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Abstract 

In this letter we derive the unitarity boundaries in QCD for the deep inelastic structure function in low x kinematic 
region: the Froissart boundary and a more restricted one, linked with experiment and based on additional assumptions, 
justified in the leading log approximation of perturbative QCD. The comparison of the unitarity boundaries with the new 
HERA experimental data gives rise to a challenge for QCD to explain the matching between the deep inelastic scattering 
and real photoproduction process. 

1. Introduction 

The new HERA data [ I] show a steep X- 

dependence of the total cross section in the deep 
inelastic scattering (DIS ) of virtual photon off a pro- 
ton (atot(y*p) ). Approximately, a(y*p) 0: x-O.* 
at small x (lo-* 2 x 5 10e5 ). Surprisingly, this 
energy rise holds at rather small photon virtualities 

(Q* M l-2 GeV’ ). At first sight it means that in 
HERA kinematic region we still have sufficiently 
diluted parton cascade and the pat-ton-pat-ton inter- 
action which shall stop the increase of the parton 
density [2] is still rather small. On the other hand, 
the probability of the parton-parton interaction [2] 
(K ) is equal to 
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(+(GG) 
K = xG(x, Q*) rrR2 = 

Ncw~ 
- xG(x, Q2> , 
2Q2R2 

(1) 

where nG(x, Q*> is the number of partons (gluons) 
in the parton cascade, CT is the cross section of parton- 
parton interaction and R* is the size of a hadron. The 
numerical factor in Eq. ( 1) has been evaluated by 
Mueller and Qiu [ 3 ] and has been confirmed in many 
further publications [4]. Fig. 1 shows the contour 
plot for K using the GRV parameterization [5] for 
the gluon structure function and the value of R* = 
5 GeV2. We will argue a bit later that this value of 
R* follows directly from HERA measurement of the 
diffraction production of J/q meson [ 61. One can 
see that K reaches K = 1 at HERA kinematic region, 
meaning shadowing corrections take place. Therefore, 
the situation looks very controversial. 

The goal of this letter is to derive the unitarity 
bound for the deep inelastic structure function. This 
should clarify when the shadowing corrections to the 
deep inelastic process become important. Some at- 
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Fig. 1. Contour plot for K for R* = 5 GeVT2. which in terms of x has the following form: 

tempts have been made to derive the geometrical limit 
( the Froissart boundary) during the last three decades 
(see Refs. [ 7,8] and lectures [ 91 for update review 
on the subject) assuming that a target is black for the 
dominant hadronic component in the wave function of 
the virtual photon. We derive the unitarity boundary 
for the deep inelastic processes assuming the GLAP 
evolution equation for the parton densities and the 
colour dipole picture of interaction proposed by A. 
Mueller [ 10,111 (see also Refs. [ 12-141 where many 
aspects of the Mueller approach have been foreseen). 

2. Unitarity constraint for DIS 

2. I. s-channel unitarity (general formulae) 

The unitarity constraint can be easily derived con- 
sidering the DIS in the frame where a target is at 
rest. In this frame the virtual photon at high energy 
(small x ) decays in quark-antiquark (4s ) pair long 
before the interaction with the target. The 4q system 
traverses the target with fixed transverse distance rl 
between quark and antiquark [ 12,101. Indeed, TI can 
vary by amount Arl a R f$-, where Qc denotes the 
energy of the 4q pair or the vutual photon in the target 
rest frame, R is the size of the target, and the quark 
momentum is kl a & (see Fig. 2 ). Therefore 

Fig. 2. DIS in the target rest frame. 

1 
x<-. 

