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Temperature inversion in long-range interacting systems
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Temperature inversions occur in nature, e.g., in the solar corona and in interstellar molecular clouds: Somewhat
counterintuitively, denser parts of the system are colder than dilute ones. We propose a simple and appealing way
to spontaneously generate temperature inversions in systems with long-range interactions, by preparing them in
inhomogeneous thermal equilibrium states and then applying an impulsive perturbation. In similar situations,
short-range systems would typically relax to another thermal equilibrium, with a uniform temperature profile. By
contrast, in long-range systems, the interplay between wave-particle interaction and spatial inhomogeneity drives
the system to nonequilibrium stationary states that generically exhibit temperature inversion. We demonstrate this
mechanism in a simple mean-field model and in a two-dimensional self-gravitating system. Our work underlines
the crucial role the range of interparticle interaction plays in determining the nature of steady states out of thermal

equilibrium.
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Stationary states far from thermal equilibrium occur in
nature. In some cases, e.g., in the solar corona and in
interstellar molecular clouds, such states exhibit temperature
inversion: Denser parts of the system are colder than dilute
ones. This work is motivated by an attempt to explain how
such a counterintuitive effect may spontaneously arise in
nonequilibrium states, unveiling its minimal ingredients and
the underlying physical mechanism. To this end, we start with
asking a simple yet physically relevant question: What happens
if an isolated macroscopic system in thermal equilibrium
is momentarily disturbed, e.g., by an impulsive force or a
“kick”? If the interactions among the system constituents are
short ranged, collisions redistribute the kick-injected energy
among the particles, yielding a fast relaxation to a new
equilibrium, with a Maxwellian velocity distribution and a
uniform temperature across the system.

Is the scenario the same if instead the interactions are long
ranged [1]? For long-range systems, collisional effects act
over a characteristic time 7. that, unlike short-range systems,
scales with the system size N, diverging as N — oo [2]. As
a result, a macroscopic system with long-range interactions
starting from generic initial conditions will attain thermal
equilibrium only after extremely long times, often exceeding
typical observation times. Examples of long-range systems are
self-gravitating systems, for which, e.g., .o = 100 years for
globular clusters and orders of magnitude larger than the age
of the universe for galaxies [3,4]. The collisionless evolution
of long-range interacting systems for times shorter than 7 is
governed by the Vlasov (or collisionless Boltzmann) equation
[2]. When kicked out of thermal equilibrium, a long-range
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interacting system relaxes to a Vlasov-stationary state, and
thermal equilibrium is just one of infinitely many possible
states. Predicting which Vlasov state follows a given initial
condition is an extremely difficult problem [5], first addressed
in Ref. [6] and still unsolved, despite some remarkable achieve-
ments for particular systems and special initial conditions (see
Refs. [7,8]).

Let us then ask a simpler question: How different from
an equilibrium state is the stationary state the system relaxes
to after the kick? Are there ways to characterize it, e.g.,
by unveiling some of its general features? The answer is
yes; in this Rapid Communication, we argue that, provided
it started from a spatially inhomogeneous equilibrium state
[9], the system after the kick relaxes to a state with a
nonuniform temperature profile. In short-range systems, by
contrast, a nonuniform temperature profile may only occur
when the system is actively maintained out of equilibrium, e.g.,
by a boundary-imposed temperature gradient, to counteract
collisional effects. Remarkably, in a long-range system, the
relaxed state after the kick generically exhibits temperature
inversion, as we will explicitly show.

As recalled above, temperature inversions are observed
[10] in interstellar molecular clouds [11-13] and especially
in the solar corona, where temperatures around 10° K that
are three orders of magnitude larger than the temperature of
the photosphere are attained [14]. Despite recent advances
[15], the mechanism of coronal heating is not completely
understood and remains one of the most important open
problems in astrophysics [16]. Most attempts to explain such
a phenomenon involve mechanisms that actively inject energy
[17] into the less dense regions of the system. A different
possibility, suggested by Scudder [18-20], is referred to as
velocity filtration; see also Ref. [21] and the Supplemental
Material (SM) [22]. Consider a system of particles acted upon
by an external field whose potential energy increases with
height above a base level. Only particles with a sufficiently
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large kinetic energy can climb the potential well and reach
a given height. If the velocity distribution at the base is
Maxwellian, it remains as such with the system maintaining the
same temperature at all heights in the stationary state. Instead,
if the distribution is suprathermal, i.e., with tails fatter than
Maxwellian, the temperature in the stationary state increases
with height, with a concomitant decrease of the density. It is
argued [16,23,24] that velocity filtration might not be the (only)
mechanism behind coronal heating, but nevertheless provides
a simple and appealing explanation of how a counterintuitive
temperature inversion occurs without steady energy injection
in less dense parts of the system.

