
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

INSTITUTO DE INFORMÁTICA 

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO 

 

 

 

 

 

LISANE BRISOLARA DE BRISOLARA 

 

 

 

 

Strategies for Embedded Software 
Development Based on High-level Models 

 

 

 

 

 

Thesis presented in partial fulfillment of the 
requirements for the degree of Doctor of 
Computer Science 

 
 
Prof. Dr. Ricardo Augusto da Luz Reis 
Advisor 
 
 
Prof. Dr. Luigi Carro 
Co-advisor 

 
 
 
 
 
 

Porto Alegre, August 2007.



CIP – CATALOGAÇÃO NA PUBLICAÇÃO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 
Reitor: Prof. José Carlos Ferraz Hennemann 
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca 
Pró-Reitora de Pós-Graduação: Profa. Valquiria Linck Bassani 
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner 
Coordenadora do PPGC: Profª Luciana Porcher Nedel 
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro 

Brisolara, Lisane Brisolara de 

Strategies for Embedded Software Development Based on 
High-level Models / Lisane Brisolara de Brisolara – Porto Alegre: 
Programa de Pós-Graduação em Computação, 2007. 

129f.:il. 

Tese (doutorado) – Universidade Federal do Rio Grande do Sul. 
Programa de Pós-Graduação em Computação. Porto Alegre, BR – 
RS, 2007. Advisor: Ricardo Augusto da Luz Reis; Co-Advisor: 
Luigi Carro. 

1. Sistema embarcado. 2. Software embarcado 3. 
Desenvolvimento de software. I. Reis, Ricardo A. da Luz.  II. 
Carro, Luigi. III. Título. 



ACKNOWLEDGMENTS 

Primeiramente, gostaria de agradecer as pessoas que estiveram diretamente 
envolvidas no desenvolvimento do meu trabalho de tese. Meu orientador, prof. Ricardo 
Reis, com quem trabalhei desde o mestrado e que sempre está disposto a conversar, seja 
sobre trabalho, seja sobre questões pessoais. Ao prof. Luigi Carro, que dividiu as tarefas 
de orientação, muitas vezes tomando para si esta responsabilidade e cujas críticas e 
opiniões foram muito importantes para o desenvolvimento deste trabalho. Quero 
estender este agradecimento ao prof. Flávio Wagner que também teve uma importante 
contribuição e me orientou em várias ocasiões. Eu gostaria de agradecer do mesmo 
modo alguns colegas com quem trabalhei durante os anos de tese: Leandro Becker, Júlio 
Mattos, Márcio Oliveira, Francisco Assis, Ricardo Redin e Emilena Specht.  

Não poderia deixar de agradecer a minha família, meus pais, Maria Luci e Arlindo 
Brisolara, e minhas irmãs Elisa e Cibele, pois os seus apoio e carinho foram sempre 
muito importantes em todas as minhas conquistas. Não poderia deixar de fazer um 
agradecimento especial ao meu namorado, Vinícius Pazutti Correia, por todo o 
companheirismo, compreensão e amor que me deram forças para vencer este grande 
desafio, além da paciência para ler meus textos e assistir minhas apresentações, 
corrigindo-me e colaborando com críticas construtivas. Gostaria de agradecer também a 
Rejane e Jorge Correia, que me “adotaram” e me deram todo o apoio que podiam, 
principalmente neste último ano de tese. Eu gostaria de também estender este 
agradecimento a outros membros da família, tios e primos, pois a convivência com eles, 
mesmo que esporádica, contribuiu para meu equilíbrio pessoal. 

Aos apadrinhados, Milena e Felipe, obrigado por simplesmente poder contar com 
vocês. Aos demais amigos, obrigada pelos bons momentos compartilhados. Aos colegas 
de laboratório, agradeço os inúmeros intervalos com bate-papos, risadas e café e toda 
ajuda que me deram ao longo do doutorado. Também gostaria de agradecer a todos do 
grupo do vôlei pelos bate-bola agradáveis que me permitiram espairecer nos momentos 
mais estressantes do doutorado. 

É importante também agradecer ao CNPq pela bolsa de doutorado, que me 
possibilitou dedicação exclusiva a minha formação acadêmica. À CAPES, agradeço a 
bolsa de estágio no exterior, que me permitiu colaborar com um excelente laboratório de 
pesquisa na França e ter uma experiência muito relevante para minha formação e para a 
qualidade deste trabalho. Eu gostaria de agradecer também a Ahmed Jerraya por ter me 
dado a oportunidade de trabalhar no seu grupo de pesquisa no Laboratório TIMA. Deste 
estágio, os frutos não foram apenas artigos e conhecimentos trocados, mas também as 
amizades. Gostaria de agradecer a meus colegas no TIMA, Katalin Popovici, Sang-il 
Han, Xavier Guerin, Patrice Gerin, Hao Shen, Kai Huang e Lei Li pela colaboração no 
trabalho e pelo tempo divertido que passamos juntos. Thank you all. 



TABLE OF CONTENTS 

LIST OF ABBREVIATIONS.............................. ................................................. 6 

LIST OF FIGURES............................................................................................. 8 

LIST OF TABLES ..................................... ....................................................... 10 

ABSTRACT........................................... ........................................................... 11 

RESUMO.......................................................................................................... 12 

1 INTRODUCTION ........................................................................................ 13 

1.1 Thesis contributions ......................................................................................... 15 
1.2 Thesis organization .......................................................................................... 16 

2 HIGH-LEVEL MODELS AND ASSOCIATED TOOLS ........... .................... 17 

2.1 Embedded software from high-level models ................................................... 17 
2.1.1 Specification ................................................................................................... 19 
2.1.2 Code generation .............................................................................................. 20 
2.1.3 HW/SW co-design and design space exploration ............................................. 21 
2.2 Analysis of the state-of-the-art......................................................................... 22 
2.3 Comparison between UML-based and Simulink-based approaches.............. 23 
2.3.1 Functional block modeling and Simulink......................................................... 23 
2.3.2 Object-oriented modeling and UML ................................................................23 
2.3.3 Case study: Comparison between UML and Simulink models ......................... 24 
2.3.4 FB model ........................................................................................................ 25 
2.3.5 UML model..................................................................................................... 28 
2.3.6 Evaluation criteria ........................................................................................... 32 
2.3.7 Comparison results.......................................................................................... 33 

3 UML-BASED EMBEDDED SOFTWARE GENERATION........... ................ 37 

3.1 Existing approaches for code generation from UML models ......................... 38 
3.1.1 Code generation: existing tools........................................................................ 39 
3.2 Analyzing the gap between UML model and a Java program ....................... 41 
3.2.1 Experiments .................................................................................................... 42 
3.3 Proposed code generation approach................................................................ 49 
3.3.1 Using UML2 notations for code generation from sequence diagrams............... 50 
3.3.2 Bridging the semantic gap ............................................................................... 52 
3.4 Concluding remarks......................................................................................... 54 



 

 

 

 

5 

4 SIMULINK-BASED EMBEDDED SOFTWARE GENERATION ...... ........... 57 

4.1 Combined application architecture model ...................................................... 59 
4.2 Multithread code generation............................................................................ 61 
4.2.1 Simulink parsing ............................................................................................. 62 
4.2.2 Thread code generation ................................................................................... 63 
4.2.3 HdS adaptation................................................................................................ 65 
4.3 Memory optimization....................................................................................... 66 
4.4 Communication optimization .......................................................................... 68 
4.5 Experiments...................................................................................................... 72 
4.5.1 Applications description .................................................................................. 73 
4.5.2 Target platform ............................................................................................... 74 
4.5.3 Memory optimization ...................................................................................... 75 
4.5.4 Communication optimization........................................................................... 80 
4.5.5 Experiment analysis ........................................................................................ 82 

5 INTEGRATION OF UML AND SIMULINK .................. ............................... 85 

5.1 Proposal of mapping from UML to Simulink CAAM .................................... 87 
5.2 Prototype .......................................................................................................... 91 
5.2.1 Model optimization ......................................................................................... 91 
5.3 Case study......................................................................................................... 94 
5.3.1 Crane control system....................................................................................... 94 
5.3.2 Synthetic example ........................................................................................... 98 
5.4 Concluding remarks....................................................................................... 100 

6 CONCLUSIONS ....................................................................................... 103 

REFERENCES............................................................................................... 105 

APPENDIX A ......ESTRATÉGIAS PARA DESENVOLVIMENTO DE SOFWARE 
EMBARCADO BASEADAS EM MODELOS DE ALTO NÍVEL ........ ............. 113 

APPENDIX B      EXPANDED FIGURES................... .................................... 119 

 



LIST OF ABBREVIATIONS 

AG Automatic Generated 

CAAM Combined Application Architecture Model 

CASE Computer Aided Software Engineering 

COTS Commercial-off-the-shelf 

DSE Design Space Exploration 

EMF Eclipse Modeling Framework 

ESL Electronic System-Level 

FB Functional Block 

FSM Finite State Machine 

HdS hardware dependent software 

HW Hardware 

JET Java Emitter Templates 

JML Java Modeling Language 

KPN Kahn Process Network 

LSC Live Sequence Charts 

MA Message Aggregation 

MARTE  Modeling and Analysis of Real-time and Embedded Systems 

MDD Model Driven Development 

MDR Netbeans Metadata Repository 

MoC Model of computation 

MPSoC Multiprocessor System-on-chip 

MSC Message Sequence Charts 

OAL Object Action Language 

OCL Object Constraint Language 

OMG Object Management Group 

OMT  Object Modeling Technique 

OO Object-Oriented 



 

 

 

 

7 

OS Operating System 

PBD Platform-Based Design 

QoS Quality of Service 

RTW Real-Time Workshop 

SDF Synchronous Data Flow 

SMW System Modeling Workbench 

SoC System-on-chip 

SysML Systems Modeling Language 

SW Software 

UML Unified Modeling Language 

UML-SPT UML Profile for Schedulability, Performance, and Time 

XMI XML Metadata Interchange 

XML eXtensible Markup Language 

XSLT eXtensible Stylesheet Language for Transformation 

WD Written by Designers



LIST OF FIGURES 

Figure 2.1: Crane system............................................................................................. 24 
Figure 2.2: Crane model using Simulink ..................................................................... 25 
Figure 2.3: Crane JobControl ...................................................................................... 26 
Figure 2.4: Crane JobControl – NormalMode.............................................................. 26 
Figure 2.5: Control algorithm model in Simulink ........................................................ 27 
Figure 2.6: UML Use Case Diagram of the Crane system ........................................... 28 
Figure 2.7: UML Collaboration Diagram of the Control Algorithm............................. 29 
Figure 2.8: State Diagram of the Controller class ........................................................ 30 
Figure 2.9: UML Class Diagram of the Crane system.................................................. 30 
Figure 2.10: Generated code for the Controller class ................................................... 31 
Figure 3.1: Velocity template example........................................................................ 38 
Figure 3.2: Approach for code generation (BJÖRKLUND, 2005) ............................... 39 
Figure 3.3: Rialto-based code generation approach (BJÖRKLUND, 2004).................. 40 
Figure 3.4: Example of <for+ds> lines of code............................................................ 44 
Figure 3.5: Example of analyzed code: Controller class .............................................. 45 
Figure 3.6: Analysis results obtained of the Controller and Crane classes................... 46 
Figure 3.7: Analysis results for Crane classes.............................................................. 46 
Figure 3.8: Address Book Class diagram..................................................................... 47 
Figure 3.9: Proposed UML-based code generation flow.............................................. 49 
Figure 3.10: Combining different iterations notations in a same diagram..................... 50 
Figure 3.11: Representing conditionals in UML 2.0 .................................................... 51 
Figure 3.12: Representing loops in UML 2.0............................................................... 51 
Figure 3.13: Matrix/vector initialization in Java .......................................................... 53 
Figure 3.14: Vector multiplication in Java................................................................... 53 
Figure 3.15: Matrix multiplication in Java................................................................... 54 
Figure 3.16: Try/catch notation in sequence diagrams ................................................. 54 
Figure 4.1: Simulink-based MPSoC design flow (HUANG, 2007) .............................. 58 
Figure 4.2: Combining application and architecture models (POPOVICI, 2007) ......... 59 
Figure 4.3: A Simulink CAAM example (HUANG, 2007) .......................................... 61 
Figure 4.4: Multithread code generation flow.............................................................. 62 
Figure 4.5: Simulink parsing ....................................................................................... 63 
Figure 4.6: Example of thread code generation............................................................ 64 
Figure 4.7: Multithread deadlock problem................................................................... 65 
Figure 4.8: Main and Makefile code generation........................................................... 66 
Figure 4.9: Thread code generation with memory optimization techniques.................. 67 
Figure 4.10: Lifetime chart of T0 (a) after scheduling, (b) after buffer sharing ............ 68 
Figure 4.11: Motivational example.............................................................................. 70 
Figure 4.12: Multithread code generation flow after Message Aggregation integration 70 



 

 

 

 

9 

Figure 4.13: Thread code generation with Message Aggregation................................. 71 
Figure 4.14: An example of deadlock by Message Aggregation .................................. 72 
Figure 4.15: Simulink CAAM for Motion-JPEG decoder ............................................ 73 
Figure 4.16: H.264 decoder block diagram.................................................................. 74 
Figure 4.17: MPSoC Platform used for the Motion-JPEG decoder .............................. 74 
Figure 4.18: Data memory size, code memory size and execution time of Motion-JPEG 

decoder with single- and three-processor platforms................................. 76 
Figure 4.19: Data memory size and code memory size of H.264 decoder with single- 

and four-processor platforms .................................................................. 77 
Figure 4.20: Execution time of H.264 with single- and four-processor platforms......... 78 
Figure 4.21: H.264 decoder data memory size and code memory size with different 

memory optimization configurations and different number of processors 79 
Figure 4.22: Execution time of H264 decoder (Mcycles/sec)....................................... 79 
Figure 4.23: Performance results for H264 decoder.....................................................80 
Figure 4.24: Reduction on the number of channels and on the data memory size......... 81 
Figure 5.1: Proposed flow for embedded software development.................................. 86 
Figure 5.2: Flow for the proposed model transformation ............................................. 87 
Figure 5.3: Example of mapping from UML to Simulink CAAM................................ 89 
Figure 5.4: Sequence diagram for thread T3................................................................ 90 
Figure 5.5: Prototype for the mapping from UML to Simulink.................................... 91 
Figure 5.6: Example of insertion of delay – case 1 ...................................................... 92 
Figure 5.7: Example of insertion of delay – case 2 ...................................................... 93 
Figure 5.8: Example of the thread allocation by the linear clustering algorithm........... 93 
Figure 5.9: Pseudo code of the used linear clustering algorithm .................................. 94 
Figure 5.10: Crane system: UML deployment model .................................................. 95 
Figure 5.11: Crane UML model: T1 sequence diagram ............................................... 95 
Figure 5.12: Crane UML model: T2 sequence diagram ............................................... 96 
Figure 5.13: Crane system: UML sequence diagram for thread T3 .............................. 96 
Figure 5.14: Crane Simulink CAAM: Thread T3 model .............................................. 97 
Figure 5.15: Crane Simulink CAAM – CPU1 subsystem ............................................ 98 
Figure 5.16: Synthetic example: simplified sequence diagram..................................... 99 
Figure 5.17: Synthetic example: Task graph................................................................ 99 
Figure 5.18: Synthetic example: generated Simulink CAAM .................................... 100 

 



 

 

 

 

10 

LIST OF TABLES 

Table 2.1: Tools for embedded system design ............................................................. 18 
Table 2.2: Evaluation criteria ...................................................................................... 32 
Table 2.3: Evaluation criteria – subgroups................................................................... 33 
Table 2.4: Comparison results..................................................................................... 34 
Table 3.1: Mapping UML to Java................................................................................ 41 
Table 3.2: WD lines of code classification .................................................................. 43 
Table 3.3: Crane analysis results ................................................................................. 44 
Table 3.4: Address Book analysis results .................................................................... 48 
Table 4.1: HdS primitives ........................................................................................... 65 
Table 4.2: C code generation with 7 configurations..................................................... 75 
Table 4.3: Computation, Communication and Idle time of H264 decoder with different 

number of processors................................................................................. 81 
Table 4.4: Data memory size in bytes for the solution P4 ............................................ 82 

 



 

 

 

 

11 

ABSTRACT 

The use of techniques starting from higher abstraction levels is required to cope with 
the complexity that is found in the new generations of embedded systems, being crucial 
to the design success. A large reduction of design effort when using models in the 
development can be achieved when there is a possibility to automatically generate code 
from them. Using these techniques, the designer specifies the system model using some 
abstraction and code in a programming language is generated from that. However, 
available tools for modeling and code generation are domain-specific and embedded 
software usually shows heterogeneous behavior, which pushes the need for supporting 
software automation under different models of computation.  

In this thesis, strategies for embedded software development based on high-level 
models using UML and Simulink were analyzed. We observed that the embedded 
software generation approaches based on UML and Simulink have limitations, and 
hence this thesis proposes strategies to improve the automation provided on those 
approaches, for example, proposing a Simulink-based multithread code generation.  

UML is a well used language in the software engineering domain, and we consider 
that it has several advantages. However, UML is event-based and not suitable to model 
dataflow systems. On the other side, Simulink is widely used by control and hardware 
engineers and supports dataflow, and time-continuous models. Moreover, tools are 
available to generate code from a Simulink model. However, Simulink models represent 
lower abstraction level compared to UML ones. This comparison shows that UML and 
Simulink have pros and cons, which motivates the integration of both languages in a 
single design process.  

As the main contribution, we propose in this thesis an integrated approach to 
embedded software design, which starts from a high-level specification using UML 
diagrams. Both dataflow and control-flow models can be generated from that. In this 
way, an UML model can be used as front-end for different code generation approaches, 
including UML-based one and the proposed Simulink-based multithread code 
generation.  

 

 

 

 

 

Keywords: embedded software, embedded systems, software development. 



Estratégias para Desenvolvimento de Software Embarcado Baseadas 
em Modelos de Alto Nível 

RESUMO 

Técnicas que partem de modelos de alto nível de abstração são requeridas para lidar 
com a complexidade encontrada nas novas gerações de sistemas embarcados, sendo 
cruciais para o sucesso do projeto. Uma grande redução do esforço pode ser obtida com 
o uso de modelos quando código em uma linguagem de programação pode ser gerado 
automaticamente a partir desses. Porém, ferramentas disponíveis para modelagem e 
geração de código normalmente são dependentes de domínio e o software embarcado 
normalmente possui comportamento heterogêneo, requerendo suporte a múltiplos 
modelos de computação.  

Nesta tese, estratégias para desenvolvimento de software embarcado baseado em 
modelos de alto nível usando UML e Simulink são analisadas. A partir desta análise, 
observaram-se as principais limitações das abordagens para geração de código baseadas 
em UML e Simulink. Esta tese, então, propõe estratégias para melhorar a automação 
provida por estas ferramentas, como por exemplo, propondo uma abordagem para 
geração de código multithread a partir de modelos Simulink. 

A comparação feita entre UML e Simulink mostra que, embora UML seja a 
linguagem mais usada no domínio de engenharia de software, UML é baseada em 
eventos e não é adequada para modelar sistemas dataflow. Por outro lado, Simulink é 
largamente usado por engenheiros de hardware e de controle, além de suportar dataflow 
e geração de código. Porém, Simulink provê abstrações de mais baixo nível, quando 
comparado a UML. Conclui-se que tanto UML como Simulink possuem prós e contras, 
o que motiva a integração de ambas linguagens em um único fluxo de projeto.  

Neste contexto, esta tese propõe também uma abordagem integradora para 
desenvolvimento de software embarcado que inicia com uma especificação de alto nível 
descrita usando diagramas UML, a partir da qual modelos dataflow e control-flow 
podem ser gerados. Desta maneira, o modelo UML pode ser usado como front-end para 
diferentes abordagens de geração de código, incluindo UML e a proposta geração de 
código multithread a partir de modelos Simulink. 

 

 

 

Palavras-chave: software embarcado, sistemas embarcados, desenvolvimento de 
software.



1 INTRODUCTION 

‘Embedded everywhere’ is an expression that is getting materialized with the new 
generation of computer systems. This is a reality in sectors such as automotive, 
aeronautics, telecommunications, consumer electronics, and medical devices. Such 
embedded computational systems are often implemented as heterogeneous systems-on-
a-chip (SoCs), which are usually composed of dedicated hardware modules, 
programmable processors, memories, interface controllers, and software components.  

Usually, embedded systems have hard constraints regarding performance, memory, 
power consumption, dimensions, and weight, among other aspects. In addition, such 
systems are increasingly required to operate in real-time, bringing the necessity to 
ensure that system results are not only correctly computed, but also delivered at the 
precise times. At the same time, the life cycle of embedded products becomes 
increasingly tighter. In this scenario, productivity and quality are simultaneously 
required in embedded systems design in order to deliver competitive products. That 
makes the design of such embedded systems an ever-growing challenge, demanding 
new strategies and tools to improve the design productivity.  

Platform-Based Design (PBD) is a successful approach that implements a meet-in-
the-middle strategy to maximize the reuse of pre-designed components and, 
consequently, improve the design productivity (VERKEST, 2000) (SANGIOVANNI-
VINCENTELLI, 2004). In platform-based design, design derivatives are mainly 
configured by software.  

Burch (2001) indicated that the interest on software-based implementation has risen 
due to the increase in computational power allowing one to move more functionality to 
software. It is also an effect of the rising costs for hardware development that motivates 
the reuse of pre-defined platforms. Product differentiation is then achieved by the 
software. For those reasons, the software development is where most of the design time 
is spent, and is the largest cost factor in embedded system design (GRAFF, 2003). This 
scenario motivates the investigation of strategies to accelerate the embedded software 
development by process automation.  

In the software engineering area, Computer Aided Software Engineering (CASE) 
tools are widely used to automate the development process. Since conventional software 
is usually suited for a single domain, most of the software automation approaches focus 
on the management of huge domain-specific systems. However, embedded software 
usually shows heterogeneous behavior, which applies to systems whose respective 
models require different models of computation (MoCs) (EDWARDS, 1997), like 
stream processing (dataflow), control flow, and continuous time. For example, the 
specification of a mobile phone requires not only digital signal processing for the 
telecommunication domain, which is a time-discrete MoC, but also sequential logic 
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programs to describe several available applications (e.g. contacts and alarm clock). This 
pushes the need for supporting software automation under different models of 
computation, a task not completely supported by any current software automation tool. 
In addition, embedded software usually has memory and power restrictions, which 
makes the use of traditional CASE tools not feasible, but this is outside the scope of this 
thesis. 

Simultaneously to PBD, the use of higher abstraction levels has been adopted in 
order to deal with the complexity growth of systems and to increase the design 
productivity. Selic (2003) and Gomaa (2000) argue that the use of techniques starting 
from higher abstraction levels is the only viable way of coping with the complexity that 
is found in the new generations of embedded systems, being crucial to the design 
success.  

The use of higher abstraction levels hides details of implementation in the 
programming language, facilitating the system specification that will be on the model 
level, instead of code level. Using this approach, models of embedded systems should 
evolve from high level views into actual implementations, ensuring a relatively smooth 
and potentially much more reliable process as compared to traditional forms of software 
engineering. The translation of the high-level model into an executable description 
should be automatic, but depending on the modeling notation, it may need different 
degrees of designer interaction. The high-level modeling language should be able to 
express both the application requirements and the functional specification. Also, it 
should provide facilities to allow model validation, as well as features that can be used 
to guide implementation. Regarding to modeling approaches, many models have been 
proposed for embedded software specification, but no consensus is reached to any 
particular model that is good for all applications. 

Two widely used and distinct approaches highlight, one that is functional-based like 
provided by Simulink and another one that is object-oriented like provided by UML-
based tools. Traditionally, the functional block (FB) modeling approach has been used 
by the signal processing and control engineering communities for the development of 
embedded systems. This approach has been widely accepted in industrial designs, 
driven by an extensive set of design tools, as for instance Matlab/Simulink 
(MATHWORK, 2003). On the other hand, the UML modeling language is considered 
the de facto modeling notation for any object-oriented (OO) system and has gained in 
popularity also for real-time embedded systems specification and design. Efforts that 
describe the use of UML in different phases of an embedded system design are shown 
in (LAVAGNO, 2003). In the context of this work, both modeling approaches are 
evaluated regarding modeling, code generation and design exploration capabilities. 
These analysis results are found in (BRISOLARA, 2004; BRISOLARA, 2005b).  

From this analysis, we observed that the embedded software generation approaches 
based on UML and Simulink have limitations, and so we propose strategies to improve 
the automation provided on that approaches. As UML tools usually required more code 
to be specified by the designer using some action language to specify method bodies, a 
way to abstract the behavior specification is proposed in order to reduce the amount of 
code that must be written by designer. On the other hand, observing the limitations of 
Simulink-based tools regarding to code generation for MPSoC architectures, a 
Simulink-based multithread code generation strategy is proposed in the context of this 
work (BRISOLARA, 2007a). 
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The comparison between UML and Simulink shows that both modeling approaches 
present pros and cons, which motivates researchers to find a way to simultaneously 
exploit the benefits of both modeling languages in a single design process. Moreover, 
recent efforts show that both UML and Simulink are considered attractive for Electronic 
System Level (ESL) design (DENSMORE, 2006). Boldt (2007) proposes the 
integration of Simulink models into UML models in the Rhapsody tool (TELELOGIC, 
2007). In addition, SysML (OMG, 2006) was proposed as an extension to UML for 
systems engineering applications, with a higher degree of integration with the FB 
paradigm. However, the first SysML language specification was so close to UML that it 
is difficult to clearly define its improvements. Additionally, the available SysML 
modeling tools have not been evaluated yet for compliance or modeling capabilities.  

As most automation tools are domain-specific, Reichmann (2004) proposes a way to 
integrate models developed with different tools (UML, Simulink and Statemate). Using 
this approach, a heterogeneous system is partitioned into sub-module. Each of them can 
be modeled using the more appropriated tool, and domain-specific code generators are 
used to generate code for it. 