2mR 

The cross section for DIS can be written in the form: 

a(y*p) = dz I I d2rl p ( 2, rl> cd zQ0, r: > 
0 

x **(z, rl) , (4) 

where atot is the cross section for 4q interaction with 
the target, z is the fraction of energy of the photon (Qc 
) carried by quark and rl is the transverse separation 
between quark and antiquark. * is the wave function 
of qq - pair in the virtual photon. This wave func- 
tion is well known [ 10,141 and ]*r12 for transverse 
polarized photon and for massless quarks is equal to 

Nf 
X c Zf2~~+(1-z~~l~~~~(~r~), 

where Kt is the modified Bessel function, Q2 = z ( l- 
z )Q*, Nf is the number of massless quarks and Zf 
is the fraction of the charge carried by the quark. 

The main contribution in Eq. (4) (see Ref. [ lo] for 
details ), which corresponds to the GLAP evolution, 
comes from the region & ?-I 5 1 and z ( 1 - z ) 5 
&- 5 f . In this case the integral over z can be 

take; explicitly. Since z << 1, it can be reduced to 
the integral 
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I 

J 
dzo2 K:@ rl) 

0 

co 

-+ 2Q2 J 8 
zdz K;(fiQrL) = - 

0 

3~2~: 7 c5) 

with Q’r: 2 4. Finally, we have 

4 N, $” 
gtY*P) = - 

37r 
Nf 1 

xcZ:-l 
M dr2 J Qo 

Q 
-+ ~tlJt(- 

Q2 r2 
,r:) . (6) 

1 L 
rl I 

QZ 

At high energies (low x ) we can restrict ourselves 
by summing only (cys ln( 1 /x) )’ contribution in each 
crz order of perturbative QCD (so called leading 
log( 1 lx) approximation (LL( x) A) ) . In the frame- 
work of the LL(x)A we can safely replace the argu- 
ment of (T in Eq. (6) by X. Taking into account the 
relation between the cross section and F2 structure 
function, namely 

the final formula has a form [ lo] : 

F2kQ2) = $ 

(7) 

The total cross section for 4q scattering can be written 
as 

G_ 
gtot(.G 4) = 2 J d2bl Imdx, rl, bl) , (8) 
where c1 is the amplitude for elastic scattering of 4q 
in impact parameter (bl) space which is defined as 

=- 2L d2qle-i41’bL f(x,rl,t= -St>, 

(9) 

where q1 is the momentum transfer (see Fig. 2). In 
this representation 

ueel = 
J 

d2b1 latx,r_L,bl)12. 

The amplitude is normalized such that: 

dg 

(10) 

- = n-Jf(x,rl,t = -q:)j2 ; 
dt (11) 

utot = 47rImf (x, rl, t = 0) . (12) 

The s-channel unitarity establishes the relationship 
between the elastic amplitude (a) and the contribu- 
tion of all inelastic process (Gin (x, rl, bl ) ) and has 
the form: 

= la(x,rJ_,bl)12 + G,(x,rl,bl) . (13) 

The solution of the unitarity constraint of Eq. ( 13) is 
very simple if we assume that the elastic amplitude 
is predominantly imaginary at high energy. Indeed, 
one can check that the general solution of Eq. ( 13) 
in this case has a form: 

a=i{ 1 _ e-to(x,rl*bl)} ; (14) 

Gi, = { 1 _ e-o(Wl.bl) } . (15) 

where n(x, rl, bl) is the opacity function. Substi- 
tuting Eq. ( 14) in Eq. (8) and Eq. (7), we obtain 

F2(x,Q2) = -$ 2 Z, 
1 

s 
(16) 

2.2. Properties of fl 

The opacity fl is an arbitrary real function which 
requires more detailed QCD calculations in order 
to be found (see for example Refs. [2,3,12] [lo]) 
and/or use the general property of analyticity and 
crossing symmetry (see Refs. [ 15,161 ). 

Let us recall what is known about R: 
1. If R < 1 one can expand the exponent in 

Eq. (14) and Eq. (7) can be reduced to a simple 
form: 
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Nf 

Wx,Q*) = & c 2, 
1 

X 
mdr: $ s 6 

4 
d2blR(X, T’bl) . (17) 

Differentiating over lnQ* and comparing Rq. (17) 
with the GLAP evolution equations in the region of 
small x one can obtain for fl the following result (see 
Refs. [ 12,10,17-191 for details): 

J 
= 4ddQ*) xGcx Q2) 

3Q2 ” 
(18) 

where xG(x, Q*) is the gluon structure function of 
the proton. 