Scudder’s original model neglects interparticle interactions
and requires an “active” ingredient, i.e., an out-of-equilibrium
suprathermal velocity distribution imposed as a boundary
condition. It was recently shown [21] that temperature in-
version occurs also in strongly interacting systems, provided
the interactions are long ranged, when a velocity distribution
with suprathermal tails is given just as the initial condition
of the dynamical evolution. Although much weaker than a
nonthermal boundary condition, the latter is still an ad hoc
requirement. However, it is not necessary at all: In this Rapid
Communication, we demonstrate that temperature inversion
emerges spontaneously in the stationary state reached after
a long-range system is brought out of equilibrium by a
perturbation acting for a very short time, and there is no need
for a suprathermal initial distribution. Our work thus suggests
that temperature inversions observed in astrophysical systems
may be examples of a more general phenomenon, whose roots
are in the long-range nature of the interparticle interactions.

Let us consider the very general setting of a system of
N interacting particles of mass m in d dimensions with the
Hamiltonian

N o N N
M=) Th4 3 Vi —r,). ()
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where p; = |p;| are the momenta conjugated to the positions
r;, the potential energy is long ranged, V(r) ox r=%, 0 < @ <
d asr — oo. For times t < 7.1, the dynamics is described by
the single-particle phase space distribution f(r,p,f) obeying
the Vlasov equation
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is the mean-field potential energy. An initial condition fy =
f(r,p,0) chosen to be a stationary solution of Eq. (2) does
not evolve in time. Otherwise, if the initial distribution is
not a stationary solution of (2), after a short transient (often
referred to as “violent relaxation,” after Lynden-Bell [6]), the
system settles into a stable stationary solution of Eq. (2) called
a quasistationary state (QSS), in which the system remains
trapped until, at# >~ 7., collisional effects neglected in Eq. (2)
drive the system towards thermal equilibrium [2]. To construct
a first representative example to demonstrate our claims, we
assume periodic coordinates so that boundary effects may be
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neglected [25] and expand the interparticle potential (that by
definition is even) in a cosine Fourier series. We then setd = 1
and retain just the first Fourier term. The resulting model, the
so-called Hamiltonian mean-field (HMF) model, describes a
system of globally interacting point particles moving on a
circle with Hamiltonian [26]

Yoo LY
Hump = Z 71 + 5 ZZ[I —cos(; — )], (4)
i=I

i=1 j>i

where ¥; € (—m,m]is the angular coordinate of the ith particle
on the circle, while p; is the conjugated momentum; we have
further assumed m = 1 and the interaction to be attractive,
fixing the energy scale to unity, and scaled it by 1/N to
make it extensive (Kac prescription [2]). The Hamiltonian
(4) is invariant under the O(2) symmetry group. In thermal
equilibrium, for energy density ¢ = E/N smaller than &, =
3/4, the symmetry is spontaneously broken to result in a
clustered state. The order parameter of clustering is the average
magnetization [27] (my,my) = %(vazl cos ¥;, ZlN:1 sin ;).
The HMF model is a simple system which, besides serving
as a framework to study statics and dynamics of long-
range systems, actually models physical systems such as
gravitational sheet models and free-electron lasers [2].

In order to study what happens when we “kick” the HMF
system out of equilibrium, we studied its dynamical evolution
via molecular dynamics (MD) simulations, performed by
integrating [28] the equations of motion derived from the
Hamiltonian (4). We prepared the system in an equilibrium
state with m, =mgy and m, =0, and with a Maxwellian
velocity distribution corresponding to the equilibrium tem-
perature. We let the system evolve until t = ¢ty > 0, and then
kicked it out of equilibrium by applying during a short time
T an external magnetic field /4 along the x direction; thus,
for tp <t <ty + v, the Hamiltonian (4) is augmented by
Hp = —h Z,N: , cos ;. Here we present results for #p = 100,
t =1, h =10, and my = 0.521, corresponding to an initial
equilibrium temperature 7' = 0.4244. We considered up to
N =107 particles. After the kick the magnetization starts
oscillating, and after a transient the oscillations damp down
and a new stationary value m* < mg of the magnetization
is reached. A typical time evolution of the magnetization is
shown in Fig. 1.

The fact that m* < my is not surprising because the system
gains energy during the interaction with the external field
h, resulting in an energy density ¢* > g, and if the system
would relax to a new equilibrium, the latter would have a
magnetization meq = 0. The stationary state reached after
the damping of the oscillations is a QSS, very far from the
homogeneous equilibrium at *. The nonequilibrium character
of this state is further shown by the fact that the temperature
profile

S22 dp P2 f(,p)
[ dp f(®¥.p)

is nonuniform, and there is temperature inversion, as shown in
Fig. 2, where T (¥) is plotted together with the density profile

T®) = %)

n(?) E/ dp f(@0,p). (6)
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FIG. 1. (Color online) HMF: Time evolution of the magnetiza-
tion m with N = 107 (solid red line). Inset: m(¢) compared to the
equilibrium value m.y = 0 (dotted black line) for longer times.