In this thesis, we propose a way to integrate UML and Simulink in a single design 
flow, allowing one to start with an UML model and decide which is the most 
appropriated tool to generate code for the system module (BRISOLARA, 2007b). 
Differently of the Boldt and Reichmann approaches, our approach uses a single 
language for initial specification, i.e. UML, and proposes the automatic mapping from 
UML to Simulink. Besides the mapping, our tool performs three kinds of optimizations: 
inference of communication channels, thread grouping and loop detection. Inference of 
communication channels and thread grouping are used to build a model from that a 
multithread code targeted to a multiprocessor architecture can be generated. In addition, 
loop detection is provided to insert temporal barriers in a dataflow model, avoiding 
deadlock. The proposed integration allows designers to work at a higher abstraction 
level, avoiding the necessity of building or modifying Simulink models directly, which 
means abstracting about low-level details like signals and ports. 

1.1 Thesis contributions 
Firstly, this thesis contributes with an analysis and comparison between two widely 

used modeling approaches, UML and Simulink, using a case study that is a 
heterogeneous system with dataflow and control-flow modules (BRISOLARA, 2005b). 

Strategies for embedded software generation from high-level models described in 
Simulink or using UML-based tools are proposed here and are also contributions of this 
thesis. In the UML-based strategy, the gap between model and code is bridged through 
of the use of a higher abstraction language. This strategy was finished because the 
definition of another language is a hard work and usually designers are not open to learn 
a new language. Moreover, during the thesis period, UML2 was defined, solving some 
problems in UML-based code generation. On the other hand, as Simulink is a 
commercial tool widely used and that already provide code generation capabilities, we 
also propose an approach to generate multithread code target to multiprocessor 
architectures from a Simulink model. The Simulink-based strategy has an optimization 
step that reduces the communication overhead during the code generation 
(BRISOLARA, 2007a).  
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Finally, this thesis proposes a way to integrate UML and Simulink in a single design 
flow (BRISOLARA, 2007b). In this approach, UML is used as the initial specification 
and Simulink can be generated from UML. In this way, an UML model can be used as 
front-end for different code generation approaches, including UML-based one and our 
Simulink-based multithread code generation. 

1.2 Thesis organization 
The remaining of this thesis is divided as follows:  Chapter 2 gives an overview of 

the state-of-the-art of modeling approaches, languages and tools used in the embedded 
system domain. That chapter also presents a comparison between UML and Simulink 
modeling approaches through a case study. Chapter 3 addresses the UML-based 
strategies for software generation and presents a proposal to solve the limitation of the 
existing code generation approaches. Chapter 4 presents a multithread code generation 
approach able to generate multithread code target to a multiprocessor architecture from 
a Simulink model. Chapter 5 explains the integration of UML and Simulink in a single 
design flow proposed in this thesis as a way for supporting software automation under 
different models of computation. Finally, chapter 6 concludes this text with final 
remarks and future works. 
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2 HIGH-LEVEL MODELS AND ASSOCIATED TOOLS 

Current research on embedded systems design emphasizes that the use of techniques 
starting from higher abstraction levels is crucial to the design success. Some authors like 
Douglass (1998), Gomaa (2000), and Selic (2003) argue that this approach is the only 
viable way of coping with the complexity that is found in the new generations of 
embedded systems. Using this approach, models of embedded systems should evolve 
from high level views into actual implementations, ensuring a relatively smooth and 
potentially much more reliable process as compared to traditional forms of engineering.  

The combination of abstraction and automation has inspired a set of modeling 
technologies, and corresponding development methods, collectively referred to as 
model-driven development (MDD) (SELIC, 2006). This chapter presents the state-of-art 
on strategies for embedded software development based on high-level models. In 
addition, a case study is used to compare two widely used strategies, UML-based and 
Simulink-based, regarding to the main capabilities required in designing embedded 
software. 

2.1  Embedded software from high-level models 
Effective design of embedded computer systems requires the capture of the system 

specification using high-level models in a model-centered approach in order to cope 
with the increasing complexity. This high-level model should reflect the nature of the 
application domain and the used high-level modeling language should be able to express 
both the application requirements and the functional specification. 

Once a specification is captured, the design process should progress towards 
implementation via well-defined stages (SANGIOVANNI-VICENTELLI, 2001). Tools 
are required to automate the model refinement and guide implementation. To obtain an 
embedded software implementation from the system specification, some tools provide 
code generation capabilities (e.g. Simulink/Stateflow, ASCET). Before the 
implementation, it is interesting to validate the specification, by simulation or formal 
verification.  

With the widespread use of platform-based design, most embedded applications are 
developed by simply mapping the application onto the target platform. In this way, the 
mapping allows one to configure and refine the system until the implementation, and 
constraint-driven mapping can conduct the design space exploration. To support this, 
analysis tools are required to evaluate intermediate results with respect to the design 
constraints, avoiding solutions that are not good enough. To do that, simulation and 
estimation tools are required. 
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Sangiovanni-Vicentelli (2006) presents a classification for Electronic System-Level 
(ESL) tools and languages, focusing on the platform based design. With base in this 
work and in our background, we defined the Table 2.1, where existing tools dedicated to 
embedded systems design are listed, including academic and industrial ones. We focus 
our analysis on the tools more closed to the embedded software development, which is 
the main focus of this thesis. The tools are analyzed according to the design step where 
it can be used, its features and the model of computation (MoC) and/or the abstraction 
supported for them. Besides specification capabilities, code generation and design space 
exploration features are also important for automating the embedded system design, and 
thus, tools that focus on these aspects are also listed in this table. 

Table 2.1: Tools for embedded system design 

Provider Tools Focus Abstraction 
National 
Instruments 

Labview Control application development LabView prog.  
languages 

Mathworks Simulink, 
Stateflow, 
RTW 

Modeling, algorithm design, and SW 
development. Emphasis on control and 
dataflow embedded systems 

Timed dataflow 
(discrete- and 
continuous-time), 
FSMs  

Esterel 
Technologies 

SCADE, 
Esterel Studio 

Code gen for safely-critical 
applications such as avionics and 
automotive 

Synchronous 

ETAS Ascet Modeling, algorithm design, code gen, 
and SW development, with emphasis 
on the automotive market 

Ascet models 

Univ. of 
California, 
Berkeley 

Ptolemy II Modeling, simulation, design of 
concurrent, real-time, embedded 
systems 

All MoCs 

Royal Institute of 
Technology  
Stockholm 

SML-Sys, 
ForSyDe* 

SMS-Sys: Formal multi-MoC 
framework based on formal semantics 
and functional paradigms; 
ForSyDe: Capture system functionality 
based on a synchronous model 

Multi- MoC (SML 
functional lang.), 
Synchronous* 

I-Logic Rhapsody, 
Statemate 

Real-time embedded system 
applications 

UML-Based 

Seoul National 
Univ. 

Peace Codesign-environment for rapid 
development of heterogeneous digital 
systems 

Ptolemy- based 

dSpace Target-link, 
RTI-MP 

Optimized code gen for single-CPU 
and for multi-processor systems 

Simulink models 

Univ. of 
California, 
Berkeley 

Metropolis Operational functionality, arch. 
capture, mapping, refinement, and 
verification 

All MoC (meta-model 
language) 

Vanderbilt Univ. Milan, GME, 
Desert 

Support for domain-specific languages, 
and design space exploration (DSE) 

UML-based and XML-
based 

Delft Univ. of 
Technology 

Artemis, 
Sesame, Spade 

Methods and tools to model and design 
SoC-based systems, DSE 

KPN and UML 

Tampere Univ. of 
Tech. and Nokia 

Koski DSE, code generation UML state diagrams 
and KPN 
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2.1.1 Specification 

Several tools for design capturing the high-level specification can be found in the 
industry and in the academy, varying the supported model of computation (MoC) and 
the used languages. Usually, these tools support the model simulation and code 
generation. Commercial packages such as LabView (NATIONAL INSTRUMENTS, 
2006), Simulink (MATHWORKS, 2003a), ASCET-SD (HONEKAMP, 1999), and 
SCADE (ESTEREL TECHNOLOGIES, 2007) allow modeling and development of 
embedded control systems based on functional-block specifications. Commonly in these 
environments, the designer composes a system through the instantiation of pre-existing 
components available in a library. 

Labview uses dataflow programming through a graphical interface to allow a 
designer to model and simulate control system using real-world stimuli. This tool 
provides a great number of functions for signal processing, analysis and advanced 
mathematics. ASCET-SD, from ETAS, supports modeling, simulation, and rapid 
prototyping of automotive embedded software modules and, in addition, it provides 
optimized code generation for various microcontroller targets. SCADE provides 
modeling of dataflow and state machines and code generation for safety-critical 
applications, such as avionics and automotive. SCADE checks model completeness and 
determinism, including cycle detection in nodes. The tools from Mathworks allows one 
to model a system through functional block diagrams using Simulink and/or through 
finite state machines (FSM) described using Stateflow (MATHWORKS, 2003b). 
Simulink representation language handles discrete dataflow and continuous time and 
FSM by the integration with Stateflow tool. Many embedded application have been 
successfully developed using these tools. However, these tools are domain-specific and 
only support fixed MoC. 

In this context, academic research projects, like Ptolemy (2004) and SML-Sys 
(MATHAIKUTTY, 2006), have addressed the heterogeneity of embedded systems, 
proposing multi-MoC modeling frameworks that support the simulation of 
heterogeneous systems. PtolemyII (BHATTACHARYYA, 2007), the version presently 
under development in the Ptolemy project, includes a growing suite of domains, each of 
which realizes a MoC. It also includes a component library. The system model in 
Ptolemy can be described by instantiation of pre-existing components through a graphic 
interface or components defined in Java by the user. The main advantage of this project 
is that it is open-source and supported MoC and components can be extended.  

Another example of multi-MoC, SML-Sys uses formal semantics and is based on 
functional paradigm, being readily susceptible to formal analysis. Furthermore, 
executable models in SML-Sys can be translated to VHDL/Verilog descriptions using 
ForSyDe (SANDER, 2004). Different from Ptolemy, knowledge on functional 
languages is required to use the SML-SyS framework.  

On the other hand, object-oriented approaches, like UML-based, have gained 
popularity for embedded systems design. UML supports several diagrams that can be 
used to specify different graphical views of the system. Recently, several proposals of 
use of UML for embedded systems can be found in (LAVAGNO, 2003) and (MARTIN, 
2005), which were motivated by the huge popularity of this language to specify 
computation systems, using object-oriented approaches. In this context, UML tools such 
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as Artisan Studio (ARTISAN SOFTWARE, 2007), Rhapsody (TELELOGIC, 2007) 
(GERY, 2002), and MagicDraw (NO MAGIC, 2007) have also been considered for 
embedded software specification. 

Many modeling approaches and tools have been proposed for embedded software 
specification, but there is no model that is more appropriated or good for all 
applications. 

2.1.2 Code generation 

Simulink and Ptolemy are examples of embedded software code generation tools, 
which generate code from functional blocks models. Regarding the code generation 
functionality, Simulink with Real-Time Workshop (MATHWORKS, 2004), from 
Mathworks, is probably the most widely used environment in the industry. The Real-
Time Workshop takes a Simulink model as the input and generates C code as output. 
The Real-Time Workshop Embedded Coder, which is an extension for RTW, generates 
C code from Simulink and Stateflow models, enabling the code generation form data 
and event-based models. TargetLink (DSPACE, 2005), from dSPACE, is another 
commercial tool with focus on the generation of efficient code from Simulink/Stateflow 
models. 

Ptolemy supports the modeling and simulation of heterogeneous models, but it has 
limited implementation capabilities for models other than dataflow (BUCK, 2000).  At 
present, Ptolemy II proposes two different code generation approaches (ZHOU, 2007). 
In the first one, the code generator called Copernicus generates Java code (.class) from 
non-hierarchical Synchronous Data Flow (SDF) models, using a component-
specialization framework built on top of a Java compiler. The second approach is a 
template based code generation system, in which a component called “codegen helper” 
is used to generate code for a Ptolemy II functional block (actor) in a target language. 
Currently, this template based code generator produces C code for synchronous 
dataflow (SDF), finite-state machines (FSM) and heterochronous dataflow models 
(HDF). The later is an extension of SDF that permits dynamic changes of production 
and consumption rates without sacrificing static scheduling. This code generator 
consists of actor templates (called helpers) that contain C code stubs that are stitched 
together. However, presently only a subset of actors has helpers already described. 
Although it is an interesting approach, a large amount of work is yet required to 
implement templates (helpers) for other widely used components and templates for 
different target languages before having a powerful code generation environment. 

Several UML-based tools have code generation capabilities, but some tools generate 
only code skeletons for class diagrams, while others generate also behavioral code from 
state diagrams. MagicDraw (NO MAGIC, 2007) is an example of tool that support only 
generation of code skeleton from the static structure. On the other hand, Artisan Studio, 
Rhapsody, UniMod and BridgePoint UML Suite (MENTOR GRAPHICS, 2005) are 
examples of tools that support generation of complete code from UML models. UniMod 
defines a methodology for designing object-oriented event-driven applications, focusing 
on execution and code generation from UML state diagrams. Rhapsody (GERY, 2002) 
allows creating UML models for an application and then generates C, C++ or Java code 
for the application. These tools support complete code generation, but only based on 
UML state diagrams, so they are more appropriate for event-based systems. Recently, 
Telelogic launched the new version of Rhapsody that provides the code generation from 
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flowcharts (activity diagrams) used to specify complex algorithms (TELELOGIC, 
2007). 

Besides code generation, several UML-based tools provide reverse engineering 
capabilities, for example, the MagicDraw tool supports reverse engineering from Java 
and C++ code (e.g. Java or C++ code to class diagram, Java code to sequence diagrams, 
etc.) and facilities to maintain the coherency between code and model.  

With the increasing interest on multiprocessor platforms for embedded systems, 
researchers have addressed the code generation for multiprocessor platforms. Real-Time 
Interface for Multiprocessor Systems (DSPACE, 2005), from dSPACE, generates 
software code from a specific Simulink model for multiprocessor systems. However, the 
software code generated by RTI-MP is targeted to a specific architecture consisting of 
several COTS processor boards and the main purpose is high-speed simulation of 
control-intensive applications. Since multiprocessor platforms are becoming more 
popular, flexible and powerful code generation approaches are desired to aid designers 
in the difficult task of programming these platforms. This is discussed again in chapter 
4, where a new code generation approach is proposed. 

2.1.3 HW/SW co-design and design space exploration 

ForSyDe (SANDER, 2004) starts at a higher abstraction level, with a synchronous 
formal specification model, and synthesizes VHDL and C, generated for the HW and 
SW implementation, respectively. The synthesis process is divided into two phases. In 
the first phase, the specification model is refined into a more detailed implementation 
model by design transformations. The second phase is the mapping from the 
implementation model onto a given architecture and comprises activities like 
partitioning, allocation of resources and code generation. The system specification used 
in the ForSyDe environment is made in Haskell. This language does not provide the 
high abstraction desired by the designers, besides requiring them knowledge over yet 
another language. 

Metropolis (BALARIN, 2001) is HW/SW co-design framework, which integrates 
modeling, simulation, synthesis and verification tools. In order to support multiple 
MoC, a MetaModel language is used in Metropolis. However, the generality of the 
MetaModel language creates difficulties for its usage by users and tool developers. Only 
manual design space exploration is supported in Metropolis.  

Milan (MOHANTY, 2002) is a hierarchical design space framework based on 
Generic Modeling Environment (GME) (LEDECZI, 2001), which is a framework for 
creating domain-specific modeling languages. For design space exploration, Milan uses 
DESERT (NEEMA, 2003) that is considered a semi-automated tool, because once the 
design space has been specified, it performs optimization and automatically indicates 
the optimal design. 

Other examples of design space exploration environments, SPADE (LIEVERSE, 
2001), Artemis/Sesame (PIMENTEL, 2001) (PIMENTEL, 2006) and Koski 
(KANGAS, 2006) abstract the application model using Kahn Process Network, KPN, 
(KAHN, 1977), and that application model is mapped to the architecture model during 
the design space exploration. SPADE (LIEVERSE, 2001) is a system-level performance 
analysis methodology and tool which uses trace-driven simulation for exploration 
purposes. Based on SPADE, Pimentel proposed Artemis (2001) and Sesame (2006). 
Artemis is a methodology for heterogeneous embedded systems modeling, while 
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Sesame is an environment targeted to provide modeling and simulation methods and 
tools for design space exploration of heterogeneous embedded systems. Koski 
(KANGAS, 2006) is an UML-based MPSoC design flow which provides an automated 
path from UML design entry to FPGA prototyping, including the functional verification 
and the automated architecture exploration. However, all these approaches still require 
the designer to manually specify the behavior for each process in the KPN. 

2.2 Analysis of the state-of-the-art 
Most of the academic and commercial solutions for software automation focus on 

the management of huge domain-specific systems, focusing in a single-domain such as 
databases SQL, web-based systems, or XML-based data sources and in a particular 
language. That is because conventional software is usually suited for a single domain. 
However, most complex embedded systems have a heterogeneous behavior and 
multiple MoC are required to describe such behaviors. Moreover, tools that automate 
general and conventional software development are not aware of code optimizations, a 
crucial step for embedded systems because of their tight restrictions. 

As shown in section 2.1, the embedded system research area is very active. With the 
increasing complexity of embedded software and the interest in software-based 
embedded systems, several efforts have addressed the limitation on software 
development approaches and common difficulties found in designing embedded 
systems (e.g. heterogeneity, hard constraints, etc.). In this context, several tools have 
been proposed to automate the implementation from high-level models and the code 
optimization. For example, Telelogic Tau provides the Agile C that is a code generator 
dedicated to small footprint and high-performance applications. However, for embedded 
software design, usually power is an important issue and all the physical aspects 
(performance, memory and power) need to be evaluated to check if the solution meets 
the system requirements. Moreover, the existing tools have some limitations and 
frequently are domain-specific. 

Despite of the huge investigation on strategies to accelerate the embedded software 
development, the existing tools are somewhat limited, and they do not cover the full 
spectrum of embedded system design. As result of the analysis of the state-of-art, it was 
found that none of the presented approaches targets the ultimate goal of providing 
appropriated abstraction (higher abstraction, multi-MoC) to increase software 
production and quality, with the necessary code generation and design space exploration 
capabilities. Nonetheless, this study shows that there are two high level modeling 
approaches in evidence that are functional block and object-oriented with UML. 

Traditionally, the functional block (FB) modeling approach has been used by the 
signal processing, industrial automation, and control engineering communities for the 
development of embedded systems (JOHN, 2001). These models are widely accepted in 
industrial design, driven by an extensive set of design tools, as for instance, 
Matlab/Simulink (MATLAB, 2004). Features like modularity, abstraction level, and 
reusability contributed to the popularity of this modeling approach. On the other hand, 
object-oriented approaches with the Unified Modeling Language (UML) are widely 
used in software design. UML is considered by far the most-used modeling notation for 
software engineers. Recently, UML has gained in popularity as a tool for specification 
and design of embedded systems and SoCs. In (LAVAGNO, 2003) one can find several 
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efforts that describe the use of UML during the different phases of an embedded system 
design process. 

Observing that both UML and Simulink are considered attractive for Electronic 
System Level (ESL) design, these two widely used domain-specific modeling 
approaches are analyzed in more detail in section 2.3.  

2.3 Comparison between UML-based and Simulink-based approaches 
This section presents a comparative analysis of UML and Simulink modeling 

approaches, which is driven by a case study. The modeling capabilities of both 
approaches are evaluated, as well as capabilities of tools based on UML and Simulink 
are analyzed. The results of this analysis were published in (BRISOLARA, 2005b). 
Although the UML models used in this case study follows notations from UML 1.3, 
which was the language version available when this case study was published, we 
extend here this analysis considering also capabilities provided by UML2 and SysML, 
recently defined by OMG.  

2.3.1 Functional block modeling and Simulink  

In the functional block (FB) approach, applications are designed by connecting 
several FBs. This modeling language does not allow the designer to express system 
requirements. Therefore they start modeling already thinking of the solution for the 
problem under consideration. Our modeling starts with the functional decomposition, 
and the result is the definition of the modules that interact during the system execution. 
Each FB output must be connected with an appropriate input, coming from a FB or 
another model element. The communication among blocks occurs through the data 
exchange by the interfaces instead of message exchange used in object-oriented 
approaches. The behavior for each block is described using different languages oriented 
to functional blocks, like languages for programmable controllers (PLCs) and 
Matlab/Simulink (HEVERHAGEN, 2003).  

Simulink, from Mathworks, is a block diagram commercial tool and language for 
the system modeling and simulation, which supports multiple models of computation 
(MoC) such as continuous time, discrete time, and event-oriented (by the integration 
with Stateflow). For example, using this tool, a block behavior can be described through 
transference functions, discrete equations, C or Matlab code, or state machines. A wide 
variety of tools (Stateflow, Real Time Workshop, etc.) and libraries with pre-defined 
blocks are integrated in the Simulink environment. The complexity of the blocks varies 
from simple adders or multipliers to complex filter algorithms. The functionalities of a 
block can be specified as a C or Matlab code or instantiating pre-defined components 
from the libraries. Simulink is suited for control engineering and digital signal 
processing applications. 

2.3.2 Object-oriented modeling and UML 

On the other hand, the object-oriented (OO) modeling paradigm has gained 
popularity over the last years among the general-purpose software design community. 
The object-oriented design and analysis uses concepts like design, polymorphism, and 
inheritance to model structural and behavioral system aspects. The use of high-level 
abstraction turns the design and implementation process easier, reducing design time. 
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As a result of a standardization process among different object-oriented design 
methodologies, the Object Management Group (OMG) promoted the creation of the 
Unified Modeling Language (UML) (OMG, 1999), which is currently in version 2.1.1 
(OMG, 2007a). UML is considered the de facto modeling notation for any OO system. 

With the production of SoC with large amount of memory, the use high-level 
languages and object-oriented approaches could be considered in embedded software 
design. With the interest by OO methodologies, the UML language gained also 
popularity in embedded system domain. Sgroi (2002) justifies this attention by the rich 
graphical notation and modeling power provided by this language that enables the 
capturing of structural and behavioral aspects in different abstraction levels. In addition, 
using OO concepts of UML, a definition of a class is made of its interface and its 
behavior. This distinction between definition and instances allows the development of 
libraries of reusable components. Another contribution from OO is the ability to define 
a component by inheriting features from another one, which again improves the reuse of 
components. 

In addition, the UML has mechanism to extend the language by the definition of 
profiles for specific domains. The UML-SPT (OMG, 2003) and the QoS&FT (OMG, 
2007b) are examples of profile proposed by OMG to model “Schedulability, 
Performance and Time” and “Quality of Service and Fault Tolerance”, respectively. 
However, these profiles cannot fully support the needs of the real time domain. OMG 
has therefore proposed the MARTE (OMG, 2005)( RIOUX, 2005), which includes the 
previous UML-SPT profile and affords generic concepts required to model real time 
aspects in both qualitative and quantitative terms and for schedulability or performance 
analysis on a model. It includes a set of modeling artifacts for embedded system 
specification, supporting asynchronous and synchronous computation models used in 
the RT domain. In addition, MARTE includes extensive models of standard platforms 
(POSIX, OSEK, etc.).  

2.3.3 Case study: Comparison between UML and Simulink models 

This section presents two different models developed to compare the object oriented 
modeling approach of UML to the FB modeling approach provided by Simulink. Our 
goal here is to analyze how suitable are these two approaches for the embedded system 
design. The results of this analysis were presented in (BRISOLARA, 2005b), where 
more detail about the used methodology can be found. 

 

 

Figure 2.1: Crane system 
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The case study consists of a crane control system, proposed as a benchmark for 
system level modeling (MOSER, 1999). Once the user defines a position for the crane, 
the control system should activate the motor and move the crane to the desired point. 
Special care must be taken with speed and position limits while the crane is moving, to 
guarantee the safety of the transported load. Therefore, constant monitoring is needed to 
avoid unexpected situations. This system incorporates hard real time constraints. Figure 
2.1 gives an overview of the system. 

2.3.4 FB model 

 

The Simulink environment was used to define the functional-block model of the 
Crane control system. Following the FB approach, the application was designed by 
connecting several functional blocks through of data links. In this approach, different 
hierarchical levels can be used in the model. As shown in Figure 2.2, the modeling 
resulted in four high level modules organized hierarchically, as follows: PlantActuators, 
Sensors, ControlAlgorithm, and JobControl. Each module has its intrinsic behavior and 
is further detailed along this section.  

 

 
Figure 2.2: Crane model using Simulink 

 

The crane system is composed of both data driven and event driven parts, as can be 
observed in Figure 2.2. The JobControl module is represented by a finite state machine 
(event based), while the other modules are data driven. Figure 2.3 shows a view of the 
JobControl module, which is composed by five states: Power_off, Init, PosDesiredTest, 
NormalMode and EmergencyStop.  

The NormalMode is a composite state, containing two concurrent states, Diagnosis 
and Control, as can be observed in Figure 2.4. The Diagnosis module runs in parallel 
with the control algorithm. This module is responsible for monitoring the position and 
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alpha sensors, indicating when some risk condition occurs. On the other hand, the 
control is responsible for detecting the braking condition for the control algorithm. 

 

 
Figure 2.3: Crane JobControl 

 

 
Figure 2.4: Crane JobControl – NormalMode 

 



 

 

 

 

27 

Figure 2.5 illustrates details of the ControlAlgorithm module, which is responsible 
for computing the control algorithm of the crane motor. This module receives the 
position of the car (posCar), the alpha angle of the cable (alpha), and the desired 
position of the load (PosDesired). The ControlAlgorithm computes a set of equations 
and determines the voltage (VC) that is applied to the crane motor. This FB contains 
two implicit MoCs, which are characterized as continuous time and discrete time, 
respectively. For example, it contains a discrete space state component used for 
differential equations resolution (top left), which is combined with those components 
that work in the time continuous domain. The control algorithm is periodic, with a 
period of 10 ms. Although this timing restriction could be represented in the model 
using a clock, this is not a suitable way of expressing timing requirements. For instance, 
no deadline can be stated, representing missing information required to perform 
schedulability analysis. 