2. In the GLAP evolution equations the bl- 
dependence of the deep inelastic structure function 
can be factorized (see Refs. [ 2,131) in the form: 

fl= 
4tiw(Q*) 

3Q2 
xG(x,Q*) S(b2,), (19) 

with the profile function S( 6: ) equal 

1 
S(b:) = - 

(2r)* s 
dzql e-iq,.bl F (4:)) (20) 

where F(t) is the two gluon form factor of the proton 
pictured in Fig. 3a. Using, for example, the additive 
quark model ( AQM) we can expect that this form fac- 
tor is equal to the electromagnetic proton form factor 
(see Fig. 3b). Taking two different form of the pro- 
ton form factor: the dipole (Fdip = l/( 1 + R*q:/8 )* 
) and exponential ( Fexp = exp( -i R*ql ) ones, one 
can find two different profile functions, namely: 

sdip ( bl I = &2Ji+Kt(2+) ; (21) 

and 

(22) 

with normalization s d*blS( 61) = 1. 
3. We can recover the eikonal (Glauber) model 

for the shadowing corrections (SC ) if we postulate 

Eq. ( 19) for n with the profile function S( bl) from 
Rq. (21) or Eq. (22) for any values of bl. The phys- 
ical meaning of this assumption is very simple: the 
final inelastic state is an uniform distribution that fol- 
lows from the QCD evolution equations. In particular, 
we neglect the contribution of all diffractive dissocia- 
tion processes to the inelastic final state that cannot be 
given as the decomposition of the 4q wave function. 
For example, we neglect the so called “fan” diagrams 
(see Fig. 3c) which give the dominant contributions 
at very large values of Q* and small x [ 21. 

4. At large value of bl > bol, 0 falls down as 
fl c( e- 2P bl where ,X is the mass of the lightest 
hadron (pion ) . Assuming that the DIS cross section 
cannot increase faster than ( i ) N, where power N = 
1 comes from analyticity and crossing [ 15,161, one 
can obtain an estimate for the value of blo. Indeed, 

R lb1 >blo --+ $e-2pb1 < 1 (23) 

gives 

blo= 
1 

5 ln1;+0(- 
ln(l/x))’ 

3. Unitarity boundary for F2 

Actually, Eq. (23) gives us the Froissart boundary 
for F2. Differentiating Eq. ( 16) over In Q* we obtain 
(for N, = 3 and Nf = 3) 

JFz(x, Q*> 
alnQ* 

Q2 =- 
3T3 J 

d2bl { 1 _ ,-iW+bd } . 
(24) 

Using Eq. (23) we derive the estimate 

WkQ*) < Q*b:, 
dlnQ* 37r* 

_ Q2N2 ln2 A 
12rr2J.L* x 

M 0.4Q2 ln* 1 
x’ 

(25) 

where Q* is in GeV*. 
This boundary turns out to be well above all ex- 

perimental observations. However, we can use a more 
detailed experimental information to obtain more re- 
strictive estimate. Indeed, the HERA data on diffrac- 
tive photo and lepto production of vector mesons [ 201 
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Fig. 3. Two gluon proton form factor in the additive quark model (a) and (b); (c) The “fan” diagrams for DIS. 

supports the idea that t-dependence of the DIS am- 

plitude can be factorized out in the form of Eq. ( 19) 

or, in other words, as Fz(x, Q*; t) = F~(x, Q*> . F( t) 
where the slope in t corresponds to Eq. (21) or 
Eq. (22). Using such form we can obtain directly 

from Eq. (24) the unitarity boundary 

aF2(x, Q*; bl) 
alnQ* 

_ 3:; { 1 _ e-fo(+bl) } . 