The temperature profile indeed remains essentially the same
for the whole lifetime of the QSS, as we checked by measuring
an integrated distance & between the actual temperature profile
and the constant equilibrium one, T¢q, at the same energy, as
follows:

E(I)E/ IT(0,1) — Teq|d V. )

In Fig. 3, £(¢) is plotted for systems with different values of N
kicked with the same & = 10 at o = 100 for a duration t = 1.
After the kick, &(¢) oscillates and then reaches a plateau whose
duration grows with N, as expected for a QSS. The inset of
Fig. 3 shows that if times are scaled by N, the curves reach
zero at the same time, consistently with the lifetime of an
inhomogeneous QSS being proportional to N [29].

We performed simulations starting with equilibrium states
corresponding to different values of m( and applying pertur-
bations of different strengths / and duration 7, and the system
almost always ended up in a QSS, showing at least a partial
temperature inversion over some interval of the values of 9, if
not the whole; we also considered another model where also
the second Fourier mode is retained, again obtaining the same
qualitative behavior (see Supplemental Material [22]).
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FIG. 2. (Color online) HMF: Temperature profile 7(¥}) (blue
solid line) and density profile n(¥%) (red dashed line), measured in
the QSS at t = 10*.
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FIG. 3. (Color online) HMF: Time evolution of the distance from
equilibrium temperature &€, Eq. (7), with N increasing from bottom
to top: N =5 x 107 (red), N = 10° (blue), N = 2.5 x 10° (black),
N =5 x 10? (purple). Each curve is the average over n, realizations
with n, ranging from 20 for N =5 x 10 to 10? for N =5 x 102,
Inset: & as a function of 7/N.

Preparing the system in equilibrium and then bringing it out
of equilibrium by means of a perturbation acting for a short
time mimics processes that may actually happen in nature,
e.g., a transient density perturbation in a self-gravitating fluid.
Hence, as a second example, we considered a two-dimensional
self-gravitating system (2DSGS), that is, a system of N
particles of mass m moving in a plane with the Hamiltonian

N op 2 N (ri—r;)2+r3
o o g, [V

—~ 2m — s
i=1 i,j>i

. (8

where r; = (x;,y;), s is a length scale, p; = (x;,y;), ro is a
small-scale cutoff, and G is the gravitational constant. Such a
system can be seen as a simple model of filamentary interstellar
clouds [30]. We performed MD simulations considering
N =3 x 10" particles initially in a thermal equilibrium state,
whose radial density profile is known [31] (see Supplemental
Material [22]), and we kicked them out of equilibrium by
instantaneously adding to all their radial velocities the same
amount v, = o, /2, where o, is the radial velocity dispersion.
As in the HMF case, after the kick the system develops
macroscopic oscillations that damp out after a time of order
Tdyn = rf«/Z/GM, where M is the total mass and rf =r(t =
0) is the (initial) half-mass radius, and eventually sets in a QSS.
The latter exhibits temperature inversion up to r 2 r,(¢), as
shown in Fig. 4. The radial profiles n(r) and 7 (r) are obtained
by averaging 7 (r) and n(r), defined by replacing (¢, p) with
(r,p) in Egs. (5) and (6), over the polar angle.

We have thus shown that temperature inversion arises in
two different long-range-interacting systems when kicked out
of equilibrium. Moreover, also if we start from a state with
a Maxwellian velocity distribution but a spatial distribution
different from the equilibrium one, macroscopic oscillations
develop, and after the damping of the oscillations, the systems
end up in a QSS, typically exhibiting at least a partial temper-
ature inversion (see Supplemental Material [22]). Therefore,
this phenomenon does not depend on the details of the way
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FIG. 4. (Color online) 2DSGS: Temperature profile 7'(r) (blue
squares) and density profile n(r)/ny (red circles) measured in
the QSS at t =901y, while starting from a thermal state with
uniform temperature 7y = 0.5, in natural units such that r,.(t) ~ 7 and
o = 1073.

the initial state is prepared, provided it is inhomogeneous, and
that a collective oscillation develops when it is brought out of
equilibrium.

