did not conduct a
general numerical investigation of the effect of the many
parameters involved, prefering instead a single example as
illustration of the use of the formalism. In general, it is not
possible to foresee the effect of a given parameter. For in-
stance, a parameter which certainly is significant for the
growth rate and the saturation level of the instability is the
loss-cone angle. However, there are many features to be con-
sidered. On one hand, smaller loss-cone angles are easier to
fill-up, which could imply faster saturation of the quasilinear
process. On the other hand, smaller loss-cone angles feature
sharper gradients in velocity space, which may imply larger
initial growth rates in some frequency range, and therefore
faster wave growth. Therefore, only a careful investigation
can display the actual dependence on this parameter.

In addition to the parameters, there are other potentially
interesting features involved. For instance, different forms of
the initial distribution function, while conserving the loss-
cone character, may give rise to different initial growth rates
and possibly non-trivially modify the outcome of the calcu-
lation. We intend to investigate these non-trivial features in
the near future, and report any interesting findings in a forth-
coming publication.

The numerical analysis of the self-consistent set of equa-
tions governing the evolution of the particle distributions and
the wave fields, for the case considered, demonstrated that
only 0.1%;0.2% of the particle energy is converted to wave
energy by the loss-cone instability. The dependence of the
amplification efficiency on the frequency ratiovpe /Ve has
been briefly discussed, and it has been seen that the satura-
tion amplitude forX mode waves increases when this fre-
quency ratio is decreased, in agreement with results previ-
ously obtained by means of numerical simulations. Of
course, the agreement in this feature does not mean complete
equivalence between the present quasilinear results and re-
sults obtained by numerical simulations. Numerical simula-
tions, as well as quasilinear simulations, can be made with a
variety of constraints and assumptions, and detailed compari-
sons are usually difficult and not conclusive.

The formalism and the numerical analysis utilized incor-
porated both resonant and non-resonant diffusion in the qua-
silinear equation for the particle distribution. The numerical
results have indicated that the effect of non-resonant diffu-
sion is significant and increases with the increase of the ratio
vpe /Ve , due to the larger growth rates. Although the results
regarding energy conservation are only qualitative, the indi-
cation is that a considerable fraction of the energy involved
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in wave-particle resonance processes is not converted into
wave energy, being only redistributed among the particles by
non-resonant diffusion. When non-resonant diffusion is not
considered, this fraction of energy simply disappears from
the system and the energy conservation properties of the nu-
merical solution considerably degrade.

The comparison between the results of the present full
numerical approach and the results obtained in previous
studies which utilized a moment method for the time evolu-
tion of the distribution function indicates that the moment
method super estimates the efficiency of energy conversion
and predicts larger wave amplification than the full numeri-
cal method, for the same parameters. The time scale for satu-
ration predicted by the full numerical approach is consider-
ably shorter than predicted by the moment method. The
distribution functions found with the use of these two ap-
proaches feature some differences visually perceptible in 3D
plots, although both methods predict that the asymptotic state
of the instability is attained with partial filling up of the
loss-cone, with certain degree of pitch angle anisotropy re-
maining in the distribution function.

ACKNOWLEDGMENTS

This work has been partially supported by the Brazilian
agencies Conselho Nacional de Desenvolvimento Cientı´fico
e Tecnolo´gico ~CNPq! and Financiadora de Estudos e Proje-
tos ~FINEP!. Numerical computations were performed at the
Supercomputer Center installed at the Universidade Federal
do Rio Grande do Sul~CESUP-UFRGS!.

APPENDIX: SUMMARY OF THE DERIVATION OF THE
QUASILINEAR EQUATION

The quasilinear kinetic equation for the energetic elec-
tron component may be derived with the use of a standard
textbook procedure, resulting
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pe2

me
2c2 (

n52`
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where summation over unstable modes is implicit,âk is the
polarization vector,L and L8 are differential operators re-
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The « i j are the components of the dielectric tensor, and
theP i

n are given by
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l
Jn~l!, P2

n5 iJn8~l!,

P3
n5

ui
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Jn~l!, l5
2N'u'

Y
,

where theJn andJn8 are, respectively, the Bessel function of
ordern and its derivative, withui andu' being, respectively,
the parallel and perpendicular components of the normalized
particle momentum,u.

Equation~A1! can be cast in more convenient form by
defining auxiliary quantities,

D̂ab5
pe2

me
2c2 (

n52`

` E d3kUẼwq
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uvu
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Defining new variables u[(u'
21ui

2)1/2 and
m[ui(u'

21ui
2)21/2, and after some simple algebraic ma-

nipulation, we arrive to

]t f h5
1
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where

D̂uu5~12m2!D̂''12m~12m2!1/2D̂'i1m2D̂ ii ,

D̂um5D̂mu5m~12m2!1/2D̂''2~122m2!D̂'i

1m~12m2!1/2D̂ ii ,

D̂mm5m2D̂''22m~12m2!1/2D̂'i1~12m2!D̂ ii .

With the use of the definitions ofD̂' and D̂ i , given
before Eq.~A2!, and introducing the electron cyclotron fre-
quency, it is easy to show that these expressions can be writ-
ten as follows:

D̂uu5~12m2!puVeu (
n52`

` E d3kUẼwq

B0
U2uâk•Pnu2

3
g

uvu
d~g2nY2Nium!,
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After using these expressions into Eq.~A3!, and intro-
ducing the dimensionless variablest5uVeut, q[cki /uVeu,
and w[v/uVeu, and expressing the spectral wave energy
density as a function of these normalized quantities,

E d3kuẼku252pE
2`

`

dqE
0

`

dwuẼwqu2,

we arrive at the following:
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where we have defined
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Equation~A4! is precisely Eq.~4!, which appears is Sec.
II giving the time evolution of the distribution function for
the energetic electron component.
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