
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

LISANE BRISOLARA DE BRISOLARA

Strategies for Embedded Software
Development Based on High-level Models

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Computer Science

Prof. Dr. Ricardo Augusto da Luz Reis
Advisor

Prof. Dr. Luigi Carro
Co-advisor

Porto Alegre, August 2007.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquiria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenadora do PPGC: Profª Luciana Porcher Nedel
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Brisolara, Lisane Brisolara de

Strategies for Embedded Software Development Based on
High-level Models / Lisane Brisolara de Brisolara – Porto Alegre:
Programa de Pós-Graduação em Computação, 2007.

129f.:il.

Tese (doutorado) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação. Porto Alegre, BR –
RS, 2007. Advisor: Ricardo Augusto da Luz Reis; Co-Advisor:
Luigi Carro.

1. Sistema embarcado. 2. Software embarcado 3.
Desenvolvimento de software. I. Reis, Ricardo A. da Luz. II.
Carro, Luigi. III. Título.

ACKNOWLEDGMENTS

Primeiramente, gostaria de agradecer as pessoas que estiveram diretamente
envolvidas no desenvolvimento do meu trabalho de tese. Meu orientador, prof. Ricardo
Reis, com quem trabalhei desde o mestrado e que sempre está disposto a conversar, seja
sobre trabalho, seja sobre questões pessoais. Ao prof. Luigi Carro, que dividiu as tarefas
de orientação, muitas vezes tomando para si esta responsabilidade e cujas críticas e
opiniões foram muito importantes para o desenvolvimento deste trabalho. Quero
estender este agradecimento ao prof. Flávio Wagner que também teve uma importante
contribuição e me orientou em várias ocasiões. Eu gostaria de agradecer do mesmo
modo alguns colegas com quem trabalhei durante os anos de tese: Leandro Becker, Júlio
Mattos, Márcio Oliveira, Francisco Assis, Ricardo Redin e Emilena Specht.

Não poderia deixar de agradecer a minha família, meus pais, Maria Luci e Arlindo
Brisolara, e minhas irmãs Elisa e Cibele, pois os seus apoio e carinho foram sempre
muito importantes em todas as minhas conquistas. Não poderia deixar de fazer um
agradecimento especial ao meu namorado, Vinícius Pazutti Correia, por todo o
companheirismo, compreensão e amor que me deram forças para vencer este grande
desafio, além da paciência para ler meus textos e assistir minhas apresentações,
corrigindo-me e colaborando com críticas construtivas. Gostaria de agradecer também a
Rejane e Jorge Correia, que me “adotaram” e me deram todo o apoio que podiam,
principalmente neste último ano de tese. Eu gostaria de também estender este
agradecimento a outros membros da família, tios e primos, pois a convivência com eles,
mesmo que esporádica, contribuiu para meu equilíbrio pessoal.

Aos apadrinhados, Milena e Felipe, obrigado por simplesmente poder contar com
vocês. Aos demais amigos, obrigada pelos bons momentos compartilhados. Aos colegas
de laboratório, agradeço os inúmeros intervalos com bate-papos, risadas e café e toda
ajuda que me deram ao longo do doutorado. Também gostaria de agradecer a todos do
grupo do vôlei pelos bate-bola agradáveis que me permitiram espairecer nos momentos
mais estressantes do doutorado.

É importante também agradecer ao CNPq pela bolsa de doutorado, que me
possibilitou dedicação exclusiva a minha formação acadêmica. À CAPES, agradeço a
bolsa de estágio no exterior, que me permitiu colaborar com um excelente laboratório de
pesquisa na França e ter uma experiência muito relevante para minha formação e para a
qualidade deste trabalho. Eu gostaria de agradecer também a Ahmed Jerraya por ter me
dado a oportunidade de trabalhar no seu grupo de pesquisa no Laboratório TIMA. Deste
estágio, os frutos não foram apenas artigos e conhecimentos trocados, mas também as
amizades. Gostaria de agradecer a meus colegas no TIMA, Katalin Popovici, Sang-il
Han, Xavier Guerin, Patrice Gerin, Hao Shen, Kai Huang e Lei Li pela colaboração no
trabalho e pelo tempo divertido que passamos juntos. Thank you all.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS.............................. ... 6

LIST OF FIGURES... 8

LIST OF TABLES 10

ABSTRACT... ... 11

RESUMO.. 12

1 INTRODUCTION .. 13

1.1 Thesis contributions ... 15
1.2 Thesis organization .. 16

2 HIGH-LEVEL MODELS AND ASSOCIATED TOOLS 17

2.1 Embedded software from high-level models ... 17
2.1.1 Specification ... 19
2.1.2 Code generation .. 20
2.1.3 HW/SW co-design and design space exploration ... 21
2.2 Analysis of the state-of-the-art... 22
2.3 Comparison between UML-based and Simulink-based approaches.............. 23
2.3.1 Functional block modeling and Simulink... 23
2.3.2 Object-oriented modeling and UML ..23
2.3.3 Case study: Comparison between UML and Simulink models 24
2.3.4 FB model .. 25
2.3.5 UML model... 28
2.3.6 Evaluation criteria ... 32
2.3.7 Comparison results.. 33

3 UML-BASED EMBEDDED SOFTWARE GENERATION........... 37

3.1 Existing approaches for code generation from UML models 38
3.1.1 Code generation: existing tools.. 39
3.2 Analyzing the gap between UML model and a Java program 41
3.2.1 Experiments .. 42
3.3 Proposed code generation approach.. 49
3.3.1 Using UML2 notations for code generation from sequence diagrams............... 50
3.3.2 Bridging the semantic gap ... 52
3.4 Concluding remarks... 54

5

4 SIMULINK-BASED EMBEDDED SOFTWARE GENERATION 57

4.1 Combined application architecture model .. 59
4.2 Multithread code generation.. 61
4.2.1 Simulink parsing ... 62
4.2.2 Thread code generation ... 63
4.2.3 HdS adaptation.. 65
4.3 Memory optimization... 66
4.4 Communication optimization .. 68
4.5 Experiments.. 72
4.5.1 Applications description .. 73
4.5.2 Target platform ... 74
4.5.3 Memory optimization .. 75
4.5.4 Communication optimization... 80
4.5.5 Experiment analysis .. 82

5 INTEGRATION OF UML AND SIMULINK 85

5.1 Proposal of mapping from UML to Simulink CAAM 87
5.2 Prototype .. 91
5.2.1 Model optimization ... 91
5.3 Case study... 94
5.3.1 Crane control system... 94
5.3.2 Synthetic example ... 98
5.4 Concluding remarks... 100

6 CONCLUSIONS ... 103

REFERENCES... 105

APPENDIX AESTRATÉGIAS PARA DESENVOLVIMENTO DE SOFWARE
EMBARCADO BASEADAS EM MODELOS DE ALTO NÍVEL 113

APPENDIX B EXPANDED FIGURES................... 119

LIST OF ABBREVIATIONS

AG Automatic Generated

CAAM Combined Application Architecture Model

CASE Computer Aided Software Engineering

COTS Commercial-off-the-shelf

DSE Design Space Exploration

EMF Eclipse Modeling Framework

ESL Electronic System-Level

FB Functional Block

FSM Finite State Machine

HdS hardware dependent software

HW Hardware

JET Java Emitter Templates

JML Java Modeling Language

KPN Kahn Process Network

LSC Live Sequence Charts

MA Message Aggregation

MARTE Modeling and Analysis of Real-time and Embedded Systems

MDD Model Driven Development

MDR Netbeans Metadata Repository

MoC Model of computation

MPSoC Multiprocessor System-on-chip

MSC Message Sequence Charts

OAL Object Action Language

OCL Object Constraint Language

OMG Object Management Group

OMT Object Modeling Technique

OO Object-Oriented

7

OS Operating System

PBD Platform-Based Design

QoS Quality of Service

RTW Real-Time Workshop

SDF Synchronous Data Flow

SMW System Modeling Workbench

SoC System-on-chip

SysML Systems Modeling Language

SW Software

UML Unified Modeling Language

UML-SPT UML Profile for Schedulability, Performance, and Time

XMI XML Metadata Interchange

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language for Transformation

WD Written by Designers

LIST OF FIGURES

Figure 2.1: Crane system... 24
Figure 2.2: Crane model using Simulink ... 25
Figure 2.3: Crane JobControl .. 26
Figure 2.4: Crane JobControl – NormalMode.. 26
Figure 2.5: Control algorithm model in Simulink .. 27
Figure 2.6: UML Use Case Diagram of the Crane system ... 28
Figure 2.7: UML Collaboration Diagram of the Control Algorithm............................. 29
Figure 2.8: State Diagram of the Controller class .. 30
Figure 2.9: UML Class Diagram of the Crane system.. 30
Figure 2.10: Generated code for the Controller class ... 31
Figure 3.1: Velocity template example.. 38
Figure 3.2: Approach for code generation (BJÖRKLUND, 2005) 39
Figure 3.3: Rialto-based code generation approach (BJÖRKLUND, 2004).................. 40
Figure 3.4: Example of <for+ds> lines of code.. 44
Figure 3.5: Example of analyzed code: Controller class .. 45
Figure 3.6: Analysis results obtained of the Controller and Crane classes................... 46
Figure 3.7: Analysis results for Crane classes.. 46
Figure 3.8: Address Book Class diagram... 47
Figure 3.9: Proposed UML-based code generation flow.. 49
Figure 3.10: Combining different iterations notations in a same diagram..................... 50
Figure 3.11: Representing conditionals in UML 2.0 .. 51
Figure 3.12: Representing loops in UML 2.0... 51
Figure 3.13: Matrix/vector initialization in Java .. 53
Figure 3.14: Vector multiplication in Java... 53
Figure 3.15: Matrix multiplication in Java... 54
Figure 3.16: Try/catch notation in sequence diagrams ... 54
Figure 4.1: Simulink-based MPSoC design flow (HUANG, 2007) 58
Figure 4.2: Combining application and architecture models (POPOVICI, 2007) 59
Figure 4.3: A Simulink CAAM example (HUANG, 2007) .. 61
Figure 4.4: Multithread code generation flow.. 62
Figure 4.5: Simulink parsing ... 63
Figure 4.6: Example of thread code generation.. 64
Figure 4.7: Multithread deadlock problem... 65
Figure 4.8: Main and Makefile code generation... 66
Figure 4.9: Thread code generation with memory optimization techniques.................. 67
Figure 4.10: Lifetime chart of T0 (a) after scheduling, (b) after buffer sharing 68
Figure 4.11: Motivational example.. 70
Figure 4.12: Multithread code generation flow after Message Aggregation integration 70

