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Quasilinear evolution of the weakly relativistic electron cyclotron
maser instability

L. F. Ziebel®
Instituto de Fsica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051,
91501-970 Porto Alegre, RS, Brasil

(Received 2 January 1997; accepted 16 April 1997

This paper presents a quasilinear analysis of the relativistic electron cyclotron maser instability in
which the self-consistent set of equations governing the evolution of the particle distribution
function and the energy spectra of unstable waves is numerically solved for parameters typical of the
Earth’s auroral zone plasma, taking into account both resonant and non-resonant diffusions. The
results obtained show that only 0.190.2% of the particle energy is converted into wave energy

by the loss cone instability, and also show that the saturation amplitude for the extraordinary mode
increases in proportion to the ratio between electron cyclotron frequency and electron plasma
frequency, in agreement with previous results obtained with numerical simulations.99®
American Institute of Physic§S1070-664X97)04407-9

I. INTRODUCTION parameters of the distribution. The method has been em-

ployed for the study of a region of parameters for which the

In natural plasmas and in laboratory experiments instacompetition between different wave modes may be very im-

bilities may be driven by inversion of the electron populationportant' and the conclusion has been that the mode with

in the direction perpendicular to the ambient magnetic fieldjarger initial growth rate does not necessarily prevail over

For instance, this kind of instability is present in laboratory modes with smaller initial growth rates, in the late stage of
microwave generation devicé$d,and it is believed that it is the time evolutiors®

also responsible for the phenomenon known as the Earth’s The moment method has also been employed in another
kilometric radia_tiorﬁ‘z_s_l_t has also been conjectured that the jnyestigation, which fully incorporated thermal effects as
same class of instabilities can be found in a variety of otheye| as the effect of the energetic electrons in the dispersion
situations, such as in gsztrophysmal radio sou?&e@,pla_r;; relation®® The method has been applied for parameters typi-
etary radio .emISSIOn%g'. and solar microwave .purs‘"té. _cal of the Earth’s auroral zone, for a situation in which the
The theoretical analysis of this kind of instability requires rgjevant unstable modes are the fundamental extraordinary
relativistic effects in the description of the wave-particle in- 5 ordinary modes. The results indicate that in the case of
teraction, and the instability is therefore called thktivistic higher population of energetic electrons the fast diffusion
electron cyclotron masen the literature. saturates early the instability, at a wave level which is not

The existing literature on the cyclotron maser instabilityvery different from the level attained in the case of smaller
has usually emphasized linear features of the instability. Th%opulation of energetic electrons.

discussions which incorporate nonlinear features lhzaovg fre-  For the present investigation on the quasilinear evolution
quently employed numerical simulation methds:** of the electron cyclotron maser instability, however, we de-
Some attempts have been made, however, to study the noga|qp, 4 formulation which does not make use of the moment
linear stage of the instability by the use of quasilinearyethog, deriving instead a quasilinear equation which can be
theory™>%“+*Among these attempts, particularly inter- , merically solved for the time evolution of the electron
esting for the present investigation is the work developed "Mistribution function, self-consistently with the spectra of un-
Refs. 35 and 36, in which the set of fully self-consistentgiapie waves. Both resonant and non-resonant diffusion are
quasilinear particle and wave kinetic equations has been Niscormorated to the quasilinear equation. The formalism uti-
merically solved, using the cold plasma dispersion relation;;es 5 gispersion relation in which thermal effects are fully
and assuming that the cold electrons support the waves Whilg e into account, including the contribution of both the

the energetic population contributes to the growth of the,,cground electronic population and the population of en-

waves. ergetic electrongit has been demonstrated that these thermal

Another recent investigation about the quasilinear evolugtects can be important for the case of extraordinary mode
tion of the cyclotron maser instability, which also assumed; qves  with frequency near the electron cyclotron

that the instability is driven by a tenuous population of eN-fraquenc§). For the numerical application of the formula-
ergetic electrons while a cold background plasma supportgy, e choose parameters motivated by the so-called au-
the wave motion, has been developed in Ref. 38. The a4 kilometric radiatioAKR). As it is known, this radia-
proach utilized in Ref. 38 makes use of a model time-jon phenomenon was first observed in the late 1960s and

dependent distribution function and employs moments of th%arly 1970¢° and was successfully explained in terms of the

guasilinear equation, in order to obtain the time evolution Ofweakly relativistic maser instability by Wu and L&eyhich

identified the source of the instability as the loss-cone elec-
dElectronic mail: ziebell@if.ufrgs.br trons that are formed when the energetic electrons injected
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from the geomagnetic tail region are reflected by the conUsing the relatiorE=3n,T,/2 the effective temperature of
verging geomagnetic field. We therefore assume a lowthe loss-cone electrons can be related to the parameser
temperature background electron component along with @,=m.c2a?/2. Of course,a(0) appearing in Eq(2) is the
more energetic loss-cone population, and use a model lossiitial value of the quantityr. The variablesi andu appear-
cone distribution as the initial state of the energetic electronsng in Egs.(1) and(2) are, respectively, the absolute value of
along with a time-varying wave spectra in the unstable rangéhe normalized momentumn= p/(m.c) and the cosine of the
of frequencies. pitch angle.

