UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

LISANE BRISOLARA DE BRISOLARA

Strategies for Embedded Software
Development Based on High-level Models

Thesis presented in partial fulfilment of the
requirements for the degree of Doctor of
Computer Science

Prof. Dr. Ricardo Augusto da Luz Reis
Advisor

Prof. Dr. Luigi Carro
Co-advisor

Porto Alegre, August 2007.

CIP — CATALOGACAO NA PUBLICACAO

Brisolara, Lisane Brisolara de

Strategies for Embedded Software Development Based
High-level Models / Lisane Brisolara de Brisolar&erto Alegre:
Programa de P6s-Graduagdo em Computacéo, 2007.

129f.:il.

Tese (doutorado) — Universidade Federal do Rio Grato Sul.
Programa de Pds-Graduacdo em Computagdo. PortoeABB —
RS, 2007. Advisor: Ricardo Augusto da Luz Reis; Alwisor:
Luigi Carro.

1. Sistema embarcado. 2. Software embarcado 3.
Desenvolvimento de software. |. Reis, Ricardo A.lde. Il
Carro, Luigi. lll. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. José Carlos Ferraz Hennemann

Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca

Pro-Reitora de P6s-Graduacéo: Profa. Valquiria k.iBassani

Diretor do Instituto de Informatica: Prof. Flavi@éh Wagner
Coordenadora do PPGC: Prof2 Luciana Porcher Nedel
Bibliotecéria-Chefe do Instituto de Informatica:a®éz Regina Bastos Haro

ACKNOWLEDGMENTS

Primeiramente, gostaria de agradecer as pessoasesfieram diretamente
envolvidas no desenvolvimento do meu trabalho sle. téleu orientador, prof. Ricardo
Reis, com quem trabalhei desde o mestrado e quarserstd disposto a conversar, seja
sobre trabalho, seja sobre questdes pessoais.ofd_prgi Carro, que dividiu as tarefas
de orientacdo, muitas vezes tomando para si esppmsabilidade e cujas criticas e
opinibes foram muito importantes para o desenvawim deste trabalho. Quero
estender este agradecimento ao prof. Flavio Wagmertambém teve uma importante
contribuicdo e me orientou em varias ocasioes. @&laga de agradecer do mesmo
modo alguns colegas com quem trabalhei duranteas de tese: Leandro Becker, Julio
Mattos, Marcio Oliveira, Francisco Assis, Ricardedi e Emilena Specht.

N&o poderia deixar de agradecer a minha familiaysnpais, Maria Luci e Arlindo
Brisolara, e minhas irmas Elisa e Cibele, pois @sssapoio e carinho foram sempre
muito importantes em todas as minhas conquistas. pdé&leria deixar de fazer um
agradecimento especial ao meu namorado, ViniciuautfPaCorreia, por todo o
companheirismo, compreensédo e amor que me deraasf@ara vencer este grande
desafio, além da paciéncia para ler meus textossest® minhas apresentacgoes,
corrigindo-me e colaborando com criticas constastivGostaria de agradecer também a
Rejane e Jorge Correia, que me “adotaram” e mendéodo 0 apoio que podiam,
principalmente neste dltimo ano de tese. Eu gastde também estender este
agradecimento a outros membros da familia, tiasneos, pois a convivéncia com eles,
mesmo que esporadica, contribuiu para meu equilf@ssoal.

Aos apadrinhados, Milena e Felipe, obrigado pomp&smente poder contar com
vocés. Aos demais amigos, obrigada pelos bons ntosieampartilhados. Aos colegas
de laboratério, agradeco os inumeros intervalos bate-papos, risadas e café e toda
ajuda que me deram ao longo do doutorado. També&tarigp de agradecer a todos do
grupo do volei pelos bate-bola agradaveis que maipem espairecer nos momentos
mais estressantes do doutorado.

E importante também agradecer ao CNPq pela bolsalotgéorado, que me
possibilitou dedicacdo exclusiva a minha formagéadamica. A CAPES, agradeco a
bolsa de estagio no exterior, que me permitiu @vkbcom um excelente laboratério de
pesquisa na Franca e ter uma experiéncia muiteargie para minha formacéo e para a
qualidade deste trabalho. Eu gostaria de agradmedr@m a Ahmed Jerraya por ter me
dado a oportunidade de trabalhar no seu grupo stpufga no Laboratério TIMA. Deste
estagio, os frutos ndo foram apenas artigos e comkatos trocados, mas também as
amizades. Gostaria de agradecer a meus colegagMifg, Katalin Popovici, Sang-il
Han, Xavier Guerin, Patrice Gerin, Hao Shen, Kaahtye Lei Li pela colaboracdo no
trabalho e pelo tempo divertido que passamos juiittank you all.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS ... oot ettt e et ee e e e e e e 6
LIST OF FIGURES. ... e et e e e e eaas 8
LIST OF TABLES ...t e e e e aans 10
AB S T R A C T . e e e e e 11
1 11 12

1 INTRODUCTION ...eeciiii e e e e e e et e et e e e e e e e eees 13
1.1 Thesis CONIIDULIONSccoiiiiiiiie e 15
1.2 ThesSiS OrganiZationcccceiuuiisiccemr e e e e e e e e e e e e eaan s 16

2 HIGH-LEVEL MODELS AND ASSOCIATED TOOLS coeiiieiiiiiins 17
2.1 Embedded software from high-level modelscccooooeiiiiiii s 17
0 O R Y o 1= o |1 To7= 11 o o P 19
N A o To [N o T=T 0 1= - 4[] o 20
2.1.3 HW/SW co-design and design space exploratiQn...............ccceueeeeriinnnenns 21
2.2 Analysis of the state-of-the-art...........cccooiiiiiiii e 22
2.3 Comparison between UML-based and Simulink-basedpproaches.............. 23
2.3.1 Functional block modeling and SIMUNNK. ceaeue ..o, 3.2
2.3.2 Object-oriented modeling and UML ... 23.
2.3.3 Case study: Comparison between UML and Sihkutiodels..................eeee.. 24
P T S e o 1o o [25
P2 78 T U 11 I o o o = 28
PG T SR AV 11U = U1 o] o o3 (= - U 32
2.3.7 COMPAriSON FESUISttt e eeeee s 33
3 UML-BASED EMBEDDED SOFTWARE GENERATION........... veveiiveennnnn. 37
3.1 Existing approaches for code generation from UMmodels...............c......... 38
3.1.1 Code generation: exXiStiNg tOOIS. o rrruuiee et eeees 39
3.2 Analyzing the gap between UML model and a Javarogram 41
T R o =T 11 0 =T] ¢RI 42
3.3 Proposed code generation approach..........cccocoeiiiiiiiiiiiiiiiin e 9.4
3.3.1 Using UML2 notations for code generation freeguence diagrams............... 50
3.3.2 Bridging the SEMANTIC APuu i ecmmmmme e e eeeee e e e e e e e e eeeee e e e e eaeeans 52

3.4 Concluding remMarksS...........uuiiiiiiii it ceee e 54

4 SIMULINK-BASED EMBEDDED SOFTWARE GENERATION....... 57

4.1 Combined application architecture Modelcoooeeiiiiiiiiiiinineeieen 59
4.2 Multithread cOde gENEratioN...........cvveiieeeeeieiieit e 61
4.2.1 SIMUINK PAISING ..uuueiiiiieeiiiis s ceemmme e e et e e e e e e e e e e e e e eai e eeannaeeenes 62
4.2.2 Thread COde gENEIatiONceiieeereemeiieeitiie e ee et ee e 63
4.2.3 HAS @daptationooooiiiiiiiiiie e 65
4.3 Memory OPtIMIZAtiON..........uiiiiiiii e e e e e eaan s 66
4.4 Communication OptiMIZationcooeiieeeuiieiiiiie e e e 638
T q 0 1=] 4 1= £ 72
4.5.1 Applications deSCrIPLONuuuun et eeees 73
4.5.2 Target Platformoooiiiiiii e 74
4.5.3 Memory OPtIMIZAtIONooeiiiiiiiiiiee et 75
4.5.4 Communication OPLIMIZALION. o eeeerrnnaeeeeaeeeiiiaae e e eeeeeienae s 80
4.5.5 EXPeriment @nalySiSccoiiiiuiimiiaaeeiie et 82
5 INTEGRATION OF UML AND SIMULINKcciiiiiiiiis ceaeiiiiiieee e 85
5.1 Proposal of mapping from UML to Simulink CAAMccooeeiiiiieeiiiiieeeees 87
A o (0] (0117 o1 PRSPPI 91
5.2.1 Model optimizationcouuiiiiiiiieee e 91
5.3 CASE SUAY ... oiiiiiiiiiiiiie e eee ettt e ettt e e e e e ettt bt e e e e ennan e e e eeeeee 94
5.3.1 Crane CONtrol SYSIEMccouuui it et e et e e e e e e e e e e e e enans 94
5.3.2 SyNnthetiC @XampPleooiiiiii e 98
5.4 Concluding remarksS............oooiiiiiiiiii e 100
6 CONCLUSIONSo e 103
REFERENGCESccoi ittt e s 105
APPENDIX A.....ESTRATEGIAS PARA DESENVOLVIMENTO DE SOFWARE
EMBARCADO BASEADAS EM MODELOS DE ALTO NIVELccccveveee. 113

APPENDIX B EXPANDED FIGURES.........cc.cccooei i, 119

AG
CAAM
CASE
COTS
DSE
EMF
ESL
FB
FSM
HdS
HW
JET
JML
KPN
LSC
MA
MARTE
MDD
MDR
MoC
MPSoC
MSC
OAL
OCL
OMG
OMT
e]e)

LIST OF ABBREVIATIONS

Automatic Generated
Combined Application Architecture Model
Computer Aided Software Engineering
Commercial-off-the-shelf

Design Space Exploration

Eclipse Modeling Framework
Electronic System-Level

Functional Block

Finite State Machine

hardware dependent software
Hardware

Java Emitter Templates

Java Modeling Language

Kahn Process Network

Live Sequence Charts

Message Aggregation

Modeling and Analysis of Real-time and Embed Systems
Model Driven Development

Netbeans Metadata Repository

Model of computation

Multiprocessor System-on-chip
Message Sequence Charts

Object Action Language

Object Constraint Language

Object Management Group

Object Modeling Technigue
Object-Oriented

oS
PBD
QoS
RTW
SDF
SMW
SoC
SysML
SW
UML
UML-SPT
XMI
XML
XSLT
WD

Operating System

Platform-Based Design

Quality of Service

Real-Time Workshop

Synchronous Data Flow

System Modeling Workbench

System-on-chip

Systems Modeling Language

Software

Unified Modeling Language

UML Profile for Schedulability, Performancand Time
XML Metadata Interchange

eXtensible Markup Language

eXtensible Stylesheet Language for Transfoionmat
Written by Designers

LIST OF FIGURES

Figure 2.1: Crane SYSTEIM........uuu it cecemmm ettt e et e eeenna e 24
Figure 2.2: Crane model using Simulinkc...coooiiiiiiii e 25
Figure 2.3: Crane JODCONTIOLcoiiiiiiimm e 26
Figure 2.4: Crane JobControl — NormalMode. .. .eeeiiieeeiiiiiiiiie e 26
Figure 2.5: Control algorithm model in SIMulinK...............coiiiii 27
Figure 2.6: UML Use Case Diagram of the Crane SySte...........cccoevvveivieiiiiiiiinneenn. 28
Figure 2.7: UML Collaboration Diagram of the Contdgorithm............................. 29
Figure 2.8: State Diagram of the Controller Class...........c..cocvvviiiiiiiiiiiiiiieeeeees 30
Figure 2.9: UML Class Diagram of the Crane system.............ccccooeveviiie i, 30
Figure 2.10: Generated code for the Controllerstlas.............c..cccvieeiiiiiiieeinnnn. 31
Figure 3.1: Velocity template example.........ccoeeviiiiieeiiiii e 38
Figure 3.2: Approach for code generation (BJORKLURDO5)cccccovvvrrrennnnnn. 39
Figure 3.3: Rialto-based code generation approad®RKLUND, 2004).................. 40
Figure 3.4: Example of <for+ds> lines of code...........c.coeveiiiiiiiiiiiiiii e 44
Figure 3.5: Example of analyzed code: Controll@ssl................cccoeeveiviiiiieiiiiieeee, 45
Figure 3.6: Analysis results obtained of @antroller andCrane classes................... 46
Figure 3.7: Analysis results for Crane ClaSSeS ... oociirirriiiiiiiieeeeiiiiiiee e eeees 46
Figure 3.8: Address Book Class diagram........c...ueuiieeiiiiiiiiiiiieeeee e eees 47
Figure 3.9: Proposed UML-based code generation flom..............ccccevvvviiiiiniinninens 49
Figure 3.10: Combining different iterations notasdn a same diagram..................... 50
Figure 3.11: Representing conditionals in UML 2.0...........cccoooiiiiiiiiiiiiiiineeeeeeeee 15
Figure 3.12: Representing 100ps in UML 2.0......cccooiiiiiiiiiiiiii e 51
Figure 3.13: Matrix/vector initialization iN JaVa............cccuvuruiiiiiiieiiiiiiiiiiiee e 53
Figure 3.14: Vector multiplication in JAVA.......cc..cooviiiiiiiiniieeeieeiei e 53
Figure 3.15: Matrix multiplication iN JAVA.... e .coeeeeriiiiiiaeeeeieiiii e 54
Figure 3.16Try/catch notation in sequence diagramsooceemmmmeeeeeeeeiinnnenenn. 54
Figure 4.1: Simulink-based MPSoC design flow (HUANEBQ7).........cccevvvvveeeennnnnn. 58
Figure 4.2: Combining application and architectmadels (POPOVICI, 2007) 59
Figure 4.3: A Simulink CAAM example (HUANG, 2007)........cccoeeevvviieeriiiiieeeennnnnn. 61
Figure 4.4: Multithread code generation flowW.............ccoooieiiiiiiiiii 62
Figure 4.5: SimUlinK ParSingoeoiiiimm e e e e e 63
Figure 4.6: Example of thread code generatioNuvoeeeviiiiiieiiiiiieeceiiieeeeeaa 64
Figure 4.7: Multithread deadlock problem.......ccccccooiiiiiiiiiiiice e 65
Figure 4.8: Main and Makefile code generatioNucccuveieeiiiiieeiiiiieeeeeiie, 66
Figure 4.9: Thread code generation with memorynoigaition techniques.................. 67
Figure 4.10: Lifetime chart of TO (a) after schedg) (b) after buffer sharing 68
Figure 4.11: Motivational @Xample........... e eeeeieeeeeiiie e eeeeees 70

Figure 4.12: Multithread code generation flow af#@ssage Aggregation integration 70

Figure 4.14: An example of deadlock by Message Ag@tioncccccceeeieeeeenens 72
Figure 4.15: Simulink CAAM for Motion-JPEG decoder............ccoouvvviiiineeeiiiennnnnn. 73
Figure 4.16: H.264 decoder block diagram.......cccc.ooeuiiiiiiiiiiiiiiiiiiieeeeeeeeeien 74
Figure 4.17: MPSoC Platform used for the Motion-GREecodercccvvveene. 74
Figure 4.18: Data memory size, code memory sizeexedution time of Motion-JPEG

decoder with single- and three-processor platfarms.......................... 76
Figure 4.19: Data memory size and code memoryddite264 decoder with single-

and four-processor platformsuiiieceeer e 77
Figure 4.20: Execution time of H.264 with singledgour-processor platforms......... 78

Figure 4.21: H.264 decoder data memory size and ooamory size with different
memory optimization configurations and differentwher of processors 79

Figure 4.22: Execution time of H264 decoder (MC$3€C).......cccvvvvvivviiiieeeiiiiieeeeenn, 79
Figure 4.23: Performance results for H264 decoder.............ccoooevviiieeiiiiinneennnnnd 80.
Figure 4.24: Reduction on the number of channadiscanthe data memory size......... 81
Figure 5.1: Proposed flow for embedded softwarestbgment...............ccccvvieneneee. 86
Figure 5.2: Flow for the proposed model transforamat................ccccvviiiiiiieeiiiinnnnnnn. 87
Figure 5.3: Example of mapping from UML to SImuli@AAM..........cccccceeeiiiiiiinnnnns 89
Figure 5.4: Sequence diagram for thread T3.. PRSPPI |0
Figure 5.5: Prototype for the mapping from UML ntmﬁllnk 91
Figure 5.6: Example of insertion of delay — case.1.............cceeiiiiiiiiiiiiiiiiineeeee 92
Figure 5.7: Example of insertion of delay — case.2.............ccoeeviiiiiiiiiiiiiiin e 93
Figure 5.8: Example of the thread allocation bylthear clustering algorithm........... 93
Figure 5.9: Pseudo code of the used linear clusexigorithmoooeeviiiinnnnnn. 94
Figure 5.10: Crane system: UML deployment model.............cccoooeeeiiiiiiciiiiiineennn, 95
Figure 5.11: Crane UML model: T1 sequence diagramMc..cceeeeeeerieeerernnneeenns 95
Figure 5.12: Crane UML model: T2 sequence diagramcccceerereeeeeernninnnanenn. 96
Figure 5.13: Crane system: UML sequence diagrarthfead T3cccceeeeeeeeeens 96
Figure 5.14: Crane Simulink CAAM: Thread T3 model.............ccoouviiiiiiiiiiiiiinnnnnn. 97
Figure 5.15: Crane Simulink CAAM — CPUL SUDSYSteIM c..cccvviiiiieeiiiiiiiieeee 98
Figure 5.16: Synthetic example: simplified sequetiegram.................c.cooeeevieeennnnnn. 99
Figure 5.17: Synthetic example: Task graph.......ccooouuiiiiiiiiiiii 99

Figure 5.18: Synthetic example: generated SIMUIAAMccccoeiiiiiiiiiiiinnnnn. 100

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 4.1:
Table 4.2:
Table 4.3:

Table 4.4:

LIST OF TABLES

Tools for embedded System deSigN «.....ccoovvvvviiiiiiieiiiiiiiii e 18
Evaluation Criteriac.uuiuiemmmme et 32
Evaluation criteria — SUDQIOUPS. . «vveeeeeeeieeiiiiae et e eees 33
COMPATISON FESUILScciiiii s ettt e e e eeees 34
MapPING UML 10 JAVA.........uuuu e e e e et eeeeanns 41
WD lines of code ClasSIfiCation ..o ..ceveeiiiirieiiiiiii e 43
Crane analysis reSUILSceeeeeiiiii i eeaa e 44

Address Book analysis reSultSccueeeeviiiiiiciiiiii e, 48
HAS PHMILIVES ... e e e 65

C code generation with 7 configuratians................cccooeeeeeiiiee e, 75
Computation, Communication and Idle toh&l264 decoder with different
NUMDET Of PrOCESSOIS.....ciiiiiieiiiii e e 18
Data memory size in bytes for the sotulP4ccoooeeeiiiiiiiiiiieeen. 82

ABSTRACT

The use of techniques starting from higher abstmadéevels is required to cope with
the complexity that is found in the new generatiohembedded systems, being crucial
to the design success. A large reduction of desifiort when using models in the
development can be achieved when there is a pligstbi automatically generate code
from them. Using these techniques, the designearifsggethe system model using some
abstraction and code in a programming languageeremted from that. However,
available tools for modeling and code generatian dwmain-specific and embedded
software usually shows heterogeneous behavior,hyirshes the need for supporting
software automation under different models of cotation.

In this thesis, strategies for embedded softwareldpment based on high-level
models using UML and Simulink were analyzed. Weeobsd that the embedded
software generation approaches based on UML andil®@knhave limitations, and
hence this thesis proposes strategies to improgeattiomation provided on those
approaches, for example, proposing a Simulink-basaltithread code generation.

UML is a well used language in the software engimgedomain, and we consider
that it has several advantages. However, UML isielased and not suitable to model
dataflow systems. On the other side, Simulink ideli used by control and hardware
engineers and supports dataflow, and time-contisumodels. Moreover, tools are
available to generate code from a Simulink modelwEler, Simulink models represent
lower abstraction level compared to UML ones. Tdosparison shows that UML and
Simulink have pros and cons, which motivates thegration of both languages in a
single design process.

As the main contribution, we propose in this theasis integrated approach to
embedded software design, which starts from a l&gét specification using UML
diagrams. Both dataflow and control-flow models ¢engenerated from that. In this
way, an UML model can be used as front-end foredé#fiit code generation approaches,
including UML-based one and the proposed Simuliakdd multithread code
generation.

Keywords: embedded software, embedded systems, softwaréogevent.

Estratégias para Desenvolvimento de Software Embaado Baseadas
em Modelos de Alto Nivel

RESUMO

Técnicas que partem de modelos de alto nivel deaghe sdo requeridas para lidar
com a complexidade encontrada nas novas geracosstdenas embarcados, sendo
cruciais para o sucesso do projeto. Uma grande@eddo esfor¢co pode ser obtida com
0 uso de modelos quando cédigo em uma linguagepratgamacéo pode ser gerado
automaticamente a partir desses. Porém, ferrameligpsniveis para modelagem e
geracdo de codigo normalmente sdo dependentesngi@midce o software embarcado
normalmente possui comportamento heterogéneo, nextee suporte a multiplos
modelos de computacao.

Nesta tese, estratégias para desenvolvimento deasefembarcado baseado em
modelos de alto nivel usando UML e Simulink saolisadas. A partir desta analise,
observaram-se as principais limitacdes das abondgogra geracdo de codigo baseadas
em UML e Simulink. Esta tese, entdo, propfe egiatépara melhorar a automacao
provida por estas ferramentas, como por exemplopgmdo uma abordagem para
geracdo de codigoultithread a partir de modelos Simulink.

A comparagéo feita entre UML e Simulink mostra geejbora UML seja a
linguagem mais usada no dominio de engenharigofteare, UML é baseada em
eventos e ndo é adequada para modelar siswatafoow. Por outro lado, Simulink é
largamente usado por engenheiros de hardware enti®le, além de suportdataflow
e geragdo de codigo. Porém, Simulink prové abstmaci® mais baixo nivel, quando
comparado a UML. Conclui-se que tanto UML como Sinkupossuem pros e contras,
0 que motiva a integracdo de ambas linguagens edmicu fluxo de projeto.

Neste contexto, esta tese propde também uma aleonddgtegradora para
desenvolvimento dsoftware embarcado que inicia com uma especificacdo denaltd
descrita usando diagramas UML, a partir da qual etosddataflow e control-flow
podem ser gerados. Desta maneira, 0 modelo UML pedasado comivont-end para
diferentes abordagens de geracdo de cédigo, idduifML e a proposta geracdo de
codigomultithread a partir de modelos Simulink.

Palavras-chave: software embarcado, sistemas embarcados, desenvolvimento de
software.

1 INTRODUCTION

‘Embedded everywhere’ is an expression that iSrgethaterialized with the new
generation of computer systems. This is a realityseéctors such as automotive,
aeronautics, telecommunications, consumer elecsprand medical devices. Such
embedded computational systems are often implemiegéeterogeneous systems-on-
a-chip (SoCs), which are wusually composed of deeicahardware modules,
programmable processors, memories, interface d@rspand software components.

Usually, embedded systems have hard constraingsdieg performance, memory,
power consumption, dimensions, and weight, amomhgroaspects. In addition, such
systems are increasingly required to operate ihti@a, bringing the necessity to
ensure that system results are not only corredipputed, but also delivered at the
precise times. At the same time, the life cycle eshbedded products becomes
increasingly tighter. In this scenario, productiviand quality are simultaneously
required in embedded systems design in order tivedetompetitive products. That
makes the design of such embedded systems an mweng challenge, demanding
new strategies and tools to improve the designymtddty.

Platform-Based Design (PBD) is a successful apprabat implements a meet-in-
the-middle strategy to maximize the reuse of prgEgieed components and,
consequently, improve the design productivity (VEEST, 2000) (SANGIOVANNI-
VINCENTELLI, 2004). In platform-based design, desiglerivatives are mainly
configured by software.

Burch (2001) indicated that the interest on sofesaased implementation has risen
due to the increase in computational power allovding to move more functionality to
software. It is also an effect of the rising cdstshardware development that motivates
the reuse of pre-defined platforms. Product difiéegion is then achieved by the
software. For those reasons, the software developimevhere most of the design time
is spent, and is the largest cost factor in embdglstem design (GRAFF, 2003). This
scenario motivates the investigation of strategfeaccelerate the embedded software
development by process automation.

In the software engineering area, Computer Aideftwdme Engineering (CASE)
tools are widely used to automate the developmerttgss. Since conventional software
is usually suited for a single domain, most of $b&ware automation approaches focus
on the management of huge domain-specific systétosever, embedded software
usually shows heterogeneous behavior, which appbesystems whose respective
models require different models of computation (MpGEDWARDS, 1997), like
stream processing (dataflow), control flow, and tocarous time. For example, the
specification of a mobile phone requires not onigitdl signal processing for the
telecommunication domain, which is a time-discr®teC, but also sequential logic

14

programs to describe several available applicatferts contacts and alarm clock). This
pushes the need for supporting software automatioder different models of
computation, a task not completely supported by amyent software automation tool.
In addition, embedded software usually has memary power restrictions, which
makes the use of traditional CASE tools not feasibut this is outside the scope of this
thesis.

Simultaneously to PBD, the use of higher abstract&vels has been adopted in
order to deal with the complexity growth of systelsd to increase the design
productivity. Selic (2003) and Gomaa (2000) arduegt the use of techniques starting
from higher abstraction levels is the only viableywof coping with the complexity that
is found in the new generations of embedded systémisig crucial to the design
success.

The use of higher abstraction levels hides detaflsimplementation in the
programming language, facilitating the system dpetion that will be on the model
level, instead of code level. Using this approanbgdels of embedded systems should
evolve from high level views into actual implemeidas, ensuring a relatively smooth
and potentially much more reliable process as coatpt traditional forms of software
engineering. The translation of the high-level mou¢o an executable description
should be automatic, but depending on the modelioigtion, it may need different
degrees of designer interaction. The high-level elind language should be able to
express both the application requirements and timetibnal specification. Also, it
should provide facilities to allow model validatjces well as features that can be used
to guide implementation. Regarding to modeling apphes, many models have been
proposed for embedded software specification, mtconsensus is reached to any
particular model that is good for all applications.

Two widely used and distinct approaches highlighe that is functional-based like
provided by Simulink and another one that is ob@@nted like provided by UML-
based tools. Traditionally, the functional blockBfjFnodeling approach has been used
by the signal processing and control engineeringroanities for the development of
embedded systems. This approach has been widegptacc in industrial designs,
driven by an extensive set of design tools, as ifwstance Matlab/Simulink
(MATHWORK, 2003). On the other hand, the UML modelilanguage is considered
the de facto modeling notation for any object-oriented (OO)teys and has gained in
popularity also for real-time embedded systems iipaton and design. Efforts that
describe the use of UML in different phases of atbedded system design are shown
in (LAVAGNO, 2003). In the context of this work, tto modeling approaches are
evaluated regarding modeling, code generation asslgd exploration capabilities.
These analysis results are found in (BRISOLARA,Z@RISOLARA, 2005b).

From this analysis, we observed that the embedditdare generation approaches
based on UML and Simulink have limitations, andasopropose strategies to improve
the automation provided on that approaches. As Udbls usually required more code
to be specified by the designer using some actinguage to specify method bodies, a
way to abstract the behavior specification is pegbin order to reduce the amount of
code that must be written by designer. On the otiaed, observing the limitations of
Simulink-based tools regarding to code generation MPSoC architectures, a
Simulink-based multithread code generation strategyroposed in the context of this
work (BRISOLARA, 2007a).

15

The comparison between UML and Simulink shows thath modeling approaches
present pros and cons, which motivates researdbefiad a way to simultaneously

exploit the benefits of both modeling languages isingle design process. Moreover,
recent efforts show that both UML and Simulink eomsidered attractive for Electronic
System Level (ESL) design (DENSMORE, 2006). Bol@®0(Q7) proposes the

integration of Simulink models into UML models inet Rhapsody tool (TELELOGIC,

2007). In addition, SysML (OMG, 2006) was proposedan extension to UML for

systems engineering applications, with a higherrekegf integration with the FB

paradigm. However, the first SysML language spea&ifon was so close to UML that it
is difficult to clearly define its improvements. ditionally, the available SysML

modeling tools have not been evaluated yet for diampe or modeling capabilities.

As most automation tools are domain-specific, Re@hn (2004) proposes a way to
integrate models developed with different tools (UNsimulink and Statemate). Using
this approach, a heterogeneous system is pariitiorte sub-module. Each of them can
be modeled using the more appropriated tool, amdadio-specific code generators are
used to generate code for it.

In this thesis, we propose a way to integrate UMd &imulink in a single design
flow, allowing one to start with an UML model anceaide which is the most
appropriated tool to generate code for the systeodute (BRISOLARA, 2007h).
Differently of the Boldt and Reichmann approachesr approach uses a single
language for initial specification, i.e. UML, andoposes the automatic mapping from
UML to Simulink. Besides the mapping, our tool ers three kinds of optimizations:
inference of communication channels, thread grappind loop detection. Inference of
communication channels and thread grouping are tsdulild a model from that a
multithread code targeted to a multiprocessor &&chire can be generated. In addition,
loop detection is provided to insert temporal lEagiin a dataflow model, avoiding
deadlock. The proposed integration allows desigherg/ork at a higher abstraction
level, avoiding the necessity of building or modhty Simulink models directly, which
means abstracting about low-level details like sig@and ports.

1.1 Thesis contributions

Firstly, this thesis contributes with an analysisl @zomparison between two widely
used modeling approaches, UML and Simulink, usingcase study that is a
heterogeneous system with dataflow and control-fieedules (BRISOLARA, 2005b).

Strategies for embedded software generation fragh-level models described in
Simulink or using UML-based tools are proposed fzame are also contributions of this
thesis. In the UML-based strategy, the gap betweedel and code is bridged through
of the use of a higher abstraction language. Ttristegy was finished because the
definition of another language is a hard work asdally designers are not open to learn
a new language. Moreover, during the thesis petiddl.2 was defined, solving some
problems in UML-based code generation. On the ot@nd, as Simulink is a
commercial tool widely used and that already previdde generation capabilities, we
also propose an approach to generate multithreatt d¢arget to multiprocessor
architectures from a Simulink model. The Simulirdsbd strategy has an optimization
step that reduces the communication overhead dutimg code generation
(BRISOLARA, 2007a).

16

Finally, this thesis proposes a way to integratellid Simulink in a single design
flow (BRISOLARA, 2007b). In this approach, UML ised as the initial specification
and Simulink can be generated from UML. In this way UML model can be used as
front-end for different code generation approacimeduding UML-based one and our
Simulink-based multithread code generation.

1.2 Thesis organization

The remaining of this thesis is divided as followShapter 2 gives an overview of
the state-of-the-art of modeling approaches, laggsiand tools used in the embedded
system domain. That chapter also presents a cosopabetween UML and Simulink
modeling approaches through a case study. Chaptadddesses the UML-based
strategies for software generation and presente@opal to solve the limitation of the
existing code generation approaches. Chapter £mea multithread code generation
approach able to generate multithread code taogetnbultiprocessor architecture from
a Simulink model. Chapter 5 explains the integrattb UML and Simulink in a single
design flow proposed in this thesis as a way f@psuting software automation under
different models of computation. Finally, chaptercéncludes this text with final
remarks and future works.

2 HIGH-LEVEL MODELS AND ASSOCIATED TOOLS

Current research on embedded systems design emmghdsat the use of techniques
starting from higher abstraction levels is cruttaihe design success. Some authors like
Douglass (1998), Gomaa (2000), and Selic (2003)eatbat this approach is the only
viable way of coping with the complexity that isufad in the new generations of
embedded systems. Using this approach, models bée@ded systems should evolve
from high level views into actual implementatiomsfisuring a relatively smooth and
potentially much more reliable process as comptrddhditional forms of engineering.

The combination of abstraction and automation hepired a set of modeling
technologies, and corresponding development methoditectively referred to as
model-driven development (MDD) (SELIC, 2006). Thispter presents the state-of-art
on strategies for embedded software developmengédbas high-level models. In
addition, a case study is used to compare two wideéd strategies, UML-based and
Simulink-based, regarding to the main capabilitiequired in designing embedded
software.

2.1 Embedded software from high-level models

Effective design of embedded computer systems resjihe capture of the system
specification using high-level models in a modeatteeed approach in order to cope
with the increasing complexity. This high-level nebdhould reflect the nature of the
application domain and the used high-level moddimguage should be able to express
both the application requirements and the functispacification.

Once a specification is captured, the design psocE@®uld progress towards
implementation via well-defined stages (SANGIOVANMICENTELLI, 2001). Tools
are required to automate the model refinement aimegmplementation. To obtain an
embedded software implementation from the systeeciSpation, some tools provide
code generation capabiliies (e.g. Simulink/Statefl ASCET). Before the
implementation, it is interesting to validate theedification, by simulation or formal
verification.

With the widespread use of platform-based desigrstrambedded applications are
developed by simply mapping the application on® tdrget platform. In this way, the
mapping allows one to configure and refine theesysuntil the implementation, and
constraint-driven mapping can conduct the desigtespexploration. To support this,
analysis tools are required to evaluate intermediasults with respect to the design
constraints, avoiding solutions that are not goodugh. To do that, simulation and
estimation tools are required.

18

Sangiovanni-Vicentelli (2006) presents a classiitzafor Electronic System-Level
(ESL) tools and languages, focusing on the platfbased design. With base in this
work and in our background, we defined the Table @here existing tools dedicated to
embedded systems design are listed, including agadend industrial ones. We focus
our analysis on the tools more closed to the emdbddftware development, which is
the main focus of this thesis. The tools are amalyaccording to the design step where
it can be used, its features and the model of ctatipn (MoC) and/or the abstraction
supported for them. Besides specification capadslittcode generation and design space
exploration features are also important for autémgathe embedded system design, and
thus, tools that focus on these aspects are akeallin this table.