(26) 

Now, using 

Fdx,Q*;h) = Fdx,Q*) S(~L) 

< Fz(x, Q*> S(O) , 

we derive from Eq. (26) 

%(-G Q*> Q2 
alnQ* < 3S(O)?73 ’ 

(27) 

which gives for the profile function from Eq. (2 1) 

JF2kQ2) < 2 R2 ; 
alnQ* 61~~ 

while for Eq. (22) we have 

aF*(-GQ*) < g R2 

dlnQ* 3& ’ 

(28) 

(29) 

Taking R* = IOGeV-* which corresponds both to 
soft high energy phenomenology [ 2 I] and the exper- 
imental data on diffractive lepto and photo produc- 
tion of vector mesons [20] we are able to compare 
Eq. (28) and Eq. (29) with the experimental data on 

aFz(x, Q*> 
aInQ* 

(see Refs. [ 22-241). In Fig. 4 we plot the ratio 

where UB is the unitarity boundary taken in the form 

of the Eq. (28) or Eq. (29). For Fz(x,Q*) we used 

the GRV parameterization which fit the data quite 

well. One can see that the GRV parameterization 

reaches the unitarity boundary (R = 1 ) at Q* = Q,” = 
2-4GeV* at HERA kinematic region. We can esti- 

mate the value of Q,’ even more accurately using the 

parameterization of the experimental data on F2 given 

in Ref. [ 241, namely, 

aFz(x, Q*> 0.074 

alnQ* 
= 0.364 log x. 

Comparing this parameterization with Eq. (29) one 

obtains Q,’ = 1.0926 log y. Therefore, the value 
of Q,” turns out to be pretty high at low x. This fact 
encourage us to search for a more microscopic ap- 

proach for the parton-parton interaction in the parton 
cascade at moderate values of Q2 z 2GeV*. 

4. Unitarity boundary for the gluon structure 
function 

As has been pointed out by A. Mueller [ lo], the 
gluon structure function can be also written through 



A.L. Ayala et ok/Physics Letters B 388 (19%) 188-196 193 

Fig. 

R=dF~dlnQ2/UB for McDoneld profile. 
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4. The comparison of .w m the GRV parameterization with the unitarity boundary -UB- 

the dipole CC-pair interaction with a target in a sim- 
ilar way as has been done for FT. Omitting all calcu- 
lations that can be found in Refs. [ 10,251, one can 
derive 

EI’xG(x, Q2) 

alnQ2alni 

2Q2 
=7 s 

d2bl { 1 - e -&G(X.~.~1) ), (30) 

where the opacity &o for CC-dipole scattering has 
the same properties (see Section 2.2) as for qq-dipole 
scattering. The difference is that in the limit of small 
&G, RGG = $ fiqq for NC = 3. Repeating all ar- 
guments of Section 3 one can obtain the Froissart 
boundary for xG(x, Q2) in the form 

a*xG(x,Q') < 2Q2 b2 _ 2Q2 
alnQ*aln$ T2 10 

ln2 !. 
4/.$& x 

= 2.5 Q2 ln* i . 

This boundary is much higher than the 

d2xG(x, Q2) 

dlnQ2aln$ 

(31) 

in all current parameterizations of the gluon structure 
function [ 265,271. However, using the approach de- 
veloped in the previous section one can obtain more 
restrictive estimates, namely 

a2xC(x,Q2) < Q2 
qR 

2 

JlnQ2L+‘lni 

and 

a2xGkQ2) < V&2 

alnQ*aln~ 99 

y=ln(l/x) 

(Eq. (28) and Eq. (29)): 

(32) 

(33) 

for S(bl) from Eq. (21) and Eq. (22), respectively. 
In Fig. 5 we plot 

a2xG( x, Q2) 
alnQ2aln~ 

for the GRV parameterization of the gluon struc- 
ture function and compare them with Eq. (32) and 
Eq. (33). One can see, that the gluon structure func- 
tion reaches the unitarity limit (R = 1 ) at HERA 
kinematic region. 

In Ref. [24] it has been shown that 

axC(x, Q2> 3 

Jlni 
M 

from the experimental data on F2. It means that the 
gluon structure function reaches the unitarity bound- 
ary at Q,’ w 3&/R2 x 3 GeV2 (see Eq. (32) ). 
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R=d’xG/dlnddln(1/x)/UB for McDonald profile. R=d2xG /dlnQ2dln(l/x)/UB for exponential profile. 
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Fig. 5. The comparison of d~,~Q~~~;~’ in the GRV parameterization with the unitarity boundary -UB- given by Q. (32) and Q. (33): 
x 

5. Parameter for the SC 

To find out the parameter for the SC let us rewrite 
Eq. (30) in the kinematic region where &G < 1. 

One obtains 

c?*xG( x, Q2> 
~lnQ*~ln+ 

Substituting &G = w xG(x, Q*) S( bl) we have 

a*xG( x, Q*) as Nc 
alnQ2alni 

= rr~G(x, Q2) 

- w(xG(x,Q2))‘Jdb:S2(bL), 

(35) 

which can be rewritten in the form 

d*xG(x, Q*> 
aInQ*aln$ 

= yx~(x,~2) { 1 - ;}, 

(36) 

with 

a) y* Y x b) 
v 

= 

Fig. 6. The J/‘4 production without (a) and with (b) dissociation 
of the proton. 

as NC n3 
K= 

Q2 
xG(x,Q2) 

s 
db: S2(b1) . (37) 

The above equation gives the same definition for 
K as Eq. ( 1) for the exponential form of s( 61) (see 
Eq. (22) ). Using the new HERA data on photopro- 
duction of J/9 meson [6] we are able to estimate 
the value of R2 in the definition of K , recalling that 
R* is the size of the target only in the oversimpli- 

fied eikonal (Glauber ) model. To illustrate the point 
we picture in Fig. 6 the process of J/q photopro- 
duction in the additive quark model (AQM ). We 

see that we have two processes with different slopes 
(B ) in t (or in b% ): the J/q production without 
(Fig. 6a ) (Bet = 5 GeV2) and with (Fig. 6b ) 
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<b*> 
RA2= 5 Gev” 

1 
15.0 20.0 

y=ln(l/x) 

Fig. 7. The x-dependence of < bt > in the Glauber (eikonal) 
approach with R* = 5 GeV-*. 

(Bin = 1.66 GeV-*) dissociation of the proton. The 
AQM gives us the simplest estimates for the result- 
ing slope ( R* > in Eq. ( 1) if we neglect any slope 
from the Pomeron-J/q vertex in Fig. 6, namely 

This is a reason why we used R2 = 5 GeV-* in Fig. 1 
to estimate the scale for the SC. 

In our estimates of the value of the deep inelastic 
structure functions at bl = 0 (see Eq. (27) ) we used 
an assumption that the SC does not change the value 
of R. To justify this assumption we plot in Fig. 7 
the x-dependence of the average bi calculated in the 
Glauber (eikonal ) approach with R2 = 5 GeV-*. 
One can see that < 6: > only weakly depends on x 
in the HERA kinematic region. 

6. Summary 

It has been presented the derivation of the unitarity 
boundary for the deep inelastic structure functions. 

The comparison of the unitarity boundary with 
HERA experimental data shows that both F2( n, Q*) 
and xG(x, Q*) hit the unitarity limit at Q* x 
2-4 GeV2. This fact gives rise to a challenge for the- 
oreticians to explain the matching between the deep 
inelastic scattering and real photoproduction process 
in the framework of QCD. 

We hope that this letter as well as Ref. [24] will 
stimulate the new round of the discussions on the 

theory of the shadowing corrections in the deep in- 
elastic processes. We believe that the resolution of all 
difficulties could be found assuming that the SC has 
worked in the full in the gluon structure function and 
has been taken in the phenomenological initial gluon 
distribution in standard parameterizations [ 5,26,27]. 
However, much more work is needed to prove this. 
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