The organization of this paper is the following. In Sec. II
we introduce the model electron distribution functions uti-
lized as starting conditions for the time evolution, outline the

B. Quasilinear formalism

derivation of the quasilinear equation and present a brief dis-
cussion on the dispersion relation for electromagnetic waves We have assumed stationary background distribution.
and on the procedure for obtaining the growth rate of theHowever, the energetic electron distribution may evolve in
unstable waves. In Sec. Il we briefly describe the methodime. If the wave level is sufficiently small, this evolution
employed for the numerical solution of the quasilinear equamay be described by the quasilinear approach. Following a
tion, and present the results of a numerical analysis, made f@tandard textbook procedure, it is possible to arrive to the
parameters typical of the auroral zones of the Earth. Finallyfollowing expression for the quasilinear kinetic equation for
Sec. IV summarizes and discusses the results. the energetic electron component:

) 4

Il. GENERAL FORMULATION

1 1
anh:FaU{ (1_:“2) uz( Duydufn— GDU,U«&th)
We are interested in instabilities that operate in the vi-
cinity of the electron cyclotron frequency and/or its harmon- )
ics. Due to the high frequency nature of the waves, the ion B Gﬁﬂ (1=u%)
response to any perturbation can be ignored, and therefore
the ions only provide for charge neutrality. The electrons argpare
assumed to feature a relatively cold component with density
ny and an energetic component with density, possessing a w0
one-sided loss-cone structure in momentum space. The ge- D.p= 277 Q| 2 dqf dw‘
ometry is such that the ambient magnetic field lies along the I

z direction By=Bye,), with the wave vectok situated in

1
D ,udufn— D,u,u&uf

0|2

the x—z plane,k=k sin #e,+k cosfe,. Xﬁ&y_m(_ Nju)AqAy,
A. Initial electron loss-cone distribution
The cold background population is represented by a low Ny
temperature Maxwellian distribution function Ay=1A,=p— B
1 u?
Fp(u,p)= 773’2a§ exp — a_b ’ (1) and where summation over unstable modes is imp??cﬂhe

quantity 7 is the normalized time=|{|t, N| is the parallel
component ofN=ck/w, (. is the electron cyclotron fre-
quency, andY=|Q¢/w. Some details of the derivation of
%q. (4) appear in the Appendix, including the expression for

|ék~ I1,|2 in terms of the components of the dielectric tensor.
In Eq. (4) the spectral wave energy density has been
expressed as a function of the normalized quantities
o 1 q=ck/|Q andw=w/|Q|. The spectral density is a time
Fr(u,p,t=0)= 7263(0) expg — a?(0) G(w), @ dependent quantity, which evolves in time according to

where a2=2T,/m.c?, with T, being the temperature of the
background electrons measured in energy units rapdhe
electron mass. This background distribution is assumed t
remain stationary along the time evolution of the system.
As the initial distribution function for the energetic elec-
trons we assume the following model distribution functin:
2

where q
1 -1 ——[Eugl®=2w|Eugl®, (5)
Gu)=rT——Fr—= tanr? dr’ h
1- 6 tanh(1/6) 25

The paramete? is related to the loss-cone anglec, where the normalized growth ratg =Im(w) can be self-

according to the following expression: consistently obtained from the dispersion relation. The per-
4 sin(2— 3 pendicular component of the wave vectdt, (), appearing in

OLc=cos 1+4In(2=y3)]. ®) |ék I1,|2, can also be obtained from the dispersion relation

The total thermal energy associated with the energetias a function oN; andw, with N; given by N;=q/w.
loss-cone electrons is given byE/mecz—nh<u2/2) In the derivation leading to Eq4) vanishing growth

=3npa?/4, where (...)=2xf1 dufsdu ?...f(u,u). rates have been assumed, and therefore only the effect of
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resonant diffusion remains operative in the quasilinear evo- - i3t dj3
P q &ij= 0jjt 6izdjzast N, Py

(10)
lution. However, non-resonant diffusion can be introduced at

i

this stage, by the following procedufté: where
v B 3 U||ﬁfa/0U”
7 8(y—nY—Njuu) 3=, xaf dPu——,
lw] 7 =4 « Y= Ny
n|Qe| CkHUH Xa *° NL 2(m-1)
i @ S
= lim
wﬁw(w_ Qe ck”u”)erw2 Xn;m sij(n,m)1 ,(n,m, &3+ Jj3),
Y Y '
and where the summation over is over electron species.
— lim Wi For these expressions, we have defined
o el [ nau|® uju?mt g
I W vy oy Wi I (nml)zfd3uH;—[(y—Nu)a
ari y—nY— N”U” Y I U
Therefore, considering that for the unstable waves the
growth rates are small but finite, the components of the dif- + NHUL‘?uH]fa’
fusion tensor appearing in E¢}) can be written as follows: and X, = wfmlwz, wherewpa=(4wnae2/me)1’2 is the elec-
* w = |E, 2 tron plasma frequency for species [We define the total
Doy=27 2, dqf dw B—q |a - T, 2 electron plasma frequency ly,.= (4mnre?/mg)*4 where
n=oe s 0 0 nr=2,n, is the total electron density.The coefficients
W sij(n,m) can also be found in Ref. 39 and will not be re-
x N qu2 AxAp. (6)  peated here.
( —— —) 2 Thel ,(n,m,l) integrals defined in Eq10) can be sepa-
Y Y