A very general mechanism may then be responsible for
this phenomenology. In the following, we argue that indeed
a simple and general explanation can be found. As stated
above, before collisional effects set in, the dynamics of a
long-range interacting system is described by the Vlasov
equation (2). When a state described by a stationary solution
of the Vlasov equation is perturbed, a phenomenon called
Landau damping [32] occurs, which is a kind of wave-
particle interaction responsible for the collisionless damping of
oscillations induced by the external perturbation. The theory
of Landau damping is well developed, and, in the case of
small perturbations of homogeneous states, has been recently
put on rigorous grounds [33]. The phenomenon occurs also
when the perturbed state is inhomogeneous [34,35]. The basic
physical mechanism is the following: The perturbation creates
a wave in the system, as witnessed by the onset of collective
oscillations. Consider for simplicity a monochromatic wave.
Particles that have a velocity v close to the phase velocity
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vpn Of the wave will interact strongly with the perturbation,
while those with v < vpy or v > vp, will be essentially
unaffected. Particles with velocities slightly less than vy, will
acquire kinetic energy, while those with velocities slightly
larger than v, will lose kinetic energy. Since for a typical
f(v) one has df/dv < 0 (for positive v, and the opposite for
negative v), there are more particles that gain energy than
those that lose energy, so that the wave in effect loses energy,
and the perturbation is damped. After the interaction with the
perturbation, a Maxwellian f(v) is modified close to vp, (and
if the wave is stationary or travels in both directions, as in our
case, also close to —vpy), where a “shoulder” is formed, and
(v?) is increased. If, prior to perturbation, the state is spatially
homogeneous, this happens in the same way throughout the
system, and the initially coherent energy of the wave goes
into uniformly heating the system. But in our case the state is
not homogeneous prior to the perturbation: It is clustered, and
the “shoulder” in f(v) created by Landau damping is nothing
but a suprathermal tail, so that now velocity filtration acts
and produces temperature inversion—fast particles climb the
potential well higher than slower ones, and suprathermal tails
grow when density decreases. Indeed, as shown in Ref. [21],
velocity filtration always works in systems described by the
Vlasov equation (2); there, the suprathermal tails of f(v) were
fed by the initial conditions, while here it is the perturbation
that creates them, via Landau damping. It is interesting to note
that standing radio-frequency waves are used to heat laboratory
plasmas by creating a shoulder in the velocity distribution [36];
in that case, one needs to sustain the wave from outside, while
in our example it is velocity filtration that amplifies the effect.

The above physical picture is idealized and one should
take into account the coupling of the various modes of
the perturbation in the inhomogeneous case [34,35]. This
notwithstanding, the main point is that the perturbation does
not interact in the same way with all the particles, but
preferentially gives energy to particles with already rather large
velocities. This results in a suprathermal velocity distribution,
as shown in Fig. 5 (left panel) for the HMF model. Soon after
the kick a high-p tail shows up, which is built up from peaks
at different values of p corresponding to different positions.
The evolution of these peaks results in oscillations in f(p) for
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FIG. 5. (Color online) HMF. Left: Momentum distribution f(p) at + = 0 (black dashed line), r = 101 (red plus signs), t = 110 (blue
asterisks), # = 150 (magenta open squares), ¢ = 200 (gray solid triangles), ¢ = 10° (orange open triangles), and ¢ = 10* (magenta solid
rhombi). Right: Distribution function f (¢, p) measured in the QSS as in Fig. 2, at ¢ = 0 (red squares) and ¢ = 7 (blue triangles). The
distribution functions are plotted against p? sgn(p) to better show the difference with respect to the initial Maxwellian.
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t < 150, then the oscillations damp out, and due to the absence
of an efficient mechanism able to evenly redistribute this
excess energy among all the particles, the velocity distribution
stays nonthermal and essentially the same for times ¢ < 7.,
allowing velocity filtration to produce temperature inversion.
The distribution function of the HMF model in the QSS is
plotted for two different values of ¢ in Fig. 5 (right panel),
and the growth of the suprathermal tails in the less dense
parts of the system is well apparent. We found similar results
for the distribution functions also in the 2DSGS case (see
Supplemental Material [22]). For the HMF, perturbations of
the form —h vazl cos(kv;) with k # 1 also yield preferential
absorption of energy around values of v that are different from
those in the k = 1 case, coherently with the above picture (see
Supplemental Material [22]).
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We have shown that nonequilibrium stationary states with
temperature inversions are the typical outcome of a perturba-
tion acting for a short time on a clustered equilibrium state of
a long-range interacting system. This rather surprising result
can be explained in terms of Landau damping and velocity
filtration, suggesting that temperature inversions may occur
whenever the dynamics is collisionless up to the relevant time
scales. This mechanism may be actually relevant to understand
temperature inversions observed in nature.

We thank the Galileo Galilei Institute for Theoretical
Physics, Florence, Italy for the hospitality and the INFN
(Italy) and the CNPq (Brazil) for partial support during the
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