The Sensors module is responsible for reading the sensors and works with a fixed 
cycle time of 2 ms. Although this FB is not shown in this chapter, we observe that it has 
the same problems previously stated for the control algorithm regarding the 
representation of timing restrictions. Besides the position and angle sensors, there are 
two other sensors for indicating when the car is beyond the track limits (minimal and 
maximum car position).  

 

 
Figure 2.5: Control algorithm model in Simulink 

 

Finally, the Plant module contains the specification of the physical plant (car and 
load) to be controlled. Although this module is not part of the system functional 
specification, it must be described in order to allow the simulation of the system 
behavior. For describing the continuous behavior of the plant, linear equations were 
represented by Simulink components such as integrators, adders, and gains. This 
highlights one important aspect of the FB approach, which is the possibility of reusing 
pre-defined FBs. 

Once the modeling phase is completed, the simulation is performed to provide 
the validation of the FB model. Afterwards, the application code can be generated. 
Simulink allow the generation of C code for the corresponding FBs and the generated 
code can be executed in real time within the framework provided by the tool. However, 
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reasonable effort must be performed to allow running this code in a target environment 
that is different from the development one.  

2.3.5 UML model 

Differently from the previous model, UML allows designers to represent the 
system’s needs or functionalities before their implementation. This can be performed by 
means of the Use Case Diagram, where actors represent the external elements that 
interact with the system (I/O device or human user) and each use case represents a 
specific functionality that must be provided. The Use Case Diagram for the crane 
system is presented in Figure 2.6. Each use case also includes a textual specification to 
detail its related responsibility.  
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Sensor

Motor
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Sensor 
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Diagnosis
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Emergency 
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Figure 2.6: UML Use Case Diagram of the Crane system 

 

For a better structuring of the model development, we followed the design phases 
proposed by Gomaa (2000) in the COMET/UML methodology. However, any other 
UML based design methodology that considers real time aspects could be used. 
Moreover, in this case study, UML1.3 was used, because UML2 was not yet available at 
the time. 

To describe the interaction among objects that participate in each use case, they are 
further detailed using UML collaboration diagrams. This is part of the so called analysis 
modeling, which precedes the definition of requirements. Instead of collaboration 
diagrams, sequence diagrams also could be used. To highlight important characteristics 
of the modeled system (mainly timing restrictions), the UML profile for Schedulability, 
Performance, and Time (SPT) (OMG, 2003) is used. This profile is also usually referred 
to RT-UML, and is composed mostly by stereotypes and its related tags. Using this 
profile, a timer event for example is decorated with the stereotype <<SAtrigger>>. It 
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includes information about its triggering frequency, as presented in the collaboration 
diagram from Figure 2.7 (see event num. 3 – run()). Such information is represented by 
the tag RTat of the stereotype that, in this case, means a periodic event with a 10 ms 
period. 

Operations depicted in the diagram of Figure 2.7 represent the ‘ControlAlgorithm’ 
block from the FB model (see Figure 2.5) and, partially, the ‘JobControl’ one. Detailing 
the collaboration diagram, one can see three different operations sequences, denoted by 
the numbers 1, 2, and 3. Special attention is given to the third sequence, the control 
operation, which represents a periodic activity. Timing restrictions are denoted by the 
elements from the UML-SPT profile. Similarly to the FB model, the ‘Controller’ class 
also has an associated state diagram, which is presented in Figure 2.8. This is part of the 
system dynamic model, which represents the application behavior. One observed 
missing feature of UML is the lack of semantics to express the control algorithm itself, 
including its continuous-time characteristics.  

 

 
Figure 2.7: UML Collaboration Diagram of the Control Algorithm 

 

The complete UML model of the Crane system includes 9 different collaboration 
diagrams. All classes from these diagrams constitute the system static structure, which 
is used as input for the next development step from the COMET methodology, that is 
known as Design Modeling. This phase is responsible for defining the architecture of 
the system, including the division of responsibility between client and server objects. 
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Since the Crane model makes use of decentralized control, it was necessary to classify 
objects as being passive or active. The former represents data repository elements, while 
the latter represents elements with their own thread of control that are capable of 
triggering an interaction sequence. The final result is represented by the class diagram 
depicted in Figure 2.9. Classes names are preceded by ‘::’ to follow UML conventions. 
They can also contain a stereotype incoming from the UML-SPT profile (e.g. 
<<SAschedRes>>, which denotes a concurrent element in the system). The choice for 
the use of classes instead of capsules (part of UML 2.0) is due to the available runtime 
structure on which object communication is event based and does not use the port 
abstraction. This diagram is used as basis for the embedded system code generation. 

Idle

Active

Blocked

«Create»/isActive = false;...

activate/isActive =  true;...

block/isAc tive =  false;

ru n /

 
Figure 2.8: State Diagram of the Controller class 

 

As the design tool used to build the UML model did not include a simulation 
module, the next step was the code generation for the system. Although other 
programming languages like C++ could also be used for code generation, the Java 
language was chosen as target in this study due to the current tool set used by our 
methodology (see BRISOLARA, 2005b). Details on the generated code will now be 
approached. 

 

 

Figure 2.9: UML Class Diagram of the Crane system 
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The Controller class, on which the associated stereotype denotes a concurrent real 
time task in the system, is selected to illustrate the generated code. This task is triggered 
periodically every 10 ms, with a deadline of 10 ms (see the collaboration diagram 
presented in Figure 2.7). To implement such features, the Controller class needs to 
inherit features from RealtimeThread, as shown in Figure 2.10. Moreover, it must define 
release parameters to implement the modeled timing constraints. Therefore, the class 
PeriodicParameters is used, and its instance is passed as parameter for the superclass 
constructor. A RelativeTime object is used to represent the 10 milliseconds from the task 
period and deadline. All these special classes are derived from an API proposed by 
Wehrmeister (2004). 

 

 
Figure 2.10: Generated code for the Controller class 

The Controller class provides two important methods: mainTask() and 
exceptionTask(). The former represents the task body, that is, the code executed when 
the task is activated. Since this task is periodic, there must be a loop which denotes the 
periodic execution. The loop execution frequency is controlled by calling the 
waitForNextPeriod() operation. This operation uses the task release parameters to 
interact with the scheduler and control the correct execution of the operation. The 
exceptionTask() operation represents the exception handling code that is triggered in 

import saito.sashimi.realtime.*; 

public class Controller extends RealtimeThread { 

       private static RelativeTime _10_ms =new RelativeTime(0,10,0); 

       private static PeriodicParameters schedParams = new PeriodicParameters( 

null,   // start time 

null,   // end time 

_10_ms, // period 

null,   // cost 

_10_ms);// deadline 

    public Controller() { 

      super("Controller", null, schedParams); 

      // do other initializations 

    } 

    public void mainTask() { 

      Crane.breakInterface.release(); 

      // periodic loop 

      while(isRunning == true){ 

         this.controll(); 

         Crane.monitorInterface.setVC(m_vc); 

         this.waitForNextPeriod(); 

       } 

   } 

   private int controll() { ... } 

   public void exceptionTask() { 

      // handle deadline missing 

   } 

}; 
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case of a deadline miss, that is, if the mainTask() operation does not finish until the 
established deadline. 

After the code generation process, the application was ported to the FemtoJava 
environment using the SASHIMI tool (ITO, 2001), which generates both a VHDL 
description for a dedicated Java processor and the respective program memory code 
(application code). 

2.3.6 Evaluation criteria 

In order to perform a comparison between the modeling approaches, several 
evaluation criteria have been identified. These criteria are based on the work conducted 
by Ardis (ARDIS et al., 1996), which performs a qualitative comparison among several 
design languages for reactive systems. Such work is extended here in the direction of 
searching for aspects that could be used to perform a quantitative evaluation of the 
designed models. Moreover, a new organization for the set of criteria is established. 
They are organized in groups that reflect the needs observed in the section 2.1, as can be 
observed in Table 2.2. The groups are further refined in subgroups to compose the 
evaluation criteria elements. In Table 2.3, each evaluation criterion is detailed, together 
with an explanation on how it is evaluated (in qualitative or quantitative terms). 

Table 2.2: Evaluation criteria 

Evaluation Criterion Description 

a) Requirements 
 Specification 

criteria to evaluate the capability to express and document user needs 
and system requirements. 

b) Functional 
Specification 

criteria to evaluate the model abstraction level and expressiveness, i.e. 
if it describes the problem domain elements and the system 
behavior/functionality in a natural and straightforward manner. 

c) Validation or 
Simulation 

criteria to evaluate if the specification can be validated before its 
implementation. 

d) Implementability criteria to evaluate if the specification can be easily refined or translated 
into an implementation that is compatible with the rest of the system. 
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Table 2.3: Evaluation criteria – subgroups  

Criteria Description Evaluation Expressed by 

a1) Functional 

requirements 

Capability of expressing and 
documenting the desired system 
functionality, together with the 
problem domain elements that 
interact with the system 

Quantitative the number (nbr) of 
modeling diagrams that 
can be used to 
implement the desired 
feature 

a2) QoS  

requirements: 

Capability of expressing the 
application QoS requirements 
and/or restrictions 

Quantitative The number (nbr) of 
QoS requirements that 
can be specified 

b1) Applicability Capability of representing 
system behavior or functionality 
by using different MoCs, 
according to systems nature 

Quantitative the nbr of supported 
MoCs 

b2) Maintainability Easiness to make modifications 
in the specification, e.g. addition 
of new elements and changes in 
the external elements like 
sensors 

Qualitative - 

b3) Modularity and 
Hierarchy  

Capability of dividing a large 
specification into independent 
modules, which could be again 
decomposed into even smaller 
parts 

Qualitative - 

b4) Expressiveness Capability of the modeling 
language primitives to describe 
the specification 

Quantitative b4.1) nbr of modeling 
primitives 

b4.2) nbr of different 
modeling primitives 

b4.3) nbr of handed 
lines of code 

c1) Simulation Capability of verifying if the 
specification can be used to 
validate the implementation 

Qualitative - 

c2) Verifiability Capability of demonstrating 
formally that the specification or 
generated program meets the 
requirements 

Qualitative - 

d1) Code 

generation 

Capability of generating an 
executable code from the model 

Qualitative - 

 

2.3.7 Comparison results 

This section presents an analysis and comparison of the UML and FB models 
according to the criteria discussed in the previous section. The results are summarized in 
Table 2.4. For evaluating the qualitative aspects, we have used the symbol “++” to 
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indicate a particular strength of the approach, “+” to indicate that the model meets the 
criterion in a way that is adequate, but less than ideal, and “0” to indicate a clear 
weakness of the model. 

Table 2.4: Comparison results 

Evaluation criteria FB UML 

a) Requirements Specification 

a1) Functional requirements 0 1 

a2) QoS requirements 0 2 

b) Functional Specification 

b1) Applicability 3 1 

b2) Maintainability + ++ 

b3) Modularity ++ ++ 

b4.1) Number of used modeling primitive 111 184 

b4.2) Number of different modeling primitive in use 5 5 

b4.3) Number of line codes written by the designer 0 96 

c) Validation / Simulation 

c1) Simulation ++ + 

c2) Verification 0 0 

d)  Implementability 

d1) Code Generation ++ + 

Source:  BRISOLARA, 2005b, p. 33 

 

This evaluation begins by analyzing the facilities for expressing the system 
functional requirements. UML offers the facilities provided by the use case diagram (1 
point), where functional requirements are defined in terms of actors and use cases. On 
the other side, the FB approach does not support this kind of resource (0 points).  

More recently, OMG proposes a new visual language called Systems Modeling 
Language (SysML) that reuses a subset of UML 2.0 and extends the language to satisfy 
the requirements of the UML for Systems Engineering (SE) domain. SysML provides 
two new notations to aid the requirements specification, which are Requirements 
diagrams and Parametric diagrams. Requirement diagrams can capture functional, 
performance and interface requirements, whereas with UML you are subject to the 
limitations of Use Case diagrams to define high-level functional requirements. 
Likewise, Parametric diagrams can be used to specify performance and reliability 
requirements during system analysis. 

Regarding the support for QoS specification, one can see that the UML-SPT profile 
supports both timing and performance requirements specification (2 points), while in the 
FB approach there is no support for such issues (0 points). In the FB model, the timing 
requirements are implicit in the functional/behavior specification. Neither language 
gives support to the specification of power consumption and cost requirements.  

Recently, the definitions from UML-SPT and the QoS&FT (UML profile for 
modeling Quality of Service and Fault Tolerance Characteristics and Mechanism) 
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profiles have been used to define a new profile called MARTE (Modeling and Analysis 
of Real-time and Embedded Systems).  MARTE provides a complete set of modeling 
elements to build specification and design models of embedded systems, and supports 
the various (asynchronous and synchronous) computation models used in the RT 
domain. 

Analyzing the model applicability by means of the number of supported MoCs, it is 
possible to observe the advantages provided by the FB approach, as it supports three 
different MoCs (3 points): continuous-time (analog), discrete-time (digital), and event- 
based. Regarding UML, it supports only the event-based model (1 point). In spite of 
this, there are efforts described in literature that already address the lack of a dataflow 
model in UML (BICHLER, 2004)(CHEN, 2004).  

Bichler (2004) proposes the D-UML, which integrates dataflow equations to the 
UML/Realtime modeling language. A comparison between UML, FB and the D-UML 
can be found in (BRISOLARA, 2005a). D-UML uses structure diagrams composed of 
UML2 capsules and flows connected by ports. In this approach, a statechart is 
developed for each capsule. Although D-UML allows model dataflow, this abstraction 
is in fact implemented using send/receive mechanisms, which are controlflow-like. 

Using UML2 notations, activities diagrams can be used to define dataflow systems. 
More recently, in the SysML definition, the activity diagram is extended to support the 
traditional Systems Engineering functional block diagrams (dataflow) and continuous 
behaviors.  However, activity diagrams are more closed to flowcharts than the dataflow 
proposed by FB models. Moreover, the commercial tools have just started to support 
these new features, so that it can not be used during this case study. 

Regarding maintainability, the intrinsic OO properties from UML models, like the 
specialization/generalization facilities (inheritance), provide better maintainability if 
compared to the structured approach of FB models. 

Considering modularity and hierarchy aspects, it is possible to conclude that the FB 
model leads to a slight better decomposition. This can be observed by comparing the 
Simulink high level model against the UML class diagram. The first one contains fewer 
elements, making the interpretation of the physical behavior easier. The UML class 
diagram used in our model maintains the whole system elements within the same 
abstraction level, which is somewhat not suitable, considering the desired hierarchical 
features. However, the addition of the composite structure diagram in UML 2.0 
overcomes this problem, since it allows for decomposition in a natural and 
straightforward manner. 

The next criteria concern model expressiveness: number of used modeling 
primitives vs. number of different modeling primitives in use. The FB model contains 
111 modeling primitives, excepting the plant module, including Simulink components, 
connections, ports, states, and transitions. In the UML model, 184 primitives are used. 
Regarding different modeling primitives in use, the UML model is represented by 
means of classes, objects, associations, states, and transitions. Therefore, it is natural to 
observe an equivalent number of different modeling primitives if compared to the FB 
model, which includes blocks, ports, connections, states, and transitions. Nevertheless, 
using a design tool like Simulink, the designer can make use of different pre-defined 
components available in a component library. 
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Another relevant issue relates to the number of lines of code programmed by the 
designer in each model. It can be observed that in the UML model the designer has to 
manually write 96 lines of code, while in FB model the program code was completely 
generated by the tool. Several UML tools have code generation capabilities, but they 
generate only code skeletons for classes and, at most, code from the statecharts. The 
hand written code parts include mainly the methods’ behaviors that cannot be captured 
from the model. On the other hand, by using the FB model and associated library, the 
designer is not required to code the program by him/herself, as observed in our case 
study. Lastly, our experimental results show that by using a component library within 
the UML model reduction on the number of hand written code from 96 to 66 lines can 
be achieved. 

Regarding model validation and simulation, it is possible to observe that, in order to 
provide such features, suitable modeling and design tools are required. In the crane case 
study, only the FB model could be simulated, thanks to the Simulink tool that provides a 
simulation engine. The available version of the Real-time Studio tool, used for the 
construction of the UML model, does not support model simulation. However, 
considering the authors’ experience with other UML-like modeling tools, they provide 
support at most for animation of statecharts (event based MoC). Consequently, one can 
state that for this task the FB model is more adequate, because the simulation 
environment supports all the three intrinsic MoCs. 

Analyzing the verification features, neither UML nor FB approach have support of 
formal verification of complete models. In UML, some tools allow for model checking 
in specific diagrams, like Statecharts and Sequence Diagrams. Moreover, many tools 
support consistency checking between diagrams, for instance checking the connections 
between the components in a FB diagram or even guaranteeing that an operation called 
in an UML collaboration diagram exists in the related class. For this reason, both 
languages are considered weak in this aspect. Besides that, UML commercial tools 
check the syntax of actions in the statecharts. They also check if an operation called in a 
collaboration diagram was defined in the class. Therefore, Damm and Harel (2001) 
proposed the Live Sequence Charts (LSC) that are an extension of Message Sequence 
Charts (MSC) with rigorous semantic. The use of the LSCs allows consistency check 
between the generated scenarios and the sequence charts applying formal verification 
techniques.  

Finally, considering the model implementability, one can see that from both models 
an architecture independent specification can be derived. Still, there are two aspects that 
lead to distinct capabilities: amount of code provided by designer and number of pre- 
defined components. In UML, the need for designer intervention is higher as can be 
observed in the crane case study, because some parts of specification cannot be 
expressed using UML diagrams (e.g. control algorithm). In the FB models, the whole 
code can be generated automatically, since it relies on the use of pre-defined libraries. 
However, the generated code requires several modifications/optimizations to be 
executed outside the framework provided by Simulink. 
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3 UML-BASED EMBEDDED SOFTWARE GENERATION 

The Unified Modeling Language (UML) (OMG, 1999) is a standard notation for 
modeling and documentation of object-oriented software. The intention behind the 
definition of the language was to consolidate the various OO languages, methods, and 
notation in a single modeling language independent of vendor. UML was based on the 
OMT method of Rumbaugh (1991), the Booch method (BOOCH, 1981), and the OOSE 
(Jacobson, 1992). This language was defined to support specification, visualization, 
construction, and documentation of conventional computational systems.  

The UML language is in constant evolution and OMG is responsible for maintaining 
and reviewing it. The organization can have the assistance from the members from both 
academy and industry. All members can propose new features and vote for new 
solutions for the UML language. Nowadays, UML is considered the de facto modeling 
language for software systems. Several tools based on UML are available for software 
modeling and code generation. The widely use of UML as a standard language also 
contributed for the definition of software development approach that shifts the focus 
from code to models, which is called model-driven development (SELIC, 2006). MDD 
aims to make models the primary resource in all aspects of software engineering and 
provide benefits of cost reduction and quality improvement.  

UML1, the first version of the language, presented some limitations, mainly 
regarding to the low precision and lack of formal semantic. That left ambiguities in the 
model, allowing different interpretations and difficulting the implementation of tools for 
model capturing and code generation. To automate these steps, some vendors defined 
more precise semantics, but the problem was that these semantics varied from vendor to 
vendor. Recently, a major revision of UML was coordinate by OMG and the new 
version of the language (UML2) was defined, with enhanced semantic and more 
precision. The main objective of this revision is to eliminate the ambiguities, facilitating 
the design automation by tools.  

The first minor revision of the original UML 2 specification has resulted in 
UML 2.1.1 (OMG, 2007a). Although this revision adds fixes to the abstract syntax to 
eliminate minor inconsistencies and ambiguities, existing UML-tools still have limited 
generate code capabilities. This is better discussed in the section 3.1, where the 
capabilities of the existing UML-based tools for embedded software generation are 
depicted. From that analysis, one can observe a gap between model and code, presented 
in section 3.2 using experiments, explained in section 3.3. 
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3.1 Existing approaches for code generation from UML models 
To support SW automation based on UML models, the first step is the capture of the 

model. An UML model is an instance of a class model called UML meta-model. Models 
are stored using the XMI (OMG, 2002) model interchange standard, which is based on 
XML ( eXtensible Markup Language) (GROSE, 2002). The problem is that different 
versions of the XMI are used for different vendors, making difficult the interchange 
between UML-based tools. Model repositories can be used to store an UML model 
represented using XMI, providing functions to create, add, remove and update a model, 
and thus, facilitating the tool implementation. Examples of available UML repositories 
are Eclipse EMF (ECLIPSE DEVELOPMENT TEAM, 2006), Netbeans Metadata 
Repository (MDR) (NETBEANS DEVELOPMENT TIME, 2005), and System 
Modeling Workbench (SMW)(PORRES, 2003).  

After capturing the model, this must be transformed into code in the target language. 
This process typically uses a template engine to transform model into code, given the 
format specified by the template. Templates are a flexible approach to convert models to 
text. The most popular template engines are Velocity (APACHE SOFTWARE, 2005) 
and JET (Java Emitter Templates) (ECLIPSE DEVELOPMENT TEAM, 2005). Figure 
3.1 presents an example of template in Velocity, which is an open-source project 
created to generate HTML code. Details about code generation using templates can be 
found in (BOAS, 2004). Model repositories, such as EMF and MDR, and templates can 
be used together in the implementation of a code generator. 

Other methods to generate source code include the use of rules, writing programs 
that generate programs (code generators), and using transformations such as XSLT 
(TIDWELL, 2001). Indeed, XSLT is popular for XML transformations, but it is too 
verbose to be an effective language for model-driven code generation. More recently, as 
model-driven development approaches have gained interest, an alternative approach for 
code generation based on model transformations has been proposed. In this way, the 
model described in a higher abstraction is transformed into another one closer to the 
final implementation. More than one transformation steps could be applied to the initial 
model, including optimization steps. Finally, a simple conversion from model to text 
can be applied to produce code in the target language. 

 
Figure 3.1: Velocity template example 

According to Björklund (2004), templates are difficult to create and manage. They 
cannot be the only mechanism for code generation, mainly because code optimizations 
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cannot be applied using templates. The author suggests that the most adequate way to 
generate code from a model is through model transformation. An example of the code 
generation from UML class diagrams to Java was presented in (BJÖRKLUND, 2005), 
and is illustrated in Figure 3.2. This figure shows three ways to generate Java code from 
a class diagram. A simpler one is just directly converting the model to text, as the model 
is a simple one, just a partial code could be generated with this approach. In an 
alternative way, the model could be transformed in another more detailed model, and 
then use this model to generate code. In addition, a complex mapping could be used to 
generate the code from the initial model. This example is good to illustrate the code 
generation idea. It is though too simple because the transformations show just the use of 
the JavaBeans convention, which defines that for each class attribute, methods set and 
get should be defined to give access to this attribute.   
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Figure 3.2: Approach for code generation (BJÖRKLUND, 2005) 

3.1.1 Code generation: existing tools 

The tools proposed for code generation from UML models can be divided in two 
classes, structural and behavioral. This division was initially proposed by Björklund 
(2005). In a structural code generation, only structural diagrams are used, i.e. class 
diagrams, where classes have attributes and relations. The tools that follow this 
approach generate only skeleton of code, and the strategy is available since the first 
UML tools. For example, they can map all constructions (elements) in a class diagram 
to Java or C++ programs. On the other hand, the behavioral code generation is based on 
behavioral UML diagrams, such as state, sequence and collaboration diagrams. Most of 
the available tools provide code generation only from UML state diagrams, as for 
example, Artisan Studio, Rhapsody, UniMod and BridgePoint UML Suite. 

To be able to generate complete code from UML diagrams, designers are asked to 
add information to the model, e.g. specifying the action correspondent to state (activity) 
in a state (activity) diagrams or specifying the method behavior in sequence diagrams. 
Some code generators use the target implementation language to describe these methods 
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and actions, which turn the model not independent of the target language. Other tools 
use actions languages to complement the state and activity diagrams in order to generate 
complete code. However, as the Actions Semantics proposed for UML 1.5 defines only 
an abstract syntax, tool vendors use proprietary action languages. Such approach is used 
in iUML (KENNEDY CARTER, 2005), BridgePoint UML Suite (MENTOR 
GRAPHICS, 2005), and Telelogic Tau Architect/Developer (TELELOGIC, 2004). As 
an example, BridgePoint uses the Object Action Language (OAL) and provides full 
code generation, in which the designer uses state diagrams to represent the system 
behavior and specifies actions correspondent to all states using OAL. 

Other common approach to bridge the gap between model and implementation is the 
use of intermediate languages. Such approach is used by Björklund (2004) and Hubbers 
and Oostdijk (2003). 

In order to support model verification, simulation, and synthesis, Björklund (2004) 
proposes the use of Rialto as the intermediate language during the model design. This is 
illustrated in Figure 3.3. This language has a formal semantics that allows the capture of 
the semantics in UML behavioral diagrams. Thereby, the language can be used as an 
execution engine for UML models and to generate code too. Rialto can also be used to 
combine multiple MoCs because different scheduling policies are defined in this 
language. In this work, the authors consider that the activities diagrams have dataflow 
as their underlying model of computation and these diagrams can be interpreted as a 
statechart. In those, all computation is performed in state activities and the transitions 
are triggered by completion events. However, a statechart is control flow like and is not 
the more adequate representation for dataflow models. Moreover, as this is an ongoing 
work, it supports only some UML diagrams.  

UML Rialto FSM S-Graph

C

Java

UML Rialto FSM S-Graph

C

Java
 

Figure 3.3: Rialto-based code generation approach (BJÖRKLUND, 2004) 

Hubbers and Oostdijk (2003) highlight the difficulty of verifying if the 
implementation behavior agrees with the specification. In this context, the authors 
propose the use of JML (Java modeling Language) specifications in order to facilitate 
this verification. A JML specification allows formal verification to check if the 
generated code implements the specified model. In this project, a tool called AutoJML 
has been developed, which automatically derives JML specifications from UML state 
diagrams represented in the XMI format, beyond the Java code. The combination of the 
JML specification and the skeleton code can be formally verified using the ESC/Java 
(FLANAGAN, 2002). 

UML2 provides some constructions that aid the modeling of the complete 
execution flow, as for example the ref operator that allows to link fragments in different 
sequence diagrams. This new version of UML also provides the operators alt, opt and 
loop, which permits representing conditions and loops in sequence diagrams. These new 
constructions allow the proposal of code generation approaches based on sequence 
diagrams, as in (BABU, 2005) and (REICHMANN, 2004). Matilda (BABU, 2005) is a 
model-driven development platform that accepts the UML2.0 class and sequence 
diagrams as input. This platform provides capabilities for model checking against the 
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UML meta-models for syntax and semantic correctness, besides code generation. In this 
approach, UML models are mapped to the abstract syntax tree from which the code is 
generated. Java constructions are used on the sequence diagrams and thus, full code can 
be generated from the model. Reichmann (2004) proposes a code generator, which uses 
Velocity engine (APACHE SOFTWARE, 2005) to generate Java or C++ code from 
UML models, as class and sequence diagrams. In this work, in order to complete the 
behavioral diagrams, the language called MeDeLa is used to specify methods behavior. 
MeDeLa is based on Java syntax and consequently, the use of this language does not 
provide a higher abstraction level than that of Java or C++. 

3.2 Analyzing the gap between UML model and a Java program 
The diagrams and graphical notations provided by UML help the designer specify 

the behavior of complex systems, without demanding the definition of details usually 
required by the programming languages. In a desired flow, a model compiler (or code 
generator) must be able to generate these details from the model, producing an 
implementation in the target programming language. 

A code generator could be considered as a function that maps artifacts from a 
modeling language to lines of code in a programming language. To design a code 
generator, the definitions of the models to be supported as input are required, as well as 
the used features of the target programming language and the mapping between both. In 
this section, we study the mapping from UML models to Java code and we discuss the 
gap existing between both specifications. 

As highlighted by Erikssom (2004), when Java is the target language, a natural 
progression from the logic classes to code components is possible. As Java and UML 
are object-oriented languages, some UML constructions can be directly mapped to Java 
ones. For example, a class in UML is translated to a class definition in a Java code and, 
for each class defined in a class diagram, a .java file is created. Table 3.1 shows basic 
rules to map UML constructions to statements in Java.  

Table 3.1: Mapping UML to Java 

UML Constructions Java Constructions 

Attribute instance variable 

Operation Method 

Abstract Class abstract class 

Interface interface key-word 

Package package declaration (package) 

Subclass/Generalization extends key-word 

Realization implements key-word 

Dependency, <<uses>> Import 

Multiplicity Array 

Role Instance variable from the type of the class associated with the role 

Source: MADISETTI, 2005. 
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Besides the mapping proposed by Madisetti (2005) and summarized in the Table 
3.1, other simple mapping rules can be defined, as for example, the generation of get 
and set methods for all class private attributes. In this way, the single way to access 
these attributes is through these methods. That is a convention in JavaBeans. 

However, the direct mapping is only possible from structural diagrams. The UML 
behavioral diagrams include many concepts, such as actions, events, and states, which 
are not present in most programming languages. This means that there is not a one-to-
one mapping between behavioral diagrams and its implementation (BJÖRKLUND, 
2003). 

3.2.1 Experiments 

In order to discuss the gap between the UML model and an implementation on a 
target language, we analyzed two embedded applications developed in Java. Those are 
the Crane control, which is also used as case study in chapter 2, and the Address Book, 
which includes calendar, alarm, and calculator. In this experiment, firstly, we analyze 
both applications regarding the number of lines of code that can be automatically 
generated from the model using structural code generators. That means using only class 
diagrams. For these lines, we use the term “Automatic Generated” (AG). The rest of the 
lines were classified as “Written by designer” (WD). After that, these WD lines were 
classified according to the operation that they are evolved or the behavior that they 
describe. 

To determine the lines marked as “Automatic Generated” (AG), the mapping 
presented in Table 3.1 was used. In this way, lines responsible to define classes, 
interfaces, methods and attributes are considered in this group. Besides that, lines of 
code used to define the use of an API and the definition of packages are also classified 
as AG. In addition, lines of code responsible to initialize attributes and define get and 
set methods for all class attributes are also considered as AG in this analysis. 

This study aims to define an abstraction that could be used to complement the UML 
diagrams in order to obtain the complete code generation from the model without losing 
abstraction. Then, after the identification of the AG lines of code, the remaining lines 
are considered WD. The WD ones are then analyzed in more detail in order to evaluate 
how they could be specified in a higher abstraction level and, consequently, 
automatically generated. To do this, we classified these WD lines of code in 20 groups, 
as presented in Table 3.2. Firstly, seven simple groups were defined (e.g. <co>, <cm>, 
<mat>), which were combined to define eleven complex groups (e.g. <if+mat>, 
<for+cm>, <for+ds+mat>). The <co> and <io> groups are reserved for the lines of code 
used to dynamically create and initialize objects, respectively. The <cm> and <ret> 
represent method invocation and method return, respectively. The groups <dv>, <iv> 
and <incv> are used to represent the declaration, initialization and increment of 
variable, respectively, as well as the group <im> represents the lines used to initialize 
matrix or vectors. Finally, math operations are classified as <mat>.  

In the proposed classification, control structures like conditional and loops were 
divided in several groups according to the correspondent control operation, e.g. the 
group <for+cm> represents a loop with known number of iterations and with method 
calls inside. For conditionals, similar classification was proposed for the command If, 
defining the group <if+cm>. Besides For and If, similar structures like Switch/Case and 
While were also considered and classified, as well the Try/Catch used for exception 
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handling in Java code. For example, the While was classified as <loop+cm>, which 
means a loop with conditional and that have method call inside. In addition, <for+ds> 
classified the loop used to manipulate a data structure (matrix or vector). An example of 
these lines of code is illustrated in Figure 3.6(a). 

Table 3.2: WD lines of code classification 

Classification Description 

<co> Create objects - Lines of code used to create an object.  
        Ex: classA obj = new classA(); 

<io> Initialization of object (object is already allocated, only will be updated).     Ex: 
currentObj = objA; 

<cm> Call methods - Lines of code used to indicate method invocation. 

<ret> Lines of code to represent a method return. 

<dv> Lines of code used to declare an auxiliary variable.     Ex: int temp; 

<iv> Lines of code dedicated to give values for variables.   Ex: a = 4647;            

<incv> Lines of code used to increment variable value.           Ex: a=a+1; 

<im> Lines of code used to initialize matrix and vectors.      Ex: X[0]=1; 

<mat> Math operations.                                Ex: num = u - y;      Ex: num = sqr (a); 

<if+cm> Conditional with method call.           Ex: if (test) method( ); 

<if+incv> Conditional with a variable increment.                    Ex: if (test) temp+=2; 

<if+iv>  Conditional with initialization of variable.    Ex: if (EmergencyStop) vc=0; 

<if+mat> 

 

Conditional with math operations.           Ex: if (num >= max)     
                                                                               v = max – sqrt (num);  
                                                                         else v = sqrt (num) + min;  

<if+mat+ds> 

 

Conditional with data structure manipulation and math operations. 

      Ex:  if (a)      z = posCar*q [1]; 

<for+cm> Loops with method invocations. 

    Ex: for (int j = 0; j < max; j++)     {    init(j);  ....      } 

<for+ds> 

 

Loops used to manipulate a data structure.      Ex: for (int i = 0; i < 5; i++)                                       

{     q[i]= q1[i];   } 

<for+ds+mat> Loops with math operations under data stored in matrix or vectors. 

<for+ds+cm> Loops with method calls used to define contents for a data structure. 

<loop+cm> Loops with conditional test, in which methods are invoked.  

Ex: while (test) {  } 

<switch-case> Lines of code used to define a switch-case conditional structure.  

<try/catch> Lines of code used to exception treatment. 
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Figure 3.4 (a) shows a block of Java code, which performs the copy of the content 
from a vector to another vector. According to the classification presented in Table 3.2, it 
was classified as <for+ds>. The same behavior can be described in a single code line in 
Python and Matlab, as shown in Figure 3.4 (b). This simplification is possible because 
the interpreters and compilers provide by these tools are able to treat that. This allows, 
for example, that the user manipulates a matrix as a primitive type in Matlab. 

 

 

for (int i=0; i<5; i++)
{                                        

q[i] = r[i];
}

q=r

a) Java Code b) Python Code 
Figure 3.4: Example of <for+ds> lines of code 

From this analysis, we observed also lines of code that could be automatically 
generated using templates, e.g. the lines for exception treatment and conditional 
structure of type switch-case in Java code. These structures were classified as 
<try/catch> and <switch/case> in Table 3.2. Skeleton of code can be automatic 
generated using templates for both cases. 

3.2.1.1 Crane results 

The crane is used as case study in chapter 2 and the same UML model and Java 
implementation are used in the analysis presented here. The analysis results for the 
Crane control application are summarized in Table 3.3. It is important to notice that this 
implementation reuses a library to solve floating point operations. As the library was 
reused, these lines of code were not considered in this analysis. 

Table 3.3: Crane analysis results 

Classes/Interfaces Total AG WD 
Crane 20 8.93% 6 30% 14 70% 
Controller 77 34.38% 22 28.57% 55 71.43% 
CraneInitializer 10 4.46% 6 60% 4 40% 
ConsoleInterface 11 4.91% 7 643.34% 4 36.36% 
BreakInterface 8 3.57% 5 62.5% 3 37.50% 
AngleSensorInterface 19 8.48% 12 63.16% 7 36.84% 
positionSensorInterface 19 8.48% 12 63.16% 7 36.84% 
MotorInterface 6 2.68% 6 100% 0 0% 
SWPosCarMin 6 2.68% 5 83.33% 1 16.67% 
SWPosCarMax 6 2.68% 5 83.33% 1 16.67% 
PosCarMin 6 2.68% 6 100% 0 0% 
PosCarMax 6 2.68% 6 100% 0 0% 
DesiredPosition 6 2.68% 6 100% 0 0% 
DeltaPosCar 6 2.68% 6 100% 0 0% 
VcCheck 6 2.68% 6 100% 0 0% 
ParameterTimeOut 7 3.13% 5 71.43% 2 28.57% 
Diagnoser 5 2.23% 5 100,00% 0 0% 
TOTAL 224 100% 126 56.25% 98 43.75% 
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Table 3.3 presents the total number of lines of code, the number of lines of code 
automatic generated (AG) and written by designers (WD) for each class used in the 
crane implementation. From these results, we observed that more than 40% of the total 
lines of code of the crane were classified as WD, which means that these lines of code 
must be described by the designer. Moreover, the results show that for 8 classes from 
the 17 classes that compose the application, the number of lines of code written by 
designer (WD) is too small, being around 0 and 17%. This is because theses classes 
represent shared resources and define only attributes and methods to access its 
attributes. For the classes that present a larger number of WD lines of code, a detailed 
analysis was made and is presented in the remaining of this section. 

The Controller class has 77 lines of code, which represents 34.38% of the total lines 
of code in the whole application. The main part of the application behavior, which is the 
control algorithm, is encapsulated in this class. A block of code from the Controller 
class is illustrated in Figure 3.5. The analysis results show that 28.57% of the lines of 
code of the Controller class can be automatically generated. The remaining 55 lines of 
code (71.43%) are classified as “Written by Designer” (WD) and then, they must be 
described by the designer. The result obtained for the Controller class is illustrated in 
Figure 3.6(a). From the 55 lines of code, 10 lines are used to vector initialization 
(<im>), 6 lines are loops to vector manipulation (<for+ds>) and 10 lines are loops 
where vector are manipulated through methods (<for+ds+cm>). In addition, 11 lines are 
conditionals and 14 are method invocations. 

 

public class Controller extends RealtimeThread {
...
public Controller ()   {

super(null, relParams);
// do initializations (A, B, X, K, kp, q...)

}
private int controll() {

int posdesired = Crane.desiredPosition.get();                  
poscar= Crane.positionSensorInterface.read();
mul_Bx();
mul_y();
if (EmergencyMode)

z= softfloat.floatAdd(poscar, softfloat.floatMul(0x4500, q[1]));
else

z= softfloat.floatAdd(poscar, softfloat.floatMul(0x4500, alfa));
...
for (int i=0; i < 5; i++) {

q[i]= q1[i];       }
return(VC_temp);

}
public static void mul_Aq() {
for (int i= 0; i < 5; i++) {

q1[i]= 0;}
int lin=0;
for (i=0; i < 5; i++) {

for (int j=0; j < 5; j++) 
q1[i]= softfloat.floatAdd(q1[i], softfloat.floatMul(A[lin+j], q[j]));

lin+=5;
}

}
... // more code ...  

Figure 3.5: Example of analyzed code: Controller class 
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The analysis results for the Crane class are illustrated in Figure 3.6(b). From the 20 
Java lines of code of this class, 6 can be automatically generated because they represent 
the class header and method declarations. From the 14 remaining lines of code, 
classified as WD, 8 are responsible for the object creation (<co>), 5 are method calls 
(<cm>), and 1 is a loop in which there is method call inside (<loop+cm>). Figure 3.7 
illustrates the results for the analysis of the remaining classes. 

 

 
                           (a)                                                                    (b)  

Figure 3.6: Analysis results obtained of the Controller and Crane classes 

 

Figure 3.7: Analysis results for Crane classes 

3.2.1.2 Address Book results 

An Address Book application is another case study. The application allows the 
storage of information about contacts, such as name, address, phone, and birthday. 
Besides that, it checks for birthdays in the month or in a given-day. This application 
includes an alarm and a calculator that performs simple math operations. Figure 3.8 
presents the class diagram for our Address Book. Besides the classes presented in this 
figure, a class called Console was used in the implementation to facilitate reading the 
values from the keyboard. Since the behavior implemented by this class could be reused 
from a pre-exiting class or library, this class was not considered in this analysis. 

Controller Class 

Total: 77 (22 AG + 55 WD) 

55 = 3 <iv> + 14 <cm> + 1 <ret>+ 10 <im> 

        + 6 <for+ds> + 10 <for+ds+cm> 

        + 6 <for+ds+cm>+ 4<if+cm> + 1 <if+iv> 

Crane Class 

Total: 20 (6 AG + 14 WD) 

14 = 8 <co> + 5 <cm> + 1 <loop+cm > 

CraneInitializer 

Total: 10 (6 AG + 4 WD) 

4 WD= 4  <cm> 

BreakInterface 

Total: 8 (5 AG + 3 WD) 

3WD =3 <iv> 

ConsoleInterface 

Total: 11 (7 AG + 4 WD) 

4 WD = 2 <cm> + 2 <co> 

AngleSensorInterface 

Total: 19 (12 AG +7 WD) 

7WD = 2 <co> + 1 <cm> + 1<iv> +3 <for+cm>. 

PositionSensorInterface 

Total: 19 (12 AG +7 WD) 
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Table 3.4 presents the complete results obtained for the analysis of the lines of code 
for each Address Book class (total number of lines of code, number of AG and WD 
lines of code. The results show that 66.21% of the Address Book lines of code must be 
written by the designer. We observed that the AddressBook presents a better 
distribution of lines of code among the classes when compared to the Crane, where 
many classes have little number of lines of code and the algorithm behavior is 
encapsulated in a single class that contains 28% of all lines of code.  

 

 
Figure 3.8: Address Book Class diagram 

 

The results show that for simple classes, complete code can be automatically 
generated. The entities AlarmHandler and TimeListener, for example, are interfaces and 
define only the methods that must be implemented in the classes that implement these 
interfaces (Alarm and Application in the Address Book). For that reason, 100% of the 
code for them can be automatically generated. The class AddressEntry represents the 
contact of the Address Book, defining the attributes (fields) stored for each contact and 
the methods used to access these fields. In this way, full lines of code can be generated 
for this class from the class diagram.  
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The class AddressBook has 100 lines of code, in which 21 are classified as AG and 
79 as WD. This class defines the data structure required to store all AddressBook 
contacts, here represented as AddressEntry objects, and provides methods to insert, 
remove, and search elements in this structure. However, depending on the used data 
structure, the implementation of these methods differs. As this implementation does not 
use the Java collection libraries, these methods were defined by the designer. The Java 
API has several classes to store collection of data and provides methods to add, remove, 
search elements for each of theses classes. The number of lines of code written by the 
designer could be reduced with the use of classes from the Java library. In the class 
AddressBook, the use of a pre-defined data structure, instead of a simple array, could 
reduce in 63% the number of lines of code written by the designer. 

Table 3.4: Address Book analysis results 

Classes/Interfaces Total AG WD 
Application 49 9.68% 15 30.61% 34 69.38% 
Calendar 37 7.31% 18 48.65% 19 51.35% 
Calculator 17 3.36% 7 41.18% 10 58.82% 
CalculatorIhm 61 12.06% 16 26.23% 45 73.77% 
AddressBook 100 19.76% 21 21% 79 79% 
AddressEntry 32 6.32% 32 100% 0 0% 
AddressBookIhm 113 22.33% 20 17.70% 93 82.30% 
Alarm 35 6.92% 18 51.42% 17 48.57% 
AlarmIhm 42 8.30% 12 28.57% 30 71.43% 
Timer 16 3.16% 8 50% 8 50% 
TimerListener 2 0.40% 2 100% 0 0% 
AlarmHandler 2 0.40% 2 100% 0 0% 
Total 506 100% 171 33.79% 335 66.21% 

 

3.2.1.3 Results Analysis 

The experiments presented in section 3.2.1 demonstrate that a large number of lines 
of code cannot be automatic generated from the UML model. Those lines represent 
most of the method behavior. In the Crane case study, this number represents 40% of 
the whole application, but this number can vary according to the used SW architecture. 
In the Crane model, several classes are used to model shared resources and that do not 
encapsulate any behavior. For that reason, 100% of code can be generated for these 
classes, increasing the percentage of AG lines of code for the Crane application. 

In the Address Book case study, only 171 (33.79%) lines of code out of 506 (100%) 
can be automatically generated. Consequently, 66.21% of the lines are written by the 
designer. It shows that the challenge of generating code depends on the application and 
how it is organized. This case study demonstrates also that the choice of data structure 
impacts on the number of lines of code generated automatically. This comes from the 
fact that, when data structures are reused, their methods can be reused, avoiding the 
need for the designer to implement methods for data structure manipulation. 

This study aims to propose an appropriate abstraction that could be used to 
complement the UML models, in such way that complete code could be generated from 
them. Usually tools use programming or action languages to do this. Both have the 
disadvantage of the fact that the designer needs to specify the behavior by a code block 
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that is not smaller than the used in the final implementation. This happens because 
action languages do not provide a higher abstraction level than those provided by the 
programming languages themselves (e.g. C++, Java, etc). The analysis presented in 
section 3.2 was useful to observe the kind of WD lines that are usually found in 
embedded applications. In the next section, we propose forms to abstract these lines of 
code in order to improve the capabilities of code generation from behavioral UML 
diagrams and allow full code generation from them. 

3.3 Proposed code generation approach  
Most part of the approaches for code generation were defined for the first versions 

of UML (1.4 and 1.5). They do not have formal semantic, allowing different 
interpretation from UML models. In addition, these versions do not provide a way to 
link the several behavioral diagrams in order to allow an easy capture of the system 
behavior. The latest version of UML2 proposes a way to link several sequence diagrams 
in order to allow the capture of an execution sequence, which turns able the definition of 
code generation methods from sequence diagrams.  

In addition, the previous sections discussed the existing gap between UML models 
and the final implementation in the target programming language, showing that 
additional information should be inserted in the model in order to allow the complete 
code generation from that. In this context, we propose here an approach for full code 
generation from UML2 models, which uses abstractions to describe the behavior of the 
methods.  The flow of the proposed approach is presented in Figure 3.9, which starts 
from the application model described using UML diagrams. After that, the designer 
refines this model, specifying the behavior for methods using an abstracted language 
called BRISA (BRIdging the Semantic Abstraction). Finally, the resulting model is used 
as input for the code generator that generates code in the target programming language. 

 

Application
Model

Code at target 
language

Model 
refinement

UML Model + 
BRISA

Code
generation

designer

automatic

 
Figure 3.9: Proposed UML-based code generation flow 
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The ultimate objective is the definition of a code generation method able to generate 
complete code from a high-level model of an embedded application, which provides an 
automatic way to obtain the final implementation from the model. The use of the UML2 
notations to define the system behavior is addressed in the section 3.3.1. Section 3.3.2 
presents the abstraction that must be provided by BRISA. 

3.3.1 Using UML2 notations for code generation from sequence diagrams 

UML2 defines thirteen types of diagrams, divided into three categories: six diagram 
types represent static application structure; three represent general types of behavior; 
and four represent different aspects of interactions. As the focus here is on the 
improvement of capturing the dynamic application behavior from the UML model, only 
behavioral and interaction diagrams are cited.  

Behavior Diagrams include the Use Case Diagram (used by some methodologies 
during requirements gathering); Activity Diagram, and State Machine Diagram.  

Interaction Diagrams, all derived from the more general Behavior Diagram, 
include the Sequence Diagram, Communication Diagram, Timing Diagram, and 
Interaction Overview Diagram. 

The UML2 specification puts more emphasis on the semantics and, in particular, in 
the key area of basic behavioral dynamics. With an evolution of the UML modeling 
language, new notations and constructions were proposed. Since we are interested in 
generating code from sequence diagrams, our focus here will be on the new features 
included in this diagram. 

Figure 3.10 shows an example of UML2 sequence diagram. It looks much the same 
as the sequence diagrams in UML 1.x, as they still have lifelines, messages and other 
similar notations, but there are some apparent differences. In the UML2, the sequence 
diagrams can be divided in fragments. Notice the first box at the upper left hand corner 
of the diagram. It is a new notation specifying the name of the fragment by the use of 
the operator <sd>, in the example, “sd Q”. Using the name of the fragment and another 
operator called <ref>, as shown in Figure 3.10, other sequence diagram can reference 
this fragment. In this way, different sequence diagrams can be linked, defining the 
application execution flow. 

  

 

Figure 3.10: Combining different iterations notations in a same diagram  
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Figure 3.11: Representing conditionals in UML 2.0 

 

In Figure 3.11, there is another sequence diagram nested within a larger one. It has 
the operator <alt>, which is short for "alternative" (if/then/else) and applies to the nested 
fragment. The dashed line is used to delimitate the alternative fragments and, if the 
guard evaluates to TRUE, then the upper part of that fragment is executed. Otherwise, 
the lower part will be executed. The loops are indicated by the operator <loop>. 
Together with the operator, a boolean expression (conditional) or a minimum and 
maximum index can also be specified. Figure 3.12 shows an example of the use of the 
<loop> operator, where the operations inside of the loop are repeated four times. These 
notations allow specifying conditionals and loops in the sequence diagrams. Besides 
that, the <par> operator can be used to specify parallel (concurrent) behavior.  

 

 
Figure 3.12: Representing loops in UML 2.0 

 

We considered the UML2 notations for the sequence diagrams previously presented 
as an important improvement for the UML behavioral diagrams. They enable the 
capturing of method invocation sequences in a scenario or whole application execution 
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flow, barely from the sequence diagrams. These new notations make possible to do 
links between model and code, reducing the gap between both and facilitating the code 
generation. 

Besides the sequence diagram, the activity diagram has gained attention in UML2. 
Activity diagrams are similar to flowcharts and can be used to define the behavior of 
methods (algorithm), once these diagrams also allow the specification of loops and 
conditionals. However, it is important to notice that the use of very detailed diagrams 
require so much time to build that the designer may prefer to specify the algorithm 
directly as code in the target programming language. In UML 2.0, the activity diagram 
semantics is oriented with Petri nets semantics. It defines activities and actions that 
produce and consume tokens rather than on state charts. The explicit modeling of 
control and object flows are new in UML 2.0, replacing the use of state transitions in 
previous versions of UML activity diagrams. Green (2005) proposes the use of this 
diagram to specify dataflow. 

3.3.2 Bridging the semantic gap 

As the experiments in section 3.4 demonstrated, a huge number of lines of code 
must be written by the designer using the traditional code generation approaches. In 
order to address it, a more abstract language could be used to make the lines of code 
specified under the UML model more abstract than the programming language. This 
could motivate the designer to use the UML-based code generation approaches.  

The analysis of two applications developed in Java, a widely used programming 
language, allows identifying and classifying the line codes. Observe that several lines of 
code can be replaced by only one line in languages like Matlab or Python, which 
provide abstractions to manipulate matrix and vector (see Figure 3.1). In this case, a 
library that provides functions to perform operations under matrix can be used to 
facilitate the production of implementation for these operations. As embedded 
applications involve math operation with matrixes, the use of higher abstraction to 
describe these operations allows reducing the time spent in the specification. 

Experimental results show that the use of a component library with the UML model 
can reduce the number of hand written lines of code in 30% (BRISOLARA, 2005b). To 
indicate the reuse of components, stereotypes can be used in the UML diagrams. In this 
way, the designer does not need to describe the behavior for the methods marked as 
reused, since an implementation is already available in a library. In addition, as 
proposed in (MATTOS, 2004), a library with pre-defined components implemented in 
different ways and pre-characterized for a given architecture can support design space 
exploration and the generation of more efficient code for this architecture. 

In the AddressBook application, several routines such as search in a data structure, 
sorting elements, insertion and removal of elements, also can be reused from libraries, 
avoiding the hand-coding. The results of the analysis performed on this application 
show that a reduction of about 63% on the lines of code of a class can be achieved when 
operations to manipulation of data structure are reused. According to the classification 
of the lines of code required to be written by designers, abstractions are proposed in 
order to facilitate the specification of the method behavior and reduce the total lines of 
code that the designer is asked to specify. 