rated into real and imaginary parts, with the real part given
Moreover, for small growth rate, it is possible to approxi- by the principal part of the integral and the imaginary part

mateD,,=D}, in the resonant region, where being the contribution of the resonancH ,(n,m,l)
" - |2 =1, (n,mI)+il’(n,m,I)]. As it is known, the imaginary
Dl =272 S - dqfwdw Euq ETAE partl;(n,m,1) is very sensitive to features of the distribution
ab n=—o J-o 0 Bo A function along the resonance curve in momentum space. The

exact position of the resonance curve is very important for
Xl5(7—nY—NHUM)AaAb- 7 thg qorrect description qf wave particle resonance, and rela-

|w] tivistic effects must be incorporated for the correct evalua-

On the other hand, forv(—n/y—quH/y)2>wi2, the tion of the imaginary parts. Therefore, the modifications in

imaginary part ofv can be neglected in the denominator angthe distribution function of energetic electrons which happen

the non-resonant contribution to the diffusion tensor is ob2/0Ng the time evolution must be taken into account in the
tained evaluation of the imaginary parts of. In our formulation

_ these integrals are evaluated numerically at each time step of

Ewg - ) the evolution, using the actual distribution function. Due to

B_o |- | the azimuthal symmetry of the distribution function and to
the delta function appearing irf,(n,m,l), only the uy inte-

% Wi AA ®) gral must be numerically performed.

(w—n)2-a=b: On the other hand, the principal parts are dependent
upon the integrated distribution and usually can be regarded
- 1) 2= (W )2 as rather insensitive to detailed features in the distribution,

(Qu /) =(w=n)= unless some peculiar circumstances are satifigtis vir-
tual independence on detailed features of the distribution jus-
tifies further approximations, which contribute very much to
speeding up the quasilinear code. When evaluating the prin-
The dispersion relation is written as cipal part of the integral ,(n,m,l) for the energetic distri-

— AN4 2 _ bution we neglect thew dependence of the distribution,
A(k,0)=AN;+BN; +C=0, ©) thereby considering a Maxwellian distribution. Moreover, in
whereA, B and C are coeficients depending of the compo- order to avoid repeated evaluations, for the principal part we
nents of the dielectric tensor and bij. Explicit expressions assume that the temperature of the distribution is constant
for A, B and C can be found in Ref. 39 and will not be along time evolutionla hypothesis which can be verified
repeated here. The components of the dielectric tensor aposteriori after application of the quasilinear procedure
denoted agj;, and can be written as follows: These are the same hypotheses made in Ref. 39, and there-

2

©

DM =27 >, oquO dw‘

=— —

where we have further approximated w< (n/vy)

C. Dispersion relation
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fore the principal part of the integraj(n,m,l) for the ener-  1ll. NUMERICAL ANALYSIS AND RESULTS
getic population can be given by E@L9 of Ref. 39, and
does not need to be repeated here. Similarly, the quantity Here the formalism developed in the previous section is
€33 for the energetic particles can be given by E2l) of  applied to a situation typical of the auroral zones of the
Ref. 39. Earth. The parameters which are relevant for the application

For the case of the background distribution, which re-are the ratio of electron plasma to electron cyclotron fre-
mains stationary throughout the time evolution, the samejuency, 7=w,./Q,, the ratio between the energetic elec-
considerations can be made. Therefdign,m,l) andes;  tron density and the background electron density,
are given by the two Eq$22) of Ref. 39. The imaginary part p=n,/n,, the background electron temperatilie, and the
I5(n,m,1), which does not evolve in time, can be given by initial values of the effective temperature of the energetic
Eq. (23) of Ref. 39. electrons,Ty,, the loss cone angle, and the ratio between
wave energy and particle energy.