Table 2.1: Tools for embedded system design

Provider Tools Focus Abstraction

National Labview Control application development LabView gro

Instruments languages

Mathworks Simulink, Modeling, algorithm design, and SW | Timed dataflow
Stateflow, development. Emphasis on control anddiscrete- and
RTW dataflow embedded systems continuous-time),

FSMs
Esterel SCADE, Code gen for safely-critical Synchronous

Technologies

Esterel Studio

applications such as avionics and
automotive

ETAS Ascet Modeling, algorithm design, code genAscet models
and SW development, with emphasis
on the automotive market
Univ. of Ptolemy Il Modeling, simulation, design of All MoCs
California, concurrent, real-time, embedded
Berkeley systems
Royal Institute of | SML-Sys, SMS-Sys: Formal multi-MoC Multi- MoC (SML
Technology ForSyDe* framework based on formal semantics functional lang.),
Stockholm and functional paradigms; Synchronous*
ForSyDe: Capture system functionality
based on a synchronous model
I-Logic Rhapsody, Real-time embedded system UML-Based
Statemate applications
Seoul National Peace Codesign-environment for rapid Ptolemy- based
Univ. development of heterogeneous digital
systems
dSpace Target-link, Optimized code gen for single-CPU | Simulink models
RTI-MP and for multi-processor systems
Univ. of Metropolis Operational functionality, arch. All MoC (meta-model
California, capture, mapping, refinement, and language)
Berkeley verification
Vanderbilt Univ. Milan, GME, | Support for domain-specific languagesUML-based and XML-
Desert and design space exploration (DSE) | based
Delft Univ. of Artemis, Methods and tools to model and desigiKkPN and UML
Technology Sesame, Spade SoC-based systems, DSE

Tampere Univ. of
Tech. and Nokia

Koski

DSE, code generation

UML state diagrams
and KPN

19

2.1.1 Specification

Several tools for design capturing the high-leysdfication can be found in the
industry and in the academy, varying the suppomedel of computation (MoC) and
the used languages. Usually, these tools suppertntiodel simulation and code
generation.Commercial packages such as LabVi@MATIONAL INSTRUMENTS,
2006), Simulink (MATHWORKS, 2003a), ASCET-SD (HONEKIP, 1999), and
SCADE (ESTEREL TECHNOLOGIES, 2007) allow modelingdadevelopment of
embedded control systems based on functional-dpekifications. Commonly in these
environments, the designer composes a system thrbeginstantiation of pre-existing
components available in a library.

Labview uses dataflow programming through a greahioterface to allow a
designer to model and simulate control system usesj-world stimuli. This tool
provides a great number of functions for signalcpssing, analysis and advanced
mathematics. ASCET-SD, from ETAS, supports modelisgnulation, and rapid
prototyping of automotive embedded software modaled, in addition, it provides
optimized code generation for various microcongmoltargets. SCADE provides
modeling of dataflow and state machines and codeergéion for safety-critical
applications, such as avionics and automotive. SEA&Becks model completeness and
determinism, including cycle detection in nodese Tools from Mathworks allows one
to model a system through functional block diagraresg Simulink and/or through
finite state machines (FSM) described using Staef(MATHWORKS, 2003b).
Simulink representation language handles discratafldw and continuous time and
FSM by the integration with Stateflow tool. Many leedded application have been
successfully developed using these tools. Howdkiese tools are domain-specific and
only support fixed MoC.

In this context, academic research projects, likelehy (2004) and SML-Sys
(MATHAIKUTTY, 2006), have addressed the heteroggnaif embedded systems,
proposing multi-MoC modeling frameworks that suppahe simulation of
heterogeneous systems. Ptolemyll (BHATTACHARYYAQZ) the version presently
under development in the Ptolemy project, inclualggowing suite of domains, each of
which realizes a MoC. It also includes a comporidrary. The system model in
Ptolemy can be described by instantiation of prietiyxg components through a graphic
interface or components defined in Java by the. dde main advantage of this project
is that it is open-source and supported MoC andpoorants can be extended.

Another example of multi-MoC, SML-Sys uses formah®ntics and is based on
functional paradigm, being readily susceptible ftarnfal analysis. Furthermore,
executable models in SML-Sys can be translatedH®MVerilog descriptions using
ForSyDe (SANDER, 2004). Different from Ptolemy, kredge on functional
languages is required to use the SML-SyS framework.

On the other hand, object-oriented approaches, Uk#L-based, have gained
popularity for embedded systems design. UML suppseveral diagrams that can be
used to specify different graphical views of theteyn. Recently, several proposals of
use of UML for embedded systems can be found irMAGNO, 2003) and (MARTIN,
2005), which were motivated by the huge populacdfythis language to specify
computation systems, using object-oriented appexdhn this context, UML tools such

20

as Artisan Studio (ARTISAN SOFTWARE, 2007), Rhapsd@ELELOGIC, 2007)
(GERY, 2002), and MagicDraw (NO MAGIC, 2007) havscabeen considered for
embedded software specification.

Many modeling approaches and tools have been pedpfms embedded software
specification, but there is no model that is moxgprapriated or good for all
applications.

2.1.2 Code generation

Simulink and Ptolemy are examples of embedded softweode generation tools,
which generate code from functional blocks mod&segarding the code generation
functionality, Simulink with Real-Time Workshop (MAIWORKS, 2004), from
Mathworks, is probably the most widely used enuinent in the industry. The Real-
Time Workshop takes a Simulink model as the inmd generates C code as output.
The Real-Time Workshop Embedded Coder, which isxdension for RTW, generates
C code from Simulink and Stateflow models, enabling code generation form data
and event-based models. TargetLink (DSPACE, 2065n dSPACE, is another
commercial tool with focus on the generation ofoééht code from Simulink/Stateflow
models.

Ptolemy supports the modeling and simulation ottweneous models, but it has
limited implementation capabilities for models athigan dataflow (BUCK, 2000). At
present, Ptolemy Il proposes two different codeegation approaches (ZHOU, 2007).
In the first one, the code generator called Copgemgenerates Java code (.class) from
non-hierarchical Synchronous Data Flow (SDF) madelsing a component-
specialization framework built on top of a Java eilar. The second approach is a
template based code generation system, in whiadngpaonent called “codegen helper”
is used to generate code for a Ptolemy Il functitsack (actor) in a target language.
Currently, this template based code generator mesluC code for synchronous
dataflow (SDF), finite-state machines (FSM) andehmthronous dataflow models
(HDF). The later is an extension of SDF that pesndignamic changes of production
and consumption rates without sacrificing statihestuling. This code generator
consists of actor templates (called helpers) tbatain C code stubs that are stitched
together. However, presently only a subset of act@s helpers already described.
Although it is an interesting approach, a large amoof work is yet required to
implement templates (helpers) for other widely usedhponents and templates for
different target languages before having a poweddle generation environment.

Several UML-based tools have code generation chipedibut some tools generate
only code skeletons for class diagrams, while atigenerate also behavioral code from
state diagrams. MagicDraw (NO MAGIC, 2007) is aanaple of tool that support only
generation of code skeleton from the static stmect®n the other hand, Artisan Studio,
Rhapsody, UniMod and BridgePoint UML Suite (MENTGERAPHICS, 2005) are
examples of tools that support generation of cotepgtede from UML models. UniMod
defines a methodology for designing object-oriergeent-driven applications, focusing
on execution and code generation from UML statgrdims. Rhapsody (GERY, 2002)
allows creating UML models for an application ahdrt generates C, C++ or Java code
for the application. These tools support completdecgeneration, but only based on
UML state diagrams, so they are more appropriateevent-based systems. Recently,
Telelogic launched the new version of Rhapsody phatides the code generation from

21

flowcharts (activity diagrams) used to specify céempalgorithms (TELELOGIC,
2007).

Besides code generation, several UML-based toadsige reverse engineering
capabilities, for example, the MagicDraw tool suppaeverse engineering from Java
and C++ code (e.g. Java or C++ code to class diggtava code to sequence diagrams,
etc.) and facilities to maintain the coherency leswcode and model.

With the increasing interest on multiprocessor fptats for embedded systems,
researchers have addressed the code generationlfijprocessor platforms. Real-Time
Interface for Multiprocessor Systems (DSPACE, 200)m dSPACE, generates
software code from a specific Simulink model forltipnocessor systems. However, the
software code generated by RTI-MP is targeted spexific architecture consisting of
several COTS processor boards and the main pungosigh-speed simulation of
control-intensive applications. Since multiprocesgdatforms are becoming more
popular, flexible and powerful code generation apphes are desired to aid designers
in the difficult task of programming these platfanThis is discussed again in chapter
4, where a new code generation approach is proposed

2.1.3HW/SW co-design and design space exploration

ForSyDe (SANDER, 2004) starts at a higher abstadtvel, with a synchronous
formal specification model, and synthesizes VHDId & generated for the HW and
SW implementation, respectively. The synthesis ggeds divided into two phases. In
the first phase, the specification model is refiimeid a more detailed implementation
model by design transformations. The second phasdhé mapping from the
implementation model onto a given architecture ammprises activities like
partitioning, allocation of resources and code gatien. The system specification used
in the ForSyDe environment is made in Haskell. Thrsguage does not provide the
high abstraction desired by the designers, beselgsiring them knowledge over yet
another language.

Metropolis (BALARIN, 2001) is HW/SW co-design framerk, which integrates
modeling, simulation, synthesis and verificatiol$o In order to support multiple
MoC, a MetaModel language is used in Metropoliswieer, the generality of the
MetaModel language creates difficulties for itsges@y users and tool developers. Only
manual design space exploration is supported indyetis.

Milan (MOHANTY, 2002) is a hierarchical design spatramework based on
Generic Modeling Environment (GME) (LEDECZI, 200Which is a framework for
creating domain-specific modeling languages. Faigitespace exploration, Milan uses
DESERT (NEEMA, 2003) that is considered a semi+aatied tool, because once the
design space has been specified, it performs aminn and automatically indicates
the optimal design.

Other examples of design space exploration enviemtsy) SPADE (LIEVERSE,
2001), Artemis/Sesame (PIMENTEL, 2001) (PIMENTEL,008) and Koski
(KANGAS, 2006) abstract the application model uskehn Process Network, KPN,
(KAHN, 1977), and that application model is mappedhe architecture model during
the design space exploration. SPADE (LIEVERSE, 200a system-level performance
analysis methodology and tool which uses traceedrigimulation for exploration
purposes. Based on SPADE, Pimentel proposed Art€2081) and Sesame (2006).
Artemis is a methodology for heterogeneous embedsiesdiems modeling, while

22

Sesame is an environment targeted to provide muylelnd simulation methods and
tools for design space exploration of heterogeneeunthedded systems. Koski
(KANGAS, 2006) is an UML-based MPSoC design flowiethprovides an automated
path from UML design entry to FPGA prototyping, lunding the functional verification
and the automated architecture exploration. Howealethese approaches still require
the designer to manually specify the behavior famheprocess in the KPN.

2.2 Analysis of the state-of-the-art

Most of the academic and commercial solutions fiftweare automation focus on
the management of huge domain-specific systemssiiog in a single-domain such as
databases SQL, web-based systems, or XML-basedsdataes and in a particular
language. That is because conventional softwaususlly suited for a single domain.
However, most complex embedded systems have aobetexous behavior and
multiple MoC are required to describe such behavibtoreover, tools that automate
general and conventional software development ateaware of code optimizations, a
crucial step for embedded systems because ofttfkirrestrictions.

As shown in section 2.1, the embedded system i&@s@aea is very active. With the
increasing complexity of embedded software and ititerest in software-based
embedded systems, several efforts have addressedlirtiitation on software
development approaches and common difficulties doum designing embedded
systems (e.g. heterogeneity, hard constraints). étcthis context, several tools have
been proposed to automate the implementation fragh-level models and the code
optimization. For example, Telelogic Tau provides Agile C that is a code generator
dedicated to small footprint and high-performanggligations. However, for embedded
software design, usually power is an important éssund all the physical aspects
(performance, memory and power) need to be evaluateheck if the solution meets
the system requirements. Moreover, the existingstd@mve some limitations and
frequently are domain-specific.

Despite of the huge investigation on strategieactelerate the embedded software
development, the existing tools are somewhat liahitnd they do not cover the full
spectrum of embedded system desfgmresult of the analysis of the state-of-art, ésw
found that none of the presented approaches tathjetsiltimate goal of providing
appropriated abstraction (higher abstraction, nMUiC) to increase software
production and quality, with the necessary codesgation and design space exploration
capabilities. Nonetheless, this study shows thatethare two high level modeling
approaches in evidence that are functional blockadject-oriented with UML.

Traditionally, the functional block (FB) modelingp@roach has been used by the
signal processing, industrial automation, and abréngineering communities for the
development of embedded systems (JOHN, 2001). Tineslels are widely accepted in
industrial design, driven by an extensive set obigle tools, as for instance,
Matlab/Simulink (MATLAB, 2004). Features like moduwity, abstraction level, and
reusability contributed to the popularity of thiodeling approach. On the other hand,
object-oriented approaches with the Unified Modgliranguage (UML) are widely
used in software design. UML is considered by i@ most-used modeling notation for
software engineers. Recently, UML has gained inufaofty as a tool for specification
and design of embedded systems and SoCs. In (LAMBG2003) one can find several

23

efforts that describe the use of UML during thdetdént phases of an embedded system
design process.

Observing that both UML and Simulink are consideedtfactive for Electronic
System Level (ESL) design, these two widely usednalo-specific modeling
approaches are analyzed in more detail in secti@n 2

2.3 Comparison between UML-based and Simulink-based appaches

This section presents a comparative analysis of Uafid Simulink modeling
approaches, which is driven by a case study. Thelefimg capabilities of both
approaches are evaluated, as well as capabilitiesots based on UML and Simulink
are analyzed. The results of this analysis werdighdd in (BRISOLARA, 2005b).
Although the UML models used in this case studyof@e$ notations from UML 1.3,
which was the language version available when thise study was published, we
extend here this analysis considering also capiasilprovided by UML2 and SysML,
recently defined by OMG.

2.3.1Functional block modeling and Simulink

In the functional block (FB) approach, applicatiom® designed by connecting
several FBs. This modeling language does not atlmevdesigner to express system
requirements. Therefore they start modeling alretidiyking of the solution for the
problem under consideration. Our modeling starth e functional decomposition,
and the result is the definition of the moduled theeract during the system execution.
Each FB output must be connected with an appr@piigiut, coming from a FB or
another model element. The communication amongkblaxcurs through the data
exchange by the interfaces instead of message megehased in object-oriented
approaches. The behavior for each block is destuilseng different languages oriented
to functional blocks, like languages for programieatzontrollers (PLCs) and
Matlab/Simulink (HEVERHAGEN, 2003).

Simulink, from Mathworks, is a block diagram comuial tool and language for
the system modeling and simulation, which supportstiple models of computation
(MoC) such as continuous time, discrete time, aveheoriented (by the integration
with Stateflow). For example, using this tool, add behavior can be described through
transference functions, discrete equations, C diddaode, or state machines. A wide
variety of tools (Stateflow, Real Time Workshopc.gtand libraries with pre-defined
blocks are integrated in the Simulink environmdiite complexity of the blocks varies
from simple adders or multipliers to complex fil@gorithms. The functionalities of a
block can be specified as a C or Matlab code danigting pre-defined components
from the libraries. Simulink is suited for contr@ngineering and digital signal
processing applications.

2.3.20bject-oriented modeling and UML

On the other hand, the object-oriented (OO) modelparadigm has gained
popularity over the last years among the generglgse software design community.
The object-oriented design and analysis uses ctsti&p design, polymorphism, and
inheritance to model structural and behavioral systispects. The use of high-level
abstraction turns the design and implementationge® easier, reducing design time.

24

As a result of a standardization process amongerdifit object-oriented design
methodologies, the Object Management Group (OM@Gnpited the creation of the
Unified Modeling Language (UML) (OMG, 1999), whidh currently in version 2.1.1
(OMG, 2007a). UML is considered tlde facto modeling notation for any OO system.

With the production of SoC with large amount of noey) the use high-level
languages and object-oriented approaches couldbsidered in embedded software
design. With the interest by OO methodologies, €L language gained also
popularity in embedded system domain. Sgroi (2Q0&jfies this attention by the rich
graphical notation and modeling power provided his tanguage that enables the
capturing of structural and behavioral aspectdfiergnt abstraction levels. In addition,
using OO concepts of UML, a definition of a classmade of its interface and its
behavior. This distinction between definition amdtances allows the development of
libraries of reusable components. Another contidsufrom OO is the ability to define
a component by inheriting features from another, @riech again improves the reuse of
components.

In addition, the UML has mechanism to extend theglemge by the definition of
profiles for specific domains. The UML-SPT (OMG,®) and the QoS&FT (OMG,
2007b) are examples of profile proposed by OMG todeh “Schedulability,
Performance and Time” and “Quality of Service aralllE Tolerance”, respectively.
However, these profiles cannot fully support thedsof the real time domain. OMG
has therefore proposed the MARTE (OMG, 2005)(RIQQRBO05), which includes the
previous UML-SPT profile and affords generic corisepequired to model real time
aspects in both qualitative and quantitative teams for schedulability or performance
analysis on a model. It includes a set of modekmgfacts for embedded system
specification, supporting asynchronous and synausrcomputation models used in
the RT domain. In addition, MARTE includes extemsimodels of standard platforms
(POSIX, OSEK, etc.).

2.3.3Case study: Comparison between UML and Simulink moels

This section presents two different models devealdpecompare the object oriented
modeling approach of UML to the FB modeling appfoacovided by Simulink. Our
goal here is to analyze how suitable are theseapyproaches for the embedded system
design. The results of this analysis were preseme@RISOLARA, 2005b), where
more detail about the used methodology can be found

X

0.0
t

f t
PosCarMin X, PosCarMax
| I
o
/
Track Car 1,
Cable
T
o
£
m;
0.0 X; x

Figure 2.1: Crane system

25

The case study consists of a crane control syspgoposed as a benchmark for
system level modeling (MOSER, 1999). Once the dséines a position for the crane,
the control system should activate the motor andenrtbe crane to the desired point.
Special care must be taken with speed and poditiots while the crane is moving, to
guarantee the safety of the transported load. Tdrereconstant monitoring is needed to
avoid unexpected situations. This system incorpsraard real time constraints. Figure
2.1 gives an overview of the system.

2.3.4FB model

The Simulink environment was used to define thectional-block model of the
Crane control system. Following the FB approacle, dpplication was designed by
connecting several functional blocks through ofadi@tks. In this approach, different
hierarchical levels can be used in the model. Asmshin Figure 2.2, the modeling
resulted in four high level modules organized highiecally, as follows: PlantActuators,
Sensors, ControlAlgorithm, and JobControl. Each aedhas its intrinsic behavior and
is further detailed along this section.

Poz Car
o Ll alphaenszor
Wn
SWiFoz Cartlax (— osCar_sensor
alpha [—alpha £ = | PozCar
FWMPosCartiin - alpha_senzor
Flant +actuators BT e alphia
2 posDesired | PosDesired
Fozlesired emergency hlode aniteh Yo WCToMoator
ControlAlgorithm
clk i1
L—flposCar em
o alpha
| siiPos oty selesfil
a o S Pos CE
Shutlawn P pos Des brake e 1
P S Shut Do Brake
4 = Switch_on braak’i

SwitchON JobControl

Figure 2.2: Crane model using Simulink

The crane system is composed of both data drivdreaent driven parts, as can be
observed in Figure 2.2. The JobControl module sagented by a finite state machine
(event based), while the other modules are dateeniriFigure 2.3 shows a view of the
JobControl module, which is composed by five sta@esver_off, Init, PosDesiredTest,
NormalMode and EmergencyStop.

The NormalMode is a composite state, containing ¢acurrent states, Diagnosis
and Control, as can be observed in Figure 2.4. Oilagnosis module runs in parallel
with the control algorithm. This module is respdsifor monitoring the position and

26

alpha sensors, indicating when some risk condiboours. On the other hand, the
control is responsible for detecting the brakingditon for the control algorithm.

[Switch_on==0){es=1; em=1;%=0; selectVc=1}
[Sweitch_on==1]{%=0,em=0,es=0}

Povwver_off
entry: V=0, selectYc=1, em=0, es=0,

pozDesiredTest

[(poshes=4138(posDes=-4]]

[EWiShutChwen==1 {zelectvc=1,v=0az=1

Marmaliode -

@ b
mergencestop

e

Tl

1
&

[[abs{v)>0.01)]

control Init
ft= £
= Brake_em0
[fabs()=0.01

etO==500}brake=1.

2" Control .
|£ ahs =:D 01) &8 (ct0<500)]{ ctO=ctO+1} E
[erm== I

Figure 2.4: Crane JobControl — NormalMode

27

Figure 2.5 illustrates details of the ControlAlgbm module, which is responsible
for computing the control algorithm of the cranetaro This module receives the
position of the car (posCar), the alpha angle & tlable (alpha), and the desired
position of the load (PosDesired). The ControlAitjon computes a set of equations
and determines the voltage (VC) that is appliethto crane motor. This FB contains
two implicit MoCs, which are characterized as comtius time and discrete time,
respectively. For example, it contains a discrgbace state component used for
differential equations resolution (top left), whieh combined with those components
that work in the time continuous domain. The cdntigorithm is periodic, with a
period of 10 ms. Although this timing restrictionutd be represented in the model
using a clock, this is not a suitable way of expirgg timing requirements. For instance,
no deadline can be stated, representing missingrniation required to perform
schedulability analysis.

The Sensors module is responsible for reading ¢he®s and works with a fixed
cycle time of 2 ms. Although this FB is not showrthis chapter, we observe that it has
the same problems previously stated for the contlgorithm regarding the
representation of timing restrictions. Besides fibsition and angle sensors, there are
two other sensors for indicating when the car igobd the track limits (minimal and
maximum car position).

Wen

yin)=Cxim)+Duln) h un-yn Ve
R+ Y=+ BuCn) Ko .
PosC =
Hakar = et _o2]] yri=k* gn ZOH 10m=1 Saturation
pozDesire 4040
=D -+ :
PozDesired postar_y, A >
g2
f *
) bl n
it Ef==1, =inall un ZOH10ms
ki (posDesired-zn)
[+5.5000]
Kp

[=]
r w3
rim (rfm)*alpha
m
2
alpha posCar T emergenc

4
(I} hdade

Yy

B
L

Figure 2.5: Control algorithm model in Simulink

Finally, the Plant module contains the specificatad the physical plant (car and
load) to be controlled. Although this module is rgart of the system functional
specification, it must be described in order tomwllthe simulation of the system
behavior. For describing the continuous behaviothef plant, linear equations were
represented by Simulink components such as in@gratdders, and gains. This
highlights one important aspect of the FB approadtich is the possibility of reusing
pre-defined FBs.

Once the modeling phase is completed, the simulasiqgperformed to provide
the validation of the FB model. Afterwards, the leggiion code can be generated.
Simulink allow the generation of C code for theresponding FBs and the generated
code can be executed in real time within the fraor&vprovided by the tool. However,

28

reasonable effort must be performed to allow rugriims code in a target environment
that is different from the development one.

2.3.5UML model

Differently from the previous model, UML allows dgsers to represent the
system’s needs or functionalities before their enpéntation. This can be performed by
means of the Use Case Diagram, where actors reprédse external elements that
interact with the system (/O device or human user)l each use case represents a
specific functionality that must be provided. TheseUCase Diagram for the crane
system is presented in Figure 2.6. Each use casdraludes a textual specification to
detail its related responsibility.

Calculate
Position
Sensors
Update

f / " sensor ™\
Car-position W
Sensor

Diagnosis

% Nominal
Operation Mode
Motor
3 Break-relay

""""""""""""" <<extend>>

X

Cable-angle
Sensor

................. Emergency
Initialization Operation Mode
Crane user

Figure 2.6: UML Use Case Diagram of the Crane syste

For a better structuring of the model developmem,followed the design phases
proposed by Gomaa (2000) in the COMET/UML methodgloHowever, any other
UML based design methodology that considers reak tiaspects could be used.
Moreover, in this case study, UML1.3 was used, beedJML2 was not yet available at
the time.

To describe the interaction among objects thaiqipate in each use case, they are
further detailed using UML collaboration diagrargis is part of the so called analysis
modeling, which precedes the definition of requieats. Instead of collaboration
diagrams, sequence diagrams also could be uselighlight important characteristics
of the modeled system (mainly timing restrictiortee UML profile for Schedulability,
Performance, and Time (SPT) (OMG, 2003) is used pitofile is also usually referred
to RT-UML, and is composed mostly by stereotyped @s related tags. Using this
profile, a timer event for example is decoratedhwvilie stereotype <<SAtrigger>>. It

29

includes information about its triggering frequeneg presented in the collaboration
diagram from Figure 2.7 (see event num.12irK)). Such information is represented by
the tagRTat of the stereotype that, in this case, means adlierevent with a 10 ms
period.

Operations depicted in the diagram of Figure 2pfasent the ‘ControlAlgorithm’
block from the FB model (see Figure 2.5) and, pHyti the ‘JobControl’ one. Detailing
the collaboration diagram, one can see three difteoperations sequences, denoted by
the numbers 1, 2, and 3. Special attention is gieethe third sequence, the control
operation, which represents a periodic activitynifig restrictions are denoted by the
elements from the UML-SPT profile. Similarly to tR& model, the ‘Controller’ class
also has an associated state diagram, which isqexsin Figure 2.8. This is part of the
system dynamic model, which represents the apmitabehavior. One observed
missing feature of UML is the lack of semanticeigress the control algorithm itself,
including its continuous-time characteristics.

Nominal Operation Mode f i

Crane User

:SystemClock 1
5 setPosition()
«SAtriggers [RTat = (‘periodic’. 10, 'ms’)}
«SAresponses

run()

«SAschedRess
:Consolelnterface

11
set()

qSAs_c_he_dRes» 20
tnitializer 2 new(} «SAresources
\ic'mate(} : :DesiredPosition
¥
% b
2. a«SAschedRess get()
release() :Controller
- 31:
) - controll{)
:Breakinterface
312
read()
2 B
read(
3.2: _ l 0 «SAschedRess
sefVC(} :AngleSensorinterface
:Motorinterface S hancdRess

:PositionSens orinterface

Figure 2.7: UML Collaboration Diagram of the Cortedgorithm

The complete UML model of the Crane system inclu8edifferent collaboration
diagrams. All classes from these diagrams conetifué system static structure, which
is used as input for the next development step fiteenCOMET methodology, that is
known as Design Modeling. This phase is respondirelefining the architecture of
the system, including the division of responsipilitetween client and server objects.

3C

Since the Crane model makes use of decentralizetlotoit was necessary to classify
objects as being passive or active. The formeesgmts data repository elements, while
the latter represents elements with their own thref control that are capable of
triggering an interaction sequence. The final tesutepresented by the class diagram
depicted in Figure 2.9. Classes names are predsded to follow UML conventions.
They can also contain a stereotype incoming frora WML-SPT profile (e.g.
<<SAschedRes>>, which denotes a concurrent elemeahe system). The choice for
the use of classes instead of capsules (part of @N).is due to the available runtime
structure on which object communication is evenselohand does not use the port
abstraction. This diagram is used as basis foethieedded system code generation.

o . .
«Create»/isActive = falsg;
Idle

activate/isActive = trug;

run/

block/isActive = false;

Blocked

Figure 2.8: State Diagram of the Controller class

As the design tool used to build the UML model didt include a simulation
module, the next step was the code generation Her dystem. Although other
programming languages like C++ could also be usgdcbde generation, the Java
language was chosen as target in this study dubetacurrent tool set used by our
methodology (see BRISOLARA, 2005b). Details on gemerated code will now be
approached.

il
«SAschedRess 1 aSAschedRess
o 7 ::Consolelnterface
i e |
1
+

1 1 ShsrhedRess 1
1 1] G | 1
£SHEsUICeS 1T | ; i ! #SAresources
::DeftaPosCar 1|1 - 1 9 ; | -l e
1
S A ESOUrCEy 1 1 #SAschedRess I 1
s:VeCheck ::initializer I T
1 1 1| 1 1
Tace 1 T T
[coresiereee] «SbsthedRems
1 — Tl
T t T 1
T «SaschedRess || 1]
% | ::SensorChecker | | —
=SAsthedR sy 1 «SaesoUr ey
«BArEIIUNCE: ot | 1 1 j:PositionSensorinterface| ::PosCarMin
:AngleMax
1 i 1
1 1] =
) f: Rt {=l=ulPlge=> 3
Nt e ::PosCarMax
il 1
5P osCarMax

Figure 2.9: UML Class Diagram of the Crane system

31

The Controller class, on which the associated stgpe denotes a concurrent real
time task in the system, is selected to illustthéegenerated code. This task is triggered
periodically every 10 ms, with a deadline of 10 (sse the collaboration diagram
presented in Figure 2.7). To implement such featutiee Controller class needs to
inherit features froniRealtimeThread, as shown in Figure 2.10. Moreover, it must define
release parameters to implement the modeled tiroamgtraints. Therefore, the class
PeriodicParameters is used, and its instance is passed as parametdrefsuperclass
constructor. ARelativeTime object is used to represent the 10 milliseconais fthe task
period and deadline. All these special classesdarazed from an API proposed by
Wehrmeister (2004).

i nport saito.sashinmi.realtinme. *;
public class Controller extends RealtineThread {
private static RelativeTime _10_ns =new Rel ati veTi ne(0, 10, 0);
private static Periodi cParaneters schedParans = new Peri odi cPar anet er s(
nul |, /] start tine
nul |, /1l end tine
_10_ms, // period
nul |, /1 cost
_10_ms);// deadline
public Controller() {
super("Controller", null, schedParans);
/1 do other initializations
}
public void mai nTask() {
Crane. breakl nterface. rel ease();
/1 periodic |oop
whi | e(i sRunni ng == true){
this.controll();
Crane. noni torlnterface. set VC(m.vc);
t hi s. wai t For Next Peri od();
}
}
private int controll() { ... }
public void exceptionTask() {
/1 handl e deadline m ssing

Figure 2.10: Generated code for the Controllersclas

The Controller class provides two important methodsainTask() and
exceptionTask(). The former represents the task body, that isctite executed when
the task is activated. Since this task is peridiiere must be a loop which denotes the
periodic execution. The loop execution frequency cisntrolled by calling the
waitForNextPeriod() operation. This operation uses the task releasanpers to
interact with the scheduler and control the corrececution of the operation. The
exceptionTask() operation represents the exception handling code ightriggered in

32

case of a deadline miss, that is, if timeinTask() operation does not finish until the
established deadline.

After the code generation process, the applicatias ported to the FemtoJava
environment using the SASHIMI tool (ITO, 2001), whigenerates both a VHDL
description for a dedicated Java processor anddsgective program memory code
(application code).

2.3.6 Evaluation criteria

In order to perform a comparison between the modekpproaches, several
evaluation criteria have been identified. Thestedd are based on the work conducted
by Ardis (ARDIS et al., 1996), which performs a lbjiaéive comparison among several
design languages for reactive systems. Such woektisnded here in the direction of
searching for aspects that could be used to perforquantitative evaluation of the
designed models. Moreover, a new organization Hier det of criteria is established.
They are organized in groups that reflect the needsrved in the section 2.1, as can be
observed in Table 2.2. The groups are further eefim subgroups to compose the
evaluation criteria elements. In Table 2.3, eadwtion criterion is detailed, together
with an explanation on how it is evaluated (in ga#ve or quantitative terms).

Table 2.2: Evaluation criteria

Evaluation Criterion Description

a) Requirements criteria to evaluate the capability to express dadument user needs

Specification and system requirements.
b) Functional criteria to evaluate the model abstraction level arpressiveness, i.e.
Specification if it describes the problem domain elements and #ystem

behavior/functionality in a natural and straightfard manner.

c) Validation or criteria to evaluate if the specification can bdidaied before its
Simulation implementation.

d) Implementability criteria to evaluate if the sfigation can be easily refined or translated
into an implementation that is compatible with thst of the system.

33

Table 2.3: Evaluation criteria — subgroups

Criteria

Description

Evaluation

Expressed by

al) Functional

requirements

Capability of expressing an
documenting the desired syste
functionality, together with th
problem domain elements th
interact with the system

dQuantitative
2M

-

at

the number (nbr) of
modeling diagrams that
can be used to
implement the desired
feature

a2) QoS
requirements:

Capability of expressing th
application QoS requiremen
and/or restrictions

eQuantitative
ts

The number (nbr) of
QoS requirements that
can be specified

b1) Applicability

Capability of representin
system behavior or functionalit
by using different MoCs
according to systems nature

gQuantitative
Yy

the nbr of supported
MoCs

b2) Maintainability

Easiness to make modificatia
in the specification, e.g. additia
of new elements and changes
the external elements ik
sensors

rMQualitative
n
n

e

b3) Modularity and
Hierarchy

Capability of dividing a large
specification into independe

modules, which could be agajin

2 Qualitative
nt

decomposed into even smaller
parts
b4) Expressiveness Capability of the modelir@uantitative| b4.1) nbr of modeling

language primitives to descrik
the specification

e

primitives

b4.2) nbr of different
modeling primitives

b4.3) nbr of handed
lines of code

cl) Simulation

Capability of verifying if th
specification can be used
validate the implementation

e Qualitative
to

c2) Verifiability

Capability of demonstratin
formally that the specification @

gQualitative
r

generated program meets the

requirements

d1) Code
generation

Capability of generating a
executable code from the mode

nQualitative
I

2.3.7 Comparison

results

This section presents an analysis and comparisotheofUML and FB models
according to the criteria discussed in the previrgtion. The results are summarized in
Table 2.4. For evaluating the qualitative aspeets,have used the symbol “++” to

34

indicate a particular strength of the approach, te-indicate that the model meets the
criterion in a way that is adequate, but less tldwal, and “0” to indicate a clear
weakness of the model.

Table 2.4: Comparison results

Evaluation criteria FB| UML

a) Requirements Specification

al) Functional requirements

a2) QoS requirements

b) Functional Specification

b1) Applicability 3 1

b2) Maintainability + ++
b3) Modularity ++ ++
b4.1) Number of used modeling primitive 111 184
b4.2) Number of different modeling primitive in use 5 5

b4.3) Number of line codes written by the designer 0 96
¢) Validation / Simulation

cl) Simulation ++
c2) Verification 0
d) Implementability
d1) Code Generation ‘ ++‘ +

Source: BRISOLARA, 2005b, p. 33

This evaluation begins by analyzing the facilitifr expressing the system
functional requirements. UML offers the facilitipsovided by the use case diagram (1
point), where functional requirements are definederms of actors and use cases. On
the other side, the FB approach does not supgerkitid of resource (0 points).

More recently, OMG proposes a new visual languagieed Systems Modeling
Language (SysML) that reuses a subset of UML 2dextends the language to satisfy
the requirements of the UML for Systems Engineefi8g) domain. SysML provides
two new notations to aid the requirements spedioa which are Requirements
diagrams and Parametric diagrams. Requirement aiizgrcan capture functional,
performance and interface requirements, whereas WNIL you are subject to the
limitations of Use Case diagrams to define highelevunctional requirements.
Likewise, Parametric diagrams can be used to spgmfformance and reliability
requirements during system analysis.

Regarding the support for QoS specification, ormese=e that the UML-SPT profile
supports both timing and performance requiremepgsiication (2 points), while in the
FB approach there is no support for such issugmifits). In the FB model, the timing
requirements are implicit in the functional/behavepecification. Neither language
gives support to the specification of power constiompand cost requirements.

Recently, the definitions from UML-SPT and the QdS& (UML profile for
modeling Quality of Service and Fault Tolerance i@bteristics and Mechanism)

35

profiles have been used to define a new profiledaVIARTE (Modeling and Analysis
of Real-time and Embedded Systems). MARTE provale®mplete set of modeling
elements to build specification and design modélenesbedded systems, and supports
the various (asynchronous and synchronous) comentahodels used in the RT
domain.

Analyzing the model applicability by means of thember of supported MoCs, it is
possible to observe the advantages provided byrBiapproach, as it supports three
different MoCs (3 points): continuous-time (analodjscrete-time (digital), and event-
based. Regarding UML, it supports only the eversebamodel (1 point). In spite of
this, there are efforts described in literaturd tdeeady address the lack of a dataflow
model in UML (BICHLER, 2004)(CHEN, 2004).

Bichler (2004) proposes the D-UML, which integratietaflow equations to the
UML/Realtime modeling language. A comparison betwedML, FB and the D-UML
can be found in (BRISOLARA, 2005a). D-UML uses sture diagrams composed of
UML2 capsules and flows connected by ports. In thpproach, a statechart is
developed for each capsule. Although D-UML allowsd®l dataflow, this abstraction
is in fact implemented using send/receive mechasyisvhich are controlflow-like.

Using UML2 notations, activities diagrams can bedut define dataflow systems.
More recently, in the SysML definition, the actividiagram is extended to support the
traditional Systems Engineering functional blockgiams (dataflow) and continuous
behaviors. However, activity diagrams are moresedibto flowcharts than the dataflow
proposed by FB models. Moreover, the commerciadlstbave just started to support
these new features, so that it can not be useddglthis case study.

Regarding maintainability, the intrinsic OO propestfrom UML models, like the
specialization/generalization facilities (inherita), provide better maintainability if
compared to the structured approach of FB models.

Considering modularity and hierarchy aspects, jtassible to conclude that the FB
model leads to a slight better decomposition. Tais be observed by comparing the
Simulink high level model against the UML classgitam. The first one contains fewer
elements, making the interpretation of the physlhavior easier. The UML class
diagram used in our model maintains the whole systdements within the same
abstraction level, which is somewhat not suitabt@sidering the desired hierarchical
features. However, the addition of the compositeicstire diagram in UML 2.0
overcomes this problem, since it allows for decosmpmn in a natural and
straightforward manner.

The next criteria concern model expressiveness: beanmof used modeling
primitives vs. number of different modeling primis in use. The FB model contains
111 modeling primitives, excepting the plant moduheluding Simulink components,
connections, ports, states, and transitions. InUik. model, 184 primitives are used.
Regarding different modeling primitives in use, to®&L model is represented by
means of classes, objects, associations, statédrarsitions. Therefore, it is natural to
observe an equivalent number of different modeprigitives if compared to the FB
model, which includes blocks, ports, connectiotates, and transitions. Nevertheless,
using a design tool like Simulink, the designer caake use of different pre-defined
components available in a component library.

36

Another relevant issue relates to the number d@sliof code programmed by the
designer in each model. It can be observed th#tariJML model the designer has to
manually write 96 lines of code, while in FB modie¢ program code was completely
generated by the tool. Several UML tools have cgeleeration capabilities, but they
generate only code skeletons for classes and, at, mode from the statecharts. The
hand written code parts include mainly the methdugiaviors that cannot be captured
from the model. On the other hand, by using thenkdlel and associated library, the
designer is not required to code the program by/henself, as observed in our case
study. Lastly, our experimental results show thaubing a component library within
the UML model reduction on the number of hand writtode from 96 to 66 lines can
be achieved.

Regarding model validation and simulation, it isgible to observe that, in order to
provide such features, suitable modeling and desigis are required. In the crane case
study, only the FB model could be simulated, thaokihie Simulink tool that provides a
simulation engine. The available version of the IRie@e Studio tool, used for the
construction of the UML model, does not support elodimulation. However,
considering the authors’ experience with other Ulkie- modeling tools, they provide
support at most for animation of statecharts (ebased MoC). Consequently, one can
state that for this task the FB model is more adtgjubecause the simulation
environment supports all the three intrinsic MoCs.

Analyzing the verification features, neither UMLreB approach have support of
formal verification of complete models. In UML, senools allow for model checking
in specific diagrams, like Statecharts and Sequéyaegrams. Moreover, many tools
support consistency checking between diagramsan&tance checking the connections
between the components in a FB diagram or everagtesing that an operation called
in an UML collaboration diagram exists in the rethtclass. For this reason, both
languages are considered weak in this aspect. &edltht, UML commercial tools
check the syntax of actions in the statechartsy Bfteo check if an operation called in a
collaboration diagram was defined in the class.rdtoee, Damm and Harel (2001)
proposed the Live Sequence Charts (LSC) that arextnsion of Message Sequence
Charts (MSC) with rigorous semantic. The use of UBE€s allows consistency check
between the generated scenarios and the sequeaxs applying formal verification
techniques.

Finally, considering the model implementability,eocan see that from both models
an architecture independent specification can beetk Still, there are two aspects that
lead to distinct capabilities: amount of code pdend by designer and number of pre-
defined components. In UML, the need for desigméervention is higher as can be
observed in the crane case study, because some @adpecification cannot be
expressed using UML diagrams (e.g. control algor)thin the FB models, the whole
code can be generated automatically, since its@ethe use of pre-defined libraries.
However, the generated code requires several moatdns/optimizations to be
executed outside the framework provided by Simulink

3 UML-BASED EMBEDDED SOFTWARE GENERATION

The Unified Modeling Language (UML) (OMG, 1999) asstandard notation for
modeling and documentation of object-oriented safew The intention behind the
definition of the language was to consolidate tadous OO languages, methods, and
notation in a single modeling language independénendor. UML was based on the
OMT method of Rumbaugh (1991), the Booch method@®®l, 1981), and the OOSE
(Jacobson, 1992). This language was defined toostimpecification, visualization,
construction, and documentation of conventional gataitional systems.

The UML language is in constant evolution and OMG@esponsible for maintaining
and reviewing it. The organization can have théstasce from the members from both
academy and industry. All members can propose reatufes and vote for new
solutions for the UML language. Nowadays, UML isisidered the de facto modeling
language for software systems. Several tools basedML are available for software
modeling and code generatiofihe widely use of UML as a standard language also
contributed for the definition of software develogmh approach that shifts the focus
from code to models, which is called model-drivavelopment (SELIC, 2006). MDD
aims to make models the primary resource in aleetspof software engineering and
provide benefits of cost reduction and quality ioy@ment.

UML1, the first version of the language, presentmme limitations, mainly
regarding to the low precision and lack of formainantic. That left ambiguities in the
model, allowing different interpretations and ditfiting the implementation of tools for
model capturing and code generation. To automagsetisteps, some vendors defined
more precise semantics, but the problem was tleaeteemantics varied from vendor to
vendor. Recently, a major revision of UML was caoate by OMG and the new
version of the language (UML2) was defined, withh@amced semantic and more
precision. The main objective of this revisionasetiminate the ambiguities, facilitating
the design automation by tools.

The first minor revision of the original UML 2 spcation has resulted in
UML 2.1.1 (OMG, 2007a). Although this revision adiles to the abstract syntax to
eliminate minor inconsistencies and ambiguitiessteag UML-tools still have limited
generate code capabilities. This is better discussethe section 3.1, where the
capabilities of the existing UML-based tools for edded software generation are
depicted. From that analysis, one can observe dgapeen model and code, presented
in section 3.2 using experiments, explained inise@.3.

38

3.1 Existing approaches for code generation from UML mdels

To support SW automation based on UML models, itise Step is the capture of the
model. An UML model is an instance of a class maaddled UML meta-model. Models
are stored using the XMI (OMG, 2002) model interada standard, which is based on
XML (eXtensible Markup Language) (GROSE, 2002). The problem is that different
versions of the XMI are used for different vendarsking difficult the interchange
between UML-based tooldModel repositories can be used to store an UML rhode
represented using XMI, providing functions to cegadd, remove and update a model,
and thus, facilitating the tool implementation. Ewades of available UML repositories
are Eclipse EMF (ECLIPSE DEVELOPMENT TEAM, 2006)etNeans Metadata
Repository (MDR) (NETBEANS DEVELOPMENT TIME, 2005)and System
Modeling Workbench (SMW)(PORRES, 2003).

After capturing the model, this must be transforrmgd code in the target language.
This process typically uses a template engineanosform model into code, given the
format specified by the template. Templates atexadie approach to convert models to
text. The most popular template engines are Veld&iPACHE SOFTWARE, 2005)
and JET (Java Emitter Templates) (ECLIPSE DEVELORNIHEAM, 2005). Figure
3.1 presents an example of template in Velocityjctvhis an open-source project
created to generate HTML code. Details about cafetion using templates can be
found in (BOAS, 2004). Model repositories, suctEddF and MDR, and templates can
be used together in the implementation of a codegeor.

Other methods to generate source code include gbeofurules, writing programs
that generate programs (code generators), and tisangformations such as XSLT
(TIDWELL, 2001). Indeed, XSLT is popular for XML @nsformations, but it is too
verbose to be an effective language for model-drs@de generation. More recently, as
model-driven development approaches have gainedest; an alternative approach for
code generation based on model transformationdbees proposed. In this way, the
model described in a higher abstraction is tramséal into another one closer to the
final implementation. More than one transformatsteps could be applied to the initial
model, including optimization steps. Finally, a pien conversion from model to text
can be applied to produce code in the target laggyua

Public class $class.name(
#foreach ($att in $class.allAttributes)
#set ($javaType = Satt($att.type.name))
// $Satt.name
private $javaType Satt.Name; public $javaType
get$toUppercase($att.name) () {
return this.$att.name;
}
public void set$toUpperCase
($att.name) ($javaType S$Satt.name) {
this.$att.name = $att.name;
}
#end
#foreach ($att in $class.allOperations)

Figure 3.1: Velocity template example

According to Bjorklund (2004), templates are dificto create and manage. They
cannot be the only mechanism for code generati@nlynbecause code optimizations

3¢

cannot be applied using templates. The author stggeat the most adequate way to
generate code from a model is through model tramsfbon. An example of the code
generation from UML class diagrams to Java wasemtesl in (BJORKLUND, 2005),
and is illustrated in Figure 3.2. This figure shdiwee ways to generate Java code from
a class diagram. A simpler one is just directlyvasting the model to text, as the model
is a simple one, just a partial code could be gdrdr with this approach. In an
alternative way, the model could be transformedrnother more detailed model, and
then use this model to generate code. In addiia@gmplex mapping could be used to
generate the code from the initial model. This epl@ms good to illustrate the code
generation idea. It is though too simple becausdrtinsformations show just the use of
the JavaBeans convention, which defines that foh etass attribute, methodst and
get should be defined to give access to this attribute

Point
+x: Integer
+y: Integer
i +getX(): Integer
Point Model Transformation gex() 9
+X: Integer setX(newX: Integer)
+y: Integer c lex form: +getY(): Integer
omplexorm: +setY(newY: Integer)
model->text
Simple
model -> text
Simple form _
model -> text Class I.Do.lnt{
public int x;
. public int y;
Class Point { public int getX()
public int x; Program Transformation {
o return x;
public int y; }
} public void setX()
}

Figure 3.2: Approach for code generation (BJORKLUNDO5)

3.1.1Code generation: existing tools

The tools proposed for code generation from UML eiedccan be divided in two
classes, structural and behavioral. This divisiaas vinitially proposed by Bjorklund
(2005). In a structural code generation, only $tmad diagrams are used, i.e. class
diagrams, where classes have attributes and ne¢atibhe tools that follow this
approach generate only skeleton of code, and tiategy is available since the first
UML tools. For example, they can map all constiutsi (elements) in a class diagram
to Java or C++ programs. On the other hand, thavwetal code generation is based on
behavioral UML diagrams, such as state, sequendealtaboration diagrams. Most of
the available tools provide code generation onbymfrUML state diagrams, as for
example, Artisan Studio, Rhapsody, UniMod and Beflgint UML Suite.

To be able to generate complete code from UML diagr, designers are asked to
add information to the model, e.g. specifying th&ca correspondent to state (activity)
in a state (activity) diagrams or specifying thetimoel behavior in sequence diagrams.
Some code generators use the target implementatignage to describe these methods

40

and actions, which turn the model not independénhe target language. Other tools
use actions languages to complement the statectindyadiagrams in order to generate
complete code. However, as the Actions Semantoggsed for UML 1.5 defines only
an abstract syntax, tool vendors use proprietaigratanguages. Such approach is used
in iIUML (KENNEDY CARTER, 2005), BridgePoint UML Sté (MENTOR
GRAPHICS, 2005), and Telelogic Tau Architect/Deyalo (TELELOGIC, 2004). As
an example, BridgePoint uses the Object Action uLagg (OAL) and provides full
code generation, in which the designer uses staigrains to represent the system
behavior and specifies actions correspondent tstates using OAL.

Other common approach to bridge the gap betweerehaod implementation is the
use of intermediate languages. Such approach tshys8jorklund (2004) and Hubbers
and Oostdijk (2003).

In order to support model verification, simulati@nd synthesis, Bjorklund (2004)
proposes the use of Rialto as the intermediataukagey during the model design. This is
illustrated in Figure 3.3. This language has a fdreemantics that allows the capture of
the semantics in UML behavioral diagrams. Therdbg, language can be used as an
execution engine for UML models and to generateedod. Rialto can also be used to
combine multiple MoCs because different schedulpaicies are defined in this
language. In this work, the authors consider thatdctivities diagrams have dataflow
as their underlying model of computation and théisgrams can be interpreted as a
statechart. In those, all computation is perforrredtate activities and the transitions
are triggered by completion events. However, astart is control flow like and is not
the more adequate representation for dataflow nsodiébreover, as this is an ongoing
work, it supports only some UML diagrams.

/ ©
\ Java

Figure 3.3: Rialto-based code generation appraad®RKLUND, 2004)

Hubbers and Oostdijk (2003) highlight the diffigultof verifying if the
implementation behavior agrees with the specificatiin this context, the authors
propose the use of JML (Java modeling Language)ifsgaions in order to facilitate
this verification. A JML specification allows formaverification to check if the
generated code implements the specified modehithproject, a tool called AutoJML
has been developed, which automatically derives 3gkcifications from UML state
diagrams represented in the XMI format, beyondJdna code. The combination of the
JML specification and the skeleton code can be &igmverified using the ESC/Java
(FLANAGAN, 2002).

UML2 provides some constructions that aid the modelof the complete
execution flow, as for example thef operator that allows to link fragments in differen
sequence diagrams. This new version of UML alswigdes the operatoralt, opt and
loop, which permits representing conditions and loopsdquence diagrams. These new
constructions allow the proposal of code generatpproaches based on sequence
diagrams, as in (BABU, 2005) and (REICHMANN, 200Mjatilda (BABU, 2005) is a
model-driven development platform that accepts tHdL2.0 class and sequence
diagrams as input. This platform provides capaédifor model checking against the

UML |—f Rialto —{ FSM — S-Graph

41

UML meta-models for syntax and semantic correctnessides code generation. In this
approach, UML models are mapped to the abstracasyree from which the code is
generated. Java constructions are used on thersegdegrams and thus, full code can
be generated from the model. Reichmann (2004) gexpa code generator, which uses
Velocity engine (APACHE SOFTWARE, 2005) to generdsa/a or C++ code from
UML models, as class and sequence diagrams. Inmbik, in order to complete the
behavioral diagrams, the language called MeDelusésl to specify methods behavior.
MeDelLa is based on Java syntax and consequendygl of this language does not
provide a higher abstraction level than that ofJavC++.

3.2 Analyzing the gap between UML model and a Java pragm

The diagrams and graphical notations provided bylLlhiélp the designer specify
the behavior of complex systems, without demandiegdefinition of details usually
required by the programming languages. In a dedlod a model compiler (or code
generator) must be able to generate these detaita the model, producing an
implementation in the target programming language.

A code generator could be considered as a fundtiah maps artifacts from a
modeling language to lines of code in a programmamgguage. To design a code
generator, the definitions of the models to be sujgol as input are required, as well as
the used features of the target programming largjaad the mapping between both. In
this section, we study the mapping from UML modelslava code and we discuss the
gap existing between both specifications.

As highlighted by Erikssom (2004), when Java is theget language, a natural
progression from the logic classes to code compsnisnpossible. As Java and UML
are object-oriented languages, some UML constrastaan be directly mapped to Java
ones. For example, a class in UML is translatea ¢tass definition in a Java code and,
for each class defined in a class diagranjaw file is created. Table 3.1 shows basic
rules to map UML constructions to statements iraJav

Table 3.1: Mapping UML to Java

UML Constructions Java Constructions
Attribute instance variable
Operation Method

Abstract Class abstradiass

Interface interface key-word

Package package declaratipadkage)
Subclass/Generalization | extends key-word
Realization implements key-word
Dependency, <gses>> I mport

Multiplicity Array

Role Instance variable from the type of the clasoaiated with the role

Source: MADISETTI, 2005.

42

Besides the mapping proposed by Madisetti (200%) summarized in the Table
3.1, other simple mapping rules can be definedpagxample, the generation gét
and set methods for all class private attributes. In twisy, the single way to access
these attributes is through these methods. Tltovention in JavaBeans.

However, the direct mapping is only possible framuctural diagrams. The UML
behavioral diagrams include many concepts, sucictsns, events, and states, which
are not present in most programming languages. Meisns that there is not a one-to-
one mapping between behavioral diagrams and itdeimgntation (BJORKLUND,
2003).

3.2.1 Experiments

In order to discuss the gap between the UML model @ implementation on a
target language, we analyzed two embedded applitatieveloped in Java. Those are
the Crane control, which is also used as case studgapter 2, and the Address Book,
which includes calendar, alarm, and calculatorthis experiment, firstly, we analyze
both applications regarding the number of linescotle that can be automatically
generated from the model using structural code rgeéows. That means using only class
diagrams. For these lines, we use the term “Autan@enerated” (AG). The rest of the
lines were classified as “Written by designer” (WBJter that, these WD lines were
classified according to the operation that they ewelved or the behavior that they
describe.

To determine the lines marked as “Automatic Gemefat(AG), the mapping
presented in Table 3.1 was used. In this way, liresponsible to define classes,
interfaces, methods and attributes are considerdtlis group. Besides that, lines of
code used to define the use of an API and the itlefinof packages are also classified
as AG. In addition, lines of code responsible titighze attributes and definget and
set methods for all class attributes are also consitias AG in this analysis.

This study aims to define an abstraction that ctaeldised to complement the UML
diagrams in order to obtain the complete code geioer from the model without losing
abstraction. Then, after the identification of #hé& lines of code, the remaining lines
are considered WD. The WD ones are then analyzewbne detail in order to evaluate
how they could be specified in a higher abstractiemel and, consequently,
automatically generated. To do this, we classiffegse WD lines of code in 20 groups,
as presented in Table 3.2. Firstly, seven simpbeigs were defined (e.g. <co>, <cm>,
<mat>), which were combined to define eleven compigoups (e.g. <if+mat>,
<for+cm>, <for+ds+mat>). The <co> and <io> groups i@served for the lines of code
used to dynamically create and initialize objecespectively. The <cm> and <ret>
represent method invocation and method return,emely. The groups <dv>, <iv>
and <incv> are used to represent the declaratiomialization and increment of
variable, respectively, as well as the group <irapresents the lines used to initialize
matrix or vectors. Finally, math operations aressified as <mat>.

In the proposed classification, control structulike conditional and loops were
divided in several groups according to the corradpat control operation, e.g. the
group <for+cm> represents a loop with known numdsieiterations and with method
calls inside. For conditionals, similar classifioatwas proposed for the commalid
defining the group <if+cm>. Besidé®r andlIf, similar structures lik@&witch/Case and
While were also considered and classified, as wellTihgCatch used for exception

43

handling in Java code. For example, ihkile was classified as <loop+cm>, which
means a loop with conditional and that have mettadtinside. In addition, <for+ds>

classified the loop used to manipulate a data stre§matrix or vector). An example of
these lines of code is illustrated in Figure 3.6(a)

Table 3.2: WD lines of code classification

Classification

Description

<co> Create objects - Lines of code used to create gtinb
Ex: classA obj = new classA();
<io> Initialization of object (object is already alloedt only will be updated). Ex:
currentObj = objA;
<cm> Call methods - Lines of code used to indicate m#thwocation.
<ret> Lines of code to represent a method return.
<dv> Lines of code used to declare an auxiliary variabld€x: int temp;
<iv> Lines of code dedicated to give values for variabld&Ex: a = 4647,
<incv> Lines of code used to increment variable value. Ex: a=a+1;
<im> Lines of code used to initialize matrix and vectors Ex: X[0]=1;
<mat> Math operations. Bum =u-y; Ex:num =sqr (a);
<if+cm> Conditional with method call. Ex: if (tgsnethod();
<if+incv> Conditional with a variable increment. Ex: if (test) temp+=2;
<if+iv> Conditional with initialization of variable. EX: (EmergencyStop) vc=0;
<if+mat> Conditional with math operations. Ex{ntim >= max)

vV = max — sqrt (num);
else v = sqrt (num) + min;

<if+mat+ds>

Conditional with data structure manipulation andhraperations.

Ex: if (@) z=posCar*q [1];
<for+cm> Loops with method invocations.
Ex: for (intj=0;j<max; j++) { inff); }
<for+ds> Loops used to manipulate a data structureex: for (inti=0; i <5; i++)
{ qfil=alflil; }
<for+ds+mat> Loops with math operations under data stored irirnat vectors.
<for+ds+cm> Loops with method calls used to define contentsafdata structure.
<loop+cm> Loops with conditional test, in which methods areoked.

Ex: while (test) { }

<switch-case>

Lines of code used to define a switch-case conitistructure.

<try/catch>

Lines of code used to exception treatment.

44

Figure 3.4 (a) shows a block of Java code, whiatiop@s the copy of the content
from a vector to another vector. According to thessification presented in Table 3.2, it
was classified as <for+ds>. The same behavior eatielscribed in a single code line in
Python and Matlab, as shown in Figure 3.4 (b). Bmsplification is possible because
the interpreters and compilers provide by theséstae able to treat that. This allows,
for example, that the user manipulates a matrix @smitive type in Matlab.

for (int i=0; i<5; i++)

{

ali] = li; | g=r

a) Java Code b) Python Code
Figure 3.4: Example of <for+ds> lines of code

From this analysis, we observed also lines of ctidg could be automatically
generated using templates, e.g. the lines for éxtegdreatment and conditional
structure of typeswitch-case in Java code. These structures were classified as
<try/catch> and <switch/casem Table 3.2. Skeleton of code can be automatic
generated using templates for both cases.

3.2.1.1 Craneresults

The crane is used as case study in chapter 2 andatme UML model and Java
implementation are used in the analysis presengd. The analysis results for the
Crane control application are summarized in Tab®e Bis important to notice that this
implementation reuses a library to solve floatirgnp operations. As the library was
reused, these lines of code were not considertdsranalysis.

Table 3.3: Crane analysis results

Classes/Interfaces Total AG WD

Crane 20 8.93% 6 30% 14 70%
Controller 77 34.38% 22 28.57% 55 71.43%
Cranelnitializer 10 4.46% 6 60% 4 40%
Consolelnterface 11 4.91% 7 643.34% 4 36.36%
BreakInterface 8 3.57% 5 62.5% 3 37.50%
AngleSensorinterface 19 8.48% 12 63.16% 7 36.84%
positionSensorinterface 19 8.48% 12 63.16% 7 36.84%
MotorInterface 6 2.68% 6 100% 0 0%
SWPosCarMin 6 2.68% 5 83.33% 1 16.67%
SWPosCarMax 6 2.68% 5 83.33% 1 16.67%
PosCarMin 6 2.68% 6 100% 0 0%
PosCarMax 6 2.68% 6 100% 0 0%
DesiredPosition 6 2.68% 6 100% 0 0%
DeltaPosCar 6 2.68% 6 100% 0 0%
VcCheck 6 2.68% 6 100% 0 0%
ParameterTimeOut 7 3.13% 5 71.43% 2 28.57%
Diagnoser 5 2.23% 5 100,00% 0 0%

TOTAL 224 100% 126 56.25% 98 43.75%

45

Table 3.3 presents the total number of lines ofecdde number of lines of code
automatic generated (AG) and written by design#®) for each class used in the
crane implementation. From these results, we obsetivat more than 40% of the total
lines of code of the crane were classified as WBiciv means that these lines of code
must be described by the designer. Moreover, thelteeshow that for 8 classes from
the 17 classes that compose the application, timebad of lines of code written by
designer (WD) is too small, being around 0 and 1T¥is is because theses classes
represent shared resources and define only at#tsband methods to access its
attributes. For the classes that present a langebar of WD lines of code, a detailed
analysis was made and is presented in the remairfitigs section.

The Controller class has 77 lines of code, which represents 3¢ &&he total lines
of code in the whole application. The main parthef application behavior, which is the
control algorithm, is encapsulated in this classbléck of code from the&ontroller
class is illustrated in Figure 3.5. The analyssults show that 28.57% of the lines of
code of theController class can be automatically generated. The rentgabnlines of
code (71.43%) are classified as “Written by Desifyrfé/D) and then, they must be
described by the designer. The result obtainedhferController class is illustrated in
Figure 3.6(a). From the 55 lines of code, 10 limes used to vector initialization
(<im>), 6 lines are loops to vector manipulatiorfof<ds>) and 10 lines are loops
where vector are manipulated through methods (d®r¢m>). In addition, 11 lines are
conditionals and 14 are method invocations.

public class Controller extends RealtineThread {

public Controller () {
super (nul |, rel Parans);
/1 do initializations (A B, X K kp, g...)
}
private int controll () {
int posdesired = Crane. desiredPosition.get();
poscar= Crane. positionSensorlnterface.read();
mul _Bx();
mul _y();
i f (EnergencyMde)
z= softfloat.fl oat Add(poscar, softfloat.floatMil (0x4500, q[1]));
el se
z= softfloat.fl oat Add(poscar, softfloat.float Ml (0x4500, alfa));

for (int i=0; i <5; i++) {
qli]= aifi]; }
return(VC_tenp);
}
public static void mul _Aq() {
for (int i=0; i <5; i++) {
ql[i]= 0;}
int Iin=0;
for (i=0; i <5; i++) {
for (int j=0; j < 5; j++)
gql[i] = softfloat.floatAdd(ql[i], softfloat.floatMl (Al lin+], q[j]));
i n+=5;
}
}

... Il more code ...

Figure 3.5: Example of analyzed code: Controllessl

46

The analysis results for tierane class are illustrated in Figure 3.6(b). From tBe 2
Java lines of code of this class, 6 can be autoailbtigenerated because they represent
the class header and method declarations. Froml4heemaining lines of code,
classified as WD, 8 are responsible for the obgeeation (<co>), 5 are method calls
(<cm>), and 1 is a loop in which there is metholl ic&ide (<loop+cm>). Figure 3.7
illustrates the results for the analysis of thea@mmg classes.

Controller Class Crane Class
Total: 77 (22 AG + 55 WD) Total: 20 (6 AG + 14 WD)
55 =3 <iv> + 14 <cm> + 1 <ret>+ 10 <im> 14 =8 <co> + 5 <cm> + 1 <loop+cm >

+ 6 <for+ds> + 10 <for+ds+cm>
+ 6 <for+ds+cm>+ 4<if+cm> + 1 <if+iv>

(@) (b)

Figure 3.6: Analysis results obtained of @entroller andCrane classes

Cranelnitializer

Total: 10 (6 AG + 4 WD)

4 \WD=4 <cm>

BreakiInterface

Total: 8 (5 AG + 3 WD)

3WD =3 <iv>

Consolelnterface

Total: 11 (7 AG + 4 WD)

4 WD =2 <cm> + 2 <co>

AngleSensorinterface

Total: 19 (12 AG +7 WD)

7WD = 2 <co> + 1 <cm> + 1<iv> +3 <for+cm>.
PositionSensorinterface

Total: 19 (12 AG +7 WD)

Figure 3.7: Analysis results for Crane classes

3.2.1.2 Address Book results

An Address Book application is another case stuidye application allows the
storage of information about contacts, such as naddress, phone, and birthday.
Besides that, it checks for birthdays in the momthn a given-day. This application
includes an alarm and a calculator that performgpk math operations. Figure 3.8
presents the class diagram for our Address BookidBe the classes presented in this
figure, a class calle@onsole was used in the implementation to facilitate regdihe
values from the keyboard. Since the behavior impleted by this class could be reused
from a pre-exiting class or library, this class was considered in this analysis.

47

Table 3.4 presents the complete results obtainethéoanalysis of the lines of code
for each Address Book class (total number of lioesode, number of AG and WD
lines of code. The results show that 66.21% ofAtldress Book lines of code must be
written by the designer. We observed that the AskBeok presents a better
distribution of lines of code among the classes whempared to the Crane, where
many classes have little number of lines of codd #me algorithm behavior is
encapsulated in a single class that contains 2888 tifies of code.

TirmerListenas Alarmihm
- — — -alarm: Alarm
£ +t|meEIapsed(t.T|r£rL|sj_ i -alarmHandler: AlarmHandler = null
/ 3
target -
Alarm
TimerLis -active: boolean
timer —alarmTime: long
-interval: long ; -alarmHandler: AlarmHandler

-timer: TimerLiz
-calendar: Calendar

AddressBook alarrmHandler: alarmlhm
I}
-zizedg: int
-addrezzBook: AddressEntry AlgrmiH ancier
1 +Shooted(): void
addBook [}
addressBook .
.
N AddressBookHIM "y
.
-addBook: AddressBook N
AddressEntry —
yo Application
-name: String addBookHIM
-phone: String Calendarlis] -calcHIM: CalculatarHin
-home: String - +Application)
-birthday: Date -novw: Calendar e——calendar TN ErgE: String[]) void
-date: Date .
+runi): waid
1 +Shooted() void
calcHImM +printhdenur: void
Caleulator CalculatorHim
- -nme s int
-num1: !nt cale -numz2; int
-num2; int -
-result: int result: it
’ -calc: Calculstar

Figure 3.8: Address Book Class diagram

The results show that for simple classes, compbetgde can be automatically
generated. The entitiddarmHandler andTimeListener, for example, are interfaces and
define only the methods that must be implementetthénclasses that implement these
interfaces Alarm and Application in the Address Book). For that reason, 100% of the
code for them can be automatically generated. TagséddressEntry represents the
contact of the Address Book, defining the attrisuiigelds) stored for each contact and

the methods used to access these fields. In this fwt lines of code can be generated
for this class from the class diagram.

48

The classAddressBook has 100 lines of code, in which 21 are classiiedAG and
79 as WD. This class defines the data structureined to store allAddressBook
contacts, here represented AddressEntry objects, and provides methods to insert,
remove, and search elements in this structure. Mervelepending on the used data
structure, the implementation of these methodeiffAs this implementation does not
use the Java collection libraries, these methods wefined by the designer. The Java
API has several classes to store collection of dathprovides methods to add, remove,
search elements for each of theses classes. Thieemwhlines of code written by the
designer could be reduced with the use of classes the Java library. In the class
AddressBook, the use of a pre-defined data structure, instéaal simple array, could
reduce in 63% the number of lines of code writtgrihe designer.

Table 3.4: Address Book analysis results

Classes/Interfaces Total AG WD
Application 49 9.68% 15 30.61% 34 69.38%
Calendar 37 7.31% 18 48.65% 19 51.35%
Calculator 17 3.36% 7 41.18% 10 58.82%
Calculatorlhm 61 12.06% 16 26.23% 45 73.77%
AddressBook 100 19.76% 21 21% 79 79%
AddressEntry 32 6.32% 32 100% 0 0%
AddressBooklhm 113 22.33% 20 17.70% 93 82.30%
Alarm 35 6.92% 18 51.42% 17 48.57%
Alarmlhm 42 8.30% 12 28.57% 30 71.43%
Timer 16 3.16% 8 50% 8 50%
TimerListener 2 0.40% 2 100% 0 0%
AlarmHandler 2 0.40% 2 100% 0 0%
Total 506 100% 171 33.79% 335 66.21%

3.2.1.3 Results Analysis

The experiments presented in section 3.2.1 denaiadinat a large number of lines
of code cannot be automatic generated from the UMidel. Those lines represent
most of the method behavior. In the Crane caseysthis number represents 40% of
the whole application, but this number can varyoading to the used SW architecture.
In the Crane model, several classes are used telmbdred resources and that do not
encapsulate any behavior. For that reason, 100%odé can be generated for these
classes, increasing the percentage of AG linesaé ¢or the Crane application.

In the Address Book case study, only 171 (33.798&)sl of code out of 506 (100%)
can be automatically generated. Consequently, 66.@flthe lines are written by the
designer. It shows that the challenge of generatgudg depends on the application and
how it is organized. This case study demonstrdtasthat the choice of data structure
impacts on the number of lines of code generatédnaatically. This comes from the
fact that, when data structures are reused, thethads can be reused, avoiding the
need for the designer to implement methods for siatecture manipulation.

This study aims to propose an appropriate abstracthat could be used to
complement the UML models, in such way that congptetde could be generated from
them. Usually tools use programming or action laggs to do this. Both have the
disadvantage of the fact that the designer needpdoify the behavior by a code block

48

that is not smaller than the used in the final Enpéntation. This happens because
action languages do not provide a higher abstradéwel than those provided by the
programming languages themselves (e.g. C++, Jdu@, The analysis presented in
section 3.2 was useful to observe the kind of Wiedi that are usually found in
embedded applications. In the next section, we geegorms to abstract these lines of
code in order to improve the capabilities of codmeayation from behavioral UML
diagrams and allow full code generation from them.

3.3 Proposed code generation approach

Most part of the approaches for code generatiore wlefined for the first versions
of UML (1.4 and 1.5). They do not have formal setitanallowing different
interpretation from UML models. In addition, thegersions do not provide a way to
link the several behavioral diagrams in order fovalan easy capture of the system
behavior. The latest version of UML2 proposes a waljnk several sequence diagrams
in order to allow the capture of an execution segagwhich turns able the definition of
code generation methods from sequence diagrams.

In addition, the previous sections discussed thstieg gap between UML models
and the final implementation in the target progranmgmlanguage, showing that
additional information should be inserted in thed®loin order to allow the complete
code generation from that. In this context, we pegphere an approach for full code
generation from UML2 models, which uses abstrastimndescribe the behavior of the
methods. The flow of the proposed approach iseotesl in Figure 3.9, which starts
from the application model described using UML dégs. After that, the designer
refines this model, specifying the behavior for noels using an abstracted language
called BRISA BRIdging the Semantic Abstraction). Finally, the resulting model is used
as input for the code generator that generatesiodtie target programming language.

Application
Model

Model designer
refinement

Code _
generation | automatic

y

ode at targat
language

Figure 3.9: Proposed UML-based code generation flow

50

The ultimate objective is the definition of a cageneration method able to generate
complete code from a high-level model of an embddggplication, which provides an
automatic way to obtain the final implementatioonfrthe model. The use of the UML2
notations to define the system behavior is adddess¢he section 3.3.1. Section 3.3.2
presents the abstraction that must be providedRigB.

3.3.1Using UML2 notations for code generation from sequece diagrams

UML2 defines thirteen types of diagrams, dividetbithree categories: six diagram
types represent static application structure; theggesent general types of behavior;
and four represent different aspects of interastioAs the focus here is on the
improvement of capturing the dynamic applicatiohdeor from the UML model, only
behavioral and interaction diagrams are cited.

Behavior Diagramsinclude the Use Case Diagram (used by some meéltigide
during requirements gathering); Activity DiagramgdeState Machine Diagram.

Interaction Diagrams, all derived from the more general Behavior Diagra
include the Sequence Diagram, Communication Diagrdiming Diagram, and
Interaction Overview Diagram.

The UML2 specification puts more emphasis on thmasics and, in particular, in
the key area of basic behavioral dynamics. Withemolution of the UML modeling
language, new notations and constructions wereogexh Since we are interested in
generating code from sequence diagrams, our foets \will be on the new features
included in this diagram.

Figure 3.10 shows an example of UML2 sequence diagit looks much the same
as the sequence diagrams in UML 1.x, as theylsile lifelines, messages and other
similar notations, but there are some apparenemdiffces. In the UML2, the sequence
diagrams can be divided in fragments. Notice thst fiox at the upper left hand corner
of the diagram. It is a new notation specifying tteane of the fragment by the use of
the operator <sd>, in the example, “sd Q”. Using mlame of the fragment and another
operator called <ref>, as shown in Figure 3.10eot#equence diagram can reference
this fragment. In this way, different sequence diags can be linked, defining the
application execution flow.

sd Q
[sd P/
[Lifeline 1 | Lifeline 2|
— T
—
] |
@ \L

Figure 3.10: Combining different iterations notagdn a same diagram

51

sd DemoConditional J

Computer PrinterServer Printer :Queue
Print ifile) —— Print (file) E i
alt | 1
[printer free] Print (file) i 1
[| e i
S

Figure 3.11: Representing conditionals in UML 2.0

In Figure 3.11, there is another sequence diagmsted within a larger one. It has
the operator <alt>, which is short for "alternatiyé/then/else) and applies to the nested
fragment. The dashed line is used to delimitateaternative fragments and, if the
guard evaluates to TRUE, then the upper part dfftagment is executed. Otherwise,
the lower part will be executed. The loops are datéd by the operator <loop>.
Together with the operator, a boolean expressi@mdjtional) or a minimum and
maximum index can also be specified. Figure 3.1®vshan example of the use of the
<loop> operator, where the operations inside ofitlo@ are repeated four times. These
notations allow specifying conditionals and loopstlhe sequence diagrams. Besides
that, the <par> operator can be used to specifgllphfconcurrent) behavior.

sd Demoloop

opl ()

loop (1,5) op2 ()

op3

Figure 3.12: Representing loops in UML 2.0

We considered the UML2 notations for the sequenagrams previously presented
as an important improvement for the UML behaviodédgrams. They enable the
capturing of method invocation sequences in a s@ena whole application execution

52

flow, barely from the sequence diagrams. These netations make possible to do
links between model and code, reducing the gapdetvboth and facilitating the code
generation.

Besides the sequence diagram, the activity diadrasngained attention in UML2.
Activity diagrams are similar to flowcharts and dae used to define the behavior of
methods (algorithm), once these diagrams also atlwavspecification of loops and
conditionals. However, it is important to noticatlihe use of very detailed diagrams
require so much time to build that the designer mpesfer to specify the algorithm
directly as code in the target programming languag&ML 2.0, the activity diagram
semantics is oriented with Petri nets semanticslefines activities and actions that
produce and consume tokens rather than on statschde explicit modeling of
control and object flows are new in UML 2.0, rephacthe use of state transitions in
previous versions of UML activity diagrams. Gre&@®@5) proposes the use of this
diagram to specify dataflow.

3.3.2Bridging the semantic gap

As the experiments in section 3.4 demonstratedyge mumber of lines of code
must be written by the designer using the trad#tiaccbde generation approaches. In
order to address it, a more abstract language dmeildsed to make the lines of code
specified under the UML model more abstract than ghogramming language. This
could motivate the designer to use the UML-baset® @eneration approaches.

The analysis of two applications developed in Javayidely used programming
language, allows identifying and classifying theelicodes. Observe that several lines of
code can be replaced by only one line in langudiges Matlab or Python, which
provide abstractions to manipulate matrix and ve¢see Figure 3.1). In this case, a
library that provides functions to perform operatounder matrix can be used to
facilitate the production of implementation for $lee operations. As embedded
applications involve math operation with matrixése use of higher abstraction to
describe these operations allows reducing the sipe@t in the specification.

Experimental results show that the use of a compoliterary with the UML model
can reduce the number of hand written lines of adod#% (BRISOLARA, 2005b). To
indicate the reuse of components, stereotypes earsdd in the UML diagrams. In this
way, the designer does not need to describe thavimehfor the methods marked as
reused, since an implementation is already avalabl a library. In addition, as
proposed in (MATTOS, 2004), a library with pre-aefil components implemented in
different ways and pre-characterized for a giverhiéecture can support design space
exploration and the generation of more efficierdecor this architecture.

In the AddressBook application, several routineshsas search in a data structure,
sorting elements, insertion and removal of elemeaisd can be reused from libraries,
avoiding the hand-coding. The results of the amalperformed on this application
show that a reduction of about 63% on the linesoole of a class can be achieved when
operations to manipulation of data structure aused. According to the classification
of the lines of code required to be written by deers, abstractions are proposed in
order to facilitate the specification of the methmhavior and reduce the total lines of
code that the designer is asked to specify.

Some lines of code responsible to create objecto>x can be generated
automatically, using the information from the clagiagram like the definition of

53

attributes and the relationship between classesedder, the creation of static objects
also can be automatically generated. However, tlojeented implementation can have
also dynamic allocation and, in this case, thetmmraf objects must be specified by
the designer.

All the lines of code that represent method invimea{<cm>) can be obtained from
the sequence diagrams, where method calls are tosesow the iteration between
objects. The instructions classified as <for + coan be specified with a sequence
diagram or with an activity diagram. For example.an UML 2.0 sequence diagram,
loops can be described and the method calls capdwfied inside of them. Loops and
conditionals can also be captured from sequeneetority diagrams, as exemplified in
section 3.5.1. In these cases, only the graphataltion is required.

On the other hand, the instructions <for + de>,clvhiormally are described in 2
lines in Java, could be described in a single lisang a language that facilitate the
manipulation of matrixes and vectors. An examplshiswn in Figure 3.4, where a loop
(for) is used to copy the elements from a vectoariother vector. The new version of
the Java language also provides functions to dupg between vectors, so a single code
line can do the same. Similar abstraction can leel us loops that perform a vector
initialization. The example illustrated in Figurel3(a) and (b), show two version of
Java code for a vector initialization. The sameecoduld be described in Python or
Matlab using a single line like as a=0 or a=[0,00,0; O]. In this case, a loop is not
required to describe the initialization.

For (i:=0;i,<5;i++) a[0] = 0;
{ a[1] = 0;
a[i] = 0; a[2] = 0;

} a[3] = 0;
a[4] = 0;

(@) (b)

Figure 3.13: Matrix/vector initialization in Java

Matrix and vector multiplication are common opesatin embedded application
that evolves signal processing. Figure 3.14 ilatss an example of vector
multiplication in Java, where two nested loops @sed to do the operation. A function
can be defined to facilitate the specification ovextor or matrix multiplication, as
shown bellow.

Mul(a,q); // multiply vector a and vector g

for (i=0; i <N i++)
{
for (int j=0; j < N, j+4)
tnp[i] +=a[j] * q[j];

Figure 3.14: Vector multiplication in Java

54

In this case, a pre-compiler can be used to véngynumber of lines and columns of
variablesa andq and to generate the correspondent Java code asiemplate. The
same approach can be used to perform matrix muahipbns, simply using the pre-
compiler to determine the appropriate templateuphothe analysis of the number of
lines and columns found in the matrix. Figures Jafhd 3.15 show an example of vector
multiplication and matrix multiplication, respeatly. Both Java codes could be
produced through the use of templates.

for (i =0; i <N i++)
{
for (j =0; j <N j++)
{
temp[i][j] = 0;
for (k =0; k < N k++)
temp[i][j] += mi[i][k] * mR[K][]];

Figure 3.15: Matrix multiplication in Java

Furthermore, notations could be used in the UMIgidias to indicate the necessity
of creating structures like <switch/case> and <ti¢h>, as exemplified in Figure 3.16.
In this way, from the UML diagrams, skeleton of eodould be automatically
generated.

sd P’

L] L]
try/catcly | a
b
e
___________ S g
d

Figure 3.16Try/catch notation in sequence diagrams

3.4 Concluding remarks

In this chapter, UML-based software generation epgies were discussed and a
proposal to solve a limitation found on these apphes was presented. However, this
proposal leads to the extension of the programna@nguage or the definition of a new
one. We consider that the definition of anothergleage could deviate the main
objective of this thesis, once our main focus igl@modeling approach and strategies
for automating the embedded software design frordeiso

Moreover, a more detailed analysis of the evolutbthe Java language allowed us
to observe that some abstraction proposed heral@ady treated by the new versions
(Java 5 and Java 6) of the language. This analysmvs that, in the future,
programming languages will also provide very higisteaction.

58

So, we have given up these ideas, although weveelieat this proposal could
obtain good results. This happened when the adthdrthe opportunity to work in the
development of a code generator based on Simulihis has shown to be a very
interesting study, so we decide to follow this rtevead.

In the next chapter, a Simulink-based code germaraipproach will be presented,
which allow one to generate multithread code tamgeimultiprocessor architectures,
something that is not provided by RealTime Works(dATHWORKS, 2004).

56

4 SIMULINK-BASED EMBEDDED SOFTWARE
GENERATION

Nowadays, several embedded systems make extensige ofi digital signal
processing, requiring a language that supportsdtitaflow model of computation.
However, despite several efforts to extend UML rieodeling dataflow applications,
UML still does not cope very well with this model computation, as discussed in
chapter 2. In this context, we propose a Simuliakeal embedded software generation
approach targeting multiprocessor systems.

The main motivation of this work is the fact thagtérogeneous multithreaded
multiprocessor SoC (MPSoC) architectures are bewgnain attractive solution for
embedded systems. As indicated by Jerraya (2088Y, provide highly concurrent
computation and flexible programmability. Howevemaking software for
heterogeneous multiprocessors in MPSoC platformsnasv becoming a major
challenge. The main causes for this are the difficaf parallelizing target applications,
the software adaptation to different processorsmntbcols, the short design time, and
low cost implementation.

In addition, the majority of MPSoC applications ueg a large amount of memory
that may heavily affect the cost and the power eomion. Communicating threads are
distributed in a MPSoC architecture and the comgations among them impact also
on system performance. This indicates that annsatied code generation method,
which can generate efficient multithreaded code antbmatically adapt it to the
heterogeneous processors and protocols, is indiapkn

We propose a Simulink-based multithread code génarapproach. Our goal is to
address those software programming difficulties augport the development of
efficient embedded software targeted to heterogen&PSoC platforms. To meet hard
requirements for memory size and performance comyntbund when designing
embedded systems, memory usage and communicatiomzgiions are proposed to be
applied during the code generation. Some resulte peblished in (BRISOLARA,
2007a).

We have chosen Simulink as a tool for specificaiod simulation mainly because
it is widely accepted to specify complex systenmg] eaan be considered as a standard
tool in the signal processing domain. It offersed of algorithms for a variety of
applications, and is powerful to specify data-isigea and control-dependent
algorithms. From a Simulink model, one can genesasingle-thread code targeting a
single processor platform using Real Time Works(®pW). Another tool called Real-

58

Time Interface for Multiprocessor Systems (RTI-MB)SPACE, 2005) automatically
generates software code from a specific Simulinidehdor multiprocessor systems.
However, the generated software code aims at aifspacchitecture consisting of
several commercial off-the-shelf (COTS) processmards, where the main purpose is
high-speed simulation of control-intensive applcas.

The proposed multithread code generation approah developed during a PhD
internship, being part of a major project develop¢d IMA Laboratory. The project
proposed a new MPSoC design flow based on Simuhhich is detailed in (HUANG,
2007). The Simulink-based multiprocessor SoC delimm is presented in Figure 4.1
and starts with Simulink modeling (step 1) to mak8imulink application model from
a target application specification. The Simulinlpligation model is transformed into a
Simulink combined application/architecture modeA&B). That is an unified model,
which combines aspects related to the architechadel, i.e. processing units available
in the chosen platform, into the application model, multiple threads executed on the
processing units. This happens in step 2. In ste&fnlulink parser parses a Simulink
CAAM and generates a Colif CAAM, which is a XML-lmak intermediate
representation, as defined in (CESARIO, 2001). ixfeads, Hardware architecture
generator (step 4) produces the multiprocessor hardwareitaotbre models. These
models are composed of CPU subsystems, HW subsysteamory subsystems, and
communication network between them, all at différaiostraction levels. On the other
side, Multithread code generator (step 5) generates a multithreaded code and a main
code. The latter is responsible for creating thseadd initializing communication
channels through hardware dependent software (pldi@)tives.

I Application specification I (i) -
5 7]
Simulink modeling -
‘ F—
I Simulink algorithm model I
>]
gl Partitioning & Mapping }:

Simulink CAAM

]

®

Simulink parser

)

Colif CAAM

Hardware

v
4
architecture generator]

?

v
Multithread
code generator

]._

Virtual Architecture

i v
HW library -
Transaction Accurate Model OsS library
- Somp. subsystems y « Thread library
« Comm. channels - :
Virtual Prototype + Comm. library

Figure 4.1: Simulink-based MPSoC design flow (HUANRBO7)

5¢

The main objective of the Simulink-based MPSoC grefliow is to support a mixed
hardware software refinement procedure. It stagmfthe Simulink CAAM and uses
three abstraction levels to refine the system, ¢wimg a high-level specification down
to detailed low-level implementation. These absioaclevels arevirtual Architecture,
Transaction-accurate model, andVirtual Prototype, and are generated by tHardware
architecture generator. The Hardware architecture generator is detailed in (HUANG,
2007) and is out of the scope of this work. Sinbhe focus here is on software
generation, thélultithread code generator will be detailed here.

Firstly, section 4.1 describes the combined apfitinaarchitecture model (CAAM),
which is used as input for thilultithread code generator. The multithread code
generation flow is presented with detailed steps settion 4.2. Proposals for
optimization on memory and communication are prisknn section 4.3 and 4.4,
respectively. Section 4.5 presents experimentsopraed with theMultithread code
generator.

4.1 Combined application architecture model

Traditional design flow makes use of two separatedefs: application and
architecture. The application is generally spedif@es an application model made of a
set of multiple cooperating threads (or tasks).hEat them performs a subset of
functions of the application. The multiple threadshe application will be mapped on
the target architecture, which can be specifiedaaset of processor subsystems
interacting via communication network. The procesadbsystem contains processing
unit, specific I/O and different hardware composeotspeed up communication.

Popovici (2007) proposes combining these two modelsa mixed hardware
software architecture, where the software threadsnaapped on the abstract CPU
subsystems, as shown in Figure 4.2. The result imieed hardware software
architecture model at a very high-level represestatwhich is called combined
algorithm/architecture model (CAAM).

= Simulink application model m Target Hardware Architecture
CPU-SS 1 CPU-SSn
———— —Bus — —1] C—— ——ecus — —

| Physical interconnect |

| Partitioning 1
?ﬁ = = » Modeling
SHI e }

CPU-SS1 CPU-SS2

T1 T2 T3
= Combined Application/ e (F) F
Architecture Model @ F.

Abstract communication platform

Figure 4.2: Combining application and architectmadels (POPOVICI, 2007)

60

In the proposed Simulink MPSoC design flow, we dyegbe CAAM using a three-
layered hierarchical Simulink model. The first laygescribes a system architecture,
which contains CPU subsystems and inter-subsystammunication channels (Inter-
SS COMM). The second layer describes a CPU sulmyatehitecture, composed of
software threads and intra-subsystem communicatiamnels (Intra-SS COMM). The
third layer describes a software thread using Sitkidlocks and data links.

Figure 4.3 shows an example of CAAM. In this exanpghere are four CPU
subsystems (CPUO-CPU3) and six Inter-SS COMMs (CH®) in the first level, and
seven threads (i.e. TO-T6) and three Intra-SS CONIMA46-CH8) in the second level.
To simplify the view, the Figure 4.3 only illustest the Simulink blocks that compose
the threads TO and T1, allocated for CPUO and Ckéshectively. To represent mixed
hardware and software model in Simulink, four kimdsspecific Simulink subsystems
are defined as followings.

* Processor subsystem, which includes one or more thread subsystems #
processing element such as RISC processor and M$Ricessor subsystem is
refined to a CPU subsystem, e.g. processor, lacabhd local memories, by the
Hardware architecture generator.

» Thread subsystem represents a thread on a processing unit. Thisystdm
includes one or more Simulink blocks used to regmeghe thread functionality.
A thread subsystem is refined to an OS dependeeadhby theMultithread
code generator.

e Inter-Subsystems Communication (Inter-SS COMM), which includes one or
more Simulink data links, represents the commuinathannels between CPU
subsystems. An Inter-SS COMM is refined to a hardweommunication
channel by theHardware architecture generator and software communication
port(s) to access the channel by Maltithread code generator. HWFIFO is a
communication protocol that transfers data via waré FIFO. GFIFO is
another one that transfers data via a shared memmwdya global bus, and
synchronizes via mailboxes.

* Intra-subsystems Communication (Intra-SS COMM), which includes one or
more Simulink data links, represents communicatbannels between threads
on the same CPU subsystem. An Intra-SS COMM isnedfi to OS
communication channel(s) by th#ultithread code generator. SWFIFO
represents a software FIFO.

These subsystems are normal Simulink subsystemshwlb not affect the original
functionality, annotated with several architectpaameters, e.g. processor type and
communication protocol. Currently, this transforioatis manually performed by using
the Simulink graphical interface and relies ondksigner’s experience. For example, to
make a thread subsystem, the designer can clusterad Simulink blocks into a
Simulink subsystem by a shortcut key and then ateotThread” as type to the
subsystem through a parameter setting.

Currently, the environment supports three commuigioa protocols: GFIFO,
HWFIFO, and SWFIFO. GFIFO (Global FIFO) is an irseibsystem communication
protocol that transfers data using a global memaryus, and mailboxes. The data
transfer is divided into two steps. First, the GRlihe source subsystem writes data to a
global memory, and sends an event to the mailboxhén target subsystem. After

61

receiving the event, the CPU in the target subsysteads the data from the global
memory, and sends another event to the mailbolxa@rsburce subsystem, notifying the
completion of the read operation. HWFIFO is alsoirgar-subsystem communication
protocol that transfers data via a hardware FIF@/F&O is an intra-subsystem
communication protocol based on software FIFO.

CPUO (ARM) CPUL1 (Xtensa)
CHO(GFIFO)
T
CH1(GFIFO)
G ®
CH2(GFIFO)
I
L *
CPU2 (ARM CPUA4(Xtensa)
CH4 (GFIFO) CH7(SWFIFO)
e,
CH3(HWFIFO, —§
() CH6(SWFIFO]
73 |e < -, |CHS(GFIFO)
..,1 Ea N CHB(SWFIFO) ™
Processor Inter-SS Intfa-SS Thread
Subsystem Comm. Comm. Subsystem

Figure 4.3: A Simulink CAAM example (HUANG, 2007)

4.2 Multithread code generation

Our multithread code generation metheds designed as an extension for the code
generation method presented in Han (2006b), whschbie to generate sequential C
code from Simulink models. We used a restricteduBitk subset in our modeling,
which was defined in (HAN, 2006a) to represent glatata and control dependencies
precisely. This Simulink subset includes blockslagg links, If-action subsystems
(IAS), and For-iterator subsystems (FIS), as wesllaaglobal clock that controls the
execution of blocks and delays. This model is basethe Abstract clock Synchronous
Model, ACSM (HAN, 2006a), and can be statically esttied and its memory can be
also statically allocated during the code genematio

Multithread code generator produces a set of C thread codes, a main C catl@ an
Makefile for each CPU subsystem. The proposed soéveode generation is made in
three steps, as illustrated in Figure 4.4. Firsthe Smulink parsing traverses the
Simulink CAAM and generates a Colif CAAM that isedsas intermediate formdh
the second step (Thread code generation), the dltkin a thread-SS are scheduled
statically according to data dependency and the gesherator produces a C code. The
generated threads are dynamically scheduled byOtBescheduler according to the
availability of data for the input port or space fioe output port. In the third step (HdS
adaptation), a main code and a Makefile is genérfmeeach CPU-SS. The main code
is responsible to initialize the threads and thmmainication channels among them. To
build an executable software stack, the generatallefile compiles the thread codes,

62

the main code and links them with an appropriat& Hidrary built for the target CPU
subsystem, as shown in Figure 4.4. This approacidshat the designer needs to
adapt the software code to different processorspots, and distributing data and
code.

Designing embedded systems requires concern witth t@nstraints for memory
size and performance issues. Hence, we proposgiagmphemory and communication
optimizations techniques to reduce memory sizeianpfove performance, during the
code generation. Both optimization proposals aesgmted in section 4.4 and 4.5.

(simulink CAAM (.mdl)] 0
v

@ Simulink parsing I
v

([colf cAAM (xml)]

2 3
q)rhread code generation I <[> HdS adaptation I

Threads, Threads, Threads, Main code, Main code, Main code,
@& © © -
P Makefile , j< 3 HdS,
»(Makefile , |« HdS,

» Mak:filen le—{ Has, |

4
[SW binary 1] [SW binary 2] e [SW binary ,]

SW stack for SW stack for SW stack for
CPU SS, CPU SS, CPU SS,

Figure 4.4: Multithread code generation flow

4.2.1 Simulink parsing

Smulink Parser parses a Simulink CAAM model (Figure 4.5(a)) amhgrates an
equivalent intermediate format called Co-designdumge Independent Format (Colif)
(CESARIO, 2001), shown in Figure 4.5b. Colif is MX-based meta-model used as
intermediate format in the whole proposed Simuliased design flow.

To generate a multithreaded code communicating atth other, the Simulink data
links with Inter-SS COMM or Intra-SS COMM are tréated to a pair of send and
receive operations. Simulink parser reads an i§maulink CAAM (Figure 4.5(a)) and
inserts send (“S” in Figure 4.5(b)) and receive”(iiRFigure 4.5(b)) blocks into a Colif
CAAM. Thesesend andreceive blocks are scheduled together with the other Idank
the Thread code generation, as will be explaineskation 4.2.2.

63

CPU1

CHO(GFIFO)

CH1(GFIFO)
I O ~®
CH2(GFIFO) T

- »E—]7
9

(a) Simulink CAAM

(b) Colif CAAM with communication blocks

Figure 4.5: Simulink parsing

4.2.2 Thread code generation

The thread code generator automatically produc€scade for each thread, which
includes memory declaration and behavior code $er-defined blocks, communication
blocks, and pre-defined blocks. First, our toolarates memory declaration(s), where a
memory space is declared for each data link acegri its data type, e.g. char, short,
int, etc. The allocated memory is used to storeitipeit and output data of Simulink
blocks. Afterwards, a behavioral code for eachatirés generated according to the
scheduling result, which statically determines ithacation order of blocks according
with data dependency.

Figure 4.6 illustrates an example of Thread codesg®ion. Each link in the Figure
4.6 (a) is annotated with a buffer name and its.gtor example, E2(3) means buffer E2
with size 3. Figure 4.6 (b) shows the code gendriiethread TO. Line 1 declares port
data structures used to promote the communicaliofine 2-4, buffer memories are
declared. For a user-defined block (i.e. Simulintu&ction), our tool generates a
function invocation corresponding to the block #®-in example) and maps the
allocated memories for the input and output linkghe function arguments. When a
pre-defined Simulink block is used, e.g. adderfeaction subsystem (IAS), C codes
corresponding to the specific blocks are gener@tegse for the IAS in example). The
code generator can handle a large subset of pmeedefSimulink blocks such as
mathematical operations, logical operations, diednéocks, etc.

64

// port declaration

1: extern port_t *in0, *in1, *in2, *out0, *out1;

2:int cond, int E1[6]; // mem declaration

3: int[5] E7; int[4] ES, E9, E3;

4: int[3] E2, E4, E5, E6, E10;

5: while(1) {

6: recv_data(& in0, E9, 16); //RO(E9);

@ cond(1) Eo(4) 7: recv_data (& in1, E8, 16); //R4(E8);
Jrog— -..// R3(E2);

. 8: FO(cond); F1(E1);

9: if(cond){ F2(E1,E3);

10: F3(E3,E9,E5); }

11: else { F4(E1,E4);

12: F5(E4,E6); }

13: if(cond) E10 = E5;

@ @ E,(5) 14: else E10 = E6;
(&) 15: F6(E2, ES, E7);
E2(3) 16: send_data(&out0, E10, 12); //S1(E10)
... J/S2ET7)

17:}
a) Colif CAAM b) Thread Code of TO

Figure 4.6: Example of thread code generation

For communication blocks, e.g. send and receivekislaiscussed in section 4.2.1,
our tool inserts communication primitive invocatodefined in Table 1sénd_data and
recv_data in the example). These invocations promote the nsonication between
different threads, which can be in the same CPWa(isubsystem) or in different CPUs
(inter-subsystems). The arguments of the commuboitgtrimitives, determined by
Simulink Parser, are port data structure addressnany address allocated, and data
transfer sizeFor example, the code generator generates ling R@dblock where the
associated port data structuren®, output buffer is E9, and the transfer size ib{i@s,
as shown in Figure 4.6(b).

As proposed by Han (2006b), we extended the egistataflow-based scheduling
methods for Simulink models to support nested-domhls and loops. In the used
scheduling algorithm, all blocks in the input madetluding all threads, are scheduled
together according to their precedence dependéhB{ is invoked prior to S1 in TO,
as shown in Figure 4.7(a), and R1 is invoked ptoSO in T1, as Figure 4.7(b), a
precedence loop is introduced (R81-R1—-S0—-R0) in the system, causing
deadlock. In the proposed scheduling algorithmpRi&st be invoked after SO, as shown
in Figure 4.7(c), because they have a precedenmpendency even if it is across two
threads. Our approach guarantees that any pamigioof the algorithm model has at
least one deadlock-free schedule.

To guarantee that, designers are asked to builddehthat has no precedence loop
without a Delay block, following the ACSM model defd in (HAN, 2006). This
model is composed of a network of state-less fonstiand delays. Delays are used as a
temporal barrier, like registers in a synchronausudt. This makes possible to describe
the functionality of a system deterministically @pendent of the time taken for each
function.

65

void Ty() { void T,() { void T,() {
while(1) { while(1) { while(1) {
Ro(Ee); R1(Eqa); So(Z0);
S1(Eqo)s So(Zy); R1(Eqq);
) -})
} } }
(a) Thread T, code (b) Thread T, code (c) Thread T, code
with deadlock without deadlock

Figure 4.7: Multithread deadlock problem

4.2.3HdS adaptation

The Hardware-dependent software (HdS) is respandibl provide architecture-
specific services such as scheduling of applicatitorads, communication inter and
intra-CPU, hardware resources management and toMuttithread code generator
produces a high-level multithread code independénihe architecture details through
the use of high-level primitives provided by an Hd8ary. To execute the generated
code on a target MPSoC platform, the thread codesild be linked with the
appropriate HdS library that provides architectdependent implementations for the
high-level primitives.

The HdAS library should provide the high-level ptines summarized in Table 4.1.
Using these primitivesMultithread code generator generates a main code, which
initializes thread and channel data structures. @&@file, linking the generated thread
codes and main code with an appropriate HdS libiargiso produced.

The HdS library includes HdS APIs, an Operatingt&ys (OS), communication
software and a HAL (Hardware Abstraction Layer)eTperating System is composed
of a Thread Scheduler and an Interrupt Service iResit(ISR). We first assume that
there are pre-built HdS libraries, each of whickaigeted to a specific CPU. Currently,
we have targeted the HdS library to ARM7 and Xtepsacessors. As mentioned
before, the current HdAS library supports three camigation protocols: GFIFO,
HWFIFO, and SWFIFO.

Table 4.1: HAS primitives

Types Primitives Description
thread_create Create software thread

Thread

thread_resume/thread_suspend Resume/suspend thread

send/receive data from/to port with

send_data/recv_data o
- - specific protocol

L send/receive event, e.g. data transfer
Communication

send_event/recv_event completion, from/to port with
specific protocol
port_init/channel_init initialize port/channel daaucture

ISR_attach/ISR_dettach attaqh/detach interrupt service
Interrupt routine

intr_enable/intr_disable enable/disable interrupt

66

Figure 4.8 shows an example of the main code anklefMa generation. Figure
4.8(a) shows a Colif CAAM example that containsrf@PU subsystems and seven
threads. Figure 4.8 (b) and (c) illustrate the mamde and the Makefile for CPUO,
respectively. The main code performs interrupt gegtions (SR_attach in example),
channel initializationgchannel_init in example), initialization gort_init in example),
and thread creationshfead _create in example) according to the CAAM model. The
Makefile defines directives for the compilation thie generated code, e.g. setting the
compiler to be use and the files to be compiledbating to the CAAM model. The
Makefile for CPUO shown in Figure 4.8(c) compile8 dode and the main code with
ARM compiler and links them with the ARM HdS libyasince the processor type for
this subsystem was set as ARM in the CAAM modgj{Fe 4.8(a)).

CPU 0(ARM) CPU 1(Xtensa)
CHO-2(GFIFO)

CPU 2 (ARM) CPU 3 (Xtensa

e
CH3
(HWFIFO)

CH7 (SWFIFO)

4

CH5
(GFIFO)

CH6(SWFIFO)
T3 [%< .

CH4 CH8 (SWFIFO)
(GFIFO)

(a) Simulink CAAM

CC = arm-elf-gcc // ARM C compiler

channel_t ch3, chO, chl, ch2;
void main() {
channel_init(&ch0,GFIFO, ...);
channel_init(&ch1,GFIFO, ...); FLAGS= -DCPU=ARM7 -DDEBUG

SRCS=T0.c main.c //file to compile

channel_init(&ch3, HWFIFO, ...);

thread_create(T0, ...): LIBS=libhds-arm.a // library HDS

thread_exit(); }
(b) Main code for CPUO (c) Makefile for CPUO

Figure 4.8: Main and Makefile code generation

The Makefile also enables to link the generatedithutad code and main code with
application library including user-defined functibodies and appropriate HdS library.
In this way, with the proposed software programmeryironment, one can build
binary files that are executable on the targetrbgeneous MPSoC, making designer
free from laborious programming work.

4.3 Memory optimization

Since the majority of MPSoC applications requira@e amount of memory that
heavily impacts on the cost and the power consumpsioftware memory optimizations
are essential technigues to design cost and poffestiee embedded systems. In this
section, we focus on memory optimization techniguregenerating thread code. As

67

proposed in (HAN, 2006b), two memory optimizati@chniquescopy removal and
buffer sharing can be applied to reduce the required data mesipeyduring the code
generation. These techniques, firstly proposedsiiogle-thread code generation, were
extended for multithread case and integrated inMuwitithread code generator. With
this integration, théThread code generation is composed of four steps, as explained
bellow.

The example illustrated in Figure 4.8 is used tgl&r these optimization
techniques. Figure 4.9(a) represents Colif CAAMioead TO and Figure 4.9(b) shows
the generated code without optimizations. Figui®(c}.and 4.9(d) shows generated
code with copy removal and buffer sharing, respebti

o 1: while(1) {
cond(1 Ey(4) 2: recv_data(& in0, E9, 16); //RO(E9);
@ IASO |_ 3: ... IR3(E2); R4(E8);
v 4; FO(cond); F1(E1);
{ E3(4 (FaNEQ) 5: if(cond){ F2(EL,E3);
F10(3
............. - 6: F3(E3,E9,E5);}
tIASL . :
Y. E 7: else { F4(E1,E4);
Ey(6) ,._2./5'(3 £y 8 F5(E4,E6): }
@ @) 9: if(cond) E10 = E5;

@ @ E,(5) @ 10: else E10 = E6;
12: send_data(&out0O, E10, 12) //S1(E10);

— 13: .../IS2(E7);
(a) Colif CAAM da T, 14:}
(b) Original C code of T,
1: while(1) { 1: extern port_t *in0, *inl, *in2, *out0, *out1; // port declaration
2: recv_data(& in0, E9, 16); //RO(E9); 2: int mp[15]; /' memory pool
3: .. IIR3(E2); RA(ES); ii Vo'ﬁ_IT((’i)) {{
)] . . while
4: FO(cond); F1(E1); 5 FO(cond); /[time O
5: if(cond){ F2(E1,E3); 6 ..
6: F3(E3,E9,E10);} 7. F6(&mp[1], &mp[4], &mp[8]); I time 3, F6(E2, E8, E7)
7. else {F4(E1,E4); 8: send_data(&outl, &mpl[8], 20); [time 4, S2(E7)
8 F5(E4,E10);}]':3)0 recv_data(&in0, &mp[5], 20); Il time 5, RO(E9)
9: F6(E2, E8, E7); 11: send_data(out0, &mpl[5], 12); /I time 9, S1(E10)
10: send_data(&out0, E10, 12) //S1(E10); 12: }}
11: /IS2(E7);
12:}
(c) C code of T, after copy removal (d) C code of T, after buffer sharing

Figure 4.9: Thread code generation with memorynoigation techniques

Step 1. Copy removal: A Simulink CAAM may includentrol blocks (e.g.
“Switch” and “Selector”) and delays (e.g. “Unit dgf) that introduce copy operations
between the input buffer(s) and the output bufjeiese pre-defined Simulink blocks
are required to represent explicit conditionalsomps. Copy removal technique allows
the input and output buffers to share the same mesmace. After applying it to the
model, the input buffers “E5”"(line 6 in Figure 403 and “E6”(line 8 in Figure 4.9(b))
of switch “Fsw” in Figure 4.9(a) are merged witk dutput buffer “E10” (see line 6 and
8 in Figure 4.9(c)). This merge operation removeslines of code 9 and 10 of Figure
4.9(b), as shown in Figure 4.9(c).

Step 2. Scheduling: The original static schedulimgs modified in order to
maximize buffer sharing in step 3. Figure 4.10(@)ves a buffer lifetime chart for the

68

TO illustrated in Figure 4.9(a). In this chart, therizontal axis indicates the invocation
sequence, i.e. scheduling result, and the vertg# indicates the buffer memory
address location. Each rectangle denotes thentiéetinterval of a buffer memory.
Intuitively, the scheduling objective is to make tlattest point as thin as possible.

Step 3. Buffer sharing: The code generator perfarifetime-based buffer sharing
algorithm for each thread. This technique allows twffers within the same thread to
share the same memory space if their lifetimes disgint. Since buffer sharing
problem is NP-complete (OH, 2003), an heuristiogatgm is required to solve it. We
use an extension of the LOES heuristic algorithmppsed by Oh (2003) that can
consider the conditionals in a Simulink model. Fegd.10(b) shows a buffer lifetime
chart after applying buffer sharing to the TO ma@égure 4.9(a)).

Step 4. Code Generation: Thread code generatoupesdhread codes according to
the results of the previous steps. As the buffarialy is applied in the model, the
memory declarations into the code follow the buffiearing results.

Han (2006b) proposes some memory optimization igakes during single thread
code generation. We extended here these optimizatio order to apply them in the
multithread code generation. The used memory opétian techniques are extensions
of the existing dataflow based scheduling meth&i3Z, 1995)(BALASA, 1995) for
handling data-intensive and control-dependent taxgplications.

offset
A

33 H H
3
30 =S
ol e |: A
27 f H offset
Eo |:
23
6,
E, (6) 15
Ey (4) E, (6)
13 . | E;6) !
E, (5) 1
5@ I 5 [e 50 Ee®]
4 3]
1 E, (3) E2@®) |E3(4) 8O
cond (1) > cond (1) —
0 1 2 3 4 5 6 7 8 9 10 time o 1 2 3 4 5 6 7 8 9 10 lme

FO R3 R4 F6 S2 RO F1 F2 F3 S1
F4 F5

FO R3 R4 F6 S2 RO FL F2 F3 S1
F4 F5

a) b)
Figure 4.10: Lifetime chart of TO (a) after schedg) (b) after buffer sharing

Our multithread code generation supports only digcmodel with a global clock.
We do not handle any other models such as disanettel with multiple clocks and
event-driven model, since the conventional memariinuzation is hard to apply to
them.

4.4 Communication optimization

When the number of processors increases in a MP3b€E, overall system
performance heavily depends on the performance omfintunicatios among the
processors. Therefore, communication optimizaterhniques are required to improve
the system performance. Message Aggregation (MA) Viastly proposed in

69

(HIRANANDANI, 1992) and it is a well-know communitan optimization in the

parallel computing and distributed systems domaiter that, a compiler that integrates
several communication optimizations, such as Messaggregation and Message
Coalescing, was proposed for distributed-memorytirgoimputers in (BANERJEE,

1995).

In the proposed multithread code generation, whe®imaulink functional model
consists of fine-grain functions and it is partigal into several processors, the Simulink
parser will insert a large number of communicatimodes that exchange messages
through communication channels. Consequently, tle@nneunication overhead
increases, which impacts on the system performandethe required memory size. In
this context, Message Aggregation can be applieshdrease the granularity of data
transfers, reducing the communication overhead.

The cost for a data transfer in terms of executioie can be divided in start-up cost
(synchronization cost) and effective data transfist (rate *length). The start-up cost
does not depend on the number of bytes sent. Mes&ggregation (MA) combines
messages with the same source and destinatiomasiog the granularity of the data
transfers and amortizing the start-up cost. Coresattyy this technique can reduce the
total amount of communication overhead in termsxécution time. Moreover, this
technique can reduce the software data structused to represent the channels to
promote and manage the inter-processors commumnsatiFor example, a H.264
decoder Simulink CAAM with 6 CPUs requires 85 dstiauctures for communication
channels, which impacts on data memory size.

Figure 4.11 presents a motivational example. Figuté(a) shows a partitioned high-
level model, which consists of functional nod€x)(communication nodesS{ for
Send operation, ar@x for Receive operation), and links between thenme®applying
Message Aggregation technique on the model depint€ture 4.11(a), the high-level
model shown in Figure 4.11(b) is obtained. Figurgl&k) and 4.11(d) illustrate the
codes obtained from the two models. As result i&f dptimization, the fivesend nodes
(S0-4) were grouped in a single nod&r'l), as shown in Figure 4.11(b). Consequently,
the five Send primitives of Figure 4.11(c) are replaced for owige Send in Figure
4.11(d), which sends all the five messages in @lesione, thereby reducing the
communication overhead in execution time and tlygired software infrastructure by
the use of larger messages and by the reductidimeomumber of channels.

In order to reduce the cost for inter-processor roamication, we integrated the
Message Aggregation optimization technique in oonuBnk-basedMultithread code
generator. In this way, our code generation method allow® da amortize the
synchronization cost by reduction on the numbene$sages, thereby reducing the total
amount of communication overhead in the executiome.t This optimization also
decreases the memory size by the reduction ofslaiatures required to represent the
communication channels. Figure 4.12 shows the glfiba of our Multithread code
generator, after the integration of Message Aggregation.step

70

CPU1 channel CcPU2
T1

T10(
recv (RO,8); /irecv
recv (R1,8);
F1();

ﬂ
»
)\ 4

send (SO0, 8); //send 8B
send (S1, 8);
send (S2, 8);
send (S3, 8);
send (S4, 8);

n)(»)(»0)(n

VvVVvyY

}

(a) Fine-grain specification (c) Code without message aggregation

CPU1 channel CPU2
%) R T T2

TK
recv (RT1,40); /irecy
F1();

\ 4
v

}

®

®

@ send (ST1, 40); // send 40B
®

®

(b) Fine-grain specification after message aggregation (d) Code with message aggregation

Figure 4.11: Motivational example

[simulink cCAAM (mdi)]

@? Simulink parsing I

v

[colif cAAM (xml)]

@? Message Aggregation I

3 4
CPfhread code generation I q) HdS adaptation

[Binary codes]

Figure 4.12: Multithread code generation flow afigssage Aggregation integration

Message Aggregation traverses the Colif CAAM andgag messages whose source
and destination are identical, and with no depecidsnbetween them. Applying
Message Aggregation on the Colif CAAM illustrated Figure 4.13(a), the CAAM
illustrated in Figure 4.13(b) is obtained. In tkisample, the Send nod& and <2 in
TO have the same source and destination threadshan they are merged in a single
node §12). As the result, two messages are grouped intoredecing the start-up cost
and the software data structures to perform tha glahsfer. Similar group operation is
performed for the receive nodR% andR2 in T1, as shown in Figure 4.13(b).

71

Thread code includes memory declarations for lewkd behavior codes for nodes in
the CAAM. With the integration of the Message Aggaton step, th&hread code
generator producesmemory declarations according to the CAAM resultahtthe
Message Aggregation step. When Message Aggregatioot applied, a buffer memory
is declared for each data link with its data typdime 1 of Figure 4.13(c). Otherwise, a
structure is declared to combine all buffer mensdennected to the input (output) port
of a merged Send (Recv) node. As an example, ttaesttaicturenl0 is declared for the
merged nodesl2 in line 3 of Figure 4.13(d). This structure comdsrthe input buffer
memoriesn8 andm9 of nodeS12.

(b) Colif CAAM after MA

1: char mO[1]; int m1[4];
2:// decl m2,m3,m4, m5, m6, m7 1: char mO[1]; int m1[4];
3: int m8[4]; int m9[8]; 2:/l decl m2,m3,m4, m5, m6, m7
4:T0 () { 3: struct {int m8[4]; int m9[8]; } m10;
5: while (1){ 4:T0 () {
6: FO (mO0); F1 (m1); 5: while (1){
7. recv (m5,8); //RO 6: ..
8: if(mO){ 7: recv(m5,8); /IRO
9: F2(m1,m3); F3(m3,m5,m6); m8=m6; 8: if (mO){
10: else 9: F2(m1,m3); F3(m3,m5,m6); m10.m8=m6;
11: F4(m1,m4); F5(m4,m7); m8=m7;} 10: else
12: recv (Mm2,32); F6(m2, m9); 11: F4(m1,m4); F5(m4,m7); m10.m8=m7;}
13: send (m8,4); //S1 12: recv (Mm2,32); F6(m2, m10.m9);
14: send (m9,32); //S2 13:send (m10,36); //S12
15:} } 14:}}
(c) T, Code without MA (d) T, Code with MA

Figure 4.13: Thread code generation with Messaggegation

72

After memory declaration, a behavior code is geteerfor each thread according to
the scheduling result. For communication nodes, tloele generator produces
communication primitives callssénd_data/recv_data), as shown in the line 13 of
Figure 4.13(d), where the source for the mergeder®8i2 is the data structureslO.
Consequently, the functions that produce datahigrimerged node use elements of this
data structure as output, as shown in line 12 géifei 4.13(d), wher€6 generates part
of the data to be sent for this node. Similarlyg Becv nodes can be also grouped and,
in this case, a data structure should be declarstbte the received data.

As previously mentioned, Message Aggregation tepimireduces software channel
structures and consequently, reduces the requiaga hemory size. However, this
technique can increase buffer memories. For examylien a Send node (e.§l) is
grouped in two different merged nodes (&2 andS13). Both of them are connected
to different thread destinations, its buffer membegomes to be duplicated in two data
structures, and used for each Send operation.€ffa@st is discussed in the experiment
section 4.5.4.

To avoid deadlock, out tool merges Send (or Reodgen into another Send (or Recv)
node only when all of them have no precedent degnyd Figure 4.14 illustrates the
deadlock problem. As the no&?2 has precedent dependency viRhin Figure 4.14(a),
when both are grouped in the same merged nodeadiad has occurred, as shown in
Figure 4.14(Db).

(a) A Colif CAAM (b) A Colif CAAM with deadlock

Figure 4.14: An example of deadlock by Message agation

4.5 Experiments

To show the applicability of our software genemtftow and the effectiveness of
the proposed optimizations, we used two data-intensipplications: Motion-JPEG
video decoder and H.264 video decoder. For bothlicghions, we developed a
Simulink functional model, and validated their ftinoalities with Simulink simulation
environment. After that, we transformed the Simlmodels into Simulink CAAMs
according to the chosen platforms. Section 4.5dsgmts the MIJPEG and H264
applications and the built CAAMs, while section .2.%resents the used platforms.
Memory optimization and Message Aggregation resaies presented in section 4.5.3
and 4.5.4, respectively.

73

4.5.1 Applications description

45.1.1 Motion-JPEG video decoder

M-JPEG decoder decodes a bit stream encoded by $HE{nage compression
algorithm. From reference C code, we developednaulik application model, which
has 7 S-Functions (user-defined blocks), 7 del&gs,data links, and 4 if-action-
subsystems. From this Simulink application modebimulink CAAM was built using
Simulink graphic interface. Figure 4.15 illustratke built CAAM. This model contains
one ARM7 and two Xtensa CPU subsystems commungdtirough one GFIFO and
one HWFIFO, as shown in Figure 4.15(a). CPU1 subsyscontains two threads
communicating through software FIFO, as shown igufé 4.15(b). Figure 4.15(c)
shows the Thread2 subsystem, which is composedhuaili@k blocks and links. These
figures are presented in detail in Appendix B.

<} Block Properties: Threadl

<} Block Properties: CRU1

IGeneraI] [Euuck Anncnahun] [Ca\lbacks]

[G eeeee Il [Blo:k Annatationl [Cal\backs]

Usage
Description: Text saved with the block in the
Priority: Specifies the block's order of execution

Uszage
Description: Text saved with the block in the mod
Priority: Specifies the block's order of execution t
the same model
Tag: Text that appears in the block label that Sim Tag: Tex that sppears in the block label that 57

the same model

Description: Description:
RezourceType=THREAD

ResuurceT‘y’pe:ARl\.ﬂ.‘{

vagaes

(D
Out4

Out2
Out2
outt—»(2)
Qut]
outs—»(3D
Out3

R CLE Outs
In2

n4 Outd Outé
Thread1 SWFIFO Thread2

(b) CPU1 Subsystem

(a) CAAM Simulink Model for M-JPEFG — Top level

Figure 4.15: Simulink CAAM for Motion-JPEG decoder

45.1.2 H264 video decoder

The H.264/AVC video coding standard has been deeeloand standardized
collaboratively by both the ITU-T VCEG and ISO/IEGIPEG organizations
(WIEGAND, 2003). In our experiment, we used an H.2&coder, which is based on
the Baseline Profile for video conference and videme applications.

H.264 decoder receives an encoded video bit straad iteratively executes
macroblock-level functions. They are variable léndecoding (VLD), inverse zigzag
and quantization (IQ), inverse transform (IT), s&atompensation (SC), motion
compensation (MC), reconstruction (REC), and ddbiag filter (DF) to construct a
video image sequence (WIEGAND, 2003), as illusttateFigure 4.16.

From the dataflow illustrated in Figure 4.16, a 8limk functional model of the
H264 decoder was built. This model includes 83 Sefions, 24 delays, 310 data links,
43 if-action-subsystems, 5 for-iteration subsysteamsl 101 pre-defined Simulink

74

blocks. Each functional block of Figure 4.16 cotss&f one or more S-Functions or pre-
defined Simulink blocks. From this functional sgieition, we built five different
CAAM models, varying the partitioning and the numbé processors from two to six
CPU subsystems. The motivation for that was théoeapon of the design space of the
H264 video decoder. Section 4.5.3.2 and 4.5.4 glkguits obtained in this exploration.

4 times

I I Function(s)

Luminance
DF | — Data flow

1st 8x8 luma
REC

1st 8x8 luma
I 1Q/1T |

I
VLD
“
MC/SC

Global Macroblock
ctrl & VLD VLD

2 times

I

Chroma U Chroma U
REC DF

Figure 4.16: H.264 decoder block diagram

4.5.2 Target platform

Each CPU subsystem defined in the CAAM model is posed of Processor, Local
Bus, Local Memories, PIC, Timer, Mailbox, and Netwdnterface (NI). In order to
support simulation, the Simulink-based design flG(IWANG, 2007) provides SystemC
TLM models for these Hardware components by a caorapblibrary. This includes
instruction-set simulator (ISS) for Xtensa and ARMcessors.

The multiprocessor platform architecture is buily blardware architecture
generator through instantiation of several CPU subsystemisc@inected to a bus.
Figure 4.17 shows a platform architecture used tfeg Motion-JPEG decoder,
composed of three CPUs and a global memory. Indlghitecture, the GFIFO and
HWEFIFO protocol are used for inter-processor comication.

CPU1 (Xtensa) CPU2 (Xtensa) GFIFO CPU3 (ARM7)
(4MB~8MB) (8MB~12MB) (1GB~1GB+64MB) (12MB~16MB)
Xtensa Xtensa ARM7
Mem Mem MemO Mem
ISS PIC ISS PIC _ - ISS PIC -
L 1 1 1 i 1
- - -
[] - -
Bus Bus | [Mailbox Bus 1 Bus
bridge bridge bridge bridge
eIl | LT

| HWFIFO1 AMBA bus HwWEIFO2 |

Figure 4.17: MPSoC Platform used for the Motion-GREecoder

Similar multiprocessor platforms were built for HR6/ideo decoder. In the
experiment with this application, we have modifted number of processors to explore
the design space of the H264 decoder and to obsieeveffects of these optimizations
in different MPSoC platforms. These platforms acenposed of Xtensa processors

75

communicating through GFIFO channels. At the beigmnwe profiled the execution
cycle with a single processor system (SS1). Weitjparéd the Simulink algorithm
model and built a Simulink CAAM with two processurbsystems (SS1, SS2) based on
the profile result. Similarly, we continued to ltufimulink CAAMs by increasing the
number of processors from two to six. The differpattitioning versions were done
manually.

4.5.3Memory optimization

For checking the effect of memory optimization teicjues, we generated seven
versions of C codes for each Simulink CAAM: oneggrthread version with Real
Time Workshop (RTW), three single-thread codes witghMultithread code generator,
and three multithread ones with the same generalable 4.2 specifies all
configurations used in the experiments. We compdadh generated thread code by
ARM GNU C compiler and Xtensa C compiler and meadwiata memory and code
memory sizes. In both applications, we mappedriage buffers into a global memory
and we traced only on-chip memory that heavily cffeon the chip area and cost.
Memory optimization results obtained for Motion-IPEnd H264 are presented in
section 4.5.3.1 and 4.5.3.2, respectively. Besittes memory size, performance
obtained for the generated codes are also presentbdse sections to show the impact
of the proposed memory optimizations on this issue.

Table 4.2: C code generation with 7 configurations

| Name Configuration for code generation
1 |RTW RTW
2 |S1 Single-thread without optimization options
3 |S2 Single-thread with copy removal
4 |S3 Single-thread with copy removal and bufferisiga
5 |M1 Multi-thread without optimization options
6 |M2 Multi-thread with copy removal
7 |M3 Multi-thread with copy removal and buffer singr

45.3.1 Motion-JPEG video decoder

Figure 4.18(a) shows the relative data memory sideglotion-JPEG decoder for
the seven configurations defined in Table 4.2. He single-thread case, the data
memory is composed of buffer and constant memofiks. buffer one represents the
memory necessary to implement the Simulink datks|invhile the constant memory
represents the memory for Huffman table in the BWUPEG library. Our code
generator with full optimization options (S3) redacthe total data memory size by
50.9% compared to RTW. Note that RTW provides diniyted memory minimization
techniques, so the data memory size of the C cedergted with RTW is relatively
close to that with our tool without optimizationtmms (S1). In the multithread case, the
reduction obtained for configuration M3 comparedRiBWV is 27.7%. In the multithread
case, the reduction obtained for configuration M&pared to RTW is 27.7%. Notice
that, even though the multithread code requiresitiaddl buffers and channel
memories, it gave such gains against the singkatted code generated with RTW.

In the single-thread case, one thread and onecappln library represent the whole
implementation code. However, for multithread cabe, total code size is increased

76

because it is the sum of all thread codes, mairegodpplication library, and HdS
library. Our memory optimization techniques alsoduee the code size as a
consequence of using the copy removal techniqugsrd=4.18(b) shows the relative
code memory sizes of Motion-JPEG for the seven igardtions. Compared to

configuration S1, S3 achieves 6.2% of reductiorcode size. In multithread case, M3
presents 1.8% code memory size reduction comparedrifiguration M1. Experiment

results show that the proposed memory optimizatechniques are effective for
multithread code generation, reducing both datacaaé sizes.

‘ @ Constant M Channel O Buffer ‘

‘I:I App. library B HdS library O Thread+main

106.6 277.7 272.4 272.7

120,0 T 100 90.3
4.7K) (4.2K) (5.0K) 300,0 - (16.6K) (16.3K)(16.3K)

100,0 724 723

(3.4K) (3.4K) 250,0 1

80,0 +

56.2 49.1

200,0 A
(2.6K) (2.3K)

150,0 + /100 853 80.0 80.2
(6.0K) (5.1K) (4.8K) (4.8K)

40,0 100,0 ~

20,0 | 50,0

0,0 -

0,0 - RTW s1 52 53 M1 M2 M3 RTW S1 S2 S3 M1 M2 M3
a) Relative data memory size (byte) b) Relative code memory size (byte)
450,0 ¥ 403,6
400,0 1 327,0

350,0

300,0

250,0

165,2 165,0

150,0 103,8 103,7

L1
1
L1
200,0 |
e
1000 £

1

50,0 -

0,0 -

RTW S1 S2 S3 M1 M2 M3

¢) Execution time (Mcycle/sec)

Figure 4.18: Data memory size, code memory sizeeaxrdution time of Motion-JPEG
decoder with single- and three-processor platforms

Multithread multiprocessor solutions are used tbiee better performance. To
evaluate the impact on performance, we obtainedntiraber of cycles required to
decode 30 frames QVGA Unicycle JPEG stream for eamifiguration, which are
presented in Figure 4.18(c). Regarding copy remtaainique, configuration S2 (M2)
shows 49.4% (55.9%) execution time reduction coexgbéw S1 (M1). This result shows
that copy removal technique improves significarittg performance of the generated
code, especially when there are copy operationsdeat large-sized arrays. Compared

77

to RTW, the configuration M3 shows 3.89 times fagierformance because of the
concurrent execution and the memory optimizatiomictv also impacts in performance.
The multithread solution with all optimization aptis (M3) is 1.60 times faster than
single thread one with all optimization options XS3his result is less than our
expectation mainly because two subsystems transfessive data through global
memory using processor load/store instructions,GEIFO. The required bandwidth is
19.0 MB/sec and the processors averagely spen¥barl 25.3% of the run time for
computation and communication, respectively. Thset rie idle time, waiting for
available data or space.

45.3.2 H264 video decoder

Firstly, A H264 Simulink CAAM with four CPU subsysts was used to show the
effects of memory optimization on the code generatgh different tool configuration
(see Table 4.2). Figure 4.19(a) shows the relatata memory size, where “Constant”
represents VLD tables. In the single-thread cdseconfiguration S3 achieves 70.9%
data memory size reduction compared to RTW. In rindtithread case, the code
generator with full optimization (M3) reduced theatal memory size by 66.7%
compared to that without optimization (M1). Regaglicode memory size, shown in
Figure 4.19(b), configurations S3 (single-threadegaand M3 (multithread case) show
19% and 20% code size reductions compared to SMdndespectively. These results
also show the effectiveness of the proposed menogtymization techniques in
automatic code generation for both single-threatiranltithread cases.

Figure 4.20 presents the performance results adafrom the H264, with four
processors for each code generation configuratioshows the number of cycles
required to decode 30 frames QCIF H.264 streamtipfatessor implementation with
configuration M3 is 2.15 times and 3.04 times fagierformance compared to the
single-processor one with configuration S3 and AR respectively. The required
bandwidth is 12.1 MB/sec, and the processors spenind 63.7% of the run time in
computation and 13.7% in communication.

‘DApp. library B HdS library O Thread+main

‘ O Constant @ Channel O Buffer ‘

125.9

200 - 110,3 140,0 (99.5K)
h 100 98,8 (29,71 105.3 105.9
(27,00KR6,6K) 1200 00 97.7 .

100,0 - 79.0K)77.2K)
— 79.0 78.7

(62.4K)(62.1K)

~

100,0 ~

80,0 -

40,0 -

20,0

N 0,0 -
RTW S1 S2 S3 M1 M2 M3 RTW S1 S2 S3 M1 M2 M3

(a) Relative data memory size (byte) (b) Relative code memory size (byte)

Figure 4.19: Data memory size and code memorydSize264 decoder with single-
and four-processor platforms

78

334,1
350,0 329,3

i
300,0
! 236,8 236,8

250,0 ¥ —

200,0 |
150,0 - 110,1 109,7

100,0

Execution time Mcycle/sec

50,0

0,0 -

RTW S1 S2 S3 M1 M2 M3

Figure 4.20: Execution time of H.264 with singledaour-processor platforms

To explore the design space of the H.264 decoder, designed several
multiprocessor platforms by increasing the numdeKtensa processors from two to
six. Figure 4.21 presents memory sizes with diffeneumbers of processors. In the
figure, B represents a multiprocessor platform witprocessors, varying from 2 to 6
Xtensa subsystems. Figure 4.21(a) shows data mesipeg obtained varying the
number of processors and the configurations opfions1, M2 and M3. It shows that,
when the number of processors grows, the data mesize also increases due to the
increasing of the number of required channel buffegmories and channel data
structures. Regarding code size, similar effect banobserved in Figure 4.21(b),
because the number of threads also increases aotite number of processors grows.
This, as a consequence, increases the numbeeafdifes.

The performance results obtained for each platfeerme also evaluated. To obtain
performance results, we simulated the executiorthef generated codes under the
chosen platform (P2-P6) using instances of XteB&adimulator. Figure 4.22 illustrates
the number of cycles required to decode QCIF H.28dam at a frame rate of 30
frames/second for each platform. The multiprocespatform with six Xtensa
subsystems (P6) and configuration M3 (multithreaith vall optimization options)
shows 2.3 times higher performance compared tdesimgcessor platform (P1) with
configuration S3 (single-thread with all optimizati options). We also compared our
multiprocessor solutions to a single-processor ané we found that the version P6
achieved 56.4% of performance improvement compaoethe single-processor one
(236.8 Mcycles/second). From the design space eapdo, we found that VLD parts
(frame, slice, and macroblock VLD in Figure 4.1@)it the performance because they
are sequential, and it does not pay off to adcagxtocessors.

The performance result obtained for the H264 dec@l®ot appropriate for real
systems, where a frame rate of 15 frames/secondbeamequired. It shows that
optimizations are necessary in the generated aodeder to improve its performance.
Observing that a considerable time is spent withmroonication, we propose here to
apply a communication optimization technique tousthe communication overhead.
Section 4.5.4 presents the results obtained wahritegration of Message Aggregation
in theMultithread code generator.

79

oMl mM2 OM3

29,7

Memory size 20,01

(KBytes) 15,0 1

10,0

5,0 1

0,0~

P2 P3 P4 P5 P6

(a) Relative data memory size (Kbyte)

[EM1(S1) mM2(S2) OM3(S3) |

Memory Size
(KBytes)

(b) Relative Code memory size (Kbyte)

Figure 4.21: H.264 decoder data memory size and owemory size with different
memory optimization configurations and differentmher of processors

200,0 ¢ 1813

180,0 1
160,0 1
140,0 1
120,0 1
100,0 1
80,0 1

60,0 1

40,0 1

20,0 -

0,0

Required Mcycles/second

P2 P3 P4 P5 P6

Number of processor

Figure 4.22: Execution time of H264 decoder (Mcgtdec)

8C

4.5.4 Communication optimization

In this section, the H264 video decoder is usedaasase study. It shows that
performance improvements and memory reductions aat@eved when Message
Aggregation (MA) technique is integrated in the eogkeneration flow used by the
Multithread code generator. In this experiment, the same H264 CAAM modelshwit
two, three, four, five and six CPU subsystems usedection 4.5.3.2 were also
employed. For each one of these CAAMs, we generateld using théVultithread
code generator and evaluated the performance and the memory weprents achieved
when MA is applied during the code generation.

Firstly, we analyze the impact of Message Aggregatin the execution time for the
different multiprocessor solutions. Performancailtesswere obtained by simulation of
the execution of the generated codes under theenhpkatform through the use of
Xtensa ISS simulators. In this way, for each versibgenerated code, we obtained the
number of cycles required to decode a QCIF foremtaa frame rate of 30 frames
/second.

Figure 4.23 illustrates the performance resultstifier generated codes for the five
different CAAM models (P2-P6), with and without Mege Aggregation. The results
show that when MA is applied in our code generaflow, the performance increases
for all five configurations, with improvements frodd% until 21%. For example,
comparing the performance results for P6 with MAl avithout MA (w/o MA), we
found a performance improvement of 21.2% obtaingdth® Message Aggregation
technique. Comparing our multiprocessor solutiorith v& single-processor one, we
found that the P6 version without MA achieved 56.d¢/performance improvement,
while the configuration P6 with MA achieved 65.7%.

\nw/o MA mwith MA \

200,0 1~ 181,3
154,8 156,0

150,0

100,0

Required
Mcycles/second

50,0

0,0 -

P2 P3 P4 P5 P6

Number of processors

Figure 4.23: Performance results for H264 decoder

In order to analyze this optimization in more detave divided all processor
operations into three classes of different funaionComputation (Comp),
Communication (Com) and Idle. All operations in thpplication, including
computation and some memory access, are definedoagputation class. The
communication class represents the operationsifer and intra-thread communication.
In this class, most of operations are launchetbag or store instructions executed in a
processor. Except for Computation and Communicatibe remainder operations,

81

which consist of thread switching and waiting fgnshronization, are classified as Idle.
Table 4.3 shows the percentage of computation (Foognmunication (comm) and
idle per second of the application execution tinmel ahe communication Speed in
Bytes/cycle (average for 1cycle) for each multigssor platform (P2-P6). These
results show that Message Aggregation decreasetintieespent with communication
and accelerate the communication for all multipssoe platforms.

Table 4.3: Computation, Communication and Idle twh&l264 decoder with different
number of processors

with MA w/o MA

comp | comm | idle speed comp| comm idle speed

P2 | 76% | 3.7% | 19.9%| 0.65B/s | 70.5% 12.5% 1799 0.17 B/s
P3| 59% | 5.2% | 35.7%| 0.56 B/s| 55% | 14.7% 30.3% 0.17 B/s
P4 | 64% | 7.4% | 28.4%| 0.57B/s| 58.7% 18.6% 22.6% 0.19B/s
P5 | 57% | 7.4% | 34.9%| 0.56 B/s| 49.9% 17.4% 32.6% 0.19BI/s
P6 | 44% | 7.4% | 47.8%| 0.49B/s| 48.6% 19.2% 44.2% 0.15B/s

Secondly, we analyzed the impact of the Messageregggion in the number of
required communication channels. Figure 4.24(a}ytithtes the effect of this technique
for the different configurations of the H264 mod&2-P6). The results show that
Message Aggregation achieved a reduction on thebeurmf inter-processor channels
of around 90% for all configurations. For exampie, the case with four CPU
subsystems (P4), the achieved reduction is fromto/® channels (92.8%). These
reductions depend on the granularity of each btbek composes the Simulink model
and the chosen partitioning. The reduction on thelmer of channels impacts on the
software infrastructure required for communicatimgucing data memory size. Figure
4.24(b) shows the results for data memory sizeinbdafor the five versions of the
H264 CAAM. These results show a reduction of 1588 14% in the four CPUs (P4)
version and in the six CPUs (P6) version, respelstiwhen Message Aggregation is
applied.

16,0 1 14
14,0 1 . 113 122
3 12,0 1 -
g 10,0 1=
[} 0 ’
s S 80
8 % 60
Qo
g 410]
= 2,0 1
0,0
P2 P3 P4 P5 P6 P2 P3 P4 P5 P6
Number of processors Number of processors
a) Reduction on the number of channels b) Reduction on the data memory size

Figure 4.24: Reduction on the number of channedscemthe data memory size

82

Table 4.4 shows the data memory size of the gestbratde for four CPUs (P4). As it
is a multiprocessor solution, the data memory imposed of Constant, Buffer and
Channel memories. The constant memory representtart tables such as VLD table
used in the decoding algorithm. The buffer memegyresents the memory required to
implement the Simulink data links. At last, the shal memory represents the channel
data structures required to promote the commuicafihe results show that Message
Aggregation can achieve a large reduction on the dé&ructures used to manage
channels (channel in Table 4.4), e.g. 92.8% inctee of version P4, by the reduction
on the number of required channels. It means act&xiuof 14% in the total data
memory size. Note that the required buffer memoinesease by 17% with Message
Aggregation. The reason for this small increadwiefly explained in section 4.4.

Table 4.4: Data memory size in bytes for the soiui4

Without MA With MA
Constant 2172 2172
Channel 3360 240
Buffer 6006 7320
Total 11538 9732

In addition, MA also improves code size by the waun on the lines of code
required to declare and initialize channels anthtmke communication primitives in
Main and Thread codes. As in this experiment, tlweskes represent a small part of the
total code size, which also includes HAS and agftia libraries, this improvement is
too small. In case of P4 version, where ThreadMauh codes represent only 11.5% of
the total code size, MA achieves a reduction ofydhb% of the total code size.
Regarding only Thread and Main codes, a reductigh486 was observed.

4.5.5 Experiment analysis

Our Multithread code generator extracts necessary information such as number of
threads, types of processors, communication charrah the input Simulink CAAM,
and then produces a set of software binaries, @iclhich executes on a target
processor. Consequently, our multithread code gémecan avoid the designers to do
laborious programming work.

In addition, from the experimental results, theeefiveness of the proposed memory
optimization techniques integrated in our multiddecode generator was shown. The
data memory with all optimization options was 34.8%s for a Motion-JPEG decoder
with three processors and 68.0% less for an H.2&bdkr with four processors than
that without optimizations. We can achieve more megnreduction in the H.264
decoder than in Motion-JPEG decoder because a Hi&6dder includes a relatively
larger number of buffers with disjoint lifetimesuOmemory optimizations also impact
the code size, reducing the application code siZ9i4% and 15.8% for H.264 decoder
single-thread and multithread cases, respectivére results for the design
exploration of these applications can be foundHOANG, 2007).

Moreover, experimental results show that MA caniegh a large reduction on the
number of inter-processor data transfers for adireen system specification. However,
this optimization cannot achieve proportional rdduc on the number of cycles

83

required to process one macroblock. One reasaifrs because MA can increase the
message latency in some cases, thereby decreasigynpance. In terms of data
memory size, MA presents a reduction of around 1@&mpared to H264, the Motion-
JPEG is a simple algorithm and has a very smallbarmof channels. This is the reason
for the Message Aggregation technique could notiezeld a large performance
improvement for this application, and then we dbo present the Motion-JPEG results
here.

However, the performance of the presented multgssor platforms is still not
enough for real systems. For example, the digiidw broadcasting system requires
H.264 QVGA decoding with a frame rate of 15fr/sediich is about one and a half
times faster than the platform with four processats93.2 MHz for QCIF 30fr/sec
decoding. The QVGA format is about three times darghan QCIF format. The
platform is pure software approach and thus itdoperance is somewhat limited to
process data-intensive applications. In order tuea® the required performance, we
need to adopt multiprocessor platforms with confidple processors such as Xtensa
with customized instructions to specific applicaBq TENSILICA, 2006). Moreover, it
is important to develop a communication architeztiimat can efficiently handle high-
rate data with large-latency wires to implement kiigh-performance heterogeneous
MPSoCs.

Currently, we analyze the effect of Message Agdiegain the inter-processor
communication using the GFIFO protocol, which isyeto implement both in hardware
and in software. Experiments with other communarafrotocols will be considered as
future work.

84

5 INTEGRATION OF UML AND SIMULINK

UML was defined in the software engineering domeia is by far the most-used
modeling notation for conventional computationasteyns. The comparison between
UML and Simulink presented in chapter 2 shows thisll. presents some advantages
for requirements specification and represents henigbstraction level when compared
to Simulink. Moreover, UML provides all benefitsofn the OO paradigm i.e.
modularity, encapsulation, and reusability. Howewsing UML-based tools, designers
are asked to write code for some methods in olebtain the complete application
code. In addition, although some efforts to extéhdL, it continues to be not well
suitable to model dataflow systems.

On the other side, Simulink supports dataflow aodtiouous time, and the whole
code can be automatically generated from a Simufirddel. Real-time Workshop
(RTW) can be used to automatically generate segueamde from a Simulink model.
In addition, the Simulink-based code generatiorr@ggh proposed in chapter 3 can be
used to generate multithread code targeted to aBd@Rarchitecture from the Simulink
CAAM, which combines algorithm and architecture.

UML and Simulink present advantages for the embedstetware development,
which motivates researchers to find a way to siamdbusly exploit the benefits of both.
Recent efforts show that both languages are coresldstractive for Electronic system-
level design (BOLDT, 2007) (SANGIOVANNI-VICENTELLI2006) (BRISOLARA,
2005b). Reichmann (2004) proposes the integratiomlifferent models in a same
design flow. In another effort to integrate Simuliand UML, the Rhapsody UML2.0
tool has been integrated with Matlab/Simulink, ailog the building of UML mixed
models which can have modules described in SiImyB@LDT, 2007). This allows the
use of Simulink resources to describe signal psingsalgorithms and simulation of
heterogeneous models that can include physical Imdite a plant, while at the same
time UML is used for requirements specificationtiBapproaches focus on the use of
different modeling languages to specify each systerdule.

However, we believe that UML is the preferred |laaggel for software engineers, and
that it could be interesting to use UML as a sirlgleguage for initial specification. In
this context, we propose a way to integrate UML &mdulink in a single design flow,
where UML is used to model whole system and othedets can be obtained from
UML diagrams by model transformation in order ttowl the use of different code
generation approaches for each system modulesUMiebased code generation can
be used to generate code for event-based (coie)-fmodules, using available

86

commercial tools that generate code from stateraimg or FSM models. On the other
hand, Simulink-based strategies can be used ta@eneode for the dataflow modules.
Besides that, the same UML model can be reuseddifterent code generation
strategies to generate code for different platforfiessupport this, mappings from UML
to Simulink and to FSM are required. Figure 5.astrates the proposed design flow for
embedded software development.

Application Platform
model model

¥
| Mapping |
Mapped model
Dataflow I 1 Control-flow
Simulink- K | | K UML-based
based flow translation translation flow

UML tool code

Code generation qeneration

Implementation

Figure 5.1: Proposed flow for embedded softwarestiggment

We also propose the use of UML as front-end forSimaulink-based design flow,
allowing one to exploit the benefits of UML, whilgenerating executable code for
MPSoC from high-level models (BRISOLARA, 2007b).i§kvay, one can avoid the
use of Simulink graphical user-interface to buifdttee Simulink CAAM required for
the proposed multithread code generation, whichbeaan error-prone task.

To support the proposed software development flawmodel transformation
mechanism was defined in (BRISOLARA, 2007b). Fig&r2 illustrates the proposed
flow defined to capture UML and transform it in ettmodeling language notation. This
flow has two main steps and its input is an UML mdolilt using an UML editor tool.
So, the first step is made by the designer usingMh tool graphical interface. In the
second step, the UML model is traversed to findstmctions that can be directly
mapped to the target modeling language e.g. Sikuiirhich is defined in a meta-
model. According to the mapping rules, the UML modetranslated to the target
language, as a model-to-model transformation. ¢feioto be flexible, technologies for
model transformation, such as smartQVT (SMARTQVT0? and ATL (ECLIPSE
DEVELOPMENT TEAM, 2007), should be used to promtitis translation. This step
produces another XML file that follows the targabguage meta-model, which can be
Simulink or FSM, as illustrated in Figure 5.2.

The third and fourth steps shown in the proposed fire specifically tailored to the
generation of a Simulink model from an UML one. Thid step receives as input the
model resulting from the model-to-model transforiomat which follows the Simulink

87

meta-model semantic, and performs some optimizsitioefore generating the final
Simulink model. After that, from the optimized méden mdl file is generated using
model-to-text transformation in the fourth step.thdugh we have focused on
generating the Simulink model from an UML one thepmsed transformation approach
can be extended to support the mapping to othegukeges, such as UML state
diagrams, other FSM-like languages, or KPN.

UML editor
tool

Simulink |
meta-model | ™. | Simulink
model

""" FSM
FSM | 7| meta-model
model

MDL generator optimize

Simulink.
mdl

Figure 5.2: Flow for the proposed model transforamat

To show the feasibility of our proposal, we defimadpping rules able to transform
an UML model in a Simulink CAAM model used as ingat the multithread code
generation. Section 5.1 explains the proposed mgpph addition, a prototype was
developed and experiments were performed usingtbi®type, which are presented in
section 5.2 and 5.3, respectively.

5.1 Proposal of mapping from UML to Simulink CAAM

When the Simulink-based MPSoC design flow preseirtechapter 3 is used, the

Simulink CAAM is built manually by a Simulink GUInterface. From the Simulink
functional model, the designer partitions functiang tasks and groups them into
different subsystems, thus defining threads and pingpthem to processors. To
maintain UML high abstraction capabilities and efiate the necessity of manually
building the Simulink CAAM, we propose the mappingm UML to Simulink CAAM.
It allows software engineers to employ UML to modleé system, which is their
preferred language, besides giving them high aftstra The use of the proposed
mapping avoids the necessity of building or modifySimulink models directly, which
means abstracting low-level details like signald parts.

The proposed mapping can be applied in the flawstithted in Figure 5.2, allowing
one to automatically generate a Simulink CAAM froam UML model. Then,
multithread code can be generated from that. Asvehim Figure 5.2, to apply the
proposed model transformation, the target languaggds to be defined as a meta-

88

model. We defined a meta-model for the Simulink @AAThis meta-model is similar
to another Simulink meta-model already publishe@tNEEMA, 2003), differing mainly
regarding the constructions only required in theABA As the Simulink CAAM is an
extension of the default Simulink model, the pragbsapping and the proposed meta-
model can be used to generate both conventionaCa#dM Simulink models.

The proposed mapping uses information from the Udé@ployment and sequence
diagrams to obtain the Simulink CAAM. Following oapproach, a sequence diagram
must be defined for each thread that composesysters. Both diagrams are used in
the mapping in order to capture the necessary nmton to generate the Simulink
CAAM. Besides the sequence diagrams, activity @agyr could also be used to detail
the behavior of complex algorithms. A didactic exdenis used here to explain the
proposed mapping. Figures 5.3(a) and (b) depictiémoyment diagram and sequence
diagram for the T1 and T2 threads, respectivelye®pply the mapping, the Simulink
CAAM shown in Figure 5.3(c) is obtained.

From the deployment model, the definition of theetfds that compose the system is
captured, as well as the mapping of these threadgrdcessors. In our proposal,
processors and threads are indicated by ti8Ae&ngine>> and <&AschedRes>> UML-
SPT stereotypes, respectively, as illustrated gufe 5.3 (a). For each processor, a
Simulink hierarchical subsystem is created in theA® model representing a CPU
subsystem@PU-SS), as can be observed in Figure 5.3(c). For eagdathmapped to a
processor, &hread subsystemThread-SS) is created inside the corresponding CPU-
SS.

The Thread-SSis composed by Simulink blocks that are used &zi$pits behavior.
To capture the thread behavior, these Simulinkkdand the data flow between them
must be captured. We propose to capture it frornesgce diagrams, once this diagram
represents the messages exchanged between oBjarctis reason, each thread should
have a sequence diagram to describe its behaviaumproposed mapping. The
<<SAtrigger>> stereotype used in the sequence diagram depiotdiure 5.3 (b)
indicates a time event and the invoked method fuckvtheScheduler selects a thread
to run.

Method calls in the sequence diagrams are tramshateSimulink blocks (user-
defined and user-defined blocks) or to communicabtwcks in the Simulink CAAM.
When a method of a passive object is called frorthraad, a Simulink block is
instantiated. To use pre-defined Simulink blockse tesigner needs to indicate its
usage by the invocation of a method from the spetigctPlatform. The name of the
method needs to be equal to the name of the reamsagdonent in the Simulink library.
If the method name does not match with the preadeficomponent names, a Simulink
S-function block is instantiated. An S-Function dave its behavior described in a C
code that is compiled and linked to the model. Ha example illustrated in Figure
5.3(b), thedec and mul methods are invoked from theec and Platform objects,
respectively, by the thread T1. Notice that in tbsulting Simulink, shown in Figure
5.3(c), aProduct block and an S-function were instantiated in thestlibsystem.

The direction of method parameters (in/out) andrétarn are used to define input
and output ports of subsystems and blocks, and agesarguments indicates the
connection (data links) between ports of differ8mulink subsystems/blocks. The a
parameter frontalc method has the direction set as in, so an inprtipereated in T1
subsystem, as shown Figure 5.3(c). In the same iggeturn is mapped to an output

8¢

port in T1 subsystem. Th&d argument is passed as output dalc and also is used as
input formult, which indicates that the value produced by fgsised by the second one
and a connection is created between these ports gdreerating the Simulink model.

CpPU1 CPU2
<<SASchedRes>>| <<SASchedRes>>| <<SASchedRes>>|
T1 T2 T3

<<SAengine>> <<SAengine>>
| bus |

(a) UML Deployment diagram

=<3 Ascheduler== 2eSAschedRes»> <<GhschedRess> | : Platform | | :Dec | 228hschedRes=> 220z
: Scheduler T H] 112 : 10Device

I I
_ Tomain_taskil, |

I I
| | !
=S Atrignerss 20 getvalue(): " l | | ! I
e i — | I ! l
4 get\falue():"x“ ' | I : I
R el s | | | |
| | |
4_—| = calc(a:“:{“}:"m“ | ! | i
| |
(e mult(a=“r1_:,lt:|="y"):"r2" | | |
e e | | |
y O dec(daka:“rz"):“r !
T —— He—— — T "] : '
! I 11: setvalue(a="r3") ! I
I 12 | N |
e e sudl e Hbs oilms soms ot Eams ol
= el | | | |
| | | L |
L | | | | |
L | | : i | |
| 1 qnal.n_task() 18 caIcResuIt(aI:“rS“):"r4"
| | | <=§Atr|gger>> :l
: : | | 16: setvaluel a|ue:"r4“)
| | a1
—————— |—————418—————|———T————<_ |
| | | | o |
(b) Sequence diagram
Thread-SS CPU-SS
Inter-CPU commun. /
/ CPUL "\
T1
S-function S-function

Intra-CPU commun.
(c) Generated Simulink CAAM
Figure 5.3: Example of mapping from UML to SimuliG&AM

When a thread invokes a method from another threhds indicates a
communication between them. In this case, the desig asked to use a default prefix

9C

in the method nameSet or Get, to indicate send or receive operations, respelgtiv
Ports are created in the Thread-SS and an intrar38 inter-SS COMM subsystem is
instantiated, according to the thread mapping. rAfteat, connections are created
between the ports of these subsystems.

In the sequence diagram illustrated in Figure 5,3l invokes the method
getValue() from T3, which indicates that T1 receives datafrb3. As both threads are
allocated in different processors, an inter-SS COMNMck is instantiated in the
Simulink model, as shown in the Figure 5.3(c). Tinethod callsetValue(r3) in Figure
5.3(b) indicates that the thread T1 sends dat&tolie same argumerg is also used
by the decode method, indicating that the valuelypeced by this method must be sent to
T2. As well as, the output of the decode methodtrbasconnected to the T1 output.
This communication is translated to an output gortTl as well as an intra-SS
communication channel is instantiated, since blotbetds are mapped to the same CPU.

To indicate that an object communicates with extkersystems, we defined a
modeling rule. The external system is represenseginaobject in the sequence diagram
decorated with the stereotygelO>>, which is a new stereotype we have defined. To
indicate the reading and writing operations betw@enobject and the 10 object,
methods with the prefiget andset are used, indicating the message exchange between
the two objects. During the mapping, thgseandset methods are mapped to input and
output ports for the system. In Figure 5.4, thedkr T3 invokes the methagtValue()
from the object sensor that is marked as <<IO>>clwIs translated for a system input
port in the Simulink CAAM, as shown in Figure 5.8(&t should be also used in the
sequence diagrams for the threads T2 to generateutput system port shown in the
correspondent Simulink CAAM.

==SAscheduler== ==zAzchedRes== ==l ==EAschedRes==
: Scheduler H = : Sensor H |

I I
Prz: getvaluese"yl

E— |
[
I

1: main_taski

4 caloi="v"r l
I

I
I
I
Figure 5.4: Sequence diagram for thread T3

The deployment diagram defines the number of psmresand threads. Thus, to
build this diagram, the designer is asked to pantithe system in threads and define the
mapping of threads to processors. We propose tt@mation of the thread mapping
decision by the use of an optimization algorithrattban determine the number of
required processors and the mapping of thread$i@optocessors. The use of this
optimization can make the deployment diagram ursesrg and, therefore, only the
sequence diagram can be considered compulsoryngrae the Simulink CAAM from

91

an UML model. To validate the proposed mapping;cagbype was developed, which is
detailed in section 5.2.

5.2 Prototype

We developed a prototype that implements the mgpphnoposed in section 5.1.
Figure 5.5 shows the flow used in this prototypkere the input is an UML model. The
first step of the flow is the building of the UML adel using MagicDraw or other
EMF/UML2 compliant tool. After that, a XML file i®btained for the UML model.
During the second step, the UML model is traveesedi translated to a Simulink model.
This step produces another XML file, which follothe Simulink CAAM meta-model.
In this prototype, this transformation was impleteehin Java using the API provided
by the Eclipse EMF, according to the required magpules described in section 5.1.
The third step has as input the resulting SImul@¥AM model represented using the
E-core format (XML-like) and performs some optintinas before generating the final
Simulink CAAM model. These optimizations are degdilin section 5.2.1. After that,
from the resulting model, we generate a file tlodlofvs themd| format used as input in
the Simulink environment.

UML editor EME/UML| | Mapping
(MagicDraw) (E-Core) rules

Transformation engine

Simulink ;-
meta-model | ™-._ | Simulink
(E-core)

MDL generator optimize

Simulink.
mdl

Figure 5.5: Prototype for the mapping from UML tion8link

5.2.1 Model optimization

During the optimization step, our tool can perfotimee kinds of optimizations:
inference of communication channels, loop detectiand thread grouping. The
inference of communication treats of the instaitiabf communication blocks in the
Simulink CAAM when in a sequence diagram there rasthod invocations between
different threads. In this case, the tool captuheskind of communication (inter-SS
COMM or intra-SS COMM) and set the appropriatedgeol. When a variable is used
as input and output of a function, we have a cygdith (or loop). In a Simulink model,
to avoid deadlock, one needs to insert a tempaaids Oelay) to guarantee that a
valid value is available for the input function. él'tool looks for cyclic paths in the
model and inserts temporal barriers in the genér&tmulink model. Furthermore, our
tool analyzes the model and groups threads whermoasible, in order to reduce the

92

communication overhead. The proposed optimizatiars detailed in the section
5.2.1.1,5.2.1.3and 5.2.1.4.

5.2.1.1 Inference of communication channels

In the Simulink CAAM, the communication is expligidefined and represented by
communication channels that can be eithger-SS or intra-SS. To capture these
channels from the UML model, we use informationnirthe sequence diagrams and
from the deployment diagram or from the resulthef grouping thread algorithm. When
the communicating threads are in different CPUs,irdaer-SS channel is required.
Otherwise, an intra-SS channel is instantiated.

The communication protocol is indicated explicitlythe Simulink CAAM using a
specific block parameter. At present, we use omp tdifferent communication
protocols, the SWFIFO for intra-SS channels and3R&-O for inter-SS channels. Our
tool determines the type for each communicationnokhand sets their parameters.
These protocols are detailed in chapter 4. In theré, different communication
protocols can also be supported. In the examplstitited in Figure 5.3, T1 sends data
to T2 and an intra-SS channel was instantiatedutiol bhe Simulink CAAM shown in
Figure 5.3(c), since both threads were allocatedersame CPU-subsystem.

5.2.1.2 Insertion of temporal barriers

When describing a dataflow model, cyclic paths neede found and temporal
barriers are required to avoid deadlocks. In tteép,sthe Simulink model obtained from
the translation (step2) is searched for cyclic pathimulink Delay blocks are then
inserted in the resulting Simulink model. Two difet cases of cyclic path can be
found. In the case 1, the output of a functionatklis connected to its input, as shown
in Figure 5.6. In the case 2, the cyclic path isveen different sub-systems or different
hierarchical levels, as shown in Figure 5.7. Owl ®mutomatically detects these cases
and inserts temporal barriers to avoid deadlock.r@gresent a temporal barrier, a
Simulink Delay block is inserted in the data linkeve the loop is detected.

Temporal barrier

i T1

|Sched | L1 | :Lib
1

' main task()

I m1(i13a,i2=b,01=c,02= a)

m2(parl=van2,par2=var3)

(a) UML sequence diagram (b) Simulink model

Figure 5.6: Example of insertion of delay — case 1

93

|Tl| |:T2| |T2| |T1|

main_task() | main_task) | Temporal barrier
—h getA(p= ol)- —>I getil(p=r1) | P

T1

.
r2
i(__________ [:I

(b) T2 sequence diagram

;o)
=
s
E
11
«
o
=
n
A
.-
l\)
]
N
o
=
Ie)
)
)
o oy
S
[N

: Simulink model
(a) T1 sequence diagram

Figure 5.7: Example of insertion of delay — case 2

5.2.1.3 Grouping threads

This optimization allocates threads with data delecies to the same processor, in
order to reduce the inter-processor communicatidhen this optimization is applied,
the deployment diagram is not necessary to genérat&imulink CAAM. To observe
the data dependency between threads, we use themation captured from the
sequence diagrams. This information is used tadbaiitask graph. In this graph, the
nodes are threads and the edges have a cost thateisnined by the size of data
multiplied by the number of transferred data, Bsitated in Figure 5.8(a).

a) Task graph used as input) Task graph after groupingc) Simulink CAAM: top-level

Figure 5.8: Example of the thread allocation bylihear clustering algorithm

This optimization was implemented in our prototypel the used algorithm is based
on Linear Clustering. Figure 5.9 shows the pseumtte ©f this algorithm. It evaluates
the costs for the edges in the graph, groupingatwenith more data dependencies.
Threads grouped into the same cluster are allodatélde same processor. Figure 5.8
illustrates an example, where 5.8(a) shows a thgesoh and 5.8(b) shows the resulting
graph after running the optimization algorithm. Theulting graph shows how the eight
threads were grouped in three different clustedicating that three processors will be

94

used. In this example, as the nod2sandn5 are in the same cluster, these threads will
be allocated to the same processor.

This optimization algorithm is used to optimize tmeapping of threads to
processors. The result of this optimization stepused to generate the top-level
description of the Simulink CAAM, where processare connected through inter-SS
COMM blocks, as shown in figure 5.8(c). This stemptional, and when the designer
wants to decide the mapping by himself, informafiam the deployment diagram can
be used to generate the Simulink CAAM top-levedtélad using the result of the linear
clustering.

1. Choose the heaviest edge;
2. If nodes n3 or n6 are not taken
1. Add nodes n3 and/or n6 to cluster C1;
Find incoming edges of node n3;
4. Choose the heaviest edge of step 3;
5. If node nl is not taken
1. Add node nl1 to C1;
6. Find outgoing edges of node n6;
7. Choose the heaviest edge of step 6;
8. If node n8 is not taken
1. Add node nl to C1,;
9. Repeat steps 1-8 while possible;
10. Store cluster C1 and create a new one;
11. Goto step 1;
12. Stop when every node has a cluster;

Figure 5.9: Pseudo code of the used linear clugexrigorithm

It is interesting to note that this algorithm aHées all threads that are in the system
critical path to the same processor. This is a gwadtice to reduce the communication
cost, once the cost for intra-CPU communication losver than the cost for
communication between different CPUs (inter-SS COMM

5.3 Case study

Two case studies are used to validate the proposgabing and the built prototype.
They are the crane control system and a synthgfimple, presented in section 5.3.1
and 5.3.2, respectively.

5.3.1Crane control system

The crane control system, proposed in (MOSER, 199@) used as case study in
chapter 2, shows the capabilities to capture afldatgfrom an UML model and the
generation of the corresponding Simulink CAAM. ldddion, we also show that our
tool can automatically insert the required tempduairiers in the generated Simulink
model.

The UML model for the Crane control algorithm wasveloped, which is a module
of the Crane system used in chapter 2. In this raxeat, we partition the system in
three threads, each one specified using UML sequdiagrams. We have decided to
map the three threads to the same processor, amshothe deployment diagram
illustrated in Figure 5.10. The grouping algorithennot applied for this example.
Figure 5.11, 5.12, and 5.13 illustrate the sequeiagram for the thread T1, T2 and T3,

9t

respectively, from which a Simulink dataflow diagraan be obtained using our rules.
Figure 5.13 is not well presented here, due tdithiged space. Therefore, this figure is
presented in an expanded way in Appendix B.

CPU1

<<SASchedRes>>| <<SASchedRes>>
T1 T2

<<SASchedRes>>|
T3

<<SAengine>>

Figure 5.10: Crane system: UML deployment model

==5Ascheduler== ==5AschedRes== ==l ==SAzchedRes=» ==5AzchedRes==
: Sched :T1 : Plant :T2 : T3

I I I
1. mainTask] [!

cesitriggers= || |2 getxe 0 | |
o e |

4: zah2rsin="xc", out="xcD")
]| = | |
{:_ A
6: isHigherop1+ ¥, op2="posCarkax’, result="xcH5"
| I

|
|
|
|
|
|

8 |

i o znhzmgiinz"xcHS", nutz"lngosCarMax")

] : | :

10: isanelr(nm:"xc", np?:"lpnsCarMin", result:"xi:LS"}
1
< | | |
2 znhzmsl(inz"xcLS", outz"sle'nsCarMin"} |
< I® | | |
e 1E_ _'_ 14:get_ang|ecl:|angle [

I
|

; 16 zoh2rmsiin="angle", outE"alpha™

g | |
= = 18:sletst'nsCarMaE(}xalue:"st‘usCarMax")
‘L___m:l____'lTl
ﬁ: setswPosCar n(value:“st'nsCaern")
21: A l
& e P e e 1 | i . ok | e

| 22 detalphadvalue="xc0M |

T I —— L
| 24 setfosCarivalue="alphga"]

o [[I
[[[[

Figure 5.11: Crane UML model: T1 sequence diagram

96

Figure 5.13: Crane system: UML sequence diagrarthfead T3

We explain in detail here only the generation a&f thataflow for the thread T3,
which has a cyclic path (loop) and the insertiontlod delay component can be

==ZAzcheduler== ==3AzchedRes== ==|0== =S zchedRes=»= ==3AzchedRess==
: Sched T2 : Engine :T1 T3
I I I I I
| 1: mainTaskDd |
Ry — 2oget st‘nngrMax(} swPuqurMa}f |
o sde o = | |
4: get_swPosCarMind: st‘nsQarMm
B e =il I
G ur(np']z"st‘hsCarMax', op2="gwPosCarMin®, resultE" emo_mode™
I I [
e 8 aed alphafdalphal | |
e g e T [
; 1EI abs{ing"alpha", out="ahshlpha") |
e J I I [
i 12: isHighekop1="ahsalpha", bpz—"alphahnax" result="emuo_stop™
L4 I |
ﬁm set brake(brfnke ="amg_stop™ |
e ey — S
| 16: setEmgrModbivalue="ermg_modg"]
=
18 s s mlhe =R e T e e o
e AR i A s —_
L I I [
Figure 5.12: Crane UML model: T2 sequence diagram
P - e = | : Control | | : Calc_ve | | : Platform | <<lDs= PR <<lDss <= N P
:Sched :T3 T : Plant : Engine : IHM T :T
T 1.mai.nTask T | | | I Iz'get pnscéro”'pnscar" _I !
==L Atrigger== - _ L s _| - |_ _______ L |
:M caloyivp_temp="out1", posCar="poscap’, y="v0", g="qk" | | | |
e =1 | | 6 get lmgm1” _l : : | I
_______ T _ _ P = | |
I~ : + E.QE_I| ") | | | |
P R R | I [RS, |
| | | 10: det_posbies(tposdes | | |
,,,,,,,, B T [R [I I
i ! - ;. | |__12:pet alphagalna
e S !
| | | 1 ™ 74 get_ekngMode] ema Imode" |
|
T T e A e
17 dlv(0m=|'r1", op2="m1", yesuli="dm" | | | | |
o Slian St = | | | | |
19; mult(oml M2, op2=" d,[m result="me3drm”) | | | |
Py e
21 sum{op1="mg2drm", U_[JE- poscar’, reéu\t— zpuscar‘l) ! I I
ey s o ol | | | |
23 muli{op="drm", op2="alpha", resuli=" l‘ndralpha) | | | |
o
25 sum{op1="mdralpha", El 2= "puscar",r%sult:“zalpha‘# l l !
e — — 3R = = l I |
| | | | | |
i cadcu(posDes:”pusdes“, 2_poscpr="znoscar,g_alfa="alphaj, emgMode:"en}gfmude", u="o1" |
e 2& _ —| | | | | | | | |
o) 30 surniopd o op2=" mj result=" uy‘)l l ! !
| Tl e | | | i
| 32; satiin="yy, out="vesat) | | | | |
; 3 | |
e = 35: set \rcé\rc:“\rcsat")_, | : :
| [| !
_,_37_.____‘-‘————l————l‘s&————l———‘[——— | | |
T | | | | | | | |
| | | | | | | | |
i] i

97

observed. This cyclic path is found between thermabksageset and thecalcy in the T3
sequence diagram. That is why, the argunoett is used as output of the methgs,
while the same argument is used as input for thiaodealcy. Figure 5.14 (a) presents
the Simulink block diagram corresponding to thee#ltr T3, where a delay block was
automatically inserted betweealc_vc andcalc_y blocks.

When method invocations are nested, a hierarch&®atulink subsystem is
instantiated to encapsulate the blocks generatecepgeesent these methods. In the
example, the subsystecontrol is instantiate to encapsulate the nested invatstior
the methodsnult, div, andsum. In addition, a subsystem calledic vc and the S-
function calledcalc_y are created. The subsysteontrol is detailed in Figure 5.14(b)
and is composed of one S-Function and five prenddfiSimulink blocks. The methods
invoked from the Platform (e.gum, mult, anddiv) are translated tadder, multiplier,
anddivisor Simulink blocks, respectively. The methcalcu is mapped to a S-Function.

In this sequence diagram (Figure 5.13), the met@dooscar() and getalpha()
invoked from thread T1 indicate the communicatietween the thread T3 and T1. The
get prefix indicates that T1 send data to T3, portst @ammunication blocks are
instantiated in the Simulink model to represend tommunication, as shown in Figure
5.15 (right side). The invocations of methods frbra objects Plant, Engine and IHM,
which are stereotyped as K3>>, are translated to input and output ports teptesent
the interface of the system with external deviées.example, the methagt posdes()
is translated to the inpytosDesired in the Simulink functional block diagram, as
illustrated in Figure 5.14. The metheet_vc() is translated to an output pautl that
is send to the motor represented by the objebDx=x Engine in the sequence diagram.

ﬂ crane._umisoc0? caam/T3/T3 %

File Edit View Simulation Format Tools Help
OSHE& e poow o000 [Nomal | g @ 5B
=
1
2 Delay
Ve temp Lad Integer Delay .
caloy v d
- b . inserte
posear - = u outt
S-Function Builder
calg_wg
posDesired 2
Emghode g
i Iph: File Edt Yiew Simulation Format Tools Help
2lpha ~ . L :
ol ODEd& & 4 |3 > 10000 [Normal B &
5 i
™ H
Y 1
) -, D e [
Ready 1100% 5
i
a) T3 model i =

m
2
4

% fready 100% ades

b) T3: control subsystem

Figure 5.14: Crane Simulink CAAM: Thread T3 model

Finally, the Simulink CAAM higher hierarchical leigeobtained from the Crane
UML model are illustrated in Figure 5.15. The Isitle illustrates the top level, where

98

there is only one CPU subsystem. The right sidevshiie threads allocated to this
CPU, where the threads T1, T2 and T3 communicaeintra-SS channels. In the
bottom part, this figure shows also the paramegetsfor the CPU, thread and intra-
COMM subsystems.

Elec rane_umlsoc07_caam_untilTop/CPU1

E!crﬂ|197u|11lsuc0?7cﬂan17unlilTup" @g} Fle Edt View Simulstion Format Tools Help
File Edt View Simulation Formab Tools Help ODERd&E $B¢ i | “ow 10000... [Nomsl ~|| e B 2 | B
DeEdS & & ; it »
(EY »
PosDesired | FosCar
Crane Model - top level pelaipha
i

W
T e I

Outl
(17— B{PosDesind FosDesied? ponu

FosDesired

[T T3
) . ol ——p"Z) (A oz »

: o ra
5>
In5

PosDesired

Outd
In2
m Outd COMM3
PosDesired2 T
F——mne oo
o oz B emergeneyhiade

Brake SWlipos Carlax.
&

angle Szt erSSnY Siop
CREM \
ouz
l l Tz

e

4

jodes

Ready 100% - - i
; -} Block Properties:CPU1

General H Biock Annatation || Callaacks ‘ General Uiﬁrlaigrgtahon HTC;Hb;:i(?l General “ Block AnnotatE_”-Eaﬁ:;cE_‘
1l | |
Usage Usage Usage
Description: Text saved with the block in the mod Description: Text saved with the hiock in the mols Description: Text saved with the block in the model file.
Priority: Specifies the block's order of execution Priority: Specifies the block's order of execution re Priority: Specifies the block's order of execution relstive to other blocks in
the =ame model the same model. the same model
Tag Text that appears in the block label thet Simt Tag. Text that appears in the biock label thet Simul | Teg: Texd thet sppesars in the biock label that Simulink generates
Description: Description: Description:
:i?‘es‘&drée"‘ry;;é:‘;&‘l‘?'wl gﬁasnuréeTybEﬂHHEAD Eée-sé'hrggfﬁe:Sv" AFIFO |
»

Figure 5.15: Crane Simulink CAAM — CPU1 subsystem

5.3.2 Synthetic example

To validate the proposed grouping thread optimizatwe developed a synthetic
example, which has twelve communicating threads. dpplication was specified using
a sequence diagram that expresses the communidetiareen the application threads.
Figure 5.16 illustrates a block of interactionghié sequence diagram, since the whole

diagram is too big to show here. The complete ssecpialiagram is presented in
Appendix B.

The communications captured from the sequence aliagrre used to build a task
graph, as shown in Figure 5.17(a), where the nogl@esent the threads and the edges
represent the communication between them. Afteagiication of the grouping thread
algorithm, the nodes of the graph are merged aouptd the communication between
them. The result of this optimization is depictadrigure 5.17(b), which shows that the
twelve threads were allocated in four CPUs.

9¢

“4Shschedulers= 44 hedResz> 24 hedRes=: 44 hedResz> <25AschedRas:> <4SAschadRess> “45AschedRas:>
sched : Scheduler thread_a:TA thread b:TB thread_c: TC thread_d:TD thread_e: TE thread _f: TF

T -] T I I

1. mainTaskd

:|2: calculated) l l l

s | | |

| |

| |

']Tl 8 SeNaIue(x:"\Q!
L & i

| | 10: setvaluef="wy
+—— - = - P - - — =

T |
| < 14: calculatbf="y)"vE" | |
I k — lis I I | 16: setvalustx="vEy |
- (1 - T et e e et e e e e et e :
aE e s e 13 mainTask) | | | |
| | :I %? c:alc:ulate(ly="v"):"vc" | |
= & 22 =
| | s — | | |
| o [e — — — — | — = — — — + - - 23
______ | A 25 mainTask() | | |
| | : 26: calculatg(x="y"y"vD" |
| | k= R | X setvialue
I sl 1V _

| 31: mainTaszk() | '
P 52: calculate(x="y"):*vE"

| e 1 |
= _'33: return_cal?ulate.SS

|
|
|
| e — — — — o |——— - - m— —
|
|
|

| =

cpU1l S~ CPUO

a) Task graph b) Task graph grouping thread result
Figure 5.17: Synthetic example: Task graph

After applying the proposed map and the groupingeati algorithm for this
application model, the Simulink CAAM model depictedFigure 5.18 was obtained.
Figure 5.18 shows the top level, where four CPUsgstems communicate through
inter-SS communication blocks. This Figure showsoahe threads allocated to the
CPUO, where there are five thread subsystems (A, Eand M) communicating via
intra-SS COMM. The inference of communication isoalperformed to build this
Simulink CAAM, in the Figure 5.18 is illustratedsal the setting of parameters to
indicate the communication protocol used for anah8S communication and an inter-

10C

SS communication. The Simulink CAAM models genetdig our tool are presented in
the Appendix B in detalil.

<} Block Properties:GFIFO2

General ‘ Block Annatation | Callbacks | Fs
| ‘ [sinteticExample/CPUO *
Usage _;. File Edit Wew Simulation Format Tools Help
Description: Text saved with the block inthe ¢ ’ £ Bz i y [—‘; ﬁ
Priarity: Specifies the block's order of executi H D = n é @ 4 j - 4 14 [Nurmal M=)
the same made! H
Tag: Text that sppears inthe block label that £
i Outd 1
i Outt
Description: H Out?
;ResourceType—GFlFO :- Gt b
j
Outz

E YicExample ®
File Edit “(iew Simulation Format Tools L{é\p Fetlpz Outt —e{ind
¢ In1 o
O SR&E BB ==7 ooy pe{ing e, in2
i J In2
L { T
= ¥
In3 o,
1 _ndeds

) Block Properties:COMMZ

Uzage

Description: Text saved with the block in the model file

Priority: Specifies the block's order of execution relative to other blocks in
the same model

Tag: Text that appears in the block label that Simulink generstes.

GFIFO1

GFIFOS

Description:

GFIFO4 i
|ResourceType=SwWFIFD -

&

Ready 100% oded5

Figure 5.18: Synthetic example: generated SImulAAM

5.4 Concluding remarks

An automatic mapping from UML to Simulink CAAM wasoposed. With it, we
eliminated the necessity of manually building the@ink model used as input for the
Simulink-based design flow for MPSoC architectumsbjch generates multithread C
code and the HW platform described in SystemC. mla@ping is based on sequence
and deployment diagrams. Other diagrams like cdaskcollaboration diagrams could
be used during the modeling, but our tool prototgpes not capture information from
them at the moment.

We show that some UML constructions can have acdimeapping to Simulink.
However, the one-to-one mapping is not able to wapthe whole model. It is still
needed to make inferences performed in the optiizgphase of our mapping tool.
Two case studies were presented to show the prdpmsgmizations to be executed
during the mapping from UML to Simulink. The fireihe shows the insertion of
temporal barriers and the second one shows thepiggputhread algorithm and the
inference of communication channels.

The proposed mapping allows one to exploit the fiesnef UML for requirements
specification and software design, while providang/ay to obtain complete executable
code for MPSoC architectures from the high-levedcsijication. Moreover, the same

101

UML model can be used to generate code using ettlagiitional UML tools or a
Simulink-based approach.

As future work, this tool will be integrated withh @stimation tool to improve design
space exploration, allowing that the deployment eh@dn be build during the design
space exploration step. Moreover, an analysis tooilld be used to automatically
determine which fragments of the system are data#imd for these fragments the
proposed mapping must be applied.

10z

6 CONCLUSIONS

This thesis presented a comparison between UML Sindulink, two attractive
modeling approaches for embedded system designetawevaluating the state-of-
the-art in embedded system design using high-lemaalel, we found some limitations
in the automation provided by available softwargeligpment tools. In this context,
strategies for embedded software generation fragh-lEvel models, using Simulink
and UML languages, were proposed in order to stiheemain limitations found on
available design flows and tools.

Our UML-based strategy tried to bridge the gap leetwmodel and code though the
use of a higher abstraction language. Howeverpagth we believe that this proposal
could obtain good results, this proposed strateay mot developed because we decided
to try a new thread. The author had the opportutaityvork in the development of a
code generator based on Simulink, which has shoveta very interesting study. The
proposed Simulink-based strategy focuses on therggan of multithread code target
to multiprocessor architectures, which is not wadldressed by available tools. In
addition, this Simulink-based strategy provides ammunication optimization
technique, which can be used to reduce the commatioicoverhead during the code
generation (BRISOLARA, 2007a).

The comparison between UML and Simulink shows bwih modeling approaches
present pros and cons, which motivated us to fimchg to simultaneously exploit the
benefits of UML and Simulink modeling languagesairsingle design process. We
proposed a software development flow, which alléavstart with an UML model and
generate the Simulink model from that. In this waien a system module is dataflow,
it is translated to Simulink, which provides morewerful features to model and
simulate dataflow systems. This allows designensddk at a higher abstraction level,
avoiding the necessity of building Simulink moddisectly, which means abstracting
about low-level details like signals and ports.

The proposed flow allows to use UML as front-endtfee proposed Simulink-based
multithread code generation method. To support thatdefine the mapping from UML
to the Simulink CAAM that is used as input in thi®thod. As the directly mapping is
not possible, besides the mapping, the inferena®wimunication channels and thread
grouping are performed in order to build the SimkiiCAAM model from that
multithread code target to MPSoC architecture caménerated. In addition, temporal
barriers are inserted when there is a cyclic patihé dataflow model in order to avoid
deadlock.

104

Boldt (2007) and Reichamnn (2004) also proposedritegration of the UML and
Simulink. However, differently of the Boldt's andeRhmann’s approaches, our
approach uses UML as modeling language for ingpacification, which presents the
advantages of using a standard language that iglyidccepted in the software
engineering communityln addition, the main advantage of the proposedgnated
flow is to enable one to start with an UML modeldadecide which is the most
appropriated tool to generate code for a systemuhepavhether by Simulink of FSM
based tools. Moreover, the same UML model can be ated to generate code by
UML commercial tools or Simulink-based tools, thersabling the reuse of models in
different platforms or a comparison of differensidm alternatives.

Although the proposed flow can support other maggithan the Simulink one, this
work addressed only the mapping from UML to Simkiliand Simulink CAAM.
However, to completely support the proposed flowsSM-like model should be also
generated from the UML model in order to allow tee of different tools for code
generation for control-flow system modules.

A limitation of the proposed mapping from UML tonSilink is that although the
deployment diagram is not necessary when the gngupreads optimization is applied,
the definition of threads continues to be requifgds means that the designer needs to
partition the system in threads and to describestthbehavior using sequence diagrams
in order to apply the proposed mapping. As a futnmek, we plan to integrate an
estimation step in the proposed software developiihf@u. The estimation can be used
to automatically determine the best partitioning amapping solution and generate the
deployment model. This avoids the necessity ofdégigner to specify the deployment
model and partitioning the system in threads, wilpporting design space exploration.

To show the usefulness of the proposed design fleev,developed a prototype,
which is able to generate Simulink CAAM from an UNtodel. Using the developed
prototype, we conducted experiments to show thefiterof our proposed mapping. At
present, the designer applies the mapping from UMBimulink for a whole system,
but in the future, an analysis tool could be usededtermine which fragments of the
system are dataflow and control-flow ones, thus rtiegpping is applied only to the
dataflow part.

Moreover, only sequence diagrams are used to @pthuead behavior in our
mapping. Other behavior diagrams, though, could &k used by a designer, since
UML provides them. We plan to extend this mappingstipport even other UML
diagrams, like activity diagram, that is the clagedunctional block diagrams.

REFERENCES

ARDIS, M. et al. A Framework for Evaluating Specition Methods for Reactive
Systems: experience repofEEE Transactions on Software Engineering Los
Alamitos, v. 22, n. 6, p. 378-389, 1996.

APACHE SOFTWARE Velocity Engine. Available at: <http://velocity.apache.org/>.
Visited on: May 2005.

ARTISAN SOFTWARE. Artisan Studio. Available at:
<http://www.artisansw.com/products/>. Visited oebEF2007.

BABU, E. M. M.; MALINOWSKI, A.; SUZUKI, J. Matilda: A Distributed UML
Virtual Machine for Model-Driven Software Developnie In: WORLD MULTI-
CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATSC 9., 2005.
Proceedings..[S.l.: s.n.], 2005.

BALARIN, F. et al. Metropolis: an integrated elemtic system design environment.
IEEE Computer, [S.1.], v.36, n.4, p. 45-52, 2003.

BANERJEE, P. et al. The Paradigm Compiler for Gidstted-Memory Multicomputers.
Computer, Los Alamitos, v.28, n.10, p. 37-47, Oct. 1995

BHATTACHARYYA, S. et al. Ptolemyll Heterogeneous @urrent Modeling and
Design in Java. Tecnhical Report. Jan. , 2007. labe at:

<http://ptolemy.eecs.berkeley.edu/ptolemyll/ptiistiptl16.0.2/doc/design/ptlidesignl-
intro.pdf>. Visited on: Mar. 2007.

BICHLER, L.; RADERMACHER, A.; SCHURR, A. IntegraiinData Flow Equations
with UML/Realtime.Real-Time Systems][S.l.], n. 26, p. 107-125, 2004.

BJORKLUND, D.; LILIUS, J.; PORRES, I. A Unified Appach to Code Generation
from Behavioral Diagrams. In: FORUM ON SPECIFICANOAND DESIGN
LANGUAGES, FDL, 2003Proceedings..[S.l.: s.n.], 2003. p. 21-34.

BJORKLUND, D.; LILIUS, J.; PORRES, |. Code Geneoatifor Embedded Systems.
In: GERARD, S.; BABAU, J. ; CHAMPEAU, J (Ed.Model Driven Engineering for
Distributed Real-time Embedded SystemsLondon: Hermes Science, 2005.

BOAS, G. van EmdeTemplate Programming for Model-Driven Code Generaton.
July 2004. Available at: <http://www.softmetawam@oopsla2004/emdeboas.pdf>.
Visited on: Jan. 2005.

10¢

BOLDT, R. Combining the Power of MathWorks Simulinknd Telelogic
UML/SysML-based Rhapsody to Redefine the Model-BmiDevelopment Experience.
June, 2006. Telelogic White Paper. Available atttgshwww.ilogix.com/whitepaper-
overview.aspx>. Visited on: Feb. 2007.

BRISOLARA, L.; HAN, S.-l.; GUERIN, X.; JERRAYA, A.CARRO, L.; REIS, R.
Reducing fine-grain communication overhead in rtuldiad code generation for
heterogeneous MPSoC. In: INTERNATIONAL WORKSHOP G®FTWARE AND
COMPILERS FOR EMBEDDED SYSTEMS, SCOPES, 10., 200Rijce.
Proceedings..[S.I.: s.n.], 2007. p. 81-89.

BRISOLARA, L. B.; OLIVEIRA, M. F. S.; NASCIMENTO, FA.; CARRO, L;
WAGNER, F. R. Using UML as a front-end for an eiffiat Simulink-based multithread
code generation targeting MPSoCs. In: INTERNATIONAYORKSHOP ON UML
FOR SOC, UML-SoC, 4., 2007, San Diefwoceedings...[S.|.: s.n.], 2007. p. 11-16.

BRISOLARA, L.; BECKER, L. B.; CARRO, L.; WAGNER, RR.; PEREIRA, C. E.
Comparing High-level Modeling Approaches for Embed@&ystems Design. In: ASIA
SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC2005,
Shanghai, Chind?roceedings...Piscataway, NJ, USA: IEEE, 2005. v.2, p.986-989.

BRISOLARA L.; BECKER, L. B.; CARRO, L.; WAGNER, R.; PEREIRA, C. E. A
Comparison between UML and Function Blocks for Ifegeneous SoC Design and
ASIP Generation. In: MARTIN, G.; MUELLER, W. (Ed.UML for SoC Design
Berlin: Springer-Verlag, 2005. p. 199-222.

BRISOLARA, L. B.; BECKER, L. B.; CARRO, L.; WAGNER;. R.; PEREIRA, C. E,;
REIS, R. A. L. Comparing High-level Modeling Appidees for Embedded Systems
Design. In: ASIA SOUTH PACIFIC DESIGN AUTOMATION CRFERENCE, ASP-
DAC, 2005, Shanghai, Chin&roceedings...Piscataway, NJ, USA: IEEE, 2005. v.2,
p.986-989.

BUCK, J. T. et al. Ptolemy: A Framework for Simutat and Prototyping
Heterogeneous Systeniaternational Journal of Computer Simulation, [S.l.], v. 4,
p. 155-182, 2000.

BURCH, J. R.; PASSERONE, R.; SANGIOVANNI-VICENTELLIA. L. Using
Multiple Levels of Abstractions in Embedded Softev@esign. In: INTERNATIONAL
WORKSHOP ON EMBEDDED SOFTWARE, EMSOFT, 20(roceedings.. Berlin:
Springer, 2001, p.324-343.

CESARIO, W. et al. Multiprocessor SoC Platforms: Gomponent-Based Design
Approach.lEEE Design & Test of Computers [S.l.], v. 19, n. 6, Nov.-Dec., 2002.

CHEN, R. et al. Embedded System Design Using UMA. Rlatforms. In: VILLAR, E.;
MERMET, J. (Ed.).System Specification & Design LanguagesJS: Springer, 2004.
p. 119-128.

DAMM, W.; HAREL, D. LSCs: Breathing Life into Mesga Sequence
Charts.Formal Methods in System DesignDordrecht, v.19, n. 1, p. 45-80.

107

DENSMORE, D.; PASSERONE, R.; SANGIOVANNI-VINCENTELL A. A
Platform-Based Taxonomy for ESL DesigkEE Design and Test of Computers
[S.1.], v.23, n.5, p.359-374, Sept. 2006.

DOUGLASS, B. Real-Time UML: Developing Efficient Objects for Embedded
Systems. Boston: Addison-Wesley, 1998.

DSPACE.Real-time Interface for Multiprocessor systems (RTIMP). Available at:
<http://www.dspaceinc.com/ww/en/inc/home/produetéifmpsw/rtimpblo.cfm>.
Visited on: Oct. 2005.

DSPACE. TargetLink . Available at:
<http://www.dspaceinc.com/ww/en/inc/home/produetiegs/targetli.cim>. Visited
on: Oct. 2005.

ECLIPSE DEVELOPMENT TEAM.ATLAS Transformation Language (ATL).
Available at: <http://www.eclipse.org/m2m/atl/>.Sifed on: Apr. 2007.

ECLIPSE DEVELOPMENT TEAMEMF (Eclipse Modeling Framework). Available
at: <http://www.eclipse.org>. Visited on: May 2006.

ECLIPSE DEVELOPMENT TEAMIntroduction to JET (Java Emitter Templates).
Available at: <http://eclipse.org/articles/Artick&=T/jet_tutoriall.html>. Visited on:
June 2005.

EDWARDS, S. et al. Design of Embedded Systems: Bbivtodels, Validation, and
SynthesisProceedings of IEEE Piscataway, v. 85, n.3, p. 366-390, 1997.

ESTEREL TECHNOLOGIES.SCADE tool. Available at: <http://www.esterel-
technologies.com/products/scade-suite/>. Visiteduer. 2007.

FLANAGAN, C. et al. Extended Static Checking fovdaACM SIGPLAN Notices,
New York, v.37, n.5, p. 234-245, 2002.

GERY, E.; HAREL, D.; PALACHI, E. Rhapsody: A CompteLife-Cycle Model-
Based Development System. In: INTERNATIONAL CONFEREE ON
INTEGRATED FORMAL METHODS, IFM, 3., 2002, Turku, mand.Proceedings...
Berlin: Springer. 2002. p.1-10.

GOMAA, H. Designing Concurrent Distributed, and Real-Time Appications with
UML. Boston: Addison-Wesley, 2000.

GRAAF, B.; LORMANS, M.; TOETENEL, H. Embedded Sotive Engineering: The
State of the PracticéEEE Software, Los Alamitos, v. 20, n. 6, p. 61-69, 2003.

GREEN, P. UML as a Framework for Combining Differ&fodels of Computation. In:
MARTIN, G.; MUELLER, W. (Ed.).UML for SoC Design. Berlin: Springer-Verlag,
2005. p. 37-62.

GROSE, T. J.; DONEY, G. C.;, BRODSKEY, S. AMastering XMI: Java
Programming with XMI, XML, and UML. New York, NY, BA: John Wiley & Sons,
2002.

10¢

HAN, S.-I.; CHAE, S.-1., JERRAYA, A. Functional meting techniques for efficient
SW code generation of video codec applications.AIBIA AND SOUTH PACIFIC
DESIGN AUTOMATION CONFERENCE, ASP-DAC, 200&roceedings... New
York, NY, USA: ACM Press, 2006a. p. 935 - 940.

HAN, S.-I. et al. Buffer memory optimization fordéo codec application modeled in
Simulink. In: DESIGN AUTOMATION CONFERENCE, DAC, 28, San Francisco,
USA. Proceedings...New York, NY, USA: ACM Press, 2006b. p. 689-694.

HIRANANDANI, S.; KENNEDY, K.; TSENG, C. Compiling értran D for MIMD
Distributed Memory MachinesCommunications of the ACM, New York, v.35, n.8,
p.66-80, 1992.

HONEKAMP, U. et al. Component-node-network: threzvels of optimized code
generation with ASCET-SD. In: IEEE INTERNATIONAL 3$XPOSIUM ON
COMPUTER AIDED CONTROL SYSTEM DESIGN, 199Broceedings...[S.l.:s.n.],
1999. p. 243-248.

HUANG, K.; HAN, S.-I.; POPOVICI, K.; BRISOLARA, L.;GUERIN, X.; LI, L,;
YAN, X.; CHAE, S.-I.; CARRO, L.; JERRAYA, A. A. Simink-Based MPSoC Design
Flow: Case Study of Motion-JPEG and H.264. In: D&E&SI AUTOMATION
CONFERENCE, DAC, 2007, San Diego, California, U$*oceedings...New York,
NY, USA: ACM Press, 2007. p. 39-42.

HUBBERS, E.; OOSTDIJK, M. Generating JML Specifioas From UML State
Diagrams. In: FORUM ON SPECIFICATION AND DESIGN LABUAGES, FDL,
2003.Proceedings..[S.l.:s.n.], 2003. p. 263-273.

ITO, S. A; CARRO, L.; JACOBI, R. Making Java Woror Microcontroller
Applications. IEEE Design & Test Los Alamitos, v. 18, n. 5, p. 100-110, Set-Oct.
2001.

JACOBSON, I. et alObject-Oriented Software Engineering: A Use Case Driven
Approach. Boston: Addison-Wesley, 1992.

JERRAYA, A. A.; WOLF, W.; TENHUNEN, H. Guest Edi®rComputer, [S..], v.38,
n.7, p. 36-40, July 2005. Special Issue on MPSoC.

JOHN, K.; TIEGELKAMP, M. IEC61131-3: Programming Industrial Automation
Systems: Concepts and programming languages, Regenmts for programming
systems, Aids to decision-making. Berlin: Springerag, 2001.

KAHN, G.; MACQUEEN, D.B. Coroutines and Networks Bfrallel Processes. In:
IFIP CONGRESS, 1977Information Processing 77 Amsterdam: North-Holland,
1977. p. 993-998.

KANGAS, T. et al. 2006. UML-Based MultiprocessorGG®esign FrameworkACM
Transactions on Embedded Computing SystemsNew York, v.5, n.2, p.281-320,
2006.

KENNEDY CARTER.iUML : Intelligent UML. Available at: <http://www.kc.com
Visited on: May 2005.

10¢

KEUTZER, K. et al. System-level design: Orthogonation of concerns and platform-
based designEEE Transactions on CAD of Integrated Circuits and Systems New
York, v.19, n.12, 2000.

KUMAR, R. et al. Heterogeneous Chip Multiprocessdemputer, Los Alamitos,
v.38, n.11, p. 32-38, 2005.

LAVAGNO, L.; MARTIN, G.; SELIC, B.UML for Real: Design of Embedded Real-
Time Systems. Dordrecht: Kluwer Academic, 2003.

LEDECZI, A. et al. The Generic Modeling Environmelmt: IEEE INTERNATIONAL
WORKSHOP ON INTELLIGENT SIGNAL PROCESSING, 2001, @apest, Hungary.
Proceedings...[S.l.:s.n.], 2001.

LIEVERSE, P. et al. A Methodology for ArchitectuBploration of Heterogeneous
Signal Processing System®urnal of VLSI Signal Processing for Signal, Image
and Video Technology Boston, v.29, n.3, p. 197-207, Nov. 2001.

MADISETTI, V. K.; ARPIKANONDT, C. A Platform-Centric Approach to System-
on-Chip (SOC) Design Netherlands: Springer, 2005.

MARTIN, G.; MUELLER, W. UML for SoC Design Dordrecht, Netherlands:
Springer, 2005. v.1.

MATHAIKUTTY, D. et al. UMoC++: Modeling environmentor heterogeneous
systems based on generic MoCs. In: VACHOUX, A. JEd\pplications of
Specification and Design Languages for SoCBletherlands: Springer, 2006. p. 115-
130.

MATTOS, J. C. B.; BRISOLARA, L. B.; HENTSCHKE, RGARRO, L.; WAGNER,
F. R. Design Space Exploration with Automatic Geatien of IP-based Embedded
Software. In: IFIP WORKING CONFERENCE ON DISTRIBUDEAND PARALLEL
EMBEDDED SYSTEMS, DIPES, 2004, Toulouse, FranBeoceedings...Boston:
Kluwer Academic, 2004. p.237-246.

MATHWORKS. Real-Time Workshop (RTW). Available at:
<http://www.mathworks.com>. Visited on: Nov. 2004.

MATHWORKS. Simulink. Available at: <http://www.mathworks.com>. Visitemh:
July 2003a.

MATHWORKS. Stateflow. Available at:
<http://www.mathworks.com/products/stateflow/>. ¥asl on: Sept. 2003b.

MELLOR, S.; BALCER, M. Executable UML: A Foundation for Model Driven
Architecture. Boston: Addison-Wesley, 2002.

MENTOR GRAPHICS. BridgePoint UML Suite. Available at:
<http://www.projtech.com>. Visited on: Jan. 2005.

MOHANTY, S. et al. Rapid Design Space ExploratidnHeterogeneous Embedded
Systems using Symbolic Search and Multi-GranulanuBation. ACM SIGPLAN
Notices New York, v.37, n.7, p. 18-27, 2002.

11C

MOSER, E.; NEBEL, W. Case Study: System Model adr@ and Embedded Control.
In: DESIGN, AUTOMATION DESIGN, AUTOMATION AND TESTIN EUROPE,
DATE, 1999, Munich, GermanyProceedings... Los Alamitos: IEEE Computer
Society, 1999.

NATIONAL INSTRUMENTS. Labview. Available at: <http://www.ni.com/labview/>.
Visited on: Jan. 2006.

NEEMA, S. et al. Constraint-Based Design-Space @&spion and Model Synthesis. In:
NEEMA, S. et al.LEmbedded Software Berlin: Springer, 2003. p. 290-305. (Lecture
Notes in Computer Science, v. 2855).

NETBEANS DEVELOPMENT TEAM. MDR: Netbeans Metadata Repository.
Available at: <http://mdr.netbeans.org>. Visited dualy 2005.

NO MAGIC. MagicDraw. Available at: <http://www.magicdraw.com/>. Visitezh:
April 2007.

OH, H.; HA, S. Memory-optimized Software Synthefs@m Dataflow Program Graphs
with Large Size Data SampleEURASIP Journal on Applied Signal Processing
Akron, Ohio, v. 2003, p. 514-529, May 2003.

OMG (Object Management GroupWnified Modeling Language (UML), version
2.1.1. Available at: <http://www.omg.org/technology/docemts/formal/uml.htm>.
Visited on: June 2007a.

OMG (Object Management GrouppoS&FT: UML Profile for Modeling Quality of
Service and Fault Tolerance Characteristics andhisigisms. 2004. (OMG document
ptc/04-09-01). Available at: <http://www.omg.orghisited on: June 2007b.

OMG (Object Management GrouysML: Systems Modeling Language. Available
at: <http://www.omgsysml.org/>. Visited on: in JWQ06.

OMG (Object Management Group)ML Profile for Modeling and Analysis of Real-
Time and Embedded systems (MARTE) RFP. [S.l], 2005. (OMG document:
realtime/05-02-06).

OMG (Object Management Groug)ML Profile for Schedulability, Performance,
and Time, 2002. (OMG document n. ptc/02-03-02). Availablet: a
<http://www.omg.org>. Visited on: Jan. 2003.

OMG (Object Management Group¥MI : XML Model Interchange. (OMG document
formal/2002-01-01). Available at: <http://www.omgge. Visited on: Jan. 2002.

OMG (Object Management GrougylOF: Meta-object Facility (MOF). [S.l.], 2001.
(OMG document formal/2001-11-02). Available at: tphfwww.omg.org>. Visited on:
June 2005.

OMG (Object Management Group)nified Modeling Language Specification. v. 1.3.
[S.1.], 1999.

PIMENTEL A. D. et al. Exploring Embedded-Systemsclitectures with Artemis.
Computer, Los Alamitos, v.34, n.11, p. 57-63, 2001.

111

PIMENTEL, A. D.; ERBAS, C.; POLSTRA, S. A Systenma#pproach to Exploring
Embedded System Architectures at Multiple Abstmactievels.IEEE Transactions
on Computers [S.l.], v.55, n.2, Feb. 2006.

PINO, J. L.; BHATTACHARYYA, S. S.; LEE, E. A. A hrarchical multiprocessor
scheduling system for DSP applications. In: IEEEILABMVAR CONFERENCE ON
SIGNALS, SYSTEMS, AND COMPUTERS, 199Broceedings..[S.l.: s.n], 1995.

POPOVICI, K.; GUERIN, X.; BRISOLARA, L.; JERRAYA, AMixed Hardware
Software Multilevel Modeling and Simulation for Mihread Heterogeneous MPSoC.
In: INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATON & TEST,
VLSI-DAT, Taiwan, 2007 Proceedings..[S.l.: s.n], 2007.

PORRES, I. A toolkit for model manipulatiosoftware and Systems Modeling,
Berlin, v. 2, n. 4, p. 262-277, Dec. 2003.

PTOLEMY. Available at: <http://ptolemy.eecs.berketrlu/>. Visited on: Mar. 2004.

REICHMANN, C. et al. GeneralStore - a CASE-tooteigration platform enabling
model level coupling of heterogeneous designs fobexdded electronic systems. In:
IEEE INTERNATIONAL CONFERENCE AND WORKSHOP ON THE
ENGINEERING OF COMPUTER-BASED SYSTEMS, ECBS, 11.,002.
Proceedings..[S.l.: s.n], 2004. p. 225- 232.

RIOUX, L. et al. MARTE: A new profile RFP for theadeling and analysis of real-
time embedded systems. In: UML-SOC WORKSHOP, UMIGSo 2005.
Proceedings..[S.l.: s.n], 2005.

RUMBAUGH, J. et al.Object-Oriented Modeling and Design [S.l.]: Prentice Hall,
1991.

SANDER, |I.; JANTSCH, A. System Modeling and Transiational Design
Refinement in ForSyDelEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems New York, v.23, n.1, p. 17-32, 2004.

SANGIOVANNI-VINCENTELLI, A. et al. Benefits and Clilanges for Platform Based
Design. In: DESIGN AUTOMATION CONFERENCE, DAC, 412004, San Diego,
USA. Proceedings...New York: ACM Press, 2004. p. 409 - 414.

SANGIOVANNI-VINCENTELLI, A.; MARTIN, G. A Vision for Embedded Software.
Invited Talk. In: INTERNATIONAL CONFERENCE ON COMPERS,
ARCHITECTURE, AND SYNTHESIS FOR EMBEDDED SYSTEMSAGES, 2001,
Atlanta, USA.Proceedings...New York: ACM Press, 2001. p.1-7.

SCHMIDT, D. C. Guest Editor's Introduction: Modetizen EngineeringComputer,
Los Alamitos, v. 39, n. 2, p. 25-31, Feb. 2006.

SELIC, B. UML 2: A model-driven development tool. odlel-Driven Software
DevelopmentIBM Systems Journal Riverton, v. 45, n. 3, p. 607-620, 2006.

SELIC, B. Models, Software Models and UML. In: LAGNO, L.; MARTIN, G;
SELIC, B. UML for Real: Design of Embedded Real-Time Systems. Norwell, MA,
USA: Kluwer Academic, 2003. p. 1-16.

11z

SMARTQVT. SmartQVT: Open Source Transformation Tool Implementing thefv
2.0 QVT-Operational Language. Available at: <htgrfartgvt.elibel.tm.fr/>. Visited
on: May 2007.

SZTIPANOVITS, J.; KARSAI, G. Embedded Software: G#ages and Opportunities.
In: INTERNATIONAL WORKSHOP ON EMBEDDED SOFTWARE, ESOFT, 1.,
2001.Embedded Software:proceedings. Berlin: Springer, 2001. p. 403-41%cfure
Notes in Computer Science. v. 2211.)

TELELOGIC. Rhapsody. Available at:
<http://modeling.telelogic.com/products/rhapsodyér.cfm>. Visited on: Mar. 2007.

TELELOGIC. Statemate Available at:
<http://modeling.telelogic.com/products/statematdéix.cfm>. Visited on: Oct. 2003.

TELELOGIC. Telelogic Tau Architecture/Development Available at:
<http://www.telelogic.com/>. Visited on: Oct. 2004.

TENSILICA. Xtensa V. Available at: <http://www.tensilica.com>. Visiteoh: Jan.
2006.

TEMMERMAN, M. et al. Moving Up to the Conceptual Meling Level for the
Transformation of Dynamic Data Structures in EmieetiMultimedia Applications. In:
INTERNATIONAL CONFERENCE ON EMBEDDED COMPUTER SYSMS:
ARCHITECTURES, MODELING, AND SIMULATION, SAMOS, 2(® Greece.
Proceedings..[S.|.: s.n.], 2005.

TIDWELL, D. XSLT. [S.L]: O'Reilly. 2001.

VERKEST, D.; KUNKEL, J.; SCHIRRMEISTER, F. Systeme\el Design Using C++.
In: DESIGN, AUTOMATION AND TEST IN EUROPE, DATE, ZID. Proceedings...
[S.1.]: IEEE Computer Society, 2000.

ZHOU, G.; LEUNG, M.; LEE, E. A.Code Generation Framework for Actor-
Oriented Models with Partial Evaluation. 2007. Technical Report. Available at:
<http://www.eecs.berkeley.edu/Pubs/TechRpts/200C&E007-29.pdf>. Visited on:
May 2007.

WEHRMEISTER, M. A.; BECKER, L.B.; PEREIRA, C. E. @mizing Real-Time
Embedded Systems Development Using a RTSJ-basediARVORKSHOP ON THE
MOVE TO MEANINGFUL INTERNET SYSTEMS, OTM, 2004Proceedings...
Berlin: Springer, 2004. p. 292-302. (Lecture Nate€omputer Science 3292).

WIEGAND, T. et al. Overview of the H.264/AVC VideGoding StandardlEEE
Transactions on Circuits and Systems for Video Teciology, New York, v.13, n.8,
p. 560-570, July 2003.

APPENDIX A ESTRATEGIAS PARA
DESENVOLVIMENTO DE SOFWARE EMBARCADO
BASEADAS EM MODELOS DE ALTO NIVEL

O desenvolvimento tecnoldgico expés uma nova raaéido uso intensivo pelo ser
humano de sistemas computacionais. Esses sistemgsitacionais, quando embutidos
em um produto, sdo chamados de sistemas embargaiiss;onstituem parte de um
todo e desenvolvem tarefas especificas. Os sistembarcados estdo presentes em
diversos setores tais como: automotivo, aeronjutelecomunicacgdes, eletronica de
consumo e de dispositivos medicinais. Geralmergeisiemas embarcados complexos
sdo implementados como system-on-chip (SoC) heiasms compostos de
componentes de hardware dedicado, processadoregram@veis, memoria,
controladores de interface e outros médulos denwel

Muitos sistemas embarcados tém requerimentos quéifeem dos tradicionais
sistemas desenvolvidos para PCs. Muitas vezes sésemseridos em equipamentos
para 0s quais a portabilidade é um fator importanéstes casos, tamanho, peso e
dissipagdo de poténcia sdo requisitos criticos.tddusistemas embarcados possuem
restricdes de tempo de resposta e de confiabiljdddm das restricbes tradicionais de
consumo de energia, area de memoéria e desempendém @isso, o tempo para
langamento do produto no mercado é crucial paraic@sso do projeto. Portanto,
produtividade e qualidade sdo simultaneamente riglse no projeto de sistemas

embarcados a fim de lancar um produto competitovanercado.

Projeto baseado em plataformas (PBD) (SANGIOVANNINEZENTELLI et al.,
2001; SANGIOVANNI-VINCENTELLI, 2004; VERKEST, 2000¢ uma metodologia
de projeto que visa maximizar o reuso de composantmnsequentemente melhorar a
produtividade dos projetos. Com o reuso de platadsr de hardware, o software
embarcado € o que diferencia os produtos.

Segundo Burch (2001), o interesse por implementa¢izseadas em software
cresceu principalmente motivado pelo aumento nepoomputacional das plataformas
de hardware que possibilitou mover mais funciosalé para o software. Outro fator
motivacional foi o0 aumento dos custos de desenvaiio de hardware que motivou o
reuse de uma mesma plataforma em diferentes psodiitatilizacdo desta abordagem
de projeto baseado em software proporciona fladddle e portabilidade, enquanto
diminui o tempo de projeto. Além disso, quandoeslata maior funcionalidade para o
software, o custo do sistema pode ser reduzidonassmo o tempo para colocé-lo no
mercado j& que uma plataforma pré-definida sersadas Porém, alguns aspectos tais
como consumo de poténcia e desempenho podem getigaelos.

114

Atualmente, com o uso de abordagens baseadas ¢émopieas, o gargalo para a
implementacdo de sistemas embarcados vem sendiole@a® o desenvolvimento de
software, a sua depuragéo e a sua integracdo caongsonentes de hardware. Deste
modo, o0 software estd se tornando cada vez maisnoigal fator de custo nos
dispositivos embarcados (GRAFF, 2003). Este cenéraiiva a investigacdo de
estratégias para acelerar o desenvolvimento dewvaeft embarcado através de
ferramentas de automacéo.

Na area de engenharia de software, ferramentas € S&mputer Aided Software
Enginnering) sao largamente utilizadas para auiaarat o processo de
desenvolvimento. Como softwares convencionais s@@mente homogéneos, ou seja,
dedicados a um Unico dominio, as ferramentas daveagfio de software focam na
gerencia do desenvolvimento de grandes sistemas,lidar com aspectos como a
heterogeneidade. Porém, sistemas embarcados ca®p&brangem uma grande
variedade de aplicacdes e possuem muitas fundianis agregadas em um dnico
sistema, devido a isso, existem diferentes neassdde computacdo requeridas em
um anico produto. Por exemplo, a especificacdo metelefone celular ndo requer
somente processamento digital de sinais para ook telecomunicacdes, que segue
o modelo de computacdo tempo-discreto. Ela tamiemer l6gica sequencial para
descrever varias outras aplicacbes embarcadadulargq@agenda, alarme, etc.). Assim,
pode-se afirmar que os sistemas embarcados s&alnante heterogéneos e, portanto,
as ferramentas de automacgdo devem suportar désranbdelos de computacgéo.
Porém, as ferramentas existentes para automacédeseavolvimento de software nao
oferecem este recurso.

Além disso, o desenvolvimento de software embarcddere do software
tradicional quanto as exigéncias impostas ao rojt software embarcado. Por
exemplo, restricdes de tamanho de memadria e conslempoténcia sdo muito mais
rigidas nestes sistemas do que em sistemas tnaalisjico que € um outro fator que
inviabiliza o uso de ferramentas CASE tradicionpsra o projeto de software
embarcado. Embora, consideremos estes aspectosiatidage do software muito
importantes para o dominio de embarcados, istdarparte do escopo deste trabalho.

Além do projeto baseado em plataformas, o uso deagdes de alto nivel também
tem sido adotado para lidar com a crescente condplés dos sistemas embarcados e
aumentar a produtividade do projeto. Selic (200Gpenma (2000) ressaltam que o0 uso
de técnicas de projeto comecando por niveis deagist mais altos é a Gnica maneira
vidvel para lidar complexidade das novas gerac@sistemas embarcados, sendo
considerada uma pratica essencial para o sucegsojeto.

O uso de abstracdes de mais alto nivel permiteaabdetalhes de implementacao
na linguagem alvo, facilitando a especificacdo dtesia que € realizada atraves da
construcdo de modelos, as invés de escrita deaddgando esta abordagem, modelos
de sistemas embarcados podem evoluir de abstrdedao nivel até implementacoes,
assegurando um processo muito mais suave e cdnfigeeo provido pelas praticas de
engenharia de software tradicionais. A traducaomatica do modelo de alto nivel em
codigo executavel é altamente desejavel, mas depdondda notacdo de modelagem
usada, diferentes graus de interacdo com o prajepedem ser requeridos. A
linguagem de modelagem deve prover mecanismos pamessar ndo s6 a
funcionalidade como também os requisitos da afdizaglem de suportar a validacédo e
mecanismos que facilitem a obtengdo de uma implem@o do modelo. Muitas
abordagens de modelagem e linguagens tém sido gtagppara a especificagdo de

11t

sistemas embarcados, mas ndo had um consenso, jepeima linguagem é
considerada boa para modelar todas as aplicagfesteadas neste dominio.

Dentre as abordagens propostas, duas abordagesssatam, uma que é a baseada
em blocos funcionais e é provida pelo Simulinkaitta que é baseada em orientagéo a
objetos e provida pela UML. Tradicionalmente, abgehs baseadas em blocos
funcionais tém sido usadas nas comunidades de gsa@oento de sinais e de
engenharia de controle para desenvolvimento densést embarcados. Esta abordagem
tem sido largamente aceita pela industria, prifcipate, devido ao grande namero de
ferramentas disponiveis como, por exemplo, SIimuliMATHWORK, 2003a) e
Labview (NATIONAL INSTRUMENTS, 2006).

Por outro lado, a linguagem UML € considerada gulagem de fato para a
modelagem de sistemas orientados a objetos e t=mtido em popularidade também na
area de projeto e especificacdo de sistemas endoarcde tempo real. Em
(LAVAGNO, 2003), esforcos que descrevem o uso deLUwh diferentes fases do
projeto de sistema embarcados séo apresentados.

No contexto deste trabalho, as duas abordagenadssem UML e Simulink séo
avaliadas quanto a modelagem, geracdo de cédigecanmsmos de exploracdo do
espaco de projeto. Os resultados de analise foudmicpdos em (BRISOLARA, 2004;
BRISOLARA, 2005b) e sdo apresentados e discutidngapitulo 2. A partir desta
analise, observou-se que as abordagens de gerag@dtdare embarcado baseado em
UML e Simulink possuem limitacdes, e esta tese @opstratégias para resolver as
principais limitacdes encontradas nas duas abondage

Apesar dos esforgos e propostas para extensamglagiem, UML continua néo
sendo adequada para modelagem de sistemas datafhisvela é uma linguagem
baseada em eventos e, portanto, control-flow. Quangeracdo de cédigo, a maioria
das ferramentas UML geram somente esqueletos dmyoc@l partir de modelos
estaticos. Poucas ferramentas sdo capazes de gliggo a partir de diagramas
comportamentais. Porém, para geracao de cédigoletimps ferramentas exigem que
0 projetista insira fragmentos de codigo junto d@gramas. Todas as ferramentas
comerciais encontradas geram cédigo somente a partiliagramas de estado e para
gerar cédigo completo, exigem que o projetista @escas acdes referentes a cada
estado. Muitas vezes, o projetista usa a linguadeiprogramacéo alvo para fazer isso,
0 que além de tornar o modelo dependente da liegoadvo. NOS propomos aqui 0 uso
de abstracdes junto aos modelos comportamentais ia reduzir o esforco
requerido ao projetista, reduzindo o nimero deabndte cédigo, enquanto, suportando a
geracdo de codigo completo a partir de modelos UEHta proposta é discutida no
capitulo 3 desta tese.

Por outro lado, Simulink suporta modelos do tipdaflew de tempo-discreto e
tempo-continuo frequentemente encontrados em gpbsaembarcadas. Além disso,
completo cddigo pode ser gerado usando Real-tinmkslvop (MATHWORKS, 2004).
Porém, o codigo gerado é voltado para uma arquatehono-processada. Observando
esta limitacdo, propomos uma estratégia para gerdedcddigo multithread voltado
para plataformas multi-processadas (MPSoC) hetasage(BRISOLARA, 2007a), que
€ apresentada no capitulo 4. Nesta estratégiayaadiltithread € gerado a partir de um
modelo denominado Simulink CAAMcdmbined algorithm architecture model). O
modelo Simulink CAAM combina algoritmo (funcionadide) e arquitetura, contendo
informagcdes sobre o particionamento do sistema tlereads e também sobre o

11¢

mapeamento dathreads para processadores. A abordagem de geracdo dgocadi
partir de modelos Simulink CAAM proposta aqui feartp de um fluxo de projeto de
sistemas MPSoC baseado em Simulink proposto em {{&JAt al., 2007).

A comparagdo entre UML e Simulink mostra tambéra gs duas abordagens de
modelagem apresentam pros e contras, 0 que masguisadores a encontrar uma
maneira de explorar simultaneamente beneficiosgmepelas duas linguagens em um
anico fluxo de projeto. Recentes esfor¢cos mostraetgnto UML como Simulink séo
consideradas atrativas para o projeto de sistemasreados. Boldt (2007) propde a
integragdo de modelos Simulink em modelos UML narafeenta Rhapsody.
Reichmann (2004) também prop6s a integracdo de losddesenvolvidos em
diferentes ferramentas incluindo UML, Simulink eat8tmate (TELELOGIC, 2003).
Usando esta abordagem, médulos do sistema podemosletados usando a ferramenta
mais apropriada e geradores de cddigo de domimiecé#gko sdo usados para gerar
codigo para cada mddulo. SysML (OMG, 2006) foi mstp como uma extensdo de
UML para ser usadas por engenheiros de sistema#® pm alto grau de integracao
com o paradigma de blocos funcionais. Porém, a gwamespecificacdo desta
linguagem ainda € muito proxima da UML, ndo aprsato melhorias significativas.
Além disso, devido a ser ainda uma novidade, amrfeamtas de modelagem que
suportam a linguagem néo tiveram ainda suas camsdlevidamente avaliadas.

Nesta tese (capitulo 5), propomos uma maneiratdgrar UML e Simulink em um
anico fluxo de projeto, permitindo que UML seja dsacomo a linguagem de
especificacdo efront-end para diferentes abordagens de geragdo de codigo
(BRISOLARA, 2007b). Diferentemente das abordagemepgstas por Boldt e
Reichmann, nossa abordagem propde o uso de UML @iimiguagem Unica para
especificacdo inicial. O fluxo proposto baseia-setnaducdo de modelos UML para
outras notagdes mais adequadas para a geragadodim,cpor exemplo, modelos
Simulink para dataflow ou maquina de estadisité state machines, FSM) para
control-flow. Além disso, o fluxo proposto permiggle um modelo UML possa ser
reusado para diferentes abordagens de geracadide céejam abordagens tradicionais
baseadas em UML ou abordagens baseada em Simudiakdo diferentes plataformas.

Uma das principais motivacdes para a definicdcedésto de projeto integrador foi
usar UML comdtront-end para a ferramenta de geracdo de codighithread baseada
em Simulink proposta em (BRISOLARA, 2007a). Pordamds propomos aqui um
mapeamento entre UML e Simulink CAAM. O proposto pgemento permite a
exploragdo dos beneficios de UML para especificalioequisitos funcionais e nao
funcionais, enquanto prové um caminho para a obtenlg codigo executavel, para
rodar em uma arquitetura composta de multiplosqesadores heterogéneos, a partir de
um modelo de alto nivel de abstragdo. O SimulinkA@IAgerado a partir do modelo
UML pode ser usado como entrada para um fluxo cetopde projeto de sistemas
MPSoCs, podendo ser usado também na geracdo deifieagdo do HW para a
plataforma MPSoC. O emprego da abordagem propugtadie projetistas construam
ou modifiguem modelos Simulink diretamente, o gigaiica maior abstragéo e evita
que projetistas lidem com detalhes de baixo niegiasinais e portas.

O proposto mapeamento de UML para Simulink CAAMemse principalmente
em informacfes extraidas de diagramas de sequéndagrama de distribuicdo
(deployment). O Diagrama de distribuicdo é usado para ind@amapeamento de
threads para processadores. O diagrama de seqiéncia éapal diagrama usado
neste mapeamento, sendo assim um diagrama de sigtéwne ser definido para cada

117

thread que compde o sistema. A partir do diagrama de &w®igi captura-se um
diagrama composto de blocos Simulink, compondo wdeto dataflow e que define o
comportamento dthread. A invocacdo de métodos de objetos passivos rgratiza de
seqliéncia é mapeada para blocos funcionais (pirdiettef ou definidos pelo projetista).
A invocacdo de métodos entre diferertegads indica a comunicacao entre elas e sdo
mapeadas para blocos de comunicacdo no modeloiSkn@AAM e a invocagdo de
métodos a partir de objetos decorados com o efifEwed<lO>> sdo mapeados para
portas de entrada e saida no modelo Simulink.

Nao existe um mapeamento 1 para 1 entre as duagfest Portanto, além do
mapeamento, propomos trés tipos de otimizagdes,sgaea inferéncia de canais de
comunicacdo, a insercdo de barreiras temporais agropamento dehreads. A
inferéncia de canais de comunicacgdo e o agrupandertimeads sédo necessarios para a
construgdo do modelo Simulink CAAM, pois tratam afgpectos como comunicagao
entre threads e definicho do mapeamento tiweads para processadores. Estes séo
aspectos importantes na definicdo de um modelothmelhd e muti-processado. Além
disso, a fim de evitar deadlocks, barreiras temposdo inseridas automaticamente
guando caminhos ciclicos sdo encontrados na gedac&mdelo dataflow Simulink.

Quando o agrupamento tlgeads é usado, ao invés do projetista definir a alocacéo
de threads para processadores através do diagrama de diglihuum algoritmo
baseado néinear clustering € usado para definir o melhor mapeamentthceads para
processadores com base no volume de comunicag@&oastiireads. A inferéncia de
canais de comunicagdo instancia blocos de comuiucagara representar a
comunicacao entrthreads explicitamente no modelo UML. Esta etapa seta éamb
protocolo de comunicagdo dependendo do tipo de cimagho requerida, se é entre
threads alocadas a uma mesma CPU ou em diferentes CPUs.

To show the usefulness of the proposed design flwev,developed a prototype,
which is able to generate Simulink CAAM from an UNodel. Using the developed
prototype, we conduct experiments to show the hisnef our proposed mapping. At
present, the designer applies the mapping from Wdgimulink for whole system, but
in the future, an analysis tool could be used tereine which fragments of the system
are dataflow and control-flow, thus the mappingpglied only for the dataflow part.

Embora o fluxo de mapeamento proposto suporte @utrapeamentos além do
Simulink, este trabalho endereca somente o mapeanaen UML para Simulink e
Simulink CAAM. Para completamente suportar o flyxmposto, 0 mapeamento de
UML para modelos do tipo maquina de estados (FSH)bEm deveria ser provido.
Desta maneira, além de um caminho para geracadmdigocbaseado em modelos
Simulink, o fluxo suportaria 0 uso de diferentegdmentas para geragdo de codigo
para modulos do sistema que sejam do tipo corlbwi-fA traducdo de UML para FSM
sera considerada como trabalho futuro.

Para mostrar a utilidade de nossa proposta, unbtjpotfoi desenvolvido no
contexto desta tese, o qual implementa o mapeandentéML para Simulink CAAM.
Usando este prototipo, experimentos foram realizaddualmente, o mapeamento €
aplicado para todo o modelo UML, porém, futurameziéedeve ser aplicado apenas a
parte dataflow do sistema. A fim de automatizardainmais o0 processo de
desenvolvimento de software embarcado e o suportmodelos heterogéneos,
planejamos usar uma ferramenta de andlise paripaar o sistema em mddulos
dataflow e control-flow. ApGs o particionamentodadragmentos do modelo pode ser

11¢

mapeado para a notacdo mais adequada a seu tjis ® anapeamento, a abordagem
de geracdo de cddigo apropriada pode ser usadaoptamuma implementacdo para
cada maddulo do sistema.

APPENDIX B EXPANDED FIGURES

This section presents expanded figures used inteh&@pand 5. Figures of the
MJPEG Simulink CAAM, used as case study in chapteare presented here in detail.
In addition, it includes the Simulink CAAM metamaddall sequence diagrams used in
the Crane case study in chapter 5. For the syotleaample, whole sequence diagram
(partially presented in section 5.3.2) and thearical levels of the Simulink CAAM
generated for our tool are presented here.

I mipeg B
File Edit ¥iew Simulation Format Tools Help
OlxEdS| »BER| &= 4|9 P = 100 Momnal ~|| B g @) & RERES®
[
h 4 ¥ ¥ ¥ ¥ ¥ ¥
= ¢ = B B w
CPUY = CPUZ CPU3
128 ¢
[
‘ [
L I
¥ h 4
- — =0
s é = E &
GFIFO HWFIFO
(o - AT B z o
5 8 & & & 55 Q.
Ready 1100% lode3

Fig. 1: MIPEG decoder Simulink CAAM: top level (Fig15a)

12C

1 mjpeg/cput »
Fie Edit WView Simulation Formab Tools Help

OSsE& =B &= 3|22 |(» a0 |homd -] BB RET

']
Outd

Thread1 SWFIFO Thread?

Ready: |100% | | lode3 v

Fig. 2: MJPEG decoder Simulink CAAM: CPU1 subsys{étig. 4.15b)

mjpeg/CPU1/Thread2 *

File Edit Yiew Simulation Format Tools Help
Il = = @B =2 b= oo Nemd || H@p B BRER®
it{}
(D =
In
constant_output_1
{2} Pifo_image_
In2
then
TRELT —
ul
else
If
Unit Delay4 L ‘
. e "
Z ba_output_sf—
i . Unit Delays
= 1
file_index_out_| - - »{ 4]
2 outs
o
% Merge
Paa_s i a8_5 | constant_sutput 0 £
Stop Simulation
Uit Delay? et i
< " I 1
. sb_s.n file_buffer_ z_
L. ab_input_s ot
main_ctrl
T »()
{3} P buffer_index:_end fimish out2
In3
else
> 3
{4} filebuffer file_buffer_out ot
Ind
main_ctrl .
Unit Delays
1 -
=
Ready 108% lode3

Fig. 3: MJPEG decoder Simulink CAAM:

Thread2 sulveys(Fig. 4.15c)

12z

L=juis wr s wes-
|-Buigs e

Buls uorss aibe-

Chtigenens i)

(itigerans il

Oeigenats: woig)

(it o o)

b speany+

o
OSSO0+ o

uoHENUMUUDY

(ruuis aroy) (s wroy) Gyunpinads o)
105533014 peaniL

b weysund L] JoeuRwE | 7 7 _ {
e % AW peay +
Opetgensis wroig) ity i o) JusTayng e
Buiig e Bups sndur- P P —— fuig adh [aanosay-
= : ; > 3 - ; ; ol e 51 aeonding ayegyndu) (s o) (s i i) 7 7
TS UL s i eifis oy ijerears i einieks ioy
(i 7 i & e 4 i & Sasae esai e 4
s Aepmun PPy £janpoid i Wnsuoiuee)
7 10+ 7
yiocf +
Supssdu- Bus UD e ado- uBL=BULS BOA LUDDE- JurUoREaY- A aiaIe +
(rapieriags: ey} Gitaprays i) (s o) Gruaginas i) Cyapironys uroy) (reagirays i oy) (g i o) Gtapinags i) a6
adoag wng uogungs Agauouobuy HO uonY NRREPY o4 fReD Swapksgns +
Ay . e
SuiagsAs + \apou | Crais wcw)
- PPoW
WejEAS +
— 2 wapshs | Chuammors way) -
pioA () (ToBdeiador ey e
300+
VL s
Haoig
frarmets o) | aupaip s Geagenats i ig) Chtiynens i o)
il (i & i 4
aurpoang auryaueg
U
BuLS @0U- Jursia- .
(ytiftitits iiay) 12 noR-
U auy+
(oS i) (pidtyreitis tir a4}
adA eeq Sy
== UD[EHE WINUS ==
auy
e | R Bk
Geagenats: waig) Cputyrucis o)
yogynduy vogndno
s] SHo+
a0k Leteq Akl
od
LA - L HOdpagsial+

BuLs Ewe-
i A sweus

Gragenaes woig)
adfL

Cputyrncis 4oty)
yod

Simulink CAAM meta-model

Fig 4

Fig. 5: Crane control system: Sequence diagramhogdd T3 (Fig. 5.13)

_ _ | _ _ ! ! ! _
_ _ _ _ _ | | | 1
_ _ _ } L _ ! ! T T T e
e =C Ehaepm Eioapim Ehasg = —_— — —_— — — — —
_ _ _ il | _ .m_ml_ _
T 1SN, =1MIN 138 GF e . el
_ | _ _ _ b
I | | | | g SIS W=UES TR _
——— _
_ _ ! __”_hz__nﬁ_zmm: ____E__umgn____n_}__ﬁ OJns .0F ;
_ _ | _ _ ' haaTages w7
_ _ | _ _ ! ! = e
|
_ [,Lo,=n ___m_uaElmFm__umuDEmEm_ ___m:n_m__uﬁ_mlm___Lm”_m_uam__um_umanlm ___mm_um“_ug__umm_am_un“_:u__mu AT
_ _ _ _ _
— — — . g — — =
| | | L e L=
Eydiez A nsal ' Jeasod, =70 __mcg_mEE__nE_uu_E:m”mm
_ _ _ | SR
I | | | Leydieipy insad | eydig,=gdo T up Sl dojynw gy
| _ | | | S =T Sliggreer 9
| | | _H_,_m”_m_ugm__n#_zwmh AE250d =700 " LUpzhw =pdojuns L7
| ! | | (upEbuw,=nsa; ' AR ST
| | | | | Rl == S = O
_ _ | | | Gp,snsal W =zdo ", L= dojap L)
ceima cvEa LT cTEs cTEaloTEs CTa LTEs oS 4y Uoaorgp
™ T | 1 s _ | _ _
- LApowy Bwa, Dapowbwa 18l F |
JEUOE JEYAE 180 17|
_ _ 11— —~—r-———F-m-+-=-—-"=-=-~~-3
_ _ | __mmumng___.n_mmﬂmaglﬁm_u”_”; | | _
| | flg— — =i — — — = —h— —= —=— —=—
| | RV PN
I | _ _ _ITIII_IIII|_.|”._._I|I_|I|IL\.
| | | | | I AT T T [[ey
_ _ | | (ugh.=b "oh= 'deazod zieqsod, pno,=dwar " dwdoea oy TP
_ _IF.IIII_IIIII_lll_I|II;__U||II4|I|I_|I|I|.V == lafflurgse=s
| | _Lmumug__”n:wum_ua 186 7 _ _ | | | REEEUETH _
zZl: bL: WHI : auibug : pueld : _ _ _ £1: payas:

ZLEadpaydsg S <LsRYpAaYIsy S <=0]== <=@l== <<0=> 7 woneld = _ _ u:lu_wU" _ _ Jonuod - _ sy paYIsy S 2ZlANpayYasgSss

124

== zcheduler== ==5AschedRes=»= === ==58schedRes== == zchedRes==
: Sched :T1 : Plamt T2 : T3
I I
1:mainTaskd o I !
=S Atrigger= 2 get_weomwe | | [
o _i'. | |
4: zoh2rds(in="xc", out="xcD™ |
Pomien - | |
6. isHigheriop1$"«c", op2="posCarMax’, result="¥xcH5" |
I I I
F.
é E é' - n Ilg r |
i czoh2m | fin="xcH9", out="swPosCarhax |
] | I
i 10: |5L|:|we|r(|:|p1—"xc" opz2= "lpIIISCEII’I'I.I'lIr'I" result—"x?LS"}
-1'1
N | |
:[12 znhEmSI{m ="wcla", nut—"ﬁwPDSCarMm"} |
T
e | | |
- 15 _"_ 14:get_angleﬂn:|angle |
; 16: ZohZrds(in="angle", outE"alpha™ |
[i | | |
18: SIETSWF'DSCEII'MEIZI{{ alue:"st’nsCarMafl'}
BT _"[ﬁ
ﬁ: SEtSWPDSCEII’NIj'II:'I.I'EI|L,IE="SWF'EISCEII’MHI'I"}
e e _211_| s |
| 22 detalphatalue= "ch__:lI
P R S L PR
| 24 setI?I:usCar(value alphif;'
2E: 25
s i e | s e et s E wemat T
an | I I
I | I I

Fig. 6: Crane control system: Sequence diagramhogdd T1 (Fig. 5.11)

==SAzcheduler== ==zAschedRes== ==l0== ==mAzchedRes== ==mAschedRess==
: Sched T2 : Engine tT1 : T3
I I I [[
| 1:mainTask) | | |
T S— 2 get_st'DSCErMax(}:"swPDS%Max" |
ER I e |
4: get SWPDSCEI’I'I.IIIr'II:IZ"SWI:'DSfiaI’I'l.I'IIﬂ"
B: orfopl="swPbsCarhax", op2="fwPosCarhin", resultF emo_rmode™)
I I I
—_ 8 oel alphatialphat | I
it svaleee s ol I
; 10: ahsling"alpha", out="ahsalpha™ |
= | | |
e
i 12: isHighekop1="absalpha", bp2="alphamax", result="emg_stop™)
it | | |
< = 14:set_brake(hr:ﬁke:"emg_stup"} |
= = — —
| 16 setEmgrModkialue="ermg mud%
18 o mew e wlh . BRSO e s
= T T T T | | |

Fig. 7: Crane control system: Sequence diagranhogdd T2 (Fig 5.12)

12t

A=A, =R ENOlED

| | | | | | | | | | | |
| | | | | | | | | | | |
—— -4 - -——-——-—-—-—-|-"—"——"—-"—“|-"—"—"—-{ |- —"—¥—-{—- |- —{ - - —H - —H — - —— -4 — = - = — 4 — = — = —
g 92
e — | | | | | | | | | | |
¢ | | | | | | | | | | |
STUPEEIOE T2
| e T il o e T Sl = ElET T Tl T TlieseT T Tl T T Tl EmT T T T TeeTE Tl = =
=T SRk L
| | | | | | | | | |
| | | | | | | | | |
=2 WHAh o RgerIes g | | | | | | | | | |
| T [BF I E| T T T T T 1 T I I
e 99 | | I | | | | |
o 3 | I | | | | I [I
| ur.,uéoﬁ:o_uo 24 w | | | | | | | | |
| | T Oyge uew g | T T T T T T T T =
I SRR |t] [I I I [
] fils o 09 | _ , |
| =2 IC N, = | = |
| _ Glaa=Eanie Age mm_ e 7 | ” _ _ _ _ | |
| A =X)RR IN2[ED 95 _ | i _
| “ } } | + | | + |
[yse e 55
| | | | B e et [e e e
[== T e | [[[[| [
| | [4 7 , | | | | [|
| | | ,_I>__H,_D>4nxumﬁ_:u_8 05| w | | | | | | |
| ! —_ e — _| —_—_——— = ,I —_—_——— == _“W_wwl_.:_mwh mH = M»q.xmw_.cl_w:_”r:zﬂm_ ar e i e i (e A = =
I B e : . . I I I I | I
Liom=x)|ankslas ap =3
| | | | op-saenbea LR, S | | | | | |
I I I [I om%_j_“vu_g e I I I I , I
| | | | | | (UEBTHBINER, s e el i i i i i e il e s i s = —3
| | [[Wommesumory— — — — — — — — — — — — — — — — — S [&rFa mmﬂ _ ! , _
L
		lt=rlanepizs ar	Bc spehapa w5]			[
		I	Wl Bal=xepenoles me)						
					[RSN				
R e e e, e s e e e e - — 3									
		_.rﬁmmﬂ:_wﬂ/«mm\cﬂﬁk\”mm\ =S =l i e s e s e e = S							
_ _ _ tan=xenie s e		I =							
mm.mﬁ_j—u_mu mad gel									
					>				
					Al A=xIomEnoes Tr Ly L L	L			
=82	L								
_	_		_ OISBLUBMAE L o — o e — — — — — — — —						
B —— —— = - - - —— — 3									
			t + } —						
g I [I									
_ _ _ ! _ ! _ A =R IBEINDED 97 _H))									
							o t T		
(seURW G7									
S e o i Zs 2									
I I I [I R N SR MU i i = o=									
	I [I ! !	— [I							
				WIAERIENEALES 7z		B			
W (= A)aleinaes 0z —P)									
.									
								" msepuewg, L T — — 3	
I I I [I [-——_—_—_—— e ————————— === —— — o									
i ! .									
		I	I T Lgs=xlarieais gl	T T Shp —					
								=T oy e R A	
						_.rﬁ\\\\.ﬁ__\\\\\\ — o ——			
						_,u_m:_mﬁ:ﬁ_._u_\\\\\\,\\\\\w			
il									
I I I [I [I I B g Dbt ” S									
X JENEATEE G e O e e R %									
[[[[[[[e— Cam							
Tk eXjaneAlEs =									
I I I [I , I I I I 4									
(=3I g [T									
l l L			l = l	1 : 5					
WL W peany LT peamy ri:Cpeanp HL: U peang 91 : 6 peanp 41 : ¥ peanny 3L:a peamn 01 :p peaiyy D19 peany 41:q peang ¥1:e peaiy 1ainpauyas ; payas
el ey R ioes Y [sgSEs okt e vy ==SaYpEYIS TS ==SEYPaYIS S ol ey jasg s ekt ioe e s sy SEs Ik e sy ==IBNPAYISYSEs

f ehpplication (Fig. 5.17)

lagram O

Sequence di

Synthetic example:

Fig. 8

i syntheticExampleAfterGroupingAlg ®

File Edit Wiew Simulation Format Tools Help

EEX

D HE| ft 2R |== 4|5k = im.ﬂ]anmal :_j & | &
In1 Ot
|->|n1 Out1
] Inz Out?
]Iz Outs TR
CFPUD
L el In1 Out1
Out1 In1 g
CPUZ
CRUZ
Ready 100%: nde45

Fig. 9: Synthetic example: generated Simulink CAANbp level

3 syntheticExampledfterGroupingAla/CPUD =

Fle Edt Yiew Smulaton Format Tooks Help

O @EdE $BE | == 302 b =i |rmd -] B B S PREE®

» » gatel Bl
out
»omel2 gatel |—polgment 1
Thiaade Thraadl
—gatel 3
ENE
ThreadL g -
Threadn
Thieadut
|
"
a2z,
in2
[ED;
"
Ready 100% lodeds

Fig. 10: Synthetic example: generated Simulink CAANMPUO subsystem

12¢

1 syntheticExampleAfterGroupingAlg/CPU1 ~ HE'@
File Edit Wiew Simulation Format Tools Help
DeEd& §6B2 = o *}9 P = 100 Mormal x; @HE@@
In1
i gateR L—fgatef aateF
ThteAaB ThraadF
gate. gateJ
Out1
ThreadJ

Ready [100%] odeds i

Fig.11: Synthetic example: generated Simulink CAANMPU1 subsystem

8! syntheticExampleAfterGroupingAlg/CPU2Z * E]EWX]
File Edit Yiew Simulation Format Tools Help
OEEE&| v 28 == 42 2| r = ioo |Nomd -] B g
In1
i qate D gateD e ateH gateH —
Threadl ThreadH
Outt
Ready 100% |odeds P

Fig. 12: Synthetic example: Simulink CAAM — CPUZsystem

e syntheticExampleAfterGroupingAlg/CPU3 *
File. Edit Wiew Simulation Format Tools Help

D Dq. H @ . i3 = = —.} R s

»

« fioo [Momal +||

._I—b gateC gatel
-'I

ThreadC

Wready [100%%

gates gatel —

Threads

Outl

I iode45

Fig.13: Synthetic example: generated Simulink CAANMPU3 subsystem