Some lines of code responsible to create objects (<co>) can be generated 
automatically, using the information from the class diagram like the definition of 
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attributes and the relationship between classes. Moreover, the creation of static objects 
also can be automatically generated. However, object-oriented implementation can have 
also dynamic allocation and, in this case, the creation of objects must be specified by 
the designer.  

All the lines of code that represent method invocation (<cm>) can be obtained from 
the sequence diagrams, where method calls are used to show the iteration between 
objects. The instructions classified as <for + cm> can be specified with a sequence 
diagram or with an activity diagram. For example, in an UML 2.0 sequence diagram, 
loops can be described and the method calls can be specified inside of them.  Loops and 
conditionals can also be captured from sequence or activity diagrams, as exemplified in 
section 3.5.1. In these cases, only the graphical notation is required. 

On the other hand, the instructions <for + de>, which normally are described in 2 
lines in Java, could be described in a single line using a language that facilitate the 
manipulation of matrixes and vectors. An example is shown in Figure 3.4, where a loop 
(for) is used to copy the elements from a vector to another vector. The new version of 
the Java language also provides functions to do a copy between vectors, so a single code 
line can do the same. Similar abstraction can be used in loops that perform a vector 
initialization. The example illustrated in Figure 3.13(a) and (b), show two version of 
Java code for a vector initialization. The same code could be described in Python or 
Matlab using a single line like as a=0 or a=[0; 0; 0; 0; 0]. In this case, a loop is not 
required to describe the initialization.  

 

For (i:=0;i,<5;i++)
{

a[i] = 0;
}

a[0] = 0;
a[1] = 0;
a[2] = 0;
a[3] = 0;
a[4] = 0;

(a) (b)  
Figure 3.13: Matrix/vector initialization in Java 

 

Matrix and vector multiplication are common operation in embedded application 
that evolves signal processing. Figure 3.14 illustrates an example of vector 
multiplication in Java, where two nested loops are used to do the operation. A function 
can be defined to facilitate the specification of a vector or matrix multiplication, as 
shown bellow. 

Mul(a,q);   // multiply vector a and vector q 

 

for (i=0; i < N; i++) 
{

for (int j=0; j < N; j++) 
tmp[i] += a[j] * q[j];

}

 

Figure 3.14: Vector multiplication in Java 
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In this case, a pre-compiler can be used to verify the number of lines and columns of 
variables a and q and to generate the correspondent Java code using a template. The 
same approach can be used to perform matrix multiplications, simply using the pre-
compiler to determine the appropriate template through the analysis of the number of 
lines and columns found in the matrix. Figures 3.14 and 3.15 show an example of vector 
multiplication and matrix multiplication, respectively. Both Java codes could be 
produced through the use of templates. 

 

for (i = 0; i < N; i++)
{

for (j = 0; j < N; j++)
{

temp[i][j] = 0;
for (k = 0; k < N; k++)

temp[i][j] += m1[i][k] * m2[k][j];

}
}

 
Figure 3.15: Matrix multiplication in Java 

 

Furthermore, notations could be used in the UML diagrams to indicate the necessity 
of creating structures like <switch/case> and <try/catch>, as exemplified in Figure 3.16. 
In this way, from the UML diagrams, skeleton of code could be automatically 
generated. 

 

 
Figure 3.16: Try/catch notation in sequence diagrams 

3.4 Concluding remarks 
In this chapter, UML-based software generation approaches were discussed and a 

proposal to solve a limitation found on these approaches was presented. However, this 
proposal leads to the extension of the programming language or the definition of a new 
one. We consider that the definition of another language could deviate the main 
objective of this thesis, once our main focus is on the modeling approach and strategies 
for automating the embedded software design from models.  

Moreover, a more detailed analysis of the evolution of the Java language allowed us 
to observe that some abstraction proposed here are already treated by the new versions 
(Java 5 and Java 6) of the language. This analysis shows that, in the future, 
programming languages will also provide very high abstraction. 
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So, we have given up these ideas, although we believe that this proposal could 
obtain good results. This happened when the author had the opportunity to work in the 
development of a code generator based on Simulink. This has shown to be a very 
interesting study, so we decide to follow this new thread. 

In the next chapter, a Simulink-based code generation approach will be presented, 
which allow one to generate multithread code targeting multiprocessor architectures, 
something that is not provided by RealTime Workshop (MATHWORKS, 2004). 
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4 SIMULINK-BASED EMBEDDED SOFTWARE 
GENERATION 

Nowadays, several embedded systems make extensive use of digital signal 
processing, requiring a language that supports the dataflow model of computation. 
However, despite several efforts to extend UML for modeling dataflow applications, 
UML still does not cope very well with this model of computation, as discussed in 
chapter 2. In this context, we propose a Simulink-based embedded software generation 
approach targeting multiprocessor systems.  

The main motivation of this work is the fact that heterogeneous multithreaded 
multiprocessor SoC (MPSoC) architectures are becoming an attractive solution for 
embedded systems. As indicated by Jerraya (2005), they provide highly concurrent 
computation and flexible programmability. However, making software for 
heterogeneous multiprocessors in MPSoC platforms is now becoming a major 
challenge. The main causes for this are the difficulty of parallelizing target applications, 
the software adaptation to different processors and protocols, the short design time, and 
low cost implementation.  

In addition, the majority of MPSoC applications require a large amount of memory 
that may heavily affect the cost and the power consumption. Communicating threads are 
distributed in a MPSoC architecture and the communications among them impact also 
on system performance.  This indicates that an automated code generation method, 
which can generate efficient multithreaded code and automatically adapt it to the 
heterogeneous processors and protocols, is indispensable. 

We propose a Simulink-based multithread code generation approach. Our goal is to 
address those software programming difficulties and support the development of 
efficient embedded software targeted to heterogeneous MPSoC platforms. To meet hard 
requirements for memory size and performance commonly found when designing 
embedded systems, memory usage and communication optimizations are proposed to be 
applied during the code generation. Some results were published in (BRISOLARA, 
2007a). 

We have chosen Simulink as a tool for specification and simulation mainly because 
it is widely accepted to specify complex systems, and can be considered as a standard 
tool in the signal processing domain. It offers a set of algorithms for a variety of 
applications, and is powerful to specify data-intensive and control-dependent 
algorithms. From a Simulink model, one can generate a single-thread code targeting a 
single processor platform using Real Time Workshop (RTW). Another tool called Real-



 

 

 

 

58 

Time Interface for Multiprocessor Systems (RTI-MP) (DSPACE, 2005) automatically 
generates software code from a specific Simulink model for multiprocessor systems. 
However, the generated software code aims at a specific architecture consisting of 
several commercial off-the-shelf (COTS) processors boards, where the main purpose is 
high-speed simulation of control-intensive applications. 

The proposed multithread code generation approach was developed during a PhD 
internship, being part of a major project developed at TIMA Laboratory. The project 
proposed a new MPSoC design flow based on Simulink, which is detailed in (HUANG, 
2007). The Simulink-based multiprocessor SoC design flow is presented in Figure 4.1 
and starts with Simulink modeling (step 1) to make a Simulink application model from 
a target application specification. The Simulink application model is transformed into a 
Simulink combined application/architecture model (CAAM). That is an unified model, 
which combines aspects related to the architecture model, i.e. processing units available 
in the chosen platform, into the application model, i.e. multiple threads executed on the 
processing units. This happens in step 2. In step 3, Simulink parser parses a Simulink 
CAAM and generates a Colif CAAM, which is a XML-based intermediate 
representation, as defined in (CESARIO, 2001). Afterwards, Hardware architecture 
generator (step 4) produces the multiprocessor hardware architecture models. These 
models are composed of CPU subsystems, HW subsystems, memory subsystems, and 
communication network between them, all at different abstraction levels. On the other 
side, Multithread code generator (step 5) generates a multithreaded code and a main 
code. The latter is responsible for creating threads and initializing communication 
channels through hardware dependent software (HdS) primitives.  
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Figure 4.1: Simulink-based MPSoC design flow (HUANG, 2007) 
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The main objective of the Simulink-based MPSoC design flow is to support a mixed 
hardware software refinement procedure. It starts from the Simulink CAAM and uses 
three abstraction levels to refine the system, comprising a high-level specification down 
to detailed low-level implementation. These abstraction levels are Virtual Architecture, 
Transaction-accurate model, and Virtual Prototype, and are generated by the Hardware 
architecture generator. The Hardware architecture generator is detailed in (HUANG, 
2007) and is out of the scope of this work. Since the focus here is on software 
generation, the Multithread code generator will be detailed here. 

Firstly, section 4.1 describes the combined application architecture model (CAAM), 
which is used as input for the Multithread code generator. The multithread code 
generation flow is presented with detailed steps in section 4.2. Proposals for 
optimization on memory and communication are presented in section 4.3 and 4.4, 
respectively. Section 4.5 presents experiments performed with the Multithread code 
generator.  

4.1 Combined application architecture model 
Traditional design flow makes use of two separate models: application and 

architecture. The application is generally specified as an application model made of a 
set of multiple cooperating threads (or tasks). Each of them performs a subset of 
functions of the application. The multiple threads of the application will be mapped on 
the target architecture, which can be specified as a set of processor subsystems 
interacting via communication network. The processor subsystem contains processing 
unit, specific I/O and different hardware components to speed up communication.  

Popovici (2007) proposes combining these two models in a mixed hardware 
software architecture, where the software threads are mapped on the abstract CPU 
subsystems, as shown in Figure 4.2. The result is a mixed hardware software 
architecture model at a very high-level representation, which is called combined 
algorithm/architecture model (CAAM). 
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Figure 4.2: Combining application and architecture models (POPOVICI, 2007) 
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In the proposed Simulink MPSoC design flow, we specify the CAAM using a three-
layered hierarchical Simulink model. The first layer describes a system architecture, 
which contains CPU subsystems and inter-subsystem communication channels (Inter-
SS COMM). The second layer describes a CPU subsystem architecture, composed of 
software threads and intra-subsystem communication channels (Intra-SS COMM). The 
third layer describes a software thread using Simulink blocks and data links.  

Figure 4.3 shows an example of CAAM. In this example, there are four CPU 
subsystems (CPU0-CPU3) and six Inter-SS COMMs (CH0-CH5) in the first level, and 
seven threads (i.e. T0-T6) and three Intra-SS COMMs (CH6-CH8) in the second level. 
To simplify the view, the Figure 4.3 only illustrates the Simulink blocks that compose 
the threads T0 and T1, allocated for CPU0 and CPU1, respectively. To represent mixed 
hardware and software model in Simulink, four kinds of specific Simulink subsystems 
are defined as followings.  

• Processor subsystem, which includes one or more thread subsystems. It is a 
processing element such as RISC processor and DSP. A processor subsystem is 
refined to a CPU subsystem, e.g. processor, local bus and local memories, by the 
Hardware architecture generator.  

• Thread subsystem represents a thread on a processing unit. This subsystem 
includes one or more Simulink blocks used to represent the thread functionality. 
A thread subsystem is refined to an OS dependent thread by the Multithread 
code generator.  

• Inter-Subsystems Communication (Inter-SS COMM), which includes one or 
more Simulink data links, represents the communication channels between CPU 
subsystems. An Inter-SS COMM is refined to a hardware communication 
channel by the Hardware architecture generator and software communication 
port(s) to access the channel by the Multithread code generator. HWFIFO is a 
communication protocol that transfers data via hardware FIFO. GFIFO is 
another one that transfers data via a shared memory and a global bus, and 
synchronizes via mailboxes. 

• Intra-subsystems Communication (Intra-SS COMM), which includes one or 
more Simulink data links, represents communication channels between threads 
on the same CPU subsystem. An Intra-SS COMM is refined to OS 
communication channel(s) by the Multithread code generator. SWFIFO 
represents a software FIFO. 

These subsystems are normal Simulink subsystems, which do not affect the original 
functionality, annotated with several architecture parameters, e.g. processor type and 
communication protocol. Currently, this transformation is manually performed by using 
the Simulink graphical interface and relies on the designer’s experience. For example, to 
make a thread subsystem, the designer can cluster several Simulink blocks into a 
Simulink subsystem by a shortcut key and then annotate “Thread” as type to the 
subsystem through a parameter setting. 

Currently, the environment supports three communication protocols: GFIFO, 
HWFIFO, and SWFIFO. GFIFO (Global FIFO) is an inter-subsystem communication 
protocol that transfers data using a global memory, a bus, and mailboxes. The data 
transfer is divided into two steps. First, the CPU in the source subsystem writes data to a 
global memory, and sends an event to the mailbox in the target subsystem. After 
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receiving the event, the CPU in the target subsystem reads the data from the global 
memory, and sends another event to the mailbox in the source subsystem, notifying the 
completion of the read operation. HWFIFO is also an inter-subsystem communication 
protocol that transfers data via a hardware FIFO. SWFIFO is an intra-subsystem 
communication protocol based on software FIFO. 
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Figure 4.3: A Simulink CAAM example (HUANG, 2007) 

4.2 Multithread code generation 
Our multithread code generation method was designed as an extension for the code 

generation method presented in Han (2006b), which is able to generate sequential C 
code from Simulink models. We used a restricted Simulink subset in our modeling, 
which was defined in (HAN, 2006a) to represent global data and control dependencies 
precisely. This Simulink subset includes blocks, delays, links, If-action subsystems 
(IAS), and For-iterator subsystems (FIS), as well as a global clock that controls the 
execution of blocks and delays. This model is based on the Abstract clock Synchronous 
Model, ACSM (HAN, 2006a), and can be statically scheduled and its memory can be 
also statically allocated during the code generation. 

Multithread code generator produces a set of C thread codes, a main C code and a 
Makefile for each CPU subsystem. The proposed software code generation is made in 
three steps, as illustrated in Figure 4.4. Firstly, the Simulink parsing traverses the 
Simulink CAAM and generates a Colif CAAM that is used as intermediate format. In 
the second step (Thread code generation), the blocks within a thread-SS are scheduled 
statically according to data dependency and the code generator produces a C code. The 
generated threads are dynamically scheduled by the OS scheduler according to the 
availability of data for the input port or space for the output port.  In the third step (HdS 
adaptation), a main code and a Makefile is generated for each CPU-SS. The main code 
is responsible to initialize the threads and the communication channels among them. To 
build an executable software stack, the generated Makefile compiles the thread codes, 
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the main code and links them with an appropriate HdS library built for the target CPU 
subsystem, as shown in Figure 4.4. This approach avoids that the designer needs to 
adapt the software code to different processors/protocols, and distributing data and 
code. 

Designing embedded systems requires concern with hard constraints for memory 
size and performance issues. Hence, we propose applying memory and communication 
optimizations techniques to reduce memory size and improve performance, during the 
code generation. Both optimization proposals are presented in section 4.4 and 4.5. 
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Figure 4.4: Multithread code generation flow  

4.2.1 Simulink parsing 

Simulink Parser parses a Simulink CAAM model (Figure 4.5(a)) and generates an 
equivalent intermediate format called Co-design Language Independent Format (Colif) 
(CESARIO, 2001), shown in Figure 4.5b. Colif is a XML-based meta-model used as 
intermediate format in the whole proposed Simulink-based design flow. 

To generate a multithreaded code communicating with each other, the Simulink data 
links with Inter-SS COMM or Intra-SS COMM are translated to a pair of send and 
receive operations. Simulink parser reads an input Simulink CAAM (Figure 4.5(a)) and 
inserts send (“S” in Figure 4.5(b)) and receive (“R” in Figure 4.5(b)) blocks into a Colif 
CAAM. These send and receive blocks are scheduled together with the other blocks in 
the Thread code generation, as will be explained in section 4.2.2. 
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Figure 4.5: Simulink parsing 

4.2.2 Thread code generation 

The thread code generator automatically produces a C-code for each thread, which 
includes memory declaration and behavior code for user-defined blocks, communication 
blocks, and pre-defined blocks. First, our tool generates memory declaration(s), where a 
memory space is declared for each data link according to its data type, e.g. char, short, 
int, etc. The allocated memory is used to store the input and output data of Simulink 
blocks. Afterwards, a behavioral code for each thread is generated according to the 
scheduling result, which statically determines the invocation order of blocks according 
with data dependency.  

Figure 4.6 illustrates an example of Thread code generation. Each link in the Figure 
4.6 (a) is annotated with a buffer name and its size. For example, E2(3) means buffer E2 
with size 3. Figure 4.6 (b) shows the code generated for thread T0. Line 1 declares port 
data structures used to promote the communication. In line 2-4, buffer memories are 
declared. For a user-defined block (i.e. Simulink S-function), our tool generates a 
function invocation corresponding to the block (F0-F6 in example) and maps the 
allocated memories for the input and output links to the function arguments. When a 
pre-defined Simulink block is used, e.g. adder or If-action subsystem (IAS), C codes 
corresponding to the specific blocks are generated (if-else for the IAS in example). The 
code generator can handle a large subset of pre-defined Simulink blocks such as 
mathematical operations, logical operations, discrete blocks, etc.  
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// port declaration
1: extern port_t *in0, *in1, *in2, *out0, *out1; 
2: int cond, int E1[6]; // mem declaration
3: int[5] E7; int[4] E8, E9, E3;
4: int[3] E2, E4, E5, E6, E10; 
5: while(1) {
6: recv_data(& in0, E9, 16);  //R0(E9); 

7: recv_data (& in1, E8, 16); //R4(E8);
... // R3(E2);
8:  F0(cond); F1(E1);
9:  if(cond){ F2(E1,E3);
10:     F3(E3,E9,E5); }
11:  else { F4(E1,E4);
12:      F5(E4,E6); }
13:  if(cond) E10 = E5; 
14:  else  E10 = E6;
15:  F6(E2, E8, E7);
16: send_data(&out0, E10, 12); //S1(E10)
... //S2E7)
17: }

a) Colif CAAM b) Thread Code of T0
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Figure 4.6: Example of thread code generation 

For communication blocks, e.g. send and receive blocks discussed in section 4.2.1, 
our tool inserts communication primitive invocations defined in Table 1 (send_data and 
recv_data in the example). These invocations promote the communication between 
different threads, which can be in the same CPU (intra-subsystem) or in different CPUs 
(inter-subsystems). The arguments of the communication primitives, determined by 
Simulink Parser, are port data structure address, memory address allocated, and data 
transfer size. For example, the code generator generates line 6 for R0 block where the 
associated port data structure is in0, output buffer is E9, and the transfer size is 16 bytes, 
as shown in Figure 4.6(b). 

As proposed by Han (2006b), we extended the existing dataflow-based scheduling 
methods for Simulink models to support nested-conditionals and loops. In the used 
scheduling algorithm, all blocks in the input model, including all threads, are scheduled 
together according to their precedence dependency. If R0 is invoked prior to S1 in T0, 
as shown in Figure 4.7(a), and R1 is invoked prior to S0 in T1, as Figure 4.7(b), a 
precedence loop is introduced (R0→S1→R1→S0→R0) in the system, causing 
deadlock. In the proposed scheduling algorithm, R1 must be invoked after S0, as shown 
in Figure 4.7(c), because they have a precedence dependency even if it is across two 
threads. Our approach guarantees that any partitioning of the algorithm model has at 
least one deadlock-free schedule.  

To guarantee that, designers are asked to build a model that has no precedence loop 
without a Delay block, following the ACSM model defined in (HAN, 2006). This 
model is composed of a network of state-less functions and delays. Delays are used as a 
temporal barrier, like registers in a synchronous circuit. This makes possible to describe 
the functionality of a system deterministically independent of the time taken for each 
function. 
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void T0( ) {
while(1) {

... 
R0(E9);

...
S1(E10);

... }
}

(a) Thread T0 code

void T1( ) {
while(1) {

... 
R1(E11);

...
S0(Z1);

... }
}

(b) Thread T1 code 
with deadlock

void T1( ) {
while(1) {

... 
S0(Z1);

...
R1(E11);

... }
}

(c) Thread T1 code 
without deadlock  

Figure 4.7: Multithread deadlock problem 

4.2.3 HdS adaptation 

The Hardware-dependent software (HdS) is responsible to provide architecture-
specific services such as scheduling of application threads, communication inter and 
intra-CPU, hardware resources management and control. Multithread code generator 
produces a high-level multithread code independent of the architecture details through 
the use of high-level primitives provided by an HdS library. To execute the generated 
code on a target MPSoC platform, the thread codes should be linked with the 
appropriate HdS library that provides architecture dependent implementations for the 
high-level primitives.  

The HdS library should provide the high-level primitives summarized in Table 4.1. 
Using these primitives, Multithread code generator generates a main code, which 
initializes thread and channel data structures. A Makefile, linking the generated thread 
codes and main code with an appropriate HdS library, is also produced. 

The HdS library includes HdS APIs, an Operating System (OS), communication 
software and a HAL (Hardware Abstraction Layer). The Operating System is composed 
of a Thread Scheduler and an Interrupt Service Routines (ISR). We first assume that 
there are pre-built HdS libraries, each of which is targeted to a specific CPU. Currently, 
we have targeted the HdS library to ARM7 and Xtensa processors. As mentioned 
before, the current HdS library supports three communication protocols: GFIFO, 
HWFIFO, and SWFIFO.  

Table 4.1: HdS primitives 

Types Primitives Description 

thread_create Create software thread 
Thread 

thread_resume/thread_suspend Resume/suspend thread 

send_data/recv_data 
send/receive data from/to port with 
specific protocol 

send_event/recv_event 
send/receive event, e.g. data transfer 
completion, from/to port with 
specific protocol 

Communication 

port_init/channel_init initialize port/channel data structure  

ISR_attach/ISR_dettach 
attach/detach interrupt service 
routine Interrupt 

intr_enable/intr_disable enable/disable interrupt  



 

 

 

 

66 

 

Figure 4.8 shows an example of the main code and Makefile generation. Figure 
4.8(a) shows a Colif CAAM example that contains four CPU subsystems and seven 
threads. Figure 4.8 (b) and (c) illustrate the main code and the Makefile for CPU0, 
respectively. The main code performs interrupt registrations (ISR_attach in example), 
channel initializations (channel_init in example), initialization (port_init in example), 
and thread creations (thread_create in example) according to the CAAM model. The 
Makefile defines directives for the compilation of the generated code, e.g. setting the 
compiler to be use and the files to be compiled according to the CAAM model. The 
Makefile for CPU0 shown in Figure 4.8(c) compiles T0 code and the main code with 
ARM compiler and links them with the ARM HdS library since the processor type for 
this subsystem was set as ARM in the CAAM model (Figure 4.8(a)). 

  

 

channel_t ch3, ch0, ch1, ch2;

void main( )   {

channel_init(&ch0,GFIFO, …);

channel_init(&ch1,GFIFO, …);

…

channel_init(&ch3, HWFIFO, …); 

thread_create(T0, …);

…

thread_exit( );   }

(b) Main code for CPU0

(a) Simulink CAAM
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(c) Makefile for CPU0

CC = arm-elf-gcc // ARM C compiler

...

SRCS=T0.c    main.c // file to compile

...

FLAGS= -DCPU=ARM7 -DDEBUG

...

LIBS=libhds-arm.a   // library HDS

...

 
Figure 4.8: Main and Makefile code generation 

The Makefile also enables to link the generated multithread code and main code with 
application library including user-defined function bodies and appropriate HdS library. 
In this way, with the proposed software programming environment, one can build 
binary files that are executable on the target heterogeneous MPSoC, making designer 
free from laborious programming work.  

4.3 Memory optimization 
Since the majority of MPSoC applications require a large amount of memory that 

heavily impacts on the cost and the power consumption, software memory optimizations 
are essential techniques to design cost and power effective embedded systems. In this 
section, we focus on memory optimization techniques in generating thread code. As 



 

 

 

 

67 

proposed in (HAN, 2006b), two memory optimization techniques: copy removal and 
buffer sharing can be applied to reduce the required data memory size during the code 
generation. These techniques, firstly proposed for single-thread code generation, were 
extended for multithread case and integrated in our Multithread code generator. With 
this integration, the Thread code generation is composed of four steps, as explained 
bellow.  

The example illustrated in Figure 4.8 is used to explain these optimization 
techniques. Figure 4.9(a) represents Colif CAAM of thread T0 and Figure 4.9(b) shows 
the generated code without optimizations. Figure 4.9(c) and 4.9(d) shows generated 
code with copy removal and buffer sharing, respectively. 

 

 

1: while(1) {

2: recv_data(& in0, E9, 16); //R0(E9); 

3: ... //R3(E2); R4(E8);

4:  F0(cond); F1(E1);

5:  if(cond){ F2(E1,E3);

6: F3(E3,E9,E5); }

7:  else { F4(E1,E4);

8: F5(E4,E6); }
9:  if(cond) E10 = E5;
10:  else  E10 = E6;
11:  F6(E2, E8, E7);

12:  send_data(&out0, E10, 12) //S1(E10); 

13: …//S2(E7);

14: }

(b) Original C code of T0

1: while(1) {

2: recv_data(& in0, E9, 16); //R0(E9); 

3: ... //R3(E2); R4(E8);

4: F0(cond); F1(E1);

5:  if(cond){ F2(E1,E3);

6:     F3(E3,E9,E10); }

7:  else { F4(E1,E4);
8:      F5(E4,E10); }

9:   F6(E2, E8, E7);

10: send_data(&out0, E10, 12) //S1(E10);

11: //S2(E7);

12: }

(c) C code of T0 after copy removal

(a) Colif CAAM da T0

1: extern port_t *in0, *in1, *in2, *out0, *out1; // port declaration
2: int mp[15];                                                     // memory pool
3: void T0( ) {
4:   while(1) { 
5:      F0(cond);                                              // time 0
6:     …
7:     F6(&mp[1], &mp[4], &mp[8]);        // time 3, F6(E2, E8, E7)
8:     send_data(&out1, &mp[8], 20);           // time 4, S2(E7)
9:     recv_data(&in0, &mp[5], 20);              // time 5, R0(E9)
10:     …
11:    send_data(out0, &mp[5], 12);             // time 9, S1(E10)
12:   } }

(d) C code of T0 after buffer sharing
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Figure 4.9: Thread code generation with memory optimization techniques 

Step 1. Copy removal: A Simulink CAAM may include control blocks (e.g. 
“Switch” and “Selector”) and delays (e.g. “Unit delay”) that introduce copy operations 
between the input buffer(s) and the output buffer(s). These pre-defined Simulink blocks 
are required to represent explicit conditionals or loops. Copy removal technique allows 
the input and output buffers to share the same memory space. After applying it to the 
model, the input buffers “E5”(line 6 in Figure 4.9(b)) and “E6’’(line 8 in Figure 4.9(b)) 
of switch “Fsw” in Figure 4.9(a) are merged with its output buffer “E10” (see line 6 and 
8 in Figure 4.9(c)). This merge operation removes the lines of code 9 and 10 of Figure 
4.9(b), as shown in Figure 4.9(c). 

Step 2. Scheduling: The original static scheduling was modified in order to 
maximize buffer sharing in step 3. Figure 4.10(a) shows a buffer lifetime chart for the 
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T0 illustrated in Figure 4.9(a). In this chart, the horizontal axis indicates the invocation 
sequence, i.e. scheduling result, and the vertical axis indicates the buffer memory 
address location. Each rectangle denotes the lifetime interval of a buffer memory. 
Intuitively, the scheduling objective is to make the fattest point as thin as possible. 

Step 3. Buffer sharing: The code generator performs a lifetime-based buffer sharing 
algorithm for each thread. This technique allows two buffers within the same thread to 
share the same memory space if their lifetimes are disjoint. Since buffer sharing 
problem is NP-complete (OH, 2003), an heuristic algorithm is required to solve it. We 
use an extension of the LOES heuristic algorithm proposed by Oh (2003) that can 
consider the conditionals in a Simulink model. Figure 4.10(b) shows a buffer lifetime 
chart after applying buffer sharing to the T0 model (Figure 4.9(a)). 

Step 4. Code Generation: Thread code generator produces thread codes according to 
the results of the previous steps. As the buffer sharing is applied in the model, the 
memory declarations into the code follow the buffer sharing results. 

Han (2006b) proposes some memory optimization techniques during single thread 
code generation. We extended here these optimizations in order to apply them in the 
multithread code generation. The used memory optimization techniques are extensions 
of the existing dataflow based scheduling methods (RITZ, 1995)(BALASA, 1995) for 
handling data-intensive and control-dependent target applications.  
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Figure 4.10: Lifetime chart of T0 (a) after scheduling, (b) after buffer sharing 

Our multithread code generation supports only discrete model with a global clock. 
We do not handle any other models such as discrete model with multiple clocks and 
event-driven model, since the conventional memory optimization is hard to apply to 
them. 

4.4 Communication optimization 
When the number of processors increases in a MPSoC, the overall system 

performance heavily depends on the performance of communications among the 
processors. Therefore, communication optimization techniques are required to improve 
the system performance. Message Aggregation (MA) was firstly proposed in 
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(HIRANANDANI, 1992) and it is a well-know communication optimization in the 
parallel computing and distributed systems domain. After that, a compiler that integrates 
several communication optimizations, such as Message Aggregation and Message 
Coalescing, was proposed for distributed-memory multi-computers in (BANERJEE, 
1995). 

In the proposed multithread code generation, when a Simulink functional model 
consists of fine-grain functions and it is partitioned into several processors, the Simulink 
parser will insert a large number of communication nodes that exchange messages 
through communication channels. Consequently, the communication overhead 
increases, which impacts on the system performance and the required memory size. In 
this context, Message Aggregation can be applied to increase the granularity of data 
transfers, reducing the communication overhead. 

The cost for a data transfer in terms of execution time can be divided in start-up cost 
(synchronization cost) and effective data transfer cost (rate *length). The start-up cost 
does not depend on the number of bytes sent. Message Aggregation (MA) combines 
messages with the same source and destination, increasing the granularity of the data 
transfers and amortizing the start-up cost. Consequently, this technique can reduce the 
total amount of communication overhead in terms of execution time. Moreover, this 
technique can reduce the software data structures used to represent the channels to 
promote and manage the inter-processors communications. For example, a H.264 
decoder Simulink CAAM with 6 CPUs requires 85 data structures for communication 
channels, which impacts on data memory size. 

Figure 4.11 presents a motivational example. Figure 4.11(a) shows a partitioned high-
level model, which consists of functional nodes (Fx), communication nodes (Sx for 
Send operation, and Rx for Receive operation), and links between them. After applying 
Message Aggregation technique on the model depicted in Figure 4.11(a), the high-level 
model shown in Figure 4.11(b) is obtained. Figure 4.11(c) and 4.11(d) illustrate the 
codes obtained from the two models. As result of this optimization, the five Send nodes 
(S0-S4) were grouped in a single node (ST1), as shown in Figure 4.11(b). Consequently, 
the five Send primitives of Figure 4.11(c) are replaced for only one Send in Figure 
4.11(d), which sends all the five messages in a single one, thereby reducing the 
communication overhead in execution time and the required software infrastructure by 
the use of larger messages and by the reduction on the number of channels. 

In order to reduce the cost for inter-processor communication, we integrated the 
Message Aggregation optimization technique in our Simulink-based Multithread code 
generator. In this way, our code generation method allows one to amortize the 
synchronization cost by reduction on the number of messages, thereby reducing the total 
amount of communication overhead in the execution time. This optimization also 
decreases the memory size by the reduction of data structures required to represent the 
communication channels. Figure 4.12 shows the global flow of our Multithread code 
generator, after the integration of Message Aggregation step. 
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F1( ); 

...

send (S0, 8) ;  // send 8B

send (S1, 8); 

send (S2, 8);

send (S3, 8);

send (S4, 8);
}

T1( ){
recv (RT1, 40 ); //recv

F1( );
...

send (ST1, 40); // send 40B

}

(a) Fine-grain specification

(b) Fine-grain specification after message aggregation (d) Code with message aggregation
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Figure 4.11: Motivational example 

 

 

 

Figure 4.12: Multithread code generation flow after Message Aggregation integration 

  

Message Aggregation traverses the Colif CAAM and merges messages whose source 
and destination are identical, and with no dependencies between them. Applying 
Message Aggregation on the Colif CAAM illustrated in Figure 4.13(a), the CAAM 
illustrated in Figure 4.13(b) is obtained. In this example, the Send nodes S1 and S2 in 
T0 have the same source and destination threads, and then they are merged in a single 
node (S12). As the result, two messages are grouped into one, reducing the start-up cost 
and the software data structures to perform the data transfer. Similar group operation is 
performed for the receive nodes R1 and R2 in T1, as shown in Figure 4.13(b). 
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Thread code includes memory declarations for links and behavior codes for nodes in 
the CAAM. With the integration of the Message Aggregation step, the Thread code 
generator produces memory declarations according to the CAAM resultant of the 
Message Aggregation step. When Message Aggregation is not applied, a buffer memory 
is declared for each data link with its data type as line 1 of Figure 4.13(c). Otherwise, a 
structure is declared to combine all buffer memories connected to the input (output) port 
of a merged Send (Recv) node. As an example, the data structure m10 is declared for the 
merged node S12 in line 3 of Figure 4.13(d). This structure combines the input buffer 
memories m8 and m9 of node S12.  
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1: char m0[1]; int m1[4];
2: // decl m2,m3,m4, m5, m6, m7
3: int m8[4]; int m9[8];
4: T0 ( ) {
5: while (1){
6:    F0 (m0); F1 (m1);
7:    recv (m5,8);  //R0
8:    if (m0) {
9:        F2(m1,m3); F3(m3,m5,m6); m8=m6 ;
10:  else
11:       F4(m1,m4); F5(m4,m7);  m8=m7 ;}
12:  recv (m2,32);  F6(m2, m9);
13:  send ( m8,4); //S1
14:  send ( m9,32); //S2
15: }  }

(c) T0 Code without MA

1: char m0[1]; int m1[4];
2: // decl m2,m3,m4, m5, m6, m7
3: struct {int m8[4]; int m9[8]; } m10; 
4: T0 ( ) {
5: while (1){
6: ...
7: recv (m5,8); //R0
8:    if (m0){
9:       F2(m1,m3); F3(m3,m5,m6); m10.m8=m6 ;
10:  else
11:      F4(m1,m4); F5(m4,m7); m10.m8=m7 ;}
12: recv (m2,32); F6(m2, m10.m9 );
13: send (m10,36 ); // S12
14: } }

(d) T0 Code with MA
 

Figure 4.13: Thread code generation with Message Aggregation 
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After memory declaration, a behavior code is generated for each thread according to 
the scheduling result. For communication nodes, the code generator produces 
communication primitives calls (send_data/recv_data), as shown in the line 13 of 
Figure 4.13(d), where the source for the merged node S12 is the data structure m10. 
Consequently, the functions that produce data for this merged node use elements of this 
data structure as output, as shown in line 12 of Figure 4.13(d), where F6 generates part 
of the data to be sent for this node. Similarly, the Recv nodes can be also grouped and, 
in this case, a data structure should be declared to store the received data. 

As previously mentioned, Message Aggregation technique reduces software channel 
structures and consequently, reduces the required data memory size. However, this 
technique can increase buffer memories. For example, when a Send node (e.g. S1) is 
grouped in two different merged nodes (e.g. S12 and S13). Both of them are connected 
to different thread destinations, its buffer memory becomes to be duplicated in two data 
structures, and used for each Send operation. This effect is discussed in the experiment 
section 4.5.4. 

To avoid deadlock, out tool merges Send (or Recv) nodes into another Send (or Recv) 
node only when all of them have no precedent dependency. Figure 4.14 illustrates the 
deadlock problem. As the node R2 has precedent dependency with R0 in Figure 4.14(a), 
when both are grouped in the same merged node, a deadlock has occurred, as shown in 
Figure 4.14(b).  
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Figure 4.14: An example of deadlock by Message Aggregation 

4.5 Experiments 
To show the applicability of our software generation flow and the effectiveness of 

the proposed optimizations, we used two data-intensive applications: Motion-JPEG 
video decoder and H.264 video decoder. For both applications, we developed a 
Simulink functional model, and validated their functionalities with Simulink simulation 
environment. After that, we transformed the Simulink models into Simulink CAAMs 
according to the chosen platforms. Section 4.5.1 presents the MJPEG and H264 
applications and the built CAAMs, while section 4.5.2 presents the used platforms. 
Memory optimization and Message Aggregation results are presented in section 4.5.3 
and 4.5.4, respectively. 
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4.5.1 Applications description 

4.5.1.1 Motion-JPEG video decoder 

M-JPEG decoder decodes a bit stream encoded by JPEG still-image compression 
algorithm. From reference C code, we developed a Simulink application model, which 
has 7 S-Functions (user-defined blocks), 7 delays, 26 data links, and 4 if-action-
subsystems. From this Simulink application model, a Simulink CAAM was built using 
Simulink graphic interface. Figure 4.15 illustrates the built CAAM. This model contains 
one ARM7 and two Xtensa CPU subsystems communicating through one GFIFO and 
one HWFIFO, as shown in Figure 4.15(a). CPU1 subsystem contains two threads 
communicating through software FIFO, as shown in Figure 4.15(b). Figure 4.15(c) 
shows the Thread2 subsystem, which is composed of Simulink blocks and links. These 
figures are presented in detail in Appendix B. 

(b) CPU1 Subsystem(a) CAAM Simulink Model for M-JPEFG – Top level

(c) Thead2 Subsystem

 

Figure 4.15: Simulink CAAM for Motion-JPEG decoder 

4.5.1.2 H264 video decoder 

The H.264/AVC video coding standard has been developed and standardized 
collaboratively by both the ITU-T VCEG and ISO/IEC MPEG organizations 
(WIEGAND, 2003). In our experiment, we used an H.264 decoder, which is based on 
the Baseline Profile for video conference and videophone applications.  

H.264 decoder receives an encoded video bit stream and iteratively executes 
macroblock-level functions. They are variable length decoding (VLD), inverse zigzag 
and quantization (IQ), inverse transform (IT), spatial compensation (SC), motion 
compensation (MC), reconstruction (REC), and deblocking filter (DF) to construct a 
video image sequence (WIEGAND, 2003), as illustrated in Figure 4.16. 

From the dataflow illustrated in Figure 4.16, a Simulink functional model of the 
H264 decoder was built. This model includes 83 S-Functions, 24 delays, 310 data links, 
43 if-action-subsystems, 5 for-iteration subsystems and 101 pre-defined Simulink 
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blocks. Each functional block of Figure 4.16 consists of one or more S-Functions or pre-
defined Simulink blocks. From this functional specification, we built five different 
CAAM models, varying the partitioning and the number of processors from two to six 
CPU subsystems. The motivation for that was the exploration of the design space of the 
H264 video decoder. Section 4.5.3.2 and 4.5.4 show results obtained in this exploration. 
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Figure 4.16: H.264 decoder block diagram 

 

4.5.2 Target platform 

Each CPU subsystem defined in the CAAM model is composed of Processor, Local 
Bus, Local Memories, PIC, Timer, Mailbox, and Network Interface (NI). In order to 
support simulation, the Simulink-based design flow (HUANG, 2007) provides SystemC 
TLM models for these Hardware components by a component library. This includes 
instruction-set simulator (ISS) for Xtensa and ARM processors.  

The multiprocessor platform architecture is built by Hardware architecture 
generator through instantiation of several CPU subsystems, all connected to a bus. 
Figure 4.17 shows a platform architecture used for the Motion-JPEG decoder, 
composed of three CPUs and a global memory. In this architecture, the GFIFO and 
HWFIFO protocol are used for inter-processor communication. 
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Figure 4.17: MPSoC Platform used for the Motion-JPEG decoder 

 

Similar multiprocessor platforms were built for H264 video decoder. In the 
experiment with this application, we have modified the number of processors to explore 
the design space of the H264 decoder and to observe the effects of these optimizations 
in different MPSoC platforms.  These platforms are composed of Xtensa processors 
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communicating through GFIFO channels. At the beginning, we profiled the execution 
cycle with a single processor system (SS1). We partitioned the Simulink algorithm 
model and built a Simulink CAAM with two processor subsystems (SS1, SS2) based on 
the profile result. Similarly, we continued to build Simulink CAAMs by increasing the 
number of processors from two to six. The different partitioning versions were done 
manually. 

4.5.3 Memory optimization 

For checking the effect of memory optimization techniques, we generated seven 
versions of C codes for each Simulink CAAM: one single-thread version with Real 
Time Workshop (RTW), three single-thread codes with the Multithread code generator, 
and three multithread ones with the same generator. Table 4.2 specifies all 
configurations used in the experiments. We compiled each generated thread code by 
ARM GNU C compiler and Xtensa C compiler and measured data memory and code 
memory sizes. In both applications, we mapped the image buffers into a global memory 
and we traced only on-chip memory that heavily affects on the chip area and cost. 
Memory optimization results obtained for Motion-JPEG and H264 are presented in 
section 4.5.3.1 and 4.5.3.2, respectively. Besides the memory size, performance 
obtained for the generated codes are also presented in these sections to show the impact 
of the proposed memory optimizations on this issue. 

Table 4.2: C code generation with 7 configurations 

# Name Configuration for code generation 
1 RTW RTW 
2 S1 Single-thread without optimization options 
3 S2 Single-thread with copy removal 
4 S3 Single-thread with copy removal and buffer sharing 
5 M1 Multi-thread without optimization options 
6 M2 Multi-thread with copy removal 
7 M3 Multi-thread with copy removal and buffer sharing 

 

4.5.3.1 Motion-JPEG video decoder 

Figure 4.18(a) shows the relative data memory sizes of Motion-JPEG decoder for 
the seven configurations defined in Table 4.2. In the single-thread case, the data 
memory is composed of buffer and constant memories. The buffer one represents the 
memory necessary to implement the Simulink data links, while the constant memory 
represents the memory for Huffman table in the Motion-JPEG library. Our code 
generator with full optimization options (S3) reduces the total data memory size by 
50.9% compared to RTW. Note that RTW provides only limited memory minimization 
techniques, so the data memory size of the C code generated with RTW is relatively 
close to that with our tool without optimization options (S1). In the multithread case, the 
reduction obtained for configuration M3 compared to RTW is 27.7%. In the multithread 
case, the reduction obtained for configuration M3 compared to RTW is 27.7%. Notice 
that, even though the multithread code requires additional buffers and channel 
memories, it gave such gains against the single-threaded code generated with RTW. 

In the single-thread case, one thread and one application library represent the whole 
implementation code. However, for multithread case, the total code size is increased 
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because it is the sum of all thread codes, main codes, application library, and HdS 
library. Our memory optimization techniques also reduce the code size as a 
consequence of using the copy removal techniques. Figure 4.18(b) shows the relative 
code memory sizes of Motion-JPEG for the seven configurations. Compared to 
configuration S1, S3 achieves 6.2% of reduction on code size. In multithread case, M3 
presents 1.8% code memory size reduction compared to configuration M1. Experiment 
results show that the proposed memory optimization techniques are effective for 
multithread code generation, reducing both data and code sizes. 
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Figure 4.18: Data memory size, code memory size and execution time of Motion-JPEG 
decoder with single- and three-processor platforms 

 

Multithread multiprocessor solutions are used to achieve better performance. To 
evaluate the impact on performance, we obtained the number of cycles required to 
decode 30 frames QVGA Unicycle JPEG stream for each configuration, which are 
presented in Figure 4.18(c). Regarding copy removal technique, configuration S2 (M2) 
shows 49.4% (55.9%) execution time reduction compared to S1 (M1). This result shows 
that copy removal technique improves significantly the performance of the generated 
code, especially when there are copy operations between large-sized arrays. Compared 
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to RTW, the configuration M3 shows 3.89 times faster performance because of the 
concurrent execution and the memory optimization, which also impacts in performance. 
The multithread solution with all optimization options (M3) is 1.60 times faster than 
single thread one with all optimization options (S3). This result is less than our 
expectation mainly because two subsystems transfer massive data through global 
memory using processor load/store instructions, i.e. GFIFO. The required bandwidth is 
19.0 MB/sec and the processors averagely spent 53.3% and 25.3% of the run time for 
computation and communication, respectively. The rest is idle time, waiting for 
available data or space.  

4.5.3.2 H264 video decoder 

Firstly, A H264 Simulink CAAM with four CPU subsystems was used to show the 
effects of memory optimization on the code generated with different tool configuration 
(see Table 4.2). Figure 4.19(a) shows the relative data memory size, where “Constant” 
represents VLD tables. In the single-thread case, the configuration S3 achieves 70.9% 
data memory size reduction compared to RTW. In the multithread case, the code 
generator with full optimization (M3) reduced the data memory size by 66.7% 
compared to that without optimization (M1). Regarding code memory size, shown in 
Figure 4.19(b), configurations S3 (single-thread case) and M3 (multithread case) show 
19% and 20% code size reductions compared to S1 and M1, respectively. These results 
also show the effectiveness of the proposed memory optimization techniques in 
automatic code generation for both single-thread and multithread cases. 

Figure 4.20 presents the performance results obtained from the H264, with four 
processors for each code generation configuration. It shows the number of cycles 
required to decode 30 frames QCIF H.264 stream. Multiprocessor implementation with 
configuration M3 is 2.15 times and 3.04 times faster performance compared to the 
single-processor one with configuration S3 and to RTW, respectively. The required 
bandwidth is 12.1 MB/sec, and the processors spent around 63.7% of the run time in 
computation and 13.7% in communication. 
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Figure 4.19: Data memory size and code memory size of H.264 decoder with single- 
and four-processor platforms 
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Figure 4.20: Execution time of H.264 with single- and four-processor platforms 

To explore the design space of the H.264 decoder, we designed several 
multiprocessor platforms by increasing the number of Xtensa processors from two to 
six. Figure 4.21 presents memory sizes with different numbers of processors. In the 
figure, Px represents a multiprocessor platform with x processors, varying from 2 to 6 
Xtensa subsystems. Figure 4.21(a) shows data memory sizes obtained varying the 
number of processors and the configurations options for M1, M2 and M3. It shows that, 
when the number of processors grows, the data memory size also increases due to the 
increasing of the number of required channel buffer memories and channel data 
structures. Regarding code size, similar effect can be observed in Figure 4.21(b), 
because the number of threads also increases along as the number of processors grows. 
This, as a consequence, increases the number of line codes. 

The performance results obtained for each platform were also evaluated. To obtain 
performance results, we simulated the execution of the generated codes under the 
chosen platform (P2-P6) using instances of Xtensa ISS simulator. Figure 4.22 illustrates 
the number of cycles required to decode QCIF H.264 stream at a frame rate of 30 
frames/second for each platform. The multiprocessor platform with six Xtensa 
subsystems (P6) and configuration M3 (multithread with all optimization options) 
shows 2.3 times higher performance compared to single processor platform (P1) with 
configuration S3 (single-thread with all optimization options). We also compared our 
multiprocessor solutions to a single-processor one and we found that the version P6 
achieved 56.4% of performance improvement compared to the single-processor one 
(236.8 Mcycles/second). From the design space exploration, we found that VLD parts 
(frame, slice, and macroblock VLD in Figure 4.16) limit the performance because they 
are sequential, and it does not pay off to add extra processors. 

The performance result obtained for the H264 decoder is not appropriate for real 
systems, where a frame rate of 15 frames/second can be required. It shows that 
optimizations are necessary in the generated code in order to improve its performance. 
Observing that a considerable time is spent with communication, we propose here to 
apply a communication optimization technique to reduce the communication overhead. 
Section 4.5.4 presents the results obtained with the integration of Message Aggregation 
in the Multithread code generator. 
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Figure 4.21: H.264 decoder data memory size and code memory size with different 

memory optimization configurations and different number of processors 
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Figure 4.22: Execution time of H264 decoder (Mcycles/sec) 
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4.5.4 Communication optimization 

In this section, the H264 video decoder is used as a case study. It shows that 
performance improvements and memory reductions are achieved when Message 
Aggregation (MA) technique is integrated in the code generation flow used by the 
Multithread code generator. In this experiment, the same H264 CAAM models with 
two, three, four, five and six CPU subsystems used in section 4.5.3.2 were also 
employed. For each one of these CAAMs, we generated code using the Multithread 
code generator and evaluated the performance and the memory improvements achieved 
when MA is applied during the code generation.  

Firstly, we analyze the impact of Message Aggregation on the execution time for the 
different multiprocessor solutions. Performance results were obtained by simulation of 
the execution of the generated codes under the chosen platform through the use of 
Xtensa ISS simulators. In this way, for each version of generated code, we obtained the 
number of cycles required to decode a QCIF foreman at a frame rate of 30 frames 
/second. 

Figure 4.23 illustrates the performance results for the generated codes for the five 
different CAAM models (P2-P6), with and without Message Aggregation. The results 
show that when MA is applied in our code generation flow, the performance increases 
for all five configurations, with improvements from 14% until 21%. For example, 
comparing the performance results for P6 with MA and without MA (w/o MA), we 
found a performance improvement of 21.2% obtained by the Message Aggregation 
technique. Comparing our multiprocessor solutions with a single-processor one, we 
found that the P6 version without MA achieved 56.4% of performance improvement, 
while the configuration P6 with MA achieved 65.7%.  
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Figure 4.23: Performance results for H264 decoder 

 

In order to analyze this optimization in more detail, we divided all processor 
operations into three classes of different functions: Computation (Comp), 
Communication (Com) and Idle. All operations in the application, including 
computation and some memory access, are defined as computation class. The 
communication class represents the operations for inter and intra-thread communication. 
In this class, most of operations are launched by load or store instructions executed in a 
processor. Except for Computation and Communication, the remainder operations, 
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which consist of thread switching and waiting for synchronization, are classified as Idle. 
Table 4.3 shows the percentage of computation (comp), communication (comm) and 
idle per second of the application execution time and the communication Speed in 
Bytes/cycle (average for 1cycle) for each multiprocessor platform (P2-P6). These 
results show that Message Aggregation decreased the time spent with communication 
and accelerate the communication for all multiprocessor platforms. 

Table 4.3: Computation, Communication and Idle time of H264 decoder with different 
number of processors 

 with MA w/o MA 

 comp comm idle speed comp comm idle speed 

P2 76% 3.7% 19.9% 0.65B/s 70.5% 12.5% 17% 0.17 B/s 

P3 59% 5.2% 35.7% 0.56 B/s 55% 14.7% 30.3% 0.17 B/s 

P4 64% 7.4% 28.4% 0.57 B/s 58.7% 18.6% 22.6% 0.19 B/s 

P5 57% 7.4% 34.9% 0.56 B/s 49.9% 17.4% 32.6% 0.19 B/s 

P6 44% 7.4% 47.8% 0.49 B/s 48.6% 19.2% 44.2% 0.15 B/s 

 

Secondly, we analyzed the impact of the Message Aggregation in the number of 
required communication channels. Figure 4.24(a) illustrates the effect of this technique 
for the different configurations of the H264 model (P2-P6). The results show that 
Message Aggregation achieved a reduction on the number of inter-processor channels 
of around 90% for all configurations. For example, in the case with four CPU 
subsystems (P4), the achieved reduction is from 70 to 5 channels (92.8%). These 
reductions depend on the granularity of each block that composes the Simulink model 
and the chosen partitioning. The reduction on the number of channels impacts on the 
software infrastructure required for communication, reducing data memory size. Figure 
4.24(b) shows the results for data memory size obtained for the five versions of the 
H264 CAAM. These results show a reduction of 15.9% and 14% in the four CPUs (P4) 
version and in the six CPUs (P6) version, respectively, when Message Aggregation is 
applied.  
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Figure 4.24: Reduction on the number of channels and on the data memory size 
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Table 4.4 shows the data memory size of the generated code for four CPUs (P4). As it 
is a multiprocessor solution, the data memory is composed of Constant, Buffer and 
Channel memories. The constant memory represents constant tables such as VLD table 
used in the decoding algorithm. The buffer memory represents the memory required to 
implement the Simulink data links. At last, the channel memory represents the channel 
data structures required to promote the communication. The results show that Message 
Aggregation can achieve a large reduction on the data structures used to manage 
channels (channel in Table 4.4), e.g. 92.8% in the case of version P4, by the reduction 
on the number of required channels. It means a reduction of 14% in the total data 
memory size. Note that the required buffer memories increase by 17% with Message 
Aggregation. The reason for this small increase is briefly explained in section 4.4.  

Table 4.4: Data memory size in bytes for the solution P4  

 Without MA With MA 

Constant 2172 2172 

Channel 3360 240 

Buffer 6006 7320 

Total 11538 9732 

 

In addition, MA also improves code size by the reduction on the lines of code 
required to declare and initialize channels and to invoke communication primitives in 
Main and Thread codes. As in this experiment, these codes represent a small part of the 
total code size, which also includes HdS and application libraries, this improvement is 
too small. In case of P4 version, where Thread and Main codes represent only 11.5% of 
the total code size, MA achieves a reduction of only 0.5% of the total code size. 
Regarding only Thread and Main codes, a reduction of 4.4% was observed.  

4.5.5 Experiment analysis  

Our Multithread code generator extracts necessary information such as number of 
threads, types of processors, communication channels from the input Simulink CAAM, 
and then produces a set of software binaries, each of which executes on a target 
processor. Consequently, our multithread code generator can avoid the designers to do 
laborious programming work. 

In addition, from the experimental results, the effectiveness of the proposed memory 
optimization techniques integrated in our multithread code generator was shown. The 
data memory with all optimization options was 34.3% less for a Motion-JPEG decoder 
with three processors and 68.0% less for an H.264 decoder with four processors than 
that without optimizations. We can achieve more memory reduction in the H.264 
decoder than in Motion-JPEG decoder because a H.264 decoder includes a relatively 
larger number of buffers with disjoint lifetimes. Our memory optimizations also impact  
the code size, reducing the application code size in 19.4% and 15.8% for H.264 decoder 
single-thread and multithread cases, respectively. More results for the design 
exploration of these applications can be found in (HUANG, 2007). 

Moreover, experimental results show that MA can achieve a large reduction on the 
number of inter-processor data transfers for a fine-grain system specification. However, 
this optimization cannot achieve proportional reduction on the number of cycles 
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required to process one macroblock. One reason for this is because MA can increase the 
message latency in some cases, thereby decreasing performance. In terms of data 
memory size, MA presents a reduction of around 14%. Compared to H264, the Motion-
JPEG is a simple algorithm and has a very small number of channels. This is the reason 
for the Message Aggregation technique could not achieved a large performance 
improvement for this application, and then we do not present the Motion-JPEG results 
here.  

However, the performance of the presented multiprocessor platforms is still not 
enough for real systems. For example, the digital video broadcasting system requires 
H.264 QVGA decoding with a frame rate of 15fr/sec, which is about one and a half 
times faster than the platform with four processors at 93.2 MHz for QCIF 30fr/sec 
decoding. The QVGA format is about three times larger than QCIF format. The 
platform is pure software approach and thus its performance is somewhat limited to 
process data-intensive applications. In order to achieve the required performance, we 
need to adopt multiprocessor platforms with configurable processors such as Xtensa 
with customized instructions to specific applications (TENSILICA, 2006). Moreover, it 
is important to develop a communication architecture that can efficiently handle high-
rate data with large-latency wires to implement the high-performance heterogeneous 
MPSoCs.  

Currently, we analyze the effect of Message Aggregation in the inter-processor 
communication using the GFIFO protocol, which is easy to implement both in hardware 
and in software. Experiments with other communication protocols will be considered as 
future work. 
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5 INTEGRATION OF UML AND SIMULINK 

UML was defined in the software engineering domain and is by far the most-used 
modeling notation for conventional computational systems. The comparison between 
UML and Simulink presented in chapter 2 shows that UML presents some advantages 
for requirements specification and represents a higher abstraction level when compared 
to Simulink. Moreover, UML provides all benefits from the OO paradigm i.e. 
modularity, encapsulation, and reusability. However, using UML-based tools, designers 
are asked to write code for some methods in order to obtain the complete application 
code. In addition, although some efforts to extend UML, it continues to be not well 
suitable to model dataflow systems.  

On the other side, Simulink supports dataflow and continuous time, and the whole 
code can be automatically generated from a Simulink model. Real-time Workshop 
(RTW) can be used to automatically generate sequential code from a Simulink model. 
In addition, the Simulink-based code generation approach proposed in chapter 3 can be 
used to generate multithread code targeted to an MPSoC architecture from the Simulink 
CAAM, which combines algorithm and architecture. 

UML and Simulink present advantages for the embedded software development, 
which motivates researchers to find a way to simultaneously exploit the benefits of both. 
Recent efforts show that both languages are considered attractive for Electronic system- 
level design (BOLDT, 2007) (SANGIOVANNI-VICENTELLI, 2006) (BRISOLARA, 
2005b). Reichmann (2004) proposes the integration of different models in a same 
design flow. In another effort to integrate Simulink and UML, the Rhapsody UML2.0 
tool has been integrated with Matlab/Simulink, allowing the building of UML mixed 
models which can have modules described in Simulink (BOLDT, 2007). This allows the 
use of Simulink resources to describe signal processing algorithms and simulation of 
heterogeneous models that can include physical models like a plant, while at the same 
time UML is used for requirements specification. Both approaches focus on the use of 
different modeling languages to specify each system module. 

However, we believe that UML is the preferred language for software engineers, and 
that it could be interesting to use UML as a single language for initial specification. In 
this context, we propose a way to integrate UML and Simulink in a single design flow, 
where UML is used to model whole system and other models can be obtained from 
UML diagrams by model transformation in order to allow the use of different code 
generation approaches for each system modules. The UML-based code generation can 
be used to generate code for event-based (control-flow) modules, using available 
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commercial tools that generate code from state diagrams or FSM models. On the other 
hand, Simulink-based strategies can be used to generate code for the dataflow modules. 
Besides that, the same UML model can be reused for different code generation 
strategies to generate code for different platforms. To support this, mappings from UML 
to Simulink and to FSM are required. Figure 5.1 illustrates the proposed design flow for 
embedded software development.  
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Figure 5.1: Proposed flow for embedded software development  

We also propose the use of UML as front-end for the Simulink-based design flow, 
allowing one to exploit the benefits of UML, while generating executable code for 
MPSoC from high-level models (BRISOLARA, 2007b). This way, one can avoid the 
use of Simulink graphical user-interface to build of the Simulink CAAM required for 
the proposed multithread code generation, which can be an error-prone task. 

To support the proposed software development flow, a model transformation 
mechanism was defined in (BRISOLARA, 2007b). Figure 5.2 illustrates the proposed 
flow defined to capture UML and transform it in other modeling language notation. This 
flow has two main steps and its input is an UML model built using an UML editor tool. 
So, the first step is made by the designer using an UML tool graphical interface. In the 
second step, the UML model is traversed to find constructions that can be directly 
mapped to the target modeling language e.g. Simulink, which is defined in a meta-
model. According to the mapping rules, the UML model is translated to the target 
language, as a model-to-model transformation. In order to be flexible, technologies for 
model transformation, such as smartQVT (SMARTQVT, 2007) and ATL (ECLIPSE 
DEVELOPMENT TEAM, 2007), should be used to promote this translation. This step 
produces another XML file that follows the target language meta-model, which can be 
Simulink or FSM, as illustrated in Figure 5.2.  

The third and fourth steps shown in the proposed flow are specifically tailored to the 
generation of a Simulink model from an UML one. The third step receives as input the 
model resulting from the model-to-model transformation, which follows the Simulink 
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meta-model semantic, and performs some optimizations before generating the final 
Simulink model. After that, from the optimized model, an mdl file is generated using 
model-to-text transformation in the fourth step. Although we have focused on 
generating the Simulink model from an UML one the proposed transformation approach 
can be extended to support the mapping to other languages, such as UML state 
diagrams, other FSM-like languages, or KPN. 
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Figure 5.2: Flow for the proposed model transformation 

To show the feasibility of our proposal, we defined mapping rules able to transform 
an UML model in a Simulink CAAM model used as input for the multithread code 
generation. Section 5.1 explains the proposed mapping. In addition, a prototype was 
developed and experiments were performed using this prototype, which are presented in 
section 5.2 and 5.3, respectively.   

5.1 Proposal of mapping from UML to Simulink CAAM 
When the Simulink-based MPSoC design flow presented in chapter 3 is used, the 

Simulink CAAM is built manually by a Simulink GUI Interface. From the Simulink 
functional model, the designer partitions functions into tasks and groups them into 
different subsystems, thus defining threads and mapping them to processors. To 
maintain UML high abstraction capabilities and eliminate the necessity of manually 
building the Simulink CAAM, we propose the mapping from UML to Simulink CAAM. 
It allows software engineers to employ UML to model the system, which is their 
preferred language, besides giving them high abstraction. The use of the proposed 
mapping avoids the necessity of building or modifying Simulink models directly, which 
means abstracting low-level details like signals and ports.  

The proposed mapping can be applied in the flow illustrated in Figure 5.2, allowing 
one to automatically generate a Simulink CAAM from an UML model. Then, 
multithread code can be generated from that. As shown in Figure 5.2, to apply the 
proposed model transformation, the target language needs to be defined as a meta-
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model. We defined a meta-model for the Simulink CAAM. This meta-model is similar 
to another Simulink meta-model already published in (NEEMA, 2003), differing mainly 
regarding the constructions only required in the CAAM. As the Simulink CAAM is an 
extension of the default Simulink model, the proposed mapping and the proposed meta-
model can be used to generate both conventional and CAAM Simulink models. 

The proposed mapping uses information from the UML deployment and sequence 
diagrams to obtain the Simulink CAAM. Following our approach, a sequence diagram 
must be defined for each thread that composes the system. Both diagrams are used in 
the mapping in order to capture the necessary information to generate the Simulink 
CAAM. Besides the sequence diagrams, activity diagrams could also be used to detail 
the behavior of complex algorithms. A didactic example is used here to explain the 
proposed mapping. Figures 5.3(a) and (b) depict the deployment diagram and sequence 
diagram for the T1 and T2 threads, respectively. After apply the mapping, the Simulink 
CAAM shown in Figure 5.3(c) is obtained. 

From the deployment model, the definition of the threads that compose the system is 
captured, as well as the mapping of these threads to processors. In our proposal, 
processors and threads are indicated by the <<SAengine>> and <<SAschedRes>> UML-
SPT stereotypes, respectively, as illustrated in Figure 5.3 (a). For each processor, a 
Simulink hierarchical subsystem is created in the CAAM model representing a CPU 
subsystem (CPU-SS), as can be observed in Figure 5.3(c). For each thread mapped to a 
processor, a Thread subsystem (Thread-SS) is created inside the corresponding CPU-
SS.  

The Thread-SS is composed by Simulink blocks that are used to specify its behavior. 
To capture the thread behavior, these Simulink blocks and the data flow between them 
must be captured. We propose to capture it from sequence diagrams, once this diagram 
represents the messages exchanged between objects. For this reason, each thread should 
have a sequence diagram to describe its behavior in our proposed mapping. The 
<<SAtrigger>> stereotype used in the sequence diagram depicted in figure 5.3 (b) 
indicates a time event and the invoked method for which the Scheduler selects a thread 
to run. 

Method calls in the sequence diagrams are translated to Simulink blocks (user-
defined and user-defined blocks) or to communication blocks in the Simulink CAAM. 
When a method of a passive object is called from a thread, a Simulink block is 
instantiated. To use pre-defined Simulink blocks, the designer needs to indicate its 
usage by the invocation of a method from the special object Platform. The name of the 
method needs to be equal to the name of the reused component in the Simulink library. 
If the method name does not match with the pre-defined component names, a Simulink 
S-function block is instantiated. An S-Function can have its behavior described in a C 
code that is compiled and linked to the model. In the example illustrated in Figure 
5.3(b), the dec and mul methods are invoked from the Dec and Platform objects, 
respectively, by the thread T1. Notice that in the resulting Simulink, shown in Figure 
5.3(c), a Product block and an S-function were instantiated in the T1 subsystem. 

The direction of method parameters (in/out) and the return are used to define input 
and output ports of subsystems and blocks, and message arguments indicates the 
connection (data links) between ports of different Simulink subsystems/blocks. The a 
parameter from calc method has the direction set as in, so an input port is created in T1 
subsystem, as shown Figure 5.3(c). In the same way, its return is mapped to an output 
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port in T1 subsystem. The r1 argument is passed as output for calc and also is used as 
input for mult, which indicates that the value produced by first is used by the second one 
and a connection is created between these ports when generating the Simulink model. 
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(a) UML Deployment diagram 

 

(b) Sequence diagram 
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(c) Generated Simulink CAAM 

Figure 5.3: Example of mapping from UML to Simulink CAAM 

When a thread invokes a method from another thread, this indicates a 
communication between them. In this case, the designer is asked to use a default prefix 
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in the method name, Set or Get, to indicate send or receive operations, respectively 
Ports are created in the Thread-SS and an intra-SS or an inter-SS COMM subsystem is 
instantiated, according to the thread mapping. After that, connections are created 
between the ports of these subsystems.  

In the sequence diagram illustrated in Figure 5.3(b), T1 invokes the method 
getValue( ) from T3, which indicates that T1 receives data from T3. As both threads are 
allocated in different processors, an inter-SS COMM block is instantiated in the 
Simulink model, as shown in the Figure 5.3(c). The method call setValue(r3) in Figure 
5.3(b) indicates that the thread T1 sends data to T2. The same argument r3 is also used 
by the decode method, indicating that the value produced by this method must be sent to 
T2. As well as, the output of the decode method must be connected to the T1 output. 
This communication is translated to an output port in T1 as well as an intra-SS 
communication channel is instantiated, since both threads are mapped to the same CPU. 

To indicate that an object communicates with external systems, we defined a 
modeling rule. The external system is represented as an object in the sequence diagram 
decorated with the stereotype <<IO>>, which is a new stereotype we have defined. To 
indicate the reading and writing operations between an object and the IO object, 
methods with the prefix get and set are used, indicating the message exchange between 
the two objects. During the mapping, these get and set methods are mapped to input and 
output ports for the system. In Figure 5.4, the thread T3 invokes the method getValue() 
from the object sensor that is marked as <<IO>>, which is translated for a system input 
port in the Simulink CAAM, as shown in Figure 5.3(c). It should be also used in the 
sequence diagrams for the threads T2 to generate the output system port shown in the 
correspondent Simulink CAAM. 

 

 
Figure 5.4: Sequence diagram for thread T3 

 

The deployment diagram defines the number of processors and threads. Thus, to 
build this diagram, the designer is asked to partition the system in threads and define the 
mapping of threads to processors. We propose the automation of the thread mapping 
decision by the use of an optimization algorithm that can determine the number of 
required processors and the mapping of threads to the processors. The use of this 
optimization can make the deployment diagram unnecessary and, therefore, only the 
sequence diagram can be considered compulsory to generate the Simulink CAAM from 
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an UML model. To validate the proposed mapping, a prototype was developed, which is 
detailed in section 5.2. 

5.2 Prototype 
We developed a prototype that implements the mapping proposed in section 5.1. 

Figure 5.5 shows the flow used in this prototype, where the input is an UML model. The 
first step of the flow is the building of the UML model using MagicDraw or other 
EMF/UML2 compliant tool. After that, a XML file is obtained for the UML model. 
During the second step, the UML model is traversed and translated to a Simulink model. 
This step produces another XML file, which follows the Simulink CAAM meta-model. 
In this prototype, this transformation was implemented in Java using the API provided 
by the Eclipse EMF, according to the required mapping rules described in section 5.1. 
The third step has as input the resulting Simulink CAAM model represented using the 
E-core format (XML-like) and performs some optimizations before generating the final 
Simulink CAAM model. These optimizations are detailed in section 5.2.1. After that, 
from the resulting model, we generate a file that follows the mdl format used as input in 
the Simulink environment. 

UML editor 
tool

(MagicDraw)

Simulink
(E-core)

Simulink.
mdl

Transformation engine

MDL generator optimize

Simulink
meta-model

Mapping
rules

EMF/UML
(E-Core)

2

34

1

 

Figure 5.5: Prototype for the mapping from UML to Simulink 

5.2.1 Model optimization 

During the optimization step, our tool can perform three kinds of optimizations: 
inference of communication channels, loop detection, and thread grouping. The 
inference of communication treats of the instantiation of communication blocks in the 
Simulink CAAM when in a sequence diagram there are method invocations between 
different threads. In this case, the tool captures the kind of communication (inter-SS 
COMM or intra-SS COMM) and set the appropriated protocol. When a variable is used 
as input and output of a function, we have a cyclic path (or loop). In a Simulink model, 
to avoid deadlock, one needs to insert a temporal barrier (Delay) to guarantee that a 
valid value is available for the input function. The tool looks for cyclic paths in the 
model and inserts temporal barriers in the generated Simulink model. Furthermore, our 
tool analyzes the model and groups threads whenever possible, in order to reduce the 
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communication overhead. The proposed optimizations are detailed in the section 
5.2.1.1, 5.2.1.3 and 5.2.1.4. 

5.2.1.1 Inference of communication channels 

In the Simulink CAAM, the communication is explicitly defined and represented by 
communication channels that can be either inter-SS or intra-SS. To capture these 
channels from the UML model, we use information from the sequence diagrams and 
from the deployment diagram or from the result of the grouping thread algorithm. When 
the communicating threads are in different CPUs, an inter-SS channel is required. 
Otherwise, an intra-SS channel is instantiated. 

The communication protocol is indicated explicitly in the Simulink CAAM using a 
specific block parameter. At present, we use only two different communication 
protocols, the SWFIFO for intra-SS channels and the GFIFO for inter-SS channels. Our 
tool determines the type for each communication channel and sets their parameters. 
These protocols are detailed in chapter 4. In the future, different communication 
protocols can also be supported. In the example illustrated in Figure 5.3, T1 sends data 
to T2 and an intra-SS channel was instantiated to build the Simulink CAAM shown in 
Figure 5.3(c), since both threads were allocated in the same CPU-subsystem.  

5.2.1.2 Insertion of temporal barriers 

When describing a dataflow model, cyclic paths need to be found and temporal 
barriers are required to avoid deadlocks. In this step, the Simulink model obtained from 
the translation (step2) is searched for cyclic paths. Simulink Delay blocks are then 
inserted in the resulting Simulink model. Two different cases of cyclic path can be 
found. In the case 1, the output of a functional block is connected to its input, as shown 
in Figure 5.6. In the case 2, the cyclic path is between different sub-systems or different 
hierarchical levels, as shown in Figure 5.7. Our tool automatically detects these cases 
and inserts temporal barriers to avoid deadlock. To represent a temporal barrier, a 
Simulink Delay block is inserted in the data link where the loop is detected. 

(a) UML sequence diagram
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(b) Simulink model  

Figure 5.6: Example of insertion of delay – case 1 
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Figure 5.7: Example of insertion of delay – case 2 

5.2.1.3 Grouping threads 

This optimization allocates threads with data dependencies to the same processor, in 
order to reduce the inter-processor communication. When this optimization is applied, 
the deployment diagram is not necessary to generate the Simulink CAAM. To observe 
the data dependency between threads, we use the information captured from the 
sequence diagrams. This information is used to build a task graph. In this graph, the 
nodes are threads and the edges have a cost that is determined by the size of data 
multiplied by the number of transferred data, as illustrated in Figure 5.8(a).  
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c) Simulink CAAM: top-level  

Figure 5.8: Example of the thread allocation by the linear clustering algorithm 

This optimization was implemented in our prototype and the used algorithm is based 
on Linear Clustering. Figure 5.9 shows the pseudo code of this algorithm. It evaluates 
the costs for the edges in the graph, grouping threads with more data dependencies. 
Threads grouped into the same cluster are allocated to the same processor. Figure 5.8 
illustrates an example, where 5.8(a) shows a thread graph and 5.8(b) shows the resulting 
graph after running the optimization algorithm. The resulting graph shows how the eight 
threads were grouped in three different clusters, indicating that three processors will be 
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used. In this example, as the nodes n2 and n5 are in the same cluster, these threads will 
be allocated to the same processor. 

This optimization algorithm is used to optimize the mapping of threads to 
processors. The result of this optimization step is used to generate the top-level 
description of the Simulink CAAM, where processors are connected through inter-SS 
COMM blocks, as shown in figure 5.8(c). This step is optional, and when the designer 
wants to decide the mapping by himself, information from the deployment diagram can 
be used to generate the Simulink CAAM top-level, instead using the result of the linear 
clustering. 

 

1. Choose the heaviest edge;

2. If nodes n3 or n6 are not taken

1. Add nodes n3 and/or n6 to cluster C1;

3. Find incoming edges of node n3;

4. Choose the heaviest edge of step 3;

5. If node n1 is not taken

1. Add node n1 to C1;

6. Find outgoing edges of node n6;

7. Choose the heaviest edge of step 6;

8. If node n8 is not taken

1. Add node n1 to C1;

9. Repeat steps 1-8 while possible;

10. Store cluster C1 and create a new one;

11. Goto step 1;

12. Stop when every node has a cluster;

 

Figure 5.9: Pseudo code of the used linear clustering algorithm 

It is interesting to note that this algorithm allocates all threads that are in the system 
critical path to the same processor. This is a good practice to reduce the communication 
cost, once the cost for intra-CPU communication is lower than the cost for 
communication between different CPUs (inter-SS COMM). 

5.3 Case study 
Two case studies are used to validate the proposed mapping and the built prototype. 

They are the crane control system and a synthetic example, presented in section 5.3.1 
and 5.3.2, respectively.  

5.3.1 Crane control system 

The crane control system, proposed in (MOSER, 1999) and used as case study in 
chapter 2, shows the capabilities to capture a dataflow from an UML model and the 
generation of the corresponding Simulink CAAM. In addition, we also show that our 
tool can automatically insert the required temporal barriers in the generated Simulink 
model.  

The UML model for the Crane control algorithm was developed, which is a module 
of the Crane system used in chapter 2. In this experiment, we partition the system in 
three threads, each one specified using UML sequence diagrams. We have decided to 
map the three threads to the same processor, as shown in the deployment diagram 
illustrated in Figure 5.10. The grouping algorithm is not applied for this example. 
Figure 5.11, 5.12, and 5.13 illustrate the sequence diagram for the thread T1, T2 and T3, 
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respectively, from which a Simulink dataflow diagram can be obtained using our rules. 
Figure 5.13 is not well presented here, due to the limited space. Therefore, this figure is 
presented in an expanded way in Appendix B. 
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Figure 5.10: Crane system: UML deployment model 

 

 
Figure 5.11: Crane UML model: T1 sequence diagram  
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Figure 5.12: Crane UML model: T2 sequence diagram 

 

 

 

Figure 5.13: Crane system: UML sequence diagram for thread T3 
 

We explain in detail here only the generation of the dataflow for the thread T3, 
which has a cyclic path (loop) and the insertion of the delay component can be 
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observed. This cyclic path is found between the call message set and the calcy in the T3 
sequence diagram. That is why, the argument out1 is used as output of the method set, 
while the same argument is used as input for the method calcy. Figure 5.14 (a) presents 
the Simulink block diagram corresponding to the thread T3, where a delay block was 
automatically inserted between calc_vc and calc_y blocks.  

When method invocations are nested, a hierarchical Simulink subsystem is 
instantiated to encapsulate the blocks generated to represent these methods. In the 
example, the subsystem control is instantiate to encapsulate the nested invocations for 
the methods mult, div, and sum. In addition, a subsystem called calc_vc and the S-
function called calc_y are created. The subsystem control is detailed in Figure 5.14(b) 
and is composed of one S-Function and five pre-defined Simulink blocks. The methods 
invoked from the Platform (e.g. sum, mult, and div) are translated to adder, multiplier, 
and divisor Simulink blocks, respectively. The method calcu is mapped to a S-Function. 

In this sequence diagram (Figure 5.13), the method get_poscar( ) and getalpha( ) 
invoked from thread T1 indicate the communication between the thread T3 and T1. The 
get prefix indicates that T1 send data to T3, ports and communication blocks are 
instantiated in the Simulink model to represent this communication, as shown in Figure 
5.15 (right side). The invocations of methods from the objects Plant, Engine and IHM, 
which are stereotyped as <<IO>>, are translated to input and output ports that represent 
the interface of the system with external devices. For example, the method get_posdes( ) 
is translated to the input posDesired in the Simulink functional block diagram, as 
illustrated in Figure 5.14. The method set_vc( ) is translated to an output port out1 that 
is send to the motor represented by the object <<IO>> Engine in the sequence diagram. 

 

Delay
inserted
Delay

inserted

a) T3 model

b) T3: control subsystem  
Figure 5.14: Crane Simulink CAAM: Thread T3 model 

Finally, the Simulink CAAM higher hierarchical levels obtained from the Crane 
UML model are illustrated in Figure 5.15. The left side illustrates the top level, where 
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there is only one CPU subsystem. The right side shows the threads allocated to this 
CPU, where the threads T1, T2 and T3 communicate via intra-SS channels. In the 
bottom part, this figure shows also the parameters set for the CPU, thread and intra-
COMM subsystems. 

 

 
Figure 5.15: Crane Simulink CAAM – CPU1 subsystem 

5.3.2 Synthetic example 

To validate the proposed grouping thread optimization, we developed a synthetic 
example, which has twelve communicating threads. The application was specified using 
a sequence diagram that expresses the communication between the application threads.  
Figure 5.16 illustrates a block of interactions of this sequence diagram, since the whole 
diagram is too big to show here. The complete sequence diagram is presented in 
Appendix B. 

The communications captured from the sequence diagram are used to build a task 
graph, as shown in Figure 5.17(a), where the nodes represent the threads and the edges 
represent the communication between them. After the application of the grouping thread 
algorithm, the nodes of the graph are merged according to the communication between 
them. The result of this optimization is depicted in Figure 5.17(b), which shows that the 
twelve threads were allocated in four CPUs. 
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Figure 5.16: Synthetic example: simplified sequence diagram 
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Figure 5.17: Synthetic example: Task graph  

 

After applying the proposed map and the grouping thread algorithm for this 
application model, the Simulink CAAM model depicted in Figure 5.18 was obtained. 
Figure 5.18 shows the top level, where four CPU subsystems communicate through 
inter-SS communication blocks. This Figure shows also the threads allocated to the 
CPU0, where there are five thread subsystems (A, E, I, L and M) communicating via 
intra-SS COMM. The inference of communication is also performed to build this 
Simulink CAAM, in the Figure 5.18 is illustrated also the setting of parameters to 
indicate the communication protocol used for an intra-SS communication and an inter-
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SS communication. The Simulink CAAM models generated by our tool are presented in 
the Appendix B in detail. 

 

 
 

Figure 5.18: Synthetic example: generated Simulink CAAM  

5.4 Concluding remarks 
An automatic mapping from UML to Simulink CAAM was proposed. With it, we 

eliminated the necessity of manually building the Simulink model used as input for the 
Simulink-based design flow for MPSoC architectures, which generates multithread C 
code and the HW platform described in SystemC. The mapping is based on sequence 
and deployment diagrams. Other diagrams like class and collaboration diagrams could 
be used during the modeling, but our tool prototype does not capture information from 
them at the moment. 

We show that some UML constructions can have a direct mapping to Simulink. 
However, the one-to-one mapping is not able to capture the whole model. It is still 
needed to make inferences performed in the optimization phase of our mapping tool. 
Two case studies were presented to show the proposed optimizations to be executed 
during the mapping from UML to Simulink. The first one shows the insertion of 
temporal barriers and the second one shows the grouping thread algorithm and the 
inference of communication channels. 

The proposed mapping allows one to exploit the benefits of UML for requirements 
specification and software design, while providing a way to obtain complete executable 
code for MPSoC architectures from the high-level specification. Moreover, the same 
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UML model can be used to generate code using either traditional UML tools or a 
Simulink-based approach. 

As future work, this tool will be integrated with an estimation tool to improve design 
space exploration, allowing that the deployment model can be build during the design 
space exploration step. Moreover, an analysis tool could be used to automatically 
determine which fragments of the system are dataflow and for these fragments the 
proposed mapping must be applied. 
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6 CONCLUSIONS 

This thesis presented a comparison between UML and Simulink, two attractive 
modeling approaches for embedded system design. However, evaluating the state-of-
the-art in embedded system design using high-level model, we found some limitations 
in the automation provided by available software development tools.  In this context, 
strategies for embedded software generation from high-level models, using Simulink 
and UML languages, were proposed in order to solve the main limitations found on 
available design flows and tools.  

Our UML-based strategy tried to bridge the gap between model and code though the 
use of a higher abstraction language. However, although we believe that this proposal 
could obtain good results, this proposed strategy was not developed because we decided 
to try a new thread. The author had the opportunity to work in the development of a 
code generator based on Simulink, which has shown to be a very interesting study. The 
proposed Simulink-based strategy focuses on the generation of multithread code target 
to multiprocessor architectures, which is not well addressed by available tools. In 
addition, this Simulink-based strategy provides a communication optimization 
technique, which can be used to reduce the communication overhead during the code 
generation (BRISOLARA, 2007a). 

The comparison between UML and Simulink shows that both modeling approaches 
present pros and cons, which motivated us to find a way to simultaneously exploit the 
benefits of UML and Simulink modeling languages in a single design process. We 
proposed a software development flow, which allows to start with an UML model and 
generate the Simulink model from that. In this way, when a system module is dataflow, 
it is translated to Simulink, which provides more powerful features to model and 
simulate dataflow systems. This allows designers to work at a higher abstraction level, 
avoiding the necessity of building Simulink models directly, which means abstracting 
about low-level details like signals and ports. 

The proposed flow allows to use UML as front-end for the proposed Simulink-based 
multithread code generation method. To support that, we define the mapping from UML 
to the Simulink CAAM that is used as input in this method. As the directly mapping is 
not possible, besides the mapping, the inference of communication channels and thread 
grouping are performed in order to build the Simulink CAAM model from that 
multithread code target to MPSoC architecture can be generated. In addition, temporal 
barriers are inserted when there is a cyclic path in the dataflow model in order to avoid 
deadlock. 
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Boldt (2007) and Reichamnn (2004) also proposed the integration of the UML and 
Simulink. However, differently of the Boldt’s and Reichmann’s approaches, our 
approach uses UML as modeling language for initial specification, which presents the 
advantages of using a standard language that is widely accepted in the software 
engineering community. In addition, the main advantage of the proposed integrated 
flow is to enable one to start with an UML model and decide which is the most 
appropriated tool to generate code for a system module, whether by Simulink of FSM 
based tools. Moreover, the same UML model can be also used to generate code by 
UML commercial tools or Simulink-based tools, thus enabling the reuse of models in 
different platforms or a comparison of different design alternatives. 

Although the proposed flow can support other mappings than the Simulink one, this 
work addressed only the mapping from UML to Simulink and Simulink CAAM. 
However, to completely support the proposed flow, a FSM-like model should be also 
generated from the UML model in order to allow the use of different tools for code 
generation for control-flow system modules. 

A limitation of the proposed mapping from UML to Simulink is that although the 
deployment diagram is not necessary when the grouping threads optimization is applied, 
the definition of threads continues to be required. This means that the designer needs to 
partition the system in threads and to describe thread behavior using sequence diagrams 
in order to apply the proposed mapping. As a future work, we plan to integrate an 
estimation step in the proposed software development flow. The estimation can be used 
to automatically determine the best partitioning and mapping solution and generate the 
deployment model. This avoids the necessity of the designer to specify the deployment 
model and partitioning the system in threads, while supporting design space exploration. 

To show the usefulness of the proposed design flow, we developed a prototype, 
which is able to generate Simulink CAAM from an UML model. Using the developed 
prototype, we conducted experiments to show the benefits of our proposed mapping. At 
present, the designer applies the mapping from UML to Simulink for a whole system, 
but in the future, an analysis tool could be used to determine which fragments of the 
system are dataflow and control-flow ones, thus the mapping is applied only to the 
dataflow part. 

Moreover, only sequence diagrams are used to capture thread behavior in our 
mapping. Other behavior diagrams, though, could also be used by a designer, since 
UML provides them. We plan to extend this mapping to support even other UML 
diagrams, like activity diagram, that is the closest to functional block diagrams.  
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APPENDIX A ESTRATÉGIAS PARA 
DESENVOLVIMENTO DE SOFWARE EMBARCADO 

BASEADAS EM MODELOS DE ALTO NÍVEL 

O desenvolvimento tecnológico expôs uma nova realidade, o uso intensivo pelo ser 
humano de sistemas computacionais. Esses sistemas computacionais, quando embutidos 
em um produto, são chamados de sistemas embarcados, pois constituem parte de um 
todo e desenvolvem tarefas específicas. Os sistemas embarcados estão presentes em 
diversos setores tais como: automotivo, aeronáutico, telecomunicações, eletrônica de 
consumo e de dispositivos medicinais. Geralmente, os sistemas embarcados complexos 
são implementados como system-on-chip (SoC) heterogêneos compostos de 
componentes de hardware dedicado, processadores programáveis, memória, 
controladores de interface e outros módulos de hardware. 

Muitos sistemas embarcados têm requerimentos que os diferem dos tradicionais 
sistemas desenvolvidos para PCs. Muitas vezes esses são inseridos em equipamentos 
para os quais a portabilidade é um fator importante, nestes casos, tamanho, peso e 
dissipação de potência são requisitos críticos. Muitos sistemas embarcados possuem 
restrições de tempo de resposta e de confiabilidade, além das restrições tradicionais de 
consumo de energia, área de memória e desempenho. Além disso, o tempo para 
lançamento do produto no mercado é crucial para o sucesso do projeto. Portanto, 
produtividade e qualidade são simultaneamente requeridas no projeto de sistemas 
embarcados a fim de lançar um produto competitivo no mercado. 

Projeto baseado em plataformas (PBD) (SANGIOVANNI-VINCENTELLI et al., 
2001; SANGIOVANNI-VINCENTELLI, 2004; VERKEST, 2000) é uma metodologia 
de projeto que visa maximizar o reuso de componentes e consequentemente melhorar a 
produtividade dos projetos. Com o reuso de plataformas de hardware, o software 
embarcado é o que diferencia os produtos.  

Segundo Burch (2001), o interesse por implementações baseadas em software 
cresceu principalmente motivado pelo aumento no poder computacional das plataformas 
de hardware que possibilitou mover mais funcionalidade para o software. Outro fator 
motivacional foi o aumento dos custos de desenvolvimento de hardware que motivou o 
reuse de uma mesma plataforma em diferentes produtos. A utilização desta abordagem 
de projeto baseado em software proporciona flexibilidade e portabilidade, enquanto 
diminui o tempo de projeto. Além disso, quando se desloca maior funcionalidade para o 
software, o custo do sistema pode ser reduzido, assim como o tempo para colocá-lo no 
mercado já que uma plataforma pré-definida será reusada. Porém, alguns aspectos tais 
como consumo de potência e desempenho podem ser prejudicados. 
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Atualmente, com o uso de abordagens baseadas em plataformas, o gargalo para a 
implementação de sistemas embarcados vem sendo considerado o desenvolvimento de 
software, a sua depuração e a sua integração com os componentes de hardware. Deste 
modo, o software está se tornando cada vez mais o principal fator de custo nos 
dispositivos embarcados (GRAFF, 2003). Este cenário motiva a investigação de 
estratégias para acelerar o desenvolvimento de software embarcado através de 
ferramentas de automação. 

Na área de engenharia de software, ferramentas CASEs (Computer Aided Software 
Enginnering) são largamente utilizadas para automatizar o processo de 
desenvolvimento. Como softwares convencionais são geralmente homogêneos, ou seja, 
dedicados a um único domínio, as ferramentas de automação de software focam na 
gerencia do desenvolvimento de grandes sistemas, sem lidar com aspectos como a 
heterogeneidade.  Porém, sistemas embarcados complexos abrangem uma grande 
variedade de aplicações e possuem muitas funcionalidades agregadas em um único 
sistema, devido a isso, existem diferentes necessidades de computação requeridas em 
um único produto. Por exemplo, a especificação de um telefone celular não requer 
somente processamento digital de sinais para o domínio de telecomunicações, que segue 
o modelo de computação tempo-discreto. Ela também requer lógica seqüencial para 
descrever várias outras aplicações embarcadas no celular (agenda, alarme, etc.). Assim, 
pode-se afirmar que os sistemas embarcados são naturalmente heterogêneos e, portanto, 
as ferramentas de automação devem suportar diferentes modelos de computação. 
Porém, as ferramentas existentes para automação de desenvolvimento de software não 
oferecem este recurso. 

Além disso, o desenvolvimento de software embarcado difere do software 
tradicional quanto às exigências impostas ao projeto de software embarcado. Por 
exemplo, restrições de tamanho de memória e consumo de potência são muito mais 
rígidas nestes sistemas do que em sistemas tradicionais, o que é um outro fator que 
inviabiliza o uso de ferramentas CASE tradicionais para o projeto de software 
embarcado. Embora, consideremos estes aspectos de qualidade do software muito 
importantes para o domínio de embarcados, isto não faz parte do escopo deste trabalho.  

Além do projeto baseado em plataformas, o uso de abstrações de alto nível também 
tem sido adotado para lidar com a crescente complexidade dos sistemas embarcados e 
aumentar a produtividade do projeto. Selic (2003) e Gomma (2000) ressaltam que o uso 
de técnicas de projeto começando por níveis de abstração mais altos é a única maneira 
viável para lidar complexidade das novas gerações de sistemas embarcados, sendo 
considerada uma prática essencial para o sucesso do projeto. 

O uso de abstrações de mais alto nível permite abstrair detalhes de implementação 
na linguagem alvo, facilitando a especificação do sistema que é realizada através da 
construção de modelos, as invés de escrita de código. Usando esta abordagem, modelos 
de sistemas embarcados podem evoluir de abstrações de alto nível até implementações, 
assegurando um processo muito mais suave e confiável que o provido pelas práticas de 
engenharia de software tradicionais. A tradução automática do modelo de alto nível em 
código executável é altamente desejável, mas dependendo da notação de modelagem 
usada, diferentes graus de interação com o projetista podem ser requeridos. A 
linguagem de modelagem deve prover mecanismos para expressar não só a 
funcionalidade como também os requisitos da aplicação, alem de suportar a validação e 
mecanismos que facilitem a obtenção de uma implementação do modelo. Muitas 
abordagens de modelagem e linguagens têm sido propostas para a especificação de 
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sistemas embarcados, mas não há um consenso, já que nenhuma linguagem é 
considerada boa para modelar todas às aplicações encontradas neste domínio. 

Dentre as abordagens propostas, duas abordagens se ressaltam, uma que é a baseada 
em blocos funcionais e é provida pelo Simulink e a outra que é baseada em orientação a 
objetos e provida pela UML. Tradicionalmente, abordagens baseadas em blocos 
funcionais têm sido usadas nas comunidades de processamento de sinais e de 
engenharia de controle para desenvolvimento de sistemas embarcados. Esta abordagem 
tem sido largamente aceita pela indústria, principalmente, devido ao grande número de 
ferramentas disponíveis como, por exemplo, Simulink (MATHWORK, 2003a) e 
Labview (NATIONAL INSTRUMENTS, 2006).  

Por outro lado, a linguagem UML é considerada a linguagem de fato para a 
modelagem de sistemas orientados a objetos e tem crescido em popularidade também na 
área de projeto e especificação de sistemas embarcados de tempo real. Em 
(LAVAGNO, 2003), esforços que descrevem o uso de UML em diferentes fases do 
projeto de sistema embarcados são apresentados.  

No contexto deste trabalho, as duas abordagens baseadas em UML e Simulink são 
avaliadas quanto à modelagem, geração de código e mecanismos de exploração do 
espaço de projeto. Os resultados de análise foram publicados em (BRISOLARA, 2004; 
BRISOLARA, 2005b) e são apresentados e discutidos no capítulo 2. A partir desta 
análise, observou-se que as abordagens de geração de software embarcado baseado em 
UML e Simulink possuem limitações, e esta tese propõe estratégias para resolver as 
principais limitações encontradas nas duas abordagens.  

Apesar dos esforços e propostas para extensão da linguagem, UML continua não 
sendo adequada para modelagem de sistemas dataflow, pois ela é uma linguagem 
baseada em eventos e, portanto, control-flow. Quanto à geração de código, a maioria 
das ferramentas UML geram somente esqueletos de código a partir de modelos 
estáticos. Poucas ferramentas são capazes de gerar código a partir de diagramas 
comportamentais. Porém, para geração de código completo, as ferramentas exigem que 
o projetista insira fragmentos de código junto aos diagramas. Todas as ferramentas 
comerciais encontradas geram código somente a partir de diagramas de estado e para 
gerar código completo, exigem que o projetista descreva as ações referentes a cada 
estado. Muitas vezes, o projetista usa a linguagem de programação alvo para fazer isso, 
o que além de tornar o modelo dependente da linguagem alvo. Nós propomos aqui o uso 
de abstrações junto aos modelos comportamentais UML para reduzir o esforço 
requerido ao projetista, reduzindo o número de linhas de código, enquanto, suportando a 
geração de código completo a partir de modelos UML. Esta proposta é discutida no 
capítulo 3 desta tese. 

Por outro lado, Simulink suporta modelos do tipo dataflow de tempo-discreto e 
tempo-contínuo frequentemente encontrados em aplicações embarcadas. Além disso, 
completo código pode ser gerado usando Real-time workshop (MATHWORKS, 2004). 
Porém, o código gerado é voltado para uma arquitetura mono-processada. Observando 
esta limitação, propomos uma estratégia para geração de código multithread voltado 
para plataformas multi-processadas (MPSoC) heterogêneas (BRISOLARA, 2007a), que 
é apresentada no capítulo 4. Nesta estratégia, código multithread é gerado a partir de um 
modelo denominado Simulink CAAM (combined algorithm architecture model). O 
modelo Simulink CAAM combina algoritmo (funcionalidade) e arquitetura, contendo 
informações sobre o particionamento do sistema em threads e também sobre o 
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mapeamento das threads para processadores. A abordagem de geração de código a 
partir de modelos Simulink CAAM proposta aqui faz parte de um fluxo de projeto de 
sistemas MPSoC baseado em Simulink proposto em (HUANG et al., 2007).  

 A comparação entre UML e Simulink mostra também que as duas abordagens de 
modelagem apresentam pros e contras, o que motiva pesquisadores a encontrar uma 
maneira de explorar simultaneamente benefícios providos pelas duas linguagens em um 
único fluxo de projeto. Recentes esforços mostram que tanto UML como Simulink são 
consideradas atrativas para o projeto de sistemas embarcados. Boldt (2007) propõe a 
integração de modelos Simulink em modelos UML na ferramenta Rhapsody. 
Reichmann (2004) também propôs a integração de modelos desenvolvidos em 
diferentes ferramentas incluindo UML, Simulink e Statemate (TELELOGIC, 2003). 
Usando esta abordagem, módulos do sistema podem ser modelados usando a ferramenta 
mais apropriada e geradores de código de domínio específico são usados para gerar 
código para cada módulo. SysML (OMG, 2006) foi proposta como uma extensão de 
UML para ser usadas por engenheiros de sistemas, provê um alto grau de integração 
com o paradigma de blocos funcionais. Porém, a primeira especificação desta 
linguagem ainda é muito próxima da UML, não apresentando melhorias significativas. 
Além disso, devido a ser ainda uma novidade, as ferramentas de modelagem que 
suportam a linguagem não tiveram ainda suas capacidades devidamente avaliadas. 

Nesta tese (capítulo 5), propomos uma maneira de integrar UML e Simulink em um 
único fluxo de projeto, permitindo que UML seja usada como a linguagem de 
especificação e front-end para diferentes abordagens de geração de código 
(BRISOLARA, 2007b). Diferentemente das abordagens propostas por Boldt e 
Reichmann, nossa abordagem propõe o uso de UML como a linguagem única para 
especificação inicial. O fluxo proposto baseia-se na tradução de modelos UML para 
outras notações mais adequadas para a geração de código, por exemplo, modelos 
Simulink para dataflow ou máquina de estados (finite state machines, FSM) para 
control-flow. Além disso, o fluxo proposto permite que um modelo UML possa ser 
reusado para diferentes abordagens de geração de código, sejam abordagens tradicionais 
baseadas em UML ou abordagens baseada em Simulink, visando diferentes plataformas.  

Uma das principais motivações para a definição deste fluxo de projeto integrador foi 
usar UML como front-end para a ferramenta de geração de código multithread baseada 
em Simulink proposta em (BRISOLARA, 2007a). Portanto, nós propomos aqui um 
mapeamento entre UML e Simulink CAAM. O proposto mapeamento permite a 
exploração dos benefícios de UML para especificação de requisitos funcionais e não 
funcionais, enquanto provê um caminho para a obtenção de código executável, para 
rodar em uma arquitetura composta de múltiplos processadores heterogêneos, a partir de 
um modelo de alto nível de abstração. O Simulink CAAM gerado a partir do modelo 
UML pode ser usado como entrada para um fluxo completo de projeto de sistemas 
MPSoCs, podendo ser usado também na geração da especificação do HW para a 
plataforma MPSoC. O emprego da abordagem proposta evita que projetistas construam 
ou modifiquem modelos Simulink diretamente, o que significa maior abstração e evita 
que projetistas lidem com detalhes de baixo nível como sinais e portas. 

O proposto mapeamento de UML para Simulink CAAM baseia-se principalmente 
em informações extraídas de diagramas de seqüência e diagrama de distribuição 
(deployment). O Diagrama de distribuição é usado para indicar o mapeamento de 
threads para processadores. O diagrama de seqüência é o principal diagrama usado 
neste mapeamento, sendo assim um diagrama de seqüência deve ser definido para cada 
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thread que compõe o sistema. A partir do diagrama de seqüência captura-se um 
diagrama composto de blocos Simulink, compondo um modelo dataflow e que define o 
comportamento da thread. A invocação de métodos de objetos passivos no diagrama de 
seqüência é mapeada para blocos funcionais (pré-definidos ou definidos pelo projetista). 
A invocação de métodos entre diferentes threads indica a comunicação entre elas e são 
mapeadas para blocos de comunicação no modelo Simulink CAAM e a invocação de 
métodos a partir de objetos decorados com o estereótipo <<IO>> são mapeados para 
portas de entrada e saída no modelo Simulink.  

Não existe um mapeamento 1 para 1 entre as duas notações. Portanto, além do 
mapeamento, propomos três tipos de otimizações, que são a inferência de canais de 
comunicação, a inserção de barreiras temporais e o agrupamento de threads. A 
inferência de canais de comunicação e o agrupamento de threads são necessários para a 
construção do modelo Simulink CAAM, pois tratam de aspectos como comunicação 
entre threads e definição do mapeamento de threads para processadores. Estes são 
aspectos importantes na definição de um modelo multithread e muti-processado. Além 
disso, a fim de evitar deadlocks, barreiras temporais são inseridas automaticamente 
quando caminhos cíclicos são encontrados na geração do modelo dataflow Simulink. 

Quando o agrupamento de threads é usado, ao invés do projetista definir a alocação 
de threads para processadores através do diagrama de distribuição, um algoritmo 
baseado no linear clustering é usado para definir o melhor mapeamento de threads para 
processadores com base no volume de comunicação entre as threads.  A inferência de 
canais de comunicação instancia blocos de comunicação para representar a 
comunicação entre threads explicitamente no modelo UML. Esta etapa seta também o 
protocolo de comunicação dependendo do tipo de comunicação requerida, se é entre 
threads alocadas a uma mesma CPU ou em diferentes CPUs.  

To show the usefulness of the proposed design flow, we developed a prototype, 
which is able to generate Simulink CAAM from an UML model. Using the developed 
prototype, we conduct experiments to show the benefits of our proposed mapping. At 
present, the designer applies the mapping from UML to Simulink for whole system, but 
in the future, an analysis tool could be used to determine which fragments of the system 
are dataflow and control-flow, thus the mapping is applied only for the dataflow part.  

Embora o fluxo de mapeamento proposto suporte outros mapeamentos além do 
Simulink, este trabalho endereça somente o mapeamento de UML para Simulink e 
Simulink CAAM. Para completamente suportar o fluxo proposto, o mapeamento de 
UML para modelos do tipo máquina de estados (FSM) também deveria ser provido. 
Desta maneira, além de um caminho para geração de código baseado em modelos 
Simulink, o fluxo suportaria o uso de diferentes ferramentas para geração de código 
para módulos do sistema que sejam do tipo control-flow. A tradução de UML para FSM 
será considerada como trabalho futuro.  

Para mostrar a utilidade de nossa proposta, um protótipo foi desenvolvido no 
contexto desta tese, o qual implementa o mapeamento de UML para Simulink CAAM. 
Usando este protótipo, experimentos foram realizados. Atualmente, o mapeamento é 
aplicado para todo o modelo UML, porém, futuramente ele deve ser aplicado apenas a 
parte dataflow do sistema. A fim de automatizar ainda mais o processo de 
desenvolvimento de software embarcado e o suporte a modelos heterogêneos, 
planejamos usar uma ferramenta de análise para particionar o sistema em módulos 
dataflow e control-flow. Após o particionamento, cada fragmentos do modelo pode ser 
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mapeado para a notação mais adequada a seu tipo e após o mapeamento, a abordagem 
de geração de código apropriada pode ser usada para obter uma implementação para 
cada módulo do sistema.  
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APPENDIX B EXPANDED FIGURES 

This section presents expanded figures used in chapter 4 and 5. Figures of the 
MJPEG Simulink CAAM, used as case study in chapter 4, are presented here in detail. 
In addition, it includes the Simulink CAAM metamodel, all sequence diagrams used in 
the Crane case study in chapter 5. For the synthetic example, whole sequence diagram 
(partially presented in section 5.3.2) and the hierarchical levels of the Simulink CAAM 
generated for our tool are presented here. 

 

 
Fig. 1: MJPEG decoder Simulink CAAM: top level (Fig. 4.15a) 
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Fig. 2: MJPEG decoder Simulink CAAM: CPU1 subsystem (Fig. 4.15b)



 

 

 

Fig. 3: MJPEG decoder Simulink CAAM: Thread2 subsystem (Fig. 4.15c) 
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Fig 4: Simulink CAAM meta-model 
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Fig. 5: Crane control system: Sequence diagram of Thread T3 (Fig. 5.13)
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Fig. 6: Crane control system: Sequence diagram of Thread T1 (Fig. 5.11) 
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Fig. 7: Crane control system: Sequence diagram of Thread T2 (Fig 5.12)



 
Fig. 8: Synthetic example: Sequence diagram of whole application (Fig. 5.17) 



 

  
Fig. 9: Synthetic example: generated Simulink CAAM – top level 

 

 

Fig. 10: Synthetic example: generated Simulink CAAM – CPU0 subsystem 
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Fig.11: Synthetic example: generated Simulink CAAM – CPU1 subsystem 

 

 

Fig. 12: Synthetic example: Simulink CAAM – CPU2 subsystem 
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Fig.13: Synthetic example: generated Simulink CAAM – CPU3 subsystem 

 