In the auroral regions, it is recognized the existence of a
population of hot electrons of magnetospheric origin, with

The instantaneous growth rate, which is necessary foeffective temperature near 4 keV, which prevails over the
quasilinear evolution of the wave, is obtained from the solucold population foz=1.5R, whereRg is the radius of the
tion of the dispersion relation. However, the dielectric tensorgarth, while the cold population dominates at low altitudes.
which appears in the coefficients of E§) exhibits a com- |t js also known that the ratio of plasma to cyclotron fre-
plex dependence om, when thermal effects are taken into quency is lower thanp=0.1 for 1.1Rz<z<2Rg, ap-
account. As a consequence, the obtainment of the wave fr%‘roachingnzl for z—4 Rg, with recent observations em-
qguency as a function &, for a given mode, is not a trivial phasizing the occurrence of low density plasmas
task, requiring sophisticated and time-consuming numericadne<1 cm3) in the source region of the AKF:4
procedures. In order to overcome this difficulty and to make
the present quasilinear treatment tractable, we employ an a

proximate procedure, which turns out to be quite satisfactor lication which follows. The background temperature is as-

as far as the frequency range in which significant growt umed to beT,=0.2 keV, the energetic temperatuFg=4

occurs is not in the range of anomalous dispersion, and as far : P
. eV, and the loss-cone angle is taken éag=30° (corre-
as the group velocity does not approach zero. The procedure . B . . .
. . ) sponding to5=0.1017304). With these assumptions, we in-
has already been explained in Ref. 39, and will be Onlyvesti ate the quasilinear evolution of the instability for low
briefly exposed here. 9 q y

We obtain the growth rate as follows. The dispersionvalues of the parametey, a situation which may be relevant

relation as given by Eq9) is formally written as a quartic ©" (€ AKR.
equation, withN, as the unknown. Therefore, the roots canA. Numerical implementation of the quasilinear

D. Derivation of the growth rates

Taking these conditions into account, we do not assume
B’ny predominant electron population, usipg 1 in the ap-

be formally written as formalism
, —B=* B2—4AC The solution of the dispersion relation for the initial con-
NT = 2A , (1D ditions shows that the relevant modes are the fundamental

X and O modes. The harmonics of these modes could be
included in the analysis, in principle, but they are only
N, . weakly unstable when compared with the fundamental

'thA{E |tera}|vet. proc]?t?]ure % af)plled to 'tqul)’ startlc?g t modes, and will therefore be neglected. Wemode is also
Wi € evajuation orthe cold plasma root corresponding 0stable, as well as the mode, which can play a very relevant
a specific mode, for a given value of the real wave fre- : .

L9 = "=role for higher density casés.
quency. The quantiti; is treated as a parameter, since in

, We therefore proceed with the quasilinear evolution of
the slab geometry the parallel component of the refracuor%he waves and the electron distribution function. We assume
index is constant along the trajectory of the radiation. Since o L

hat the distribution of the spectral energy is uniform over

away from the resonance the refraction index is real, th - T .
the initially unstable region inw,q) space, and vanishes

constancy ofN; along the ray in the proposed geometry as- , . . . .
sures tha)t/ it isHa reaglg param)t/eter prop d y outside of this region. The initial amplitude of the wave en-
The iterative procedure provides a complex value of€'9Y for each mode is determined by the initial value of the

N, (or k, , since these quantities are proportionddor a integrated spectrunt;,,,,{0). Since only the fundamentall
finite group velocity, negative imaginary part of the wave X @nd O modes are relevant, they are the only modes in-
vector implies that the wave amplitude grows convectively cluded in the formulation. For the sake of simplicity, we
Due to the finite group velocity, the growth along the rayassume the same initial level of wave energy for each mode,
path can be expressed equivalently as a temporal growt§hoosing the wave energy such thBf,,d 0)/Epgricd0)
This leads to an approximate expression for the growth rate=Ewavd 0)/Eparicd0)=1.0x10"*,  where  Ej,,d0)/
=~k 12 Epartic,e(O) andE\,ovave(O_)/Epartide(O) are, respectivgly, the ini-
gx» tial values of the ratio between wave energy in theand
wherev g, is thex component of the group velocity, akgdis O modes and particle energy associated with the energetic
the imaginary part ok, . electrons,

where the coefficientd, B, andC are in general functions of

2700 Phys. Plasmas. Vol. 4, No. 7, July 1997 L. F. Ziebell



Ewave _ fdsk(|Ek|2+ |§k|2)/(8’n—) 2.0e—04wi
Eparticle nhmeczfdgu(uzlz)fh }8:82
_ 2 5.0e-05
4w Lo Q_ﬁjw g jde% 0.06-100 <2
 3a’ ny wge — g 0 Bo

X[1+|N[*(1—|a kA1, (13

wherek is a unitary wave vector.

The time evolution proceeds by taking into account the
unstable range of the wave field, for the evaluation of the
diffusion coefficient utilized in the quasilinear equation, Eqg.
(4). The wave energy therefore increases while there is an
unstable region inw,q) space. Re-absorption of wave en-

w;
2.0e-04

ergy by the particles is not included in the analysis, and }»ge-gi
spontaneous emission has not been considered. 5j0§:05
0.0e+00 <=

The equation for the time evolution of the distribution
function is transformed into a set of finite difference equa-
tions in the (1, 1) space, using centered derivatives for the
points inside the grid, and special equations using forward
and backwardu derivatives at the extremes of theinter-
val. We have considered a grid of 8B1 points in this
space, for Gu<uy, (assuming u;,=0.5), and for
—1=u=<1. Since for the unstable waves the wave-particle
resonance occurs for small valuesupfit is expected that the
significant modifications of the distribution function will be
restricted to this region, and therefore the distribution func-

. . . 1.5e-04
tion is assumed to remain constantat u;,, . For the wave 1.0e-04
spectra, we have used a*831 grid in (w,q) space, concen- 0%2‘183

trated in the region where the growth rates are significant.
For the solution of the finite difference equations, we have
used the method ADKimplicit in alternated directions

which leads to a tri-diagonal system of equations that can be

solved by conventional metho#3® In the dispersion rela-
tion we have neglected harmonics and utilized the small Lar;
mor radius approximation.

q

w;
2.0e-04

FIG. 1. Three-dimensional surface plots of the normalized growth rate for
the X mode, for »=0.01. Parameters of the electron population:
Oc=30°, T,=4.0 keV, T,=0.2 keV; Ead 0)/Eparicie= 1.0X 1074 (a)

=0.; (b) 7=2.0x10% (c) 7=5.0x 10",

B. Results of the numerical analysis

We start the analysis by considering that both resonantalues of the real frequencies, which is a requirement for the
and non-resonant diffusion are taking place. Although thause of quasilinear theory. Figureghiand Xc) show, respec-
values of the non-resonant diffusion coefficient are expectetlvely, the normalized growth rates for th¥ mode at
to be negligible when compared to the values of the resonant=2.0x 10* and atr=5.0x 10*. When comparing with the
diffusion coefficient, non-resonant diffusion may be never-corresponding values at=0 in Fig. 1(a), it is noticeable the

theless effective, causing re-distribution of the particle popufeduction of the normalized growth rates, especially in the

lation modified by the resonant interaction.

Initially we consider the case of=0.01, and show in
Figs. 1 and 2 the normalized growth rates for theand O
modes, versus normalized frequenay and cos'q. The

regions of (v—q) space where they were more conspicuous
at 7=0. Similar considerations can be made about @he
mode growth rates, appearing in Fig. 2.

The time evolution of the distribution function for mag-

quantity cos'q approximately coincides with the propaga- netospheric electrons can be observed in Fig. 3, where we

tion angle, forw=1 and refractive index=1, which is the

display three-dimensional surface plotsfgf, for the same

case except near the cut-offs. The time step utilized in thease=0.01. Panela) shows the initial distribution func-
calculation has beef 7=500. Considering the magnitude of tion, at7=0, and pane{b) shows the distribution function at
the normalized growth rates, this value guarantees that the=2.0x10% It is possible to see the partial filling of the
wave fields evolve very little in each time step, as requiredoss-cone region, which continues and becomes more pro-

for the validity of the quasilinear treatment.

nounced, as shown by pan@) of Fig. 3, for 7=5.0x 10*.

Figure Xa) shows the initial values of the normalized The evolution at this time is already quite slow, and the
growth rates for theX mode. It is seen that the absolute partial filling of the loss-cone region remains visually almost
values of the growth rates are very small as compared to thenchanged for larger values of These results show that the

Phys. Plasmas, Vol. 4, No. 7, July 1997
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FIG. 2. Three-dimensional surface plots of the normalized growth rate for
the O mode, for »=0.01. Parameters of the electron population:
6.c=30°, T,=4.0 keV, T,=0.2 keV; Ead0)/Eparicie= 1.0 1074 (@
7=0.; (b) 7=2.0x10% (c) 7=5.0x 10".

FIG. 3. Three-dimensional surface plots of the model distribution function
for energetic electrons, fop=0.01 and other parameters as in Fig.(d.
7=0.0; (b) 7=2.0x10% (c) r="5.0x 10*.

distribution function stabilizes asymptotically with a remain- The time evolution ofE, e/ Eqaiad0) is displayed in
ing degree of anisotropy which does not disappear due to thEig. 5. Panela) shows the C"g’; ofp?rr;gmode, and pandb)
maser instability. The “hole” appearing for small values of the case of theO mode. The asymptotic value of

u is not really a hole in the total distribution function, since
' Eave/ Eparicid 0) for the X mode appears to be nearly pro-
it is filled up by the low temperature background particles. —"2"® paricid 0) PP yp

The maodification of the distribution function can be seen
from a different point of view in Fig. 4, in which we show

the evolution of the parameter(7) as a function of normal- 012514 ' ' ' '
. ( 0.12512
ized time 7, for three values ofy (7=0.01, 0.03, and 0.12510
0.05). For »=0.03 and 0.05 the time steps utilized have 0’12508
beenA =167 andA7=100, respectively. This parameter 8212506

« is related to the energy content of the energetic distribution
function (E is proportional toe?), and the result indicates
the relatively small decrease in the energy content of the
magnetospheric electron distribution, due to the maser insta-
bility, for the three cases considered. The small decrease in
the temperature of the energetic electrons justifies th_e 8%jG. 4. Time evolution of the parametex(7), for three values ofp and
sumption of constant temperature, made for the evaluation Qfiher parameters as in Fig. 1. Bold ling=0.01; normal line 7= 0.03; thin
the Hermitian part of the dielectric tensor. line, =0.05.

0.12504
0.12502
0.1258
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FIG. 5. Time evolution ofE e/ Eparice, fOr three values ofy and other
parameters as in Fig. 1. Bold lin@=0.01; normal line,»=0.03; thin line,
7=0.05.(a) X mode;(b) O mode.

portional to Q./w., similarly to what has been obtained
with numerical simulations conducted in the same range of . . .
electron energiéd The growth of theO mode waves has 00400 Bet03 le04 2404 20404

been negligible, as indicated by parib) of Fig. 5.

These results indicate that the evolution is qualitativelyFiG. 6. Time evolution of the parametfsE,/AE,|, for three values of
similar in the whole range of values af considered in the # and other parameters as in Fig. 1. Bold line, calculation including non-
present application. The quantitative difference is the saturgésonant diffusion; thin line, calculation without non-resonant diffusion.
tion level of the wave energy, which increases with the de-
crease ofp, and the time scale for the evolution. The diffu-
sion time is larger for smalley,, due to the smaller growth results presented in this section have been obtained using this
rates. The amplitude of the wave field therefore grows at aenormalization along the time evolution.
slower pace, and the ensuing slow diffusion keeps the waves As far as energy conservation is concerned, we have
growing longer time than in the case of large For the obtained results which are qualitatively consistent but quan-
parameters considered, only 0.190.2% of the particle en- titatively sensitive to small changes in the parameters of the
ergy is finally converted into wave energy by the instability, numerical solution, due to the very small relative modifica-
an efficiency similar to that obtained with another quasilineattion in particle energyless tharil%). Theloss of energy by
approach using a cold plasma dispersion relatfon. the particles may be evaluated from the initial and present

At this point it is useful to comment upon some of the values of«a

roperties of the code utilized. As it is well known, quasilin- 2
garptheory conserves the number of particles, as V\?ell as mo- AEparioie= (@ g~ 1) Epartad 0),
mentum and energy of the wave-particle system. Howevenyhile the increase in the wave energy comes directly from
some approximations have been introduced in the presetite addition of theX andO contributions as given by Fig. 5,
quasilinear approach, and it is useful to analyze the outcomat each value of.
of the calculations. In Fig. 6 we plot the quantity|AE,/AE,|, for

For instance, considering the casepf 0.05, we have %=0.01, 0.03, and 0.05, where the indeypeandw stand for
tested the code and verified that the normalization of thé'particle” and “wave,” respectively. The case off=0.01
distribution decreases by a facter1.5x10 3, for = be- is shown in Fig. 6a), where the bold line indicates the result
tween 0 and 1.810* This small decrease could be none- obtained when non-resonant diffusion is taken into account
theless relevant for the energy content of the distributionalong the quasilinear evolution. It is seen that, after a tran-
since the efficiency of energy conversion is expected to bsient phase, the quantijAE,/AE,| stabilizes very near
less than 1% of the total particle energy. Therefore, we inunity, indicating good properties of energy conservation. If
troduced a renormalization of the distribution function atthe calculation is made for the same parameters without tak-
each time step, which assures the property of conservation dfig into account the non-resonant diffusion, we obtain the
number of particles, as required by quasilinear theory. Theesult denoted by the thin line in Fig(&. This result is
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qualitatively similar to that obtained with non-resonant dif- IV. SUMMARY AND CONCLUSIONS

fusion, but stabilizes arounfAE,/AE,|=1.15, indicating In the present paper we have carried out a quasilinear

worst energy conservation. S analysis of the electron cyclotron maser instability driven by
For other values ofy the time evolution is similar, as 3 Joss-cone population, introducing thermal effects and using
shown by Figs. &) and €c) for 7=0.03 and=0.05, re-  the full dispersion relation in the quasilinear treatment of the
spectively. It can be seen that the asymptotic value of théoss-cone instability. As an application of the formalism, we
ratio |AEp/A E./| is progressively more distant from unity. It have chosen a set of parameters typical of the Earth’s auroral
can also be seen that this ratio is larger when non-resonambne plasma, which may be relevant to the description of the
diffusion is not taken into account in the quasilinear equa-uroral kilometric radiation. For the parameters chosen, the
tion. Therefore, the results shown in Fig. 6 indicate that the'atio between electron plasma frequency and electron cyclo-
approximations introduced in the present treatment, eithelfon frequency is sufficiently small in order that the only
analytically or numerically, are progressively less adequat&€lévant unstable modes are the fundamentaland O
as the parametep is increased. However, although the en-mOdei‘"-I In the 'prtlas.ent I?_Vef_tlgatlcf)nt,h we f?|dtnoft tc;]onduct a
ergy conservation feature of the code becomes very poor fgfoneral numerical nvestigation ol the efiect of the many
. ) . . parameters involved, prefering instead a single example as
increasingy, other features of the quasilinear evolution are: : . -
. . . illustration of the use of the formalism. In general, it is not
similar to those obtained in the case of smglland therefore

, ) possible to foresee the effect of a given parameter. For in-
the results obtained in the whole rangesptan be regarded  giance 5 parameter which certainly is significant for the

at least as qualitative indications upon the actual behaviougowth rate and the saturation level of the instability is the
of the solution. loss-cone angle. However, there are many features to be con-
One of the qualitative features which emerge from thesidered. On one hand, smaller loss-cone angles are easier to
results obtained is indeed the effect of non-resonant diffufill-up, which could imply faster saturation of the quasilinear
sion. The results show that the energy conservation is morprocess. On the other hand, smaller loss-cone angles feature
strongly violated when non-resonant diffusion is neglectedsharper gradients in velocity space, which may imply larger
than when it is taken into account, specially for larger valuegnitial growth rates in some frequency range, and therefore
of 7 (when the growth rates are largefThe comparison faster wave growth. Therefore, only a careful investigation
between the asymptotic values indicated by the bold line§an display the actual dependence on this parameter.
and the thin lines in Fig. 6 indicates that a significant part of " @ddition to the parameters, there are other potentially
the energy lost by resonant particles is not really going intdnteresting features involved. For instance, different forms of

wave growth but is redistributed among the particles by non:[he initial distribution funct.|on, Wh”e conserving the loss-
e . NI, cone character, may give rise to different initial growth rates
resonant diffusion. This redistribution of energy by non-

resonant diffusion has already been recognized in simpl "jrlnd possibly non-trivially modify the outcome of the calcu-
o . y 9 . . .pﬁation. We intend to investigate these non-trivial features in
situations, as in the textbook case of the “bump-in-tail

) a1 L i ] the near future, and report any interesting findings in a forth-
instability,™ but it is usually not taken into account in qua- coming publication.
silinear calculations. The numerical analysis of the self-consistent set of equa-
Finally, it is interesting to compare the asymptotic dis-tjons governing the evolution of the particle distributions and
tribution function obtained for the energetic electrons withthe wave fields, for the case considered, demonstrated that
the distribution obtained in a quasilinear analysis using moonly 0.1%~0.2% of the particle energy is converted to wave
ments of the quasilinear equatidir® As expected, some energy by the loss-cone instability. The dependence of the
features of the quasilinear evolution obtained with the sim-amplification efficiency on the frequency ratig,./{), has
plified moment approach are qualitatively similar to thosebeen briefly discussed, and it has been seen that the satura-
obtained with the present full numerical solution, but inter-tion amplitude forX mode waves increases when this fre-
esting details of the evolution of the distribution function arequency ratio is decreased, in agreement with results previ-
described here which can not be observed with the simplifie@usly obtained by means of numerical simulations. Of
approach. The difference is visually observable in the shap€°Urse, the agreement in this feature does not mean complete

of the asymptotic distribution function, in three-dimensional€aUivalence between the present quasilinear results and re-

(3D) plots like those of Fig. 3. The anysotropy depicted insults obtained by numerical simulations. Numerical simula-

. o ) . . tions, as well as quasilinear simulations, can be made with a
Fig. 3(c) is different from the residual anisotropy which can variety of constraints and assumptions, and detailed compari-
be seen in Fig. (t) of Ref. 39, for instance. There are also y P ' P

h iitative diff in th its. like th I sons are usually difficult and not conclusive.
other quantitative difterences In the resufts, fike the smaller e formalism and the numerical analysis utilized incor-

efficiency of the energy diffusion and the smaller growth of ,,ated hoth resonant and non-resonant diffusion in the qua-
the wave field obtained with the present approach, whewjjinear equation for the particle distribution. The numerical
compared with the previous moment meth@ad in the case results have indicated that the effect of non-resonant diffu-
with 7=0.05 andp=1, in Ref. 39. Another important dif-  sjon is significant and increases with the increase of the ratio
ference is that the time scale for saturation appears to b@pe/ge, due to the larger growth rates. Although the results
much faster in the present full numerical approach than obregarding energy conservation are only qualitative, the indi-
tained in the case of the moment metHdd. cation is that a considerable fraction of the energy involved
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in wave-particle resonance processes is not converted into

wave energy, being only redistributed among the particles by 1=

non-resonant diffusion. When non-resonant diffusion is not
considered, this fraction of energy simply disappears from
the system and the energy conservation properties of the nu-
merical solution considerably degrade.

n H !
= Sd0, TIB=I00,

u —N,u
Mi=g-dh), A=y

The comparison between the results of the present fullyhere thel, andJ! are, respectively, the Bessel function of
numerical approach and the results obtained in previougrgern and its derivative, withuy andu, being, respectively,

studies which utilized a moment method for the time evolu-the parallel and perpendicular components of the normalized
tion of the distribution function indicates that the momentparticle momentumy.

method super estimates the efficiency of energy conversion

Equation(Al) can be cast in more convenient form by

and predicts larger wave amplification than the full numeri-gefining auxiliary quantities,

cal method, for the same parameters. The time scale for satu-
ration predicted by the full numerical approach is consider-

ably shorter than predicted by the moment method. The
distribution functions found with the use of these two ap-

proaches feature some differences visually perceptible in 3D
plots, although both methods predict that the asymptotic state
of the instability is attained with partial filling up of the A
loss-cone, with certain degree of pitch angle anisotropy re-
maining in the distribution function.

ACKNOWLEDGMENTS

This work has been patrtially supported by the Brazilian
agencies Conselho Nacional de Desenvolvimento Gient
e Tecnolgico (CNPg and Financiadora de Estudos e Proje-
tos (FINEP). Numerical computations were performed at the
Supercomputer Center installed at the Universidade Federal
do Rio Grande do SUCESUP-UFRGS "

APPENDIX: SUMMARY OF THE DERIVATION OF THE
QUASILINEAR EQUATION

The quasilinear kinetic equation for the energetic elec-
tron component may be derived with the use of a standard
textbook procedure, resulting

1 UL 7T€2 ” j ~ ~
dfe=—L"|— d3k|E|?|a- T, |2
te=y] Y Hg?n;m |Exl®|ac T,
1 y where
x—(Lfe)—B(y—nY— N”UH) , (Al)
v Yol 5
Duu_
where summation over unstable modes is impligjtjs the .
polarization vectorL andL’ are differential operators re- Dy,

spectively given byL= nYdy +Nju, auH and L'= nya,,
+ UL5UHNH , and

2 o
~ Te
Dap=—7z > | d%

A =1-Nyu/ly,

resulting

Defining
=uy(uf +uf)~™ and after some simple algebraic ma-
nipulation, we arrive to

1 2
&Tfh=?&u u

2
~ Y
|ak'Hn|2_

|o]

Eug
Bo

meC n=—ox
X &(y—nY— NHUH)AaAby

By=Np. 7y,

1 A .
atfe:I&uL[uL(DLLauife"_ Dyjdyfel

+0—'u”[f)\|LauLfe+ E)HHO"u"fe]. (A2)

new variables u=(uf+uf)*® and

. (1_/~L2)1/2A
Buudufn ———Duud,fh

]

|:A);Lu&ufh

1
_ Ga’u[ (1_M2)l/2

(l_MZ)l/ZA
T u Muﬁ#fh

] (A3)

(1-p2)D,, +2u(1-u2) YD 1+ u?Dy,

=D = u(1-p® VD, —(1-2u?)D

(1= )Py,

a- 1= (= 1)"{[£ 12633~ N?) + 825( 15+ NN, ) JIT]
+[(e13T NN, )?— (213~ Nf) (235~ N2) 115
—[e2s(e11~ Nf) +81(8 15+ N, N TG}
X{—[e1ae33— N2) +eo5(e13+ N, Ny 12
+[(e13T NN, )2 (213~ NP) (235~ N2)]?

—[exs(e11— Nﬁ) +e(e1zt Ny N\\)]z}im-

The gj; are the components of the dielectric tensor, and

the I} are given by
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D,.=u?D, —2u(1—p?MD 1+ (1-p)Dy.

With the use of the definitions of, and 4|, given
before Eq.(A2), and introducing the electron cyclotron fre-
quency, it is easy to show that these expressions can be writ-
ten as follows:

2
|ak'l_[n|2

Eug
Bo

buu:(l_ﬂz)ﬂ'|ﬂe|n:2_w f dk

Y
X——8(y—nY—Njupu),
] Y
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2
|ak'Hn|2

Bug

B~ (1-p2rl0d 3 [ ok

Y
X—=8(y=nY=Njuw)(u—Nju/y),

|o|
D,,=7Qd > jde'k
n=—co

Xé(y—nY— NHU,LL)(,U,—NHU/‘)/)Z.

Eug

2
o |2)/

[

After using these expressions into E&3), and intro-
ducing the dimensionless variables|Q|t, g=ck;/|Q],

and w=w/|Q,|, and expressing the spectral wave energyp.

density as a function of these normalized quantities,

Jd3k|Ek|2=27-rJ dqf dw|Eyql%,
— 0
we arrive at the following:
affh:_zau[(l_ﬂz) UZ(Duuaufh_ uM ,u,fh) ]
1 2
—G&M (1= )| D yudufn— Dwaﬂf , (A4)
where we have defined
we2et0d 3 [ aaf o= ooy

xlﬁ(y—nY—NHuM)AaAb,

|o]

N”U
Au: 1, AMZ M 7
Equation(A4) is precisely Eq(4), which appears is Sec.
Il giving the time evolution of the distribution function for
the energetic electron component.
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