9

Figure 4.13: Thread code generation with Message Aggregation................................. 71
Figure 4.14: An example of deadlock by Message Aggregation 72
Figure 4.15: Simulink CAAM for Motion-JPEG decoder .. 73
Figure 4.16: H.264 decoder block diagram.. 74
Figure 4.17: MPSoC Platform used for the Motion-JPEG decoder 74
Figure 4.18: Data memory size, code memory size and execution time of Motion-JPEG

decoder with single- and three-processor platforms................................. 76
Figure 4.19: Data memory size and code memory size of H.264 decoder with single-

and four-processor platforms .. 77
Figure 4.20: Execution time of H.264 with single- and four-processor platforms......... 78
Figure 4.21: H.264 decoder data memory size and code memory size with different

memory optimization configurations and different number of processors 79
Figure 4.22: Execution time of H264 decoder (Mcycles/sec)....................................... 79
Figure 4.23: Performance results for H264 decoder...80
Figure 4.24: Reduction on the number of channels and on the data memory size......... 81
Figure 5.1: Proposed flow for embedded software development.................................. 86
Figure 5.2: Flow for the proposed model transformation ... 87
Figure 5.3: Example of mapping from UML to Simulink CAAM................................ 89
Figure 5.4: Sequence diagram for thread T3.. 90
Figure 5.5: Prototype for the mapping from UML to Simulink.................................... 91
Figure 5.6: Example of insertion of delay – case 1 .. 92
Figure 5.7: Example of insertion of delay – case 2 .. 93
Figure 5.8: Example of the thread allocation by the linear clustering algorithm........... 93
Figure 5.9: Pseudo code of the used linear clustering algorithm 94
Figure 5.10: Crane system: UML deployment model .. 95
Figure 5.11: Crane UML model: T1 sequence diagram ... 95
Figure 5.12: Crane UML model: T2 sequence diagram ... 96
Figure 5.13: Crane system: UML sequence diagram for thread T3 96
Figure 5.14: Crane Simulink CAAM: Thread T3 model .. 97
Figure 5.15: Crane Simulink CAAM – CPU1 subsystem .. 98
Figure 5.16: Synthetic example: simplified sequence diagram..................................... 99
Figure 5.17: Synthetic example: Task graph.. 99
Figure 5.18: Synthetic example: generated Simulink CAAM 100

10

LIST OF TABLES

Table 2.1: Tools for embedded system design ... 18
Table 2.2: Evaluation criteria .. 32
Table 2.3: Evaluation criteria – subgroups... 33
Table 2.4: Comparison results... 34
Table 3.1: Mapping UML to Java.. 41
Table 3.2: WD lines of code classification .. 43
Table 3.3: Crane analysis results ... 44
Table 3.4: Address Book analysis results .. 48
Table 4.1: HdS primitives ... 65
Table 4.2: C code generation with 7 configurations... 75
Table 4.3: Computation, Communication and Idle time of H264 decoder with different

number of processors... 81
Table 4.4: Data memory size in bytes for the solution P4 .. 82

11

ABSTRACT

The use of techniques starting from higher abstraction levels is required to cope with
the complexity that is found in the new generations of embedded systems, being crucial
to the design success. A large reduction of design effort when using models in the
development can be achieved when there is a possibility to automatically generate code
from them. Using these techniques, the designer specifies the system model using some
abstraction and code in a programming language is generated from that. However,
available tools for modeling and code generation are domain-specific and embedded
software usually shows heterogeneous behavior, which pushes the need for supporting
software automation under different models of computation.

In this thesis, strategies for embedded software development based on high-level
models using UML and Simulink were analyzed. We observed that the embedded
software generation approaches based on UML and Simulink have limitations, and
hence this thesis proposes strategies to improve the automation provided on those
approaches, for example, proposing a Simulink-based multithread code generation.

UML is a well used language in the software engineering domain, and we consider
that it has several advantages. However, UML is event-based and not suitable to model
dataflow systems. On the other side, Simulink is widely used by control and hardware
engineers and supports dataflow, and time-continuous models. Moreover, tools are
available to generate code from a Simulink model. However, Simulink models represent
lower abstraction level compared to UML ones. This comparison shows that UML and
Simulink have pros and cons, which motivates the integration of both languages in a
single design process.

As the main contribution, we propose in this thesis an integrated approach to
embedded software design, which starts from a high-level specification using UML
diagrams. Both dataflow and control-flow models can be generated from that. In this
way, an UML model can be used as front-end for different code generation approaches,
including UML-based one and the proposed Simulink-based multithread code
generation.

Keywords: embedded software, embedded systems, software development.

Estratégias para Desenvolvimento de Software Embarcado Baseadas
em Modelos de Alto Nível

RESUMO

Técnicas que partem de modelos de alto nível de abstração são requeridas para lidar
com a complexidade encontrada nas novas gerações de sistemas embarcados, sendo
cruciais para o sucesso do projeto. Uma grande redução do esforço pode ser obtida com
o uso de modelos quando código em uma linguagem de programação pode ser gerado
automaticamente a partir desses. Porém, ferramentas disponíveis para modelagem e
geração de código normalmente são dependentes de domínio e o software embarcado
normalmente possui comportamento heterogêneo, requerendo suporte a múltiplos
modelos de computação.

Nesta tese, estratégias para desenvolvimento de software embarcado baseado em
modelos de alto nível usando UML e Simulink são analisadas. A partir desta análise,
observaram-se as principais limitações das abordagens para geração de código baseadas
em UML e Simulink. Esta tese, então, propõe estratégias para melhorar a automação
provida por estas ferramentas, como por exemplo, propondo uma abordagem para
geração de código multithread a partir de modelos Simulink.

A comparação feita entre UML e Simulink mostra que, embora UML seja a
linguagem mais usada no domínio de engenharia de software, UML é baseada em
eventos e não é adequada para modelar sistemas dataflow. Por outro lado, Simulink é
largamente usado por engenheiros de hardware e de controle, além de suportar dataflow
e geração de código. Porém, Simulink provê abstrações de mais baixo nível, quando
comparado a UML. Conclui-se que tanto UML como Simulink possuem prós e contras,
o que motiva a integração de ambas linguagens em um único fluxo de projeto.

Neste contexto, esta tese propõe também uma abordagem integradora para
desenvolvimento de software embarcado que inicia com uma especificação de alto nível
descrita usando diagramas UML, a partir da qual modelos dataflow e control-flow
podem ser gerados. Desta maneira, o modelo UML pode ser usado como front-end para
diferentes abordagens de geração de código, incluindo UML e a proposta geração de
código multithread a partir de modelos Simulink.

Palavras-chave: software embarcado, sistemas embarcados, desenvolvimento de
software.

1 INTRODUCTION

‘Embedded everywhere’ is an expression that is getting materialized with the new
generation of computer systems. This is a reality in sectors such as automotive,
aeronautics, telecommunications, consumer electronics, and medical devices. Such
embedded computational systems are often implemented as heterogeneous systems-on-
a-chip (SoCs), which are usually composed of dedicated hardware modules,
programmable processors, memories, interface controllers, and software components.

Usually, embedded systems have hard constraints regarding performance, memory,
power consumption, dimensions, and weight, among other aspects. In addition, such
systems are increasingly required to operate in real-time, bringing the necessity to
ensure that system results are not only correctly computed, but also delivered at the
precise times. At the same time, the life cycle of embedded products becomes
increasingly tighter. In this scenario, productivity and quality are simultaneously
required in embedded systems design in order to deliver competitive products. That
makes the design of such embedded systems an ever-growing challenge, demanding
new strategies and tools to improve the design productivity.

Platform-Based Design (PBD) is a successful approach that implements a meet-in-
the-middle strategy to maximize the reuse of pre-designed components and,
consequently, improve the design productivity (VERKEST, 2000) (SANGIOVANNI-
VINCENTELLI, 2004). In platform-based design, design derivatives are mainly
configured by software.

Burch (2001) indicated that the interest on software-based implementation has risen
due to the increase in computational power allowing one to move more functionality to
software. It is also an effect of the rising costs for hardware development that motivates
the reuse of pre-defined platforms. Product differentiation is then achieved by the
software. For those reasons, the software development is where most of the design time
is spent, and is the largest cost factor in embedded system design (GRAFF, 2003). This
scenario motivates the investigation of strategies to accelerate the embedded software
development by process automation.

In the software engineering area, Computer Aided Software Engineering (CASE)
tools are widely used to automate the development process. Since conventional software
is usually suited for a single domain, most of the software automation approaches focus
on the management of huge domain-specific systems. However, embedded software
usually shows heterogeneous behavior, which applies to systems whose respective
models require different models of computation (MoCs) (EDWARDS, 1997), like
stream processing (dataflow), control flow, and continuous time. For example, the
specification of a mobile phone requires not only digital signal processing for the
telecommunication domain, which is a time-discrete MoC, but also sequential logic

14

programs to describe several available applications (e.g. contacts and alarm clock). This
pushes the need for supporting software automation under different models of
computation, a task not completely supported by any current software automation tool.
In addition, embedded software usually has memory and power restrictions, which
makes the use of traditional CASE tools not feasible, but this is outside the scope of this
thesis.

Simultaneously to PBD, the use of higher abstraction levels has been adopted in
order to deal with the complexity growth of systems and to increase the design
productivity. Selic (2003) and Gomaa (2000) argue that the use of techniques starting
from higher abstraction levels is the only viable way of coping with the complexity that
is found in the new generations of embedded systems, being crucial to the design
success.

The use of higher abstraction levels hides details of implementation in the
programming language, facilitating the system specification that will be on the model
level, instead of code level. Using this approach, models of embedded systems should
evolve from high level views into actual implementations, ensuring a relatively smooth
and potentially much more reliable process as compared to traditional forms of software
engineering. The translation of the high-level model into an executable description
should be automatic, but depending on the modeling notation, it may need different
degrees of designer interaction. The high-level modeling language should be able to
express both the application requirements and the functional specification. Also, it
should provide facilities to allow model validation, as well as features that can be used
to guide implementation. Regarding to modeling approaches, many models have been
proposed for embedded software specification, but no consensus is reached to any
particular model that is good for all applications.

Two widely used and distinct approaches highlight, one that is functional-based like
provided by Simulink and another one that is object-oriented like provided by UML-
based tools. Traditionally, the functional block (FB) modeling approach has been used
by the signal processing and control engineering communities for the development of
embedded systems. This approach has been widely accepted in industrial designs,
driven by an extensive set of design tools, as for instance Matlab/Simulink
(MATHWORK, 2003). On the other hand, the UML modeling language is considered
the de facto modeling notation for any object-oriented (OO) system and has gained in
popularity also for real-time embedded systems specification and design. Efforts that
describe the use of UML in different phases of an embedded system design are shown
in (LAVAGNO, 2003). In the context of this work, both modeling approaches are
evaluated regarding modeling, code generation and design exploration capabilities.
These analysis results are found in (BRISOLARA, 2004; BRISOLARA, 2005b).

From this analysis, we observed that the embedded software generation approaches
based on UML and Simulink have limitations, and so we propose strategies to improve
the automation provided on that approaches. As UML tools usually required more code
to be specified by the designer using some action language to specify method bodies, a
way to abstract the behavior specification is proposed in order to reduce the amount of
code that must be written by designer. On the other hand, observing the limitations of
Simulink-based tools regarding to code generation for MPSoC architectures, a
Simulink-based multithread code generation strategy is proposed in the context of this
work (BRISOLARA, 2007a).

15

The comparison between UML and Simulink shows that both modeling approaches
present pros and cons, which motivates researchers to find a way to simultaneously
exploit the benefits of both modeling languages in a single design process. Moreover,
recent efforts show that both UML and Simulink are considered attractive for Electronic
System Level (ESL) design (DENSMORE, 2006). Boldt (2007) proposes the
integration of Simulink models into UML models in the Rhapsody tool (TELELOGIC,
2007). In addition, SysML (OMG, 2006) was proposed as an extension to UML for
systems engineering applications, with a higher degree of integration with the FB
paradigm. However, the first SysML language specification was so close to UML that it
is difficult to clearly define its improvements. Additionally, the available SysML
modeling tools have not been evaluated yet for compliance or modeling capabilities.

As most automation tools are domain-specific, Reichmann (2004) proposes a way to
integrate models developed with different tools (UML, Simulink and Statemate). Using
this approach, a heterogeneous system is partitioned into sub-module. Each of them can
be modeled using the more appropriated tool, and domain-specific code generators are
used to generate code for it.

In this thesis, we propose a way to integrate UML and Simulink in a single design
flow, allowing one to start with an UML model and decide which is the most
appropriated tool to generate code for the system module (BRISOLARA, 2007b).
Differently of the Boldt and Reichmann approaches, our approach uses a single
language for initial specification, i.e. UML, and proposes the automatic mapping from
UML to Simulink. Besides the mapping, our tool performs three kinds of optimizations:
inference of communication channels, thread grouping and loop detection. Inference of
communication channels and thread grouping are used to build a model from that a
multithread code targeted to a multiprocessor architecture can be generated. In addition,
loop detection is provided to insert temporal barriers in a dataflow model, avoiding
deadlock. The proposed integration allows designers to work at a higher abstraction
level, avoiding the necessity of building or modifying Simulink models directly, which
means abstracting about low-level details like signals and ports.

1.1 Thesis contributions
Firstly, this thesis contributes with an analysis and comparison between two widely

used modeling approaches, UML and Simulink, using a case study that is a
heterogeneous system with dataflow and control-flow modules (BRISOLARA, 2005b).

Strategies for embedded software generation from high-level models described in
Simulink or using UML-based tools are proposed here and are also contributions of this
thesis. In the UML-based strategy, the gap between model and code is bridged through
of the use of a higher abstraction language. This strategy was finished because the
definition of another language is a hard work and usually designers are not open to learn
a new language. Moreover, during the thesis period, UML2 was defined, solving some
problems in UML-based code generation. On the other hand, as Simulink is a
commercial tool widely used and that already provide code generation capabilities, we
also propose an approach to generate multithread code target to multiprocessor
architectures from a Simulink model. The Simulink-based strategy has an optimization
step that reduces the communication overhead during the code generation
(BRISOLARA, 2007a).

16

Finally, this thesis proposes a way to integrate UML and Simulink in a single design
flow (BRISOLARA, 2007b). In this approach, UML is used as the initial specification
and Simulink can be generated from UML. In this way, an UML model can be used as
front-end for different code generation approaches, including UML-based one and our
Simulink-based multithread code generation.

1.2 Thesis organization
The remaining of this thesis is divided as follows: Chapter 2 gives an overview of

the state-of-the-art of modeling approaches, languages and tools used in the embedded
system domain. That chapter also presents a comparison between UML and Simulink
modeling approaches through a case study. Chapter 3 addresses the UML-based
strategies for software generation and presents a proposal to solve the limitation of the
existing code generation approaches. Chapter 4 presents a multithread code generation
approach able to generate multithread code target to a multiprocessor architecture from
a Simulink model. Chapter 5 explains the integration of UML and Simulink in a single
design flow proposed in this thesis as a way for supporting software automation under
different models of computation. Finally, chapter 6 concludes this text with final
remarks and future works.

17

2 HIGH-LEVEL MODELS AND ASSOCIATED TOOLS

Current research on embedded systems design emphasizes that the use of techniques
starting from higher abstraction levels is crucial to the design success. Some authors like
Douglass (1998), Gomaa (2000), and Selic (2003) argue that this approach is the only
viable way of coping with the complexity that is found in the new generations of
embedded systems. Using this approach, models of embedded systems should evolve
from high level views into actual implementations, ensuring a relatively smooth and
potentially much more reliable process as compared to traditional forms of engineering.

The combination of abstraction and automation has inspired a set of modeling
technologies, and corresponding development methods, collectively referred to as
model-driven development (MDD) (SELIC, 2006). This chapter presents the state-of-art
on strategies for embedded software development based on high-level models. In
addition, a case study is used to compare two widely used strategies, UML-based and
Simulink-based, regarding to the main capabilities required in designing embedded
software.

2.1 Embedded software from high-level models
Effective design of embedded computer systems requires the capture of the system

specification using high-level models in a model-centered approach in order to cope
with the increasing complexity. This high-level model should reflect the nature of the
application domain and the used high-level modeling language should be able to express
both the application requirements and the functional specification.

Once a specification is captured, the design process should progress towards
implementation via well-defined stages (SANGIOVANNI-VICENTELLI, 2001). Tools
are required to automate the model refinement and guide implementation. To obtain an
embedded software implementation from the system specification, some tools provide
code generation capabilities (e.g. Simulink/Stateflow, ASCET). Before the
implementation, it is interesting to validate the specification, by simulation or formal
verification.

With the widespread use of platform-based design, most embedded applications are
developed by simply mapping the application onto the target platform. In this way, the
mapping allows one to configure and refine the system until the implementation, and
constraint-driven mapping can conduct the design space exploration. To support this,
analysis tools are required to evaluate intermediate results with respect to the design
constraints, avoiding solutions that are not good enough. To do that, simulation and
estimation tools are required.

18

Sangiovanni-Vicentelli (2006) presents a classification for Electronic System-Level
(ESL) tools and languages, focusing on the platform based design. With base in this
work and in our background, we defined the Table 2.1, where existing tools dedicated to
embedded systems design are listed, including academic and industrial ones. We focus
our analysis on the tools more closed to the embedded software development, which is
the main focus of this thesis. The tools are analyzed according to the design step where
it can be used, its features and the model of computation (MoC) and/or the abstraction
supported for them. Besides specification capabilities, code generation and design space
exploration features are also important for automating the embedded system design, and
thus, tools that focus on these aspects are also listed in this table.

Table 2.1: Tools for embedded system design

Provider Tools Focus Abstraction
National
Instruments

Labview Control application development LabView prog.
languages

Mathworks Simulink,
Stateflow,
RTW

Modeling, algorithm design, and SW
development. Emphasis on control and
dataflow embedded systems

Timed dataflow
(discrete- and
continuous-time),
FSMs

Esterel
Technologies

SCADE,
Esterel Studio

Code gen for safely-critical
applications such as avionics and
automotive

Synchronous

ETAS Ascet Modeling, algorithm design, code gen,
and SW development, with emphasis
on the automotive market

Ascet models

Univ. of
California,
Berkeley

Ptolemy II Modeling, simulation, design of
concurrent, real-time, embedded
systems

All MoCs

Royal Institute of
Technology
Stockholm

SML-Sys,
ForSyDe*

SMS-Sys: Formal multi-MoC
framework based on formal semantics
and functional paradigms;
ForSyDe: Capture system functionality
based on a synchronous model

Multi- MoC (SML
functional lang.),
Synchronous*

I-Logic Rhapsody,
Statemate

Real-time embedded system
applications

UML-Based

Seoul National
Univ.

Peace Codesign-environment for rapid
development of heterogeneous digital
systems

Ptolemy- based

dSpace Target-link,
RTI-MP

Optimized code gen for single-CPU
and for multi-processor systems

Simulink models

Univ. of
California,
Berkeley

Metropolis Operational functionality, arch.
capture, mapping, refinement, and
verification

All MoC (meta-model
language)

Vanderbilt Univ. Milan, GME,
Desert

Support for domain-specific languages,
and design space exploration (DSE)

UML-based and XML-
based

Delft Univ. of
Technology

Artemis,
Sesame, Spade

Methods and tools to model and design
SoC-based systems, DSE

KPN and UML

Tampere Univ. of
Tech. and Nokia

Koski DSE, code generation UML state diagrams
and KPN

19

2.1.1 Specification

Several tools for design capturing the high-level specification can be found in the
industry and in the academy, varying the supported model of computation (MoC) and
the used languages. Usually, these tools support the model simulation and code
generation. Commercial packages such as LabView (NATIONAL INSTRUMENTS,
2006), Simulink (MATHWORKS, 2003a), ASCET-SD (HONEKAMP, 1999), and
SCADE (ESTEREL TECHNOLOGIES, 2007) allow modeling and development of
embedded control systems based on functional-block specifications. Commonly in these
environments, the designer composes a system through the instantiation of pre-existing
components available in a library.

Labview uses dataflow programming through a graphical interface to allow a
designer to model and simulate control system using real-world stimuli. This tool
provides a great number of functions for signal processing, analysis and advanced
mathematics. ASCET-SD, from ETAS, supports modeling, simulation, and rapid
prototyping of automotive embedded software modules and, in addition, it provides
optimized code generation for various microcontroller targets. SCADE provides
modeling of dataflow and state machines and code generation for safety-critical
applications, such as avionics and automotive. SCADE checks model completeness and
determinism, including cycle detection in nodes. The tools from Mathworks allows one
to model a system through functional block diagrams using Simulink and/or through
finite state machines (FSM) described using Stateflow (MATHWORKS, 2003b).
Simulink representation language handles discrete dataflow and continuous time and
FSM by the integration with Stateflow tool. Many embedded application have been
successfully developed using these tools. However, these tools are domain-specific and
only support fixed MoC.

In this context, academic research projects, like Ptolemy (2004) and SML-Sys
(MATHAIKUTTY, 2006), have addressed the heterogeneity of embedded systems,
proposing multi-MoC modeling frameworks that support the simulation of
heterogeneous systems. PtolemyII (BHATTACHARYYA, 2007), the version presently
under development in the Ptolemy project, includes a growing suite of domains, each of
which realizes a MoC. It also includes a component library. The system model in
Ptolemy can be described by instantiation of pre-existing components through a graphic
interface or components defined in Java by the user. The main advantage of this project
is that it is open-source and supported MoC and components can be extended.

Another example of multi-MoC, SML-Sys uses formal semantics and is based on
functional paradigm, being readily susceptible to formal analysis. Furthermore,
executable models in SML-Sys can be translated to VHDL/Verilog descriptions using
ForSyDe (SANDER, 2004). Different from Ptolemy, knowledge on functional
languages is required to use the SML-SyS framework.

On the other hand, object-oriented approaches, like UML-based, have gained
popularity for embedded systems design. UML supports several diagrams that can be
used to specify different graphical views of the system. Recently, several proposals of
use of UML for embedded systems can be found in (LAVAGNO, 2003) and (MARTIN,
2005), which were motivated by the huge popularity of this language to specify
computation systems, using object-oriented approaches. In this context, UML tools such

20

as Artisan Studio (ARTISAN SOFTWARE, 2007), Rhapsody (TELELOGIC, 2007)
(GERY, 2002), and MagicDraw (NO MAGIC, 2007) have also been considered for
embedded software specification.

Many modeling approaches and tools have been proposed for embedded software
specification, but there is no model that is more appropriated or good for all
applications.

2.1.2 Code generation

Simulink and Ptolemy are examples of embedded software code generation tools,
which generate code from functional blocks models. Regarding the code generation
functionality, Simulink with Real-Time Workshop (MATHWORKS, 2004), from
Mathworks, is probably the most widely used environment in the industry. The Real-
Time Workshop takes a Simulink model as the input and generates C code as output.
The Real-Time Workshop Embedded Coder, which is an extension for RTW, generates
C code from Simulink and Stateflow models, enabling the code generation form data
and event-based models. TargetLink (DSPACE, 2005), from dSPACE, is another
commercial tool with focus on the generation of efficient code from Simulink/Stateflow
models.

Ptolemy supports the modeling and simulation of heterogeneous models, but it has
limited implementation capabilities for models other than dataflow (BUCK, 2000). At
present, Ptolemy II proposes two different code generation approaches (ZHOU, 2007).
In the first one, the code generator called Copernicus generates Java code (.class) from
non-hierarchical Synchronous Data Flow (SDF) models, using a component-
specialization framework built on top of a Java compiler. The second approach is a
template based code generation system, in which a component called “codegen helper”
is used to generate code for a Ptolemy II functional block (actor) in a target language.
Currently, this template based code generator produces C code for synchronous
dataflow (SDF), finite-state machines (FSM) and heterochronous dataflow models
(HDF). The later is an extension of SDF that permits dynamic changes of production
and consumption rates without sacrificing static scheduling. This code generator
consists of actor templates (called helpers) that contain C code stubs that are stitched
together. However, presently only a subset of actors has helpers already described.
Although it is an interesting approach, a large amount of work is yet required to
implement templates (helpers) for other widely used components and templates for
different target languages before having a powerful code generation environment.

Several UML-based tools have code generation capabilities, but some tools generate
only code skeletons for class diagrams, while others generate also behavioral code from
state diagrams. MagicDraw (NO MAGIC, 2007) is an example of tool that support only
generation of code skeleton from the static structure. On the other hand, Artisan Studio,
Rhapsody, UniMod and BridgePoint UML Suite (MENTOR GRAPHICS, 2005) are
examples of tools that support generation of complete code from UML models. UniMod
defines a methodology for designing object-oriented event-driven applications, focusing
on execution and code generation from UML state diagrams. Rhapsody (GERY, 2002)
allows creating UML models for an application and then generates C, C++ or Java code
for the application. These tools support complete code generation, but only based on
UML state diagrams, so they are more appropriate for event-based systems. Recently,
Telelogic launched the new version of Rhapsody that provides the code generation from

21

flowcharts (activity diagrams) used to specify complex algorithms (TELELOGIC,
2007).

Besides code generation, several UML-based tools provide reverse engineering
capabilities, for example, the MagicDraw tool supports reverse engineering from Java
and C++ code (e.g. Java or C++ code to class diagram, Java code to sequence diagrams,
etc.) and facilities to maintain the coherency between code and model.

With the increasing interest on multiprocessor platforms for embedded systems,
researchers have addressed the code generation for multiprocessor platforms. Real-Time
Interface for Multiprocessor Systems (DSPACE, 2005), from dSPACE, generates
software code from a specific Simulink model for multiprocessor systems. However, the
software code generated by RTI-MP is targeted to a specific architecture consisting of
several COTS processor boards and the main purpose is high-speed simulation of
control-intensive applications. Since multiprocessor platforms are becoming more
popular, flexible and powerful code generation approaches are desired to aid designers
in the difficult task of programming these platforms. This is discussed again in chapter
4, where a new code generation approach is proposed.

2.1.3 HW/SW co-design and design space exploration

ForSyDe (SANDER, 2004) starts at a higher abstraction level, with a synchronous
formal specification model, and synthesizes VHDL and C, generated for the HW and
SW implementation, respectively. The synthesis process is divided into two phases. In
the first phase, the specification model is refined into a more detailed implementation
model by design transformations. The second phase is the mapping from the
implementation model onto a given architecture and comprises activities like
partitioning, allocation of resources and code generation. The system specification used
in the ForSyDe environment is made in Haskell. This language does not provide the
high abstraction desired by the designers, besides requiring them knowledge over yet
another language.

Metropolis (BALARIN, 2001) is HW/SW co-design framework, which integrates
modeling, simulation, synthesis and verification tools. In order to support multiple
MoC, a MetaModel language is used in Metropolis. However, the generality of the
MetaModel language creates difficulties for its usage by users and tool developers. Only
manual design space exploration is supported in Metropolis.

Milan (MOHANTY, 2002) is a hierarchical design space framework based on
Generic Modeling Environment (GME) (LEDECZI, 2001), which is a framework for
creating domain-specific modeling languages. For design space exploration, Milan uses
DESERT (NEEMA, 2003) that is considered a semi-automated tool, because once the
design space has been specified, it performs optimization and automatically indicates
the optimal design.

Other examples of design space exploration environments, SPADE (LIEVERSE,
2001), Artemis/Sesame (PIMENTEL, 2001) (PIMENTEL, 2006) and Koski
(KANGAS, 2006) abstract the application model using Kahn Process Network, KPN,
(KAHN, 1977), and that application model is mapped to the architecture model during
the design space exploration. SPADE (LIEVERSE, 2001) is a system-level performance
analysis methodology and tool which uses trace-driven simulation for exploration
purposes. Based on SPADE, Pimentel proposed Artemis (2001) and Sesame (2006).
Artemis is a methodology for heterogeneous embedded systems modeling, while

22

Sesame is an environment targeted to provide modeling and simulation methods and
tools for design space exploration of heterogeneous embedded systems. Koski
(KANGAS, 2006) is an UML-based MPSoC design flow which provides an automated
path from UML design entry to FPGA prototyping, including the functional verification
and the automated architecture exploration. However, all these approaches still require
the designer to manually specify the behavior for each process in the KPN.

2.2 Analysis of the state-of-the-art
Most of the academic and commercial solutions for software automation focus on

the management of huge domain-specific systems, focusing in a single-domain such as
databases SQL, web-based systems, or XML-based data sources and in a particular
language. That is because conventional software is usually suited for a single domain.
However, most complex embedded systems have a heterogeneous behavior and
multiple MoC are required to describe such behaviors. Moreover, tools that automate
general and conventional software development are not aware of code optimizations, a
crucial step for embedded systems because of their tight restrictions.

As shown in section 2.1, the embedded system research area is very active. With the
increasing complexity of embedded software and the interest in software-based
embedded systems, several efforts have addressed the limitation on software
development approaches and common difficulties found in designing embedded
systems (e.g. heterogeneity, hard constraints, etc.). In this context, several tools have
been proposed to automate the implementation from high-level models and the code
optimization. For example, Telelogic Tau provides the Agile C that is a code generator
dedicated to small footprint and high-performance applications. However, for embedded
software design, usually power is an important issue and all the physical aspects
(performance, memory and power) need to be evaluated to check if the solution meets
the system requirements. Moreover, the existing tools have some limitations and
frequently are domain-specific.

Despite of the huge investigation on strategies to accelerate the embedded software
development, the existing tools are somewhat limited, and they do not cover the full
spectrum of embedded system design. As result of the analysis of the state-of-art, it was
found that none of the presented approaches targets the ultimate goal of providing
appropriated abstraction (higher abstraction, multi-MoC) to increase software
production and quality, with the necessary code generation and design space exploration
capabilities. Nonetheless, this study shows that there are two high level modeling
approaches in evidence that are functional block and object-oriented with UML.

Traditionally, the functional block (FB) modeling approach has been used by the
signal processing, industrial automation, and control engineering communities for the
development of embedded systems (JOHN, 2001). These models are widely accepted in
industrial design, driven by an extensive set of design tools, as for instance,
Matlab/Simulink (MATLAB, 2004). Features like modularity, abstraction level, and
reusability contributed to the popularity of this modeling approach. On the other hand,
object-oriented approaches with the Unified Modeling Language (UML) are widely
used in software design. UML is considered by far the most-used modeling notation for
software engineers. Recently, UML has gained in popularity as a tool for specification
and design of embedded systems and SoCs. In (LAVAGNO, 2003) one can find several

23

efforts that describe the use of UML during the different phases of an embedded system
design process.

Observing that both UML and Simulink are considered attractive for Electronic
System Level (ESL) design, these two widely used domain-specific modeling
approaches are analyzed in more detail in section 2.3.

2.3 Comparison between UML-based and Simulink-based approaches
This section presents a comparative analysis of UML and Simulink modeling

approaches, which is driven by a case study. The modeling capabilities of both
approaches are evaluated, as well as capabilities of tools based on UML and Simulink
are analyzed. The results of this analysis were published in (BRISOLARA, 2005b).
Although the UML models used in this case study follows notations from UML 1.3,
which was the language version available when this case study was published, we
extend here this analysis considering also capabilities provided by UML2 and SysML,
recently defined by OMG.

2.3.1 Functional block modeling and Simulink

In the functional block (FB) approach, applications are designed by connecting
several FBs. This modeling language does not allow the designer to express system
requirements. Therefore they start modeling already thinking of the solution for the
problem under consideration. Our modeling starts with the functional decomposition,
and the result is the definition of the modules that interact during the system execution.
Each FB output must be connected with an appropriate input, coming from a FB or
another model element. The communication among blocks occurs through the data
exchange by the interfaces instead of message exchange used in object-oriented
approaches. The behavior for each block is described using different languages oriented
to functional blocks, like languages for programmable controllers (PLCs) and
Matlab/Simulink (HEVERHAGEN, 2003).

Simulink, from Mathworks, is a block diagram commercial tool and language for
the system modeling and simulation, which supports multiple models of computation
(MoC) such as continuous time, discrete time, and event-oriented (by the integration
with Stateflow). For example, using this tool, a block behavior can be described through
transference functions, discrete equations, C or Matlab code, or state machines. A wide
variety of tools (Stateflow, Real Time Workshop, etc.) and libraries with pre-defined
blocks are integrated in the Simulink environment. The complexity of the blocks varies
from simple adders or multipliers to complex filter algorithms. The functionalities of a
block can be specified as a C or Matlab code or instantiating pre-defined components
from the libraries. Simulink is suited for control engineering and digital signal
processing applications.

2.3.2 Object-oriented modeling and UML

On the other hand, the object-oriented (OO) modeling paradigm has gained
popularity over the last years among the general-purpose software design community.
The object-oriented design and analysis uses concepts like design, polymorphism, and
inheritance to model structural and behavioral system aspects. The use of high-level
abstraction turns the design and implementation process easier, reducing design time.

24

As a result of a standardization process among different object-oriented design
methodologies, the Object Management Group (OMG) promoted the creation of the
Unified Modeling Language (UML) (OMG, 1999), which is currently in version 2.1.1
(OMG, 2007a). UML is considered the de facto modeling notation for any OO system.

With the production of SoC with large amount of memory, the use high-level
languages and object-oriented approaches could be considered in embedded software
design. With the interest by OO methodologies, the UML language gained also
popularity in embedded system domain. Sgroi (2002) justifies this attention by the rich
graphical notation and modeling power provided by this language that enables the
capturing of structural and behavioral aspects in different abstraction levels. In addition,
using OO concepts of UML, a definition of a class is made of its interface and its
behavior. This distinction between definition and instances allows the development of
libraries of reusable components. Another contribution from OO is the ability to define
a component by inheriting features from another one, which again improves the reuse of
components.

In addition, the UML has mechanism to extend the language by the definition of
profiles for specific domains. The UML-SPT (OMG, 2003) and the QoS&FT (OMG,
2007b) are examples of profile proposed by OMG to model “Schedulability,
Performance and Time” and “Quality of Service and Fault Tolerance”, respectively.
However, these profiles cannot fully support the needs of the real time domain. OMG
has therefore proposed the MARTE (OMG, 2005)(RIOUX, 2005), which includes the
previous UML-SPT profile and affords generic concepts required to model real time
aspects in both qualitative and quantitative terms and for schedulability or performance
analysis on a model. It includes a set of modeling artifacts for embedded system
specification, supporting asynchronous and synchronous computation models used in
the RT domain. In addition, MARTE includes extensive models of standard platforms
(POSIX, OSEK, etc.).

2.3.3 Case study: Comparison between UML and Simulink models

This section presents two different models developed to compare the object oriented
modeling approach of UML to the FB modeling approach provided by Simulink. Our
goal here is to analyze how suitable are these two approaches for the embedded system
design. The results of this analysis were presented in (BRISOLARA, 2005b), where
more detail about the used methodology can be found.

Figure 2.1: Crane system

25

The case study consists of a crane control system, proposed as a benchmark for
system level modeling (MOSER, 1999). Once the user defines a position for the crane,
the control system should activate the motor and move the crane to the desired point.
Special care must be taken with speed and position limits while the crane is moving, to
guarantee the safety of the transported load. Therefore, constant monitoring is needed to
avoid unexpected situations. This system incorporates hard real time constraints. Figure
2.1 gives an overview of the system.

2.3.4 FB model

The Simulink environment was used to define the functional-block model of the
Crane control system. Following the FB approach, the application was designed by
connecting several functional blocks through of data links. In this approach, different
hierarchical levels can be used in the model. As shown in Figure 2.2, the modeling
resulted in four high level modules organized hierarchically, as follows: PlantActuators,
Sensors, ControlAlgorithm, and JobControl. Each module has its intrinsic behavior and
is further detailed along this section.

Figure 2.2: Crane model using Simulink

The crane system is composed of both data driven and event driven parts, as can be
observed in Figure 2.2. The JobControl module is represented by a finite state machine
(event based), while the other modules are data driven. Figure 2.3 shows a view of the
JobControl module, which is composed by five states: Power_off, Init, PosDesiredTest,
NormalMode and EmergencyStop.

The NormalMode is a composite state, containing two concurrent states, Diagnosis
and Control, as can be observed in Figure 2.4. The Diagnosis module runs in parallel
with the control algorithm. This module is responsible for monitoring the position and

26

alpha sensors, indicating when some risk condition occurs. On the other hand, the
control is responsible for detecting the braking condition for the control algorithm.

Figure 2.3: Crane JobControl

Figure 2.4: Crane JobControl – NormalMode

27

Figure 2.5 illustrates details of the ControlAlgorithm module, which is responsible
for computing the control algorithm of the crane motor. This module receives the
position of the car (posCar), the alpha angle of the cable (alpha), and the desired
position of the load (PosDesired). The ControlAlgorithm computes a set of equations
and determines the voltage (VC) that is applied to the crane motor. This FB contains
two implicit MoCs, which are characterized as continuous time and discrete time,
respectively. For example, it contains a discrete space state component used for
differential equations resolution (top left), which is combined with those components
that work in the time continuous domain. The control algorithm is periodic, with a
period of 10 ms. Although this timing restriction could be represented in the model
using a clock, this is not a suitable way of expressing timing requirements. For instance,
no deadline can be stated, representing missing information required to perform
schedulability analysis.

The Sensors module is responsible for reading the sensors and works with a fixed
cycle time of 2 ms. Although this FB is not shown in this chapter, we observe that it has
the same problems previously stated for the control algorithm regarding the
representation of timing restrictions. Besides the position and angle sensors, there are
two other sensors for indicating when the car is beyond the track limits (minimal and
maximum car position).

Figure 2.5: Control algorithm model in Simulink

Finally, the Plant module contains the specification of the physical plant (car and
load) to be controlled. Although this module is not part of the system functional
specification, it must be described in order to allow the simulation of the system
behavior. For describing the continuous behavior of the plant, linear equations were
represented by Simulink components such as integrators, adders, and gains. This
highlights one important aspect of the FB approach, which is the possibility of reusing
pre-defined FBs.

Once the modeling phase is completed, the simulation is performed to provide
the validation of the FB model. Afterwards, the application code can be generated.
Simulink allow the generation of C code for the corresponding FBs and the generated
code can be executed in real time within the framework provided by the tool. However,

28

reasonable effort must be performed to allow running this code in a target environment
that is different from the development one.

2.3.5 UML model

Differently from the previous model, UML allows designers to represent the
system’s needs or functionalities before their implementation. This can be performed by
means of the Use Case Diagram, where actors represent the external elements that
interact with the system (I/O device or human user) and each use case represents a
specific functionality that must be provided. The Use Case Diagram for the crane
system is presented in Figure 2.6. Each use case also includes a textual specification to
detail its related responsibility.

Calculate
Position

Car-position
Sensor

Motor

Crane user

Sensors
Update

Sensor
Check

Cable-angle
Sensor

Diagnosis

Nominal
Operation Mode

Emergency
Operation ModeInitialization

Break-relay
<<extend>>

Figure 2.6: UML Use Case Diagram of the Crane system

For a better structuring of the model development, we followed the design phases
proposed by Gomaa (2000) in the COMET/UML methodology. However, any other
UML based design methodology that considers real time aspects could be used.
Moreover, in this case study, UML1.3 was used, because UML2 was not yet available at
the time.

To describe the interaction among objects that participate in each use case, they are
further detailed using UML collaboration diagrams. This is part of the so called analysis
modeling, which precedes the definition of requirements. Instead of collaboration
diagrams, sequence diagrams also could be used. To highlight important characteristics
of the modeled system (mainly timing restrictions), the UML profile for Schedulability,
Performance, and Time (SPT) (OMG, 2003) is used. This profile is also usually referred
to RT-UML, and is composed mostly by stereotypes and its related tags. Using this
profile, a timer event for example is decorated with the stereotype <<SAtrigger>>. It

29

includes information about its triggering frequency, as presented in the collaboration
diagram from Figure 2.7 (see event num. 3 – run()). Such information is represented by
the tag RTat of the stereotype that, in this case, means a periodic event with a 10 ms
period.

Operations depicted in the diagram of Figure 2.7 represent the ‘ControlAlgorithm’
block from the FB model (see Figure 2.5) and, partially, the ‘JobControl’ one. Detailing
the collaboration diagram, one can see three different operations sequences, denoted by
the numbers 1, 2, and 3. Special attention is given to the third sequence, the control
operation, which represents a periodic activity. Timing restrictions are denoted by the
elements from the UML-SPT profile. Similarly to the FB model, the ‘Controller’ class
also has an associated state diagram, which is presented in Figure 2.8. This is part of the
system dynamic model, which represents the application behavior. One observed
missing feature of UML is the lack of semantics to express the control algorithm itself,
including its continuous-time characteristics.

Figure 2.7: UML Collaboration Diagram of the Control Algorithm

The complete UML model of the Crane system includes 9 different collaboration
diagrams. All classes from these diagrams constitute the system static structure, which
is used as input for the next development step from the COMET methodology, that is
known as Design Modeling. This phase is responsible for defining the architecture of
the system, including the division of responsibility between client and server objects.

30

Since the Crane model makes use of decentralized control, it was necessary to classify
objects as being passive or active. The former represents data repository elements, while
the latter represents elements with their own thread of control that are capable of
triggering an interaction sequence. The final result is represented by the class diagram
depicted in Figure 2.9. Classes names are preceded by ‘::’ to follow UML conventions.
They can also contain a stereotype incoming from the UML-SPT profile (e.g.
<<SAschedRes>>, which denotes a concurrent element in the system). The choice for
the use of classes instead of capsules (part of UML 2.0) is due to the available runtime
structure on which object communication is event based and does not use the port
abstraction. This diagram is used as basis for the embedded system code generation.

Idle

Active

Blocked

«Create»/isActive = false;...

activate/isActive = true;...

block/isAc tive = false;

ru n /

Figure 2.8: State Diagram of the Controller class

As the design tool used to build the UML model did not include a simulation
module, the next step was the code generation for the system. Although other
programming languages like C++ could also be used for code generation, the Java
language was chosen as target in this study due to the current tool set used by our
methodology (see BRISOLARA, 2005b). Details on the generated code will now be
approached.

Figure 2.9: UML Class Diagram of the Crane system

31

The Controller class, on which the associated stereotype denotes a concurrent real
time task in the system, is selected to illustrate the generated code. This task is triggered
periodically every 10 ms, with a deadline of 10 ms (see the collaboration diagram
presented in Figure 2.7). To implement such features, the Controller class needs to
inherit features from RealtimeThread, as shown in Figure 2.10. Moreover, it must define
release parameters to implement the modeled timing constraints. Therefore, the class
PeriodicParameters is used, and its instance is passed as parameter for the superclass
constructor. A RelativeTime object is used to represent the 10 milliseconds from the task
period and deadline. All these special classes are derived from an API proposed by
Wehrmeister (2004).

Figure 2.10: Generated code for the Controller class

The Controller class provides two important methods: mainTask() and
exceptionTask(). The former represents the task body, that is, the code executed when
the task is activated. Since this task is periodic, there must be a loop which denotes the
periodic execution. The loop execution frequency is controlled by calling the
waitForNextPeriod() operation. This operation uses the task release parameters to
interact with the scheduler and control the correct execution of the operation. The
exceptionTask() operation represents the exception handling code that is triggered in

import saito.sashimi.realtime.*;

public class Controller extends RealtimeThread {

 private static RelativeTime _10_ms =new RelativeTime(0,10,0);

 private static PeriodicParameters schedParams = new PeriodicParameters(

null, // start time

null, // end time

_10_ms, // period

null, // cost

_10_ms);// deadline

 public Controller() {

 super("Controller", null, schedParams);

 // do other initializations

 }

 public void mainTask() {

 Crane.breakInterface.release();

 // periodic loop

 while(isRunning == true){

 this.controll();

 Crane.monitorInterface.setVC(m_vc);

 this.waitForNextPeriod();

 }

 }

 private int controll() { ... }

 public void exceptionTask() {

 // handle deadline missing

 }

};

32

case of a deadline miss, that is, if the mainTask() operation does not finish until the
established deadline.

After the code generation process, the application was ported to the FemtoJava
environment using the SASHIMI tool (ITO, 2001), which generates both a VHDL
description for a dedicated Java processor and the respective program memory code
(application code).

2.3.6 Evaluation criteria

In order to perform a comparison between the modeling approaches, several
evaluation criteria have been identified. These criteria are based on the work conducted
by Ardis (ARDIS et al., 1996), which performs a qualitative comparison among several
design languages for reactive systems. Such work is extended here in the direction of
searching for aspects that could be used to perform a quantitative evaluation of the
designed models. Moreover, a new organization for the set of criteria is established.
They are organized in groups that reflect the needs observed in the section 2.1, as can be
observed in Table 2.2. The groups are further refined in subgroups to compose the
evaluation criteria elements. In Table 2.3, each evaluation criterion is detailed, together
with an explanation on how it is evaluated (in qualitative or quantitative terms).

Table 2.2: Evaluation criteria

Evaluation Criterion Description

a) Requirements
 Specification

criteria to evaluate the capability to express and document user needs
and system requirements.

b) Functional
Specification

criteria to evaluate the model abstraction level and expressiveness, i.e.
if it describes the problem domain elements and the system
behavior/functionality in a natural and straightforward manner.

c) Validation or
Simulation

criteria to evaluate if the specification can be validated before its
implementation.

d) Implementability criteria to evaluate if the specification can be easily refined or translated
into an implementation that is compatible with the rest of the system.

33

Table 2.3: Evaluation criteria – subgroups

Criteria Description Evaluation Expressed by

a1) Functional

requirements

Capability of expressing and
documenting the desired system
functionality, together with the
problem domain elements that
interact with the system

Quantitative the number (nbr) of
modeling diagrams that
can be used to
implement the desired
feature

a2) QoS

requirements:

Capability of expressing the
application QoS requirements
and/or restrictions

Quantitative The number (nbr) of
QoS requirements that
can be specified

b1) Applicability Capability of representing
system behavior or functionality
by using different MoCs,
according to systems nature

Quantitative the nbr of supported
MoCs

b2) Maintainability Easiness to make modifications
in the specification, e.g. addition
of new elements and changes in
the external elements like
sensors

Qualitative -

b3) Modularity and
Hierarchy

Capability of dividing a large
specification into independent
modules, which could be again
decomposed into even smaller
parts

Qualitative -

b4) Expressiveness Capability of the modeling
language primitives to describe
the specification

Quantitative b4.1) nbr of modeling
primitives

b4.2) nbr of different
modeling primitives

b4.3) nbr of handed
lines of code

c1) Simulation Capability of verifying if the
specification can be used to
validate the implementation

Qualitative -

c2) Verifiability Capability of demonstrating
formally that the specification or
generated program meets the
requirements

Qualitative -

d1) Code

generation

Capability of generating an
executable code from the model

Qualitative -

2.3.7 Comparison results

This section presents an analysis and comparison of the UML and FB models
according to the criteria discussed in the previous section. The results are summarized in
Table 2.4. For evaluating the qualitative aspects, we have used the symbol “++” to

34

indicate a particular strength of the approach, “+” to indicate that the model meets the
criterion in a way that is adequate, but less than ideal, and “0” to indicate a clear
weakness of the model.

Table 2.4: Comparison results

Evaluation criteria FB UML

a) Requirements Specification

a1) Functional requirements 0 1

a2) QoS requirements 0 2

b) Functional Specification

b1) Applicability 3 1

b2) Maintainability + ++

b3) Modularity ++ ++

b4.1) Number of used modeling primitive 111 184

b4.2) Number of different modeling primitive in use 5 5

b4.3) Number of line codes written by the designer 0 96

c) Validation / Simulation

c1) Simulation ++ +

c2) Verification 0 0

d) Implementability

d1) Code Generation ++ +

Source: BRISOLARA, 2005b, p. 33

This evaluation begins by analyzing the facilities for expressing the system
functional requirements. UML offers the facilities provided by the use case diagram (1
point), where functional requirements are defined in terms of actors and use cases. On
the other side, the FB approach does not support this kind of resource (0 points).

More recently, OMG proposes a new visual language called Systems Modeling
Language (SysML) that reuses a subset of UML 2.0 and extends the language to satisfy
the requirements of the UML for Systems Engineering (SE) domain. SysML provides
two new notations to aid the requirements specification, which are Requirements
diagrams and Parametric diagrams. Requirement diagrams can capture functional,
performance and interface requirements, whereas with UML you are subject to the
limitations of Use Case diagrams to define high-level functional requirements.
Likewise, Parametric diagrams can be used to specify performance and reliability
requirements during system analysis.

Regarding the support for QoS specification, one can see that the UML-SPT profile
supports both timing and performance requirements specification (2 points), while in the
FB approach there is no support for such issues (0 points). In the FB model, the timing
requirements are implicit in the functional/behavior specification. Neither language
gives support to the specification of power consumption and cost requirements.

Recently, the definitions from UML-SPT and the QoS&FT (UML profile for
modeling Quality of Service and Fault Tolerance Characteristics and Mechanism)

35

profiles have been used to define a new profile called MARTE (Modeling and Analysis
of Real-time and Embedded Systems). MARTE provides a complete set of modeling
elements to build specification and design models of embedded systems, and supports
the various (asynchronous and synchronous) computation models used in the RT
domain.

Analyzing the model applicability by means of the number of supported MoCs, it is
possible to observe the advantages provided by the FB approach, as it supports three
different MoCs (3 points): continuous-time (analog), discrete-time (digital), and event-
based. Regarding UML, it supports only the event-based model (1 point). In spite of
this, there are efforts described in literature that already address the lack of a dataflow
model in UML (BICHLER, 2004)(CHEN, 2004).

Bichler (2004) proposes the D-UML, which integrates dataflow equations to the
UML/Realtime modeling language. A comparison between UML, FB and the D-UML
can be found in (BRISOLARA, 2005a). D-UML uses structure diagrams composed of
UML2 capsules and flows connected by ports. In this approach, a statechart is
developed for each capsule. Although D-UML allows model dataflow, this abstraction
is in fact implemented using send/receive mechanisms, which are controlflow-like.

Using UML2 notations, activities diagrams can be used to define dataflow systems.
More recently, in the SysML definition, the activity diagram is extended to support the
traditional Systems Engineering functional block diagrams (dataflow) and continuous
behaviors. However, activity diagrams are more closed to flowcharts than the dataflow
proposed by FB models. Moreover, the commercial tools have just started to support
these new features, so that it can not be used during this case study.

Regarding maintainability, the intrinsic OO properties from UML models, like the
specialization/generalization facilities (inheritance), provide better maintainability if
compared to the structured approach of FB models.

Considering modularity and hierarchy aspects, it is possible to conclude that the FB
model leads to a slight better decomposition. This can be observed by comparing the
Simulink high level model against the UML class diagram. The first one contains fewer
elements, making the interpretation of the physical behavior easier. The UML class
diagram used in our model maintains the whole system elements within the same
abstraction level, which is somewhat not suitable, considering the desired hierarchical
features. However, the addition of the composite structure diagram in UML 2.0
overcomes this problem, since it allows for decomposition in a natural and
straightforward manner.

The next criteria concern model expressiveness: number of used modeling
primitives vs. number of different modeling primitives in use. The FB model contains
111 modeling primitives, excepting the plant module, including Simulink components,
connections, ports, states, and transitions. In the UML model, 184 primitives are used.
Regarding different modeling primitives in use, the UML model is represented by
means of classes, objects, associations, states, and transitions. Therefore, it is natural to
observe an equivalent number of different modeling primitives if compared to the FB
model, which includes blocks, ports, connections, states, and transitions. Nevertheless,
using a design tool like Simulink, the designer can make use of different pre-defined
components available in a component library.

36

Another relevant issue relates to the number of lines of code programmed by the
designer in each model. It can be observed that in the UML model the designer has to
manually write 96 lines of code, while in FB model the program code was completely
generated by the tool. Several UML tools have code generation capabilities, but they
generate only code skeletons for classes and, at most, code from the statecharts. The
hand written code parts include mainly the methods’ behaviors that cannot be captured
from the model. On the other hand, by using the FB model and associated library, the
designer is not required to code the program by him/herself, as observed in our case
study. Lastly, our experimental results show that by using a component library within
the UML model reduction on the number of hand written code from 96 to 66 lines can
be achieved.

Regarding model validation and simulation, it is possible to observe that, in order to
provide such features, suitable modeling and design tools are required. In the crane case
study, only the FB model could be simulated, thanks to the Simulink tool that provides a
simulation engine. The available version of the Real-time Studio tool, used for the
construction of the UML model, does not support model simulation. However,
considering the authors’ experience with other UML-like modeling tools, they provide
support at most for animation of statecharts (event based MoC). Consequently, one can
state that for this task the FB model is more adequate, because the simulation
environment supports all the three intrinsic MoCs.

Analyzing the verification features, neither UML nor FB approach have support of
formal verification of complete models. In UML, some tools allow for model checking
in specific diagrams, like Statecharts and Sequence Diagrams. Moreover, many tools
support consistency checking between diagrams, for instance checking the connections
between the components in a FB diagram or even guaranteeing that an operation called
in an UML collaboration diagram exists in the related class. For this reason, both
languages are considered weak in this aspect. Besides that, UML commercial tools
check the syntax of actions in the statecharts. They also check if an operation called in a
collaboration diagram was defined in the class. Therefore, Damm and Harel (2001)
proposed the Live Sequence Charts (LSC) that are an extension of Message Sequence
Charts (MSC) with rigorous semantic. The use of the LSCs allows consistency check
between the generated scenarios and the sequence charts applying formal verification
techniques.

Finally, considering the model implementability, one can see that from both models
an architecture independent specification can be derived. Still, there are two aspects that
lead to distinct capabilities: amount of code provided by designer and number of pre-
defined components. In UML, the need for designer intervention is higher as can be
observed in the crane case study, because some parts of specification cannot be
expressed using UML diagrams (e.g. control algorithm). In the FB models, the whole
code can be generated automatically, since it relies on the use of pre-defined libraries.
However, the generated code requires several modifications/optimizations to be
executed outside the framework provided by Simulink.

37

3 UML-BASED EMBEDDED SOFTWARE GENERATION

The Unified Modeling Language (UML) (OMG, 1999) is a standard notation for
modeling and documentation of object-oriented software. The intention behind the
definition of the language was to consolidate the various OO languages, methods, and
notation in a single modeling language independent of vendor. UML was based on the
OMT method of Rumbaugh (1991), the Booch method (BOOCH, 1981), and the OOSE
(Jacobson, 1992). This language was defined to support specification, visualization,
construction, and documentation of conventional computational systems.

The UML language is in constant evolution and OMG is responsible for maintaining
and reviewing it. The organization can have the assistance from the members from both
academy and industry. All members can propose new features and vote for new
solutions for the UML language. Nowadays, UML is considered the de facto modeling
language for software systems. Several tools based on UML are available for software
modeling and code generation. The widely use of UML as a standard language also
contributed for the definition of software development approach that shifts the focus
from code to models, which is called model-driven development (SELIC, 2006). MDD
aims to make models the primary resource in all aspects of software engineering and
provide benefits of cost reduction and quality improvement.

UML1, the first version of the language, presented some limitations, mainly
regarding to the low precision and lack of formal semantic. That left ambiguities in the
model, allowing different interpretations and difficulting the implementation of tools for
model capturing and code generation. To automate these steps, some vendors defined
more precise semantics, but the problem was that these semantics varied from vendor to
vendor. Recently, a major revision of UML was coordinate by OMG and the new
version of the language (UML2) was defined, with enhanced semantic and more
precision. The main objective of this revision is to eliminate the ambiguities, facilitating
the design automation by tools.

The first minor revision of the original UML 2 specification has resulted in
UML 2.1.1 (OMG, 2007a). Although this revision adds fixes to the abstract syntax to
eliminate minor inconsistencies and ambiguities, existing UML-tools still have limited
generate code capabilities. This is better discussed in the section 3.1, where the
capabilities of the existing UML-based tools for embedded software generation are
depicted. From that analysis, one can observe a gap between model and code, presented
in section 3.2 using experiments, explained in section 3.3.

38

3.1 Existing approaches for code generation from UML models
To support SW automation based on UML models, the first step is the capture of the

model. An UML model is an instance of a class model called UML meta-model. Models
are stored using the XMI (OMG, 2002) model interchange standard, which is based on
XML (eXtensible Markup Language) (GROSE, 2002). The problem is that different
versions of the XMI are used for different vendors, making difficult the interchange
between UML-based tools. Model repositories can be used to store an UML model
represented using XMI, providing functions to create, add, remove and update a model,
and thus, facilitating the tool implementation. Examples of available UML repositories
are Eclipse EMF (ECLIPSE DEVELOPMENT TEAM, 2006), Netbeans Metadata
Repository (MDR) (NETBEANS DEVELOPMENT TIME, 2005), and System
Modeling Workbench (SMW)(PORRES, 2003).

After capturing the model, this must be transformed into code in the target language.
This process typically uses a template engine to transform model into code, given the
format specified by the template. Templates are a flexible approach to convert models to
text. The most popular template engines are Velocity (APACHE SOFTWARE, 2005)
and JET (Java Emitter Templates) (ECLIPSE DEVELOPMENT TEAM, 2005). Figure
3.1 presents an example of template in Velocity, which is an open-source project
created to generate HTML code. Details about code generation using templates can be
found in (BOAS, 2004). Model repositories, such as EMF and MDR, and templates can
be used together in the implementation of a code generator.

Other methods to generate source code include the use of rules, writing programs
that generate programs (code generators), and using transformations such as XSLT
(TIDWELL, 2001). Indeed, XSLT is popular for XML transformations, but it is too
verbose to be an effective language for model-driven code generation. More recently, as
model-driven development approaches have gained interest, an alternative approach for
code generation based on model transformations has been proposed. In this way, the
model described in a higher abstraction is transformed into another one closer to the
final implementation. More than one transformation steps could be applied to the initial
model, including optimization steps. Finally, a simple conversion from model to text
can be applied to produce code in the target language.

Figure 3.1: Velocity template example

According to Björklund (2004), templates are difficult to create and manage. They
cannot be the only mechanism for code generation, mainly because code optimizations

39

cannot be applied using templates. The author suggests that the most adequate way to
generate code from a model is through model transformation. An example of the code
generation from UML class diagrams to Java was presented in (BJÖRKLUND, 2005),
and is illustrated in Figure 3.2. This figure shows three ways to generate Java code from
a class diagram. A simpler one is just directly converting the model to text, as the model
is a simple one, just a partial code could be generated with this approach. In an
alternative way, the model could be transformed in another more detailed model, and
then use this model to generate code. In addition, a complex mapping could be used to
generate the code from the initial model. This example is good to illustrate the code
generation idea. It is though too simple because the transformations show just the use of
the JavaBeans convention, which defines that for each class attribute, methods set and
get should be defined to give access to this attribute.

Point

Class Point {

public int x;

public int y;

}

Class Point {
public int x;
public int y;
public int getX()
{

return x;
}
public void setX()

...
}

Point
+x: Integer
+y: Integer

+getX(): Integer

setX(newX: Integer)

+getY(): Integer

+setY(newY: Integer)

Simple

model -> text

Model Transformation

Complex form:

model->text

Simple form

model -> text

+x: Integer
+y: Integer

Program Transformation

Point

Class Point {

public int x;

public int y;

}

Class Point {
public int x;
public int y;
public int getX()
{

return x;
}
public void setX()

...
}

Point
+x: Integer
+y: Integer

+getX(): Integer

setX(newX: Integer)

+getY(): Integer

+setY(newY: Integer)

Simple

model -> text

Model Transformation

Complex form:

model->text

Simple form

model -> text

+x: Integer
+y: Integer

Program Transformation

Figure 3.2: Approach for code generation (BJÖRKLUND, 2005)

3.1.1 Code generation: existing tools

The tools proposed for code generation from UML models can be divided in two
classes, structural and behavioral. This division was initially proposed by Björklund
(2005). In a structural code generation, only structural diagrams are used, i.e. class
diagrams, where classes have attributes and relations. The tools that follow this
approach generate only skeleton of code, and the strategy is available since the first
UML tools. For example, they can map all constructions (elements) in a class diagram
to Java or C++ programs. On the other hand, the behavioral code generation is based on
behavioral UML diagrams, such as state, sequence and collaboration diagrams. Most of
the available tools provide code generation only from UML state diagrams, as for
example, Artisan Studio, Rhapsody, UniMod and BridgePoint UML Suite.

To be able to generate complete code from UML diagrams, designers are asked to
add information to the model, e.g. specifying the action correspondent to state (activity)
in a state (activity) diagrams or specifying the method behavior in sequence diagrams.
Some code generators use the target implementation language to describe these methods

40

and actions, which turn the model not independent of the target language. Other tools
use actions languages to complement the state and activity diagrams in order to generate
complete code. However, as the Actions Semantics proposed for UML 1.5 defines only
an abstract syntax, tool vendors use proprietary action languages. Such approach is used
in iUML (KENNEDY CARTER, 2005), BridgePoint UML Suite (MENTOR
GRAPHICS, 2005), and Telelogic Tau Architect/Developer (TELELOGIC, 2004). As
an example, BridgePoint uses the Object Action Language (OAL) and provides full
code generation, in which the designer uses state diagrams to represent the system
behavior and specifies actions correspondent to all states using OAL.

Other common approach to bridge the gap between model and implementation is the
use of intermediate languages. Such approach is used by Björklund (2004) and Hubbers
and Oostdijk (2003).

In order to support model verification, simulation, and synthesis, Björklund (2004)
proposes the use of Rialto as the intermediate language during the model design. This is
illustrated in Figure 3.3. This language has a formal semantics that allows the capture of
the semantics in UML behavioral diagrams. Thereby, the language can be used as an
execution engine for UML models and to generate code too. Rialto can also be used to
combine multiple MoCs because different scheduling policies are defined in this
language. In this work, the authors consider that the activities diagrams have dataflow
as their underlying model of computation and these diagrams can be interpreted as a
statechart. In those, all computation is performed in state activities and the transitions
are triggered by completion events. However, a statechart is control flow like and is not
the more adequate representation for dataflow models. Moreover, as this is an ongoing
work, it supports only some UML diagrams.

UML Rialto FSM S-Graph

C

Java

UML Rialto FSM S-Graph

C

Java

Figure 3.3: Rialto-based code generation approach (BJÖRKLUND, 2004)

Hubbers and Oostdijk (2003) highlight the difficulty of verifying if the
implementation behavior agrees with the specification. In this context, the authors
propose the use of JML (Java modeling Language) specifications in order to facilitate
this verification. A JML specification allows formal verification to check if the
generated code implements the specified model. In this project, a tool called AutoJML
has been developed, which automatically derives JML specifications from UML state
diagrams represented in the XMI format, beyond the Java code. The combination of the
JML specification and the skeleton code can be formally verified using the ESC/Java
(FLANAGAN, 2002).

UML2 provides some constructions that aid the modeling of the complete
execution flow, as for example the ref operator that allows to link fragments in different
sequence diagrams. This new version of UML also provides the operators alt, opt and
loop, which permits representing conditions and loops in sequence diagrams. These new
constructions allow the proposal of code generation approaches based on sequence
diagrams, as in (BABU, 2005) and (REICHMANN, 2004). Matilda (BABU, 2005) is a
model-driven development platform that accepts the UML2.0 class and sequence
diagrams as input. This platform provides capabilities for model checking against the

41

UML meta-models for syntax and semantic correctness, besides code generation. In this
approach, UML models are mapped to the abstract syntax tree from which the code is
generated. Java constructions are used on the sequence diagrams and thus, full code can
be generated from the model. Reichmann (2004) proposes a code generator, which uses
Velocity engine (APACHE SOFTWARE, 2005) to generate Java or C++ code from
UML models, as class and sequence diagrams. In this work, in order to complete the
behavioral diagrams, the language called MeDeLa is used to specify methods behavior.
MeDeLa is based on Java syntax and consequently, the use of this language does not
provide a higher abstraction level than that of Java or C++.

3.2 Analyzing the gap between UML model and a Java program
The diagrams and graphical notations provided by UML help the designer specify

the behavior of complex systems, without demanding the definition of details usually
required by the programming languages. In a desired flow, a model compiler (or code
generator) must be able to generate these details from the model, producing an
implementation in the target programming language.

A code generator could be considered as a function that maps artifacts from a
modeling language to lines of code in a programming language. To design a code
generator, the definitions of the models to be supported as input are required, as well as
the used features of the target programming language and the mapping between both. In
this section, we study the mapping from UML models to Java code and we discuss the
gap existing between both specifications.

As highlighted by Erikssom (2004), when Java is the target language, a natural
progression from the logic classes to code components is possible. As Java and UML
are object-oriented languages, some UML constructions can be directly mapped to Java
ones. For example, a class in UML is translated to a class definition in a Java code and,
for each class defined in a class diagram, a .java file is created. Table 3.1 shows basic
rules to map UML constructions to statements in Java.

Table 3.1: Mapping UML to Java

UML Constructions Java Constructions

Attribute instance variable

Operation Method

Abstract Class abstract class

Interface interface key-word

Package package declaration (package)

Subclass/Generalization extends key-word

Realization implements key-word

Dependency, <<uses>> Import

Multiplicity Array

Role Instance variable from the type of the class associated with the role

Source: MADISETTI, 2005.

42

Besides the mapping proposed by Madisetti (2005) and summarized in the Table
3.1, other simple mapping rules can be defined, as for example, the generation of get
and set methods for all class private attributes. In this way, the single way to access
these attributes is through these methods. That is a convention in JavaBeans.

However, the direct mapping is only possible from structural diagrams. The UML
behavioral diagrams include many concepts, such as actions, events, and states, which
are not present in most programming languages. This means that there is not a one-to-
one mapping between behavioral diagrams and its implementation (BJÖRKLUND,
2003).

3.2.1 Experiments

In order to discuss the gap between the UML model and an implementation on a
target language, we analyzed two embedded applications developed in Java. Those are
the Crane control, which is also used as case study in chapter 2, and the Address Book,
which includes calendar, alarm, and calculator. In this experiment, firstly, we analyze
both applications regarding the number of lines of code that can be automatically
generated from the model using structural code generators. That means using only class
diagrams. For these lines, we use the term “Automatic Generated” (AG). The rest of the
lines were classified as “Written by designer” (WD). After that, these WD lines were
classified according to the operation that they are evolved or the behavior that they
describe.

To determine the lines marked as “Automatic Generated” (AG), the mapping
presented in Table 3.1 was used. In this way, lines responsible to define classes,
interfaces, methods and attributes are considered in this group. Besides that, lines of
code used to define the use of an API and the definition of packages are also classified
as AG. In addition, lines of code responsible to initialize attributes and define get and
set methods for all class attributes are also considered as AG in this analysis.

This study aims to define an abstraction that could be used to complement the UML
diagrams in order to obtain the complete code generation from the model without losing
abstraction. Then, after the identification of the AG lines of code, the remaining lines
are considered WD. The WD ones are then analyzed in more detail in order to evaluate
how they could be specified in a higher abstraction level and, consequently,
automatically generated. To do this, we classified these WD lines of code in 20 groups,
as presented in Table 3.2. Firstly, seven simple groups were defined (e.g. <co>, <cm>,
<mat>), which were combined to define eleven complex groups (e.g. <if+mat>,
<for+cm>, <for+ds+mat>). The <co> and <io> groups are reserved for the lines of code
used to dynamically create and initialize objects, respectively. The <cm> and <ret>
represent method invocation and method return, respectively. The groups <dv>, <iv>
and <incv> are used to represent the declaration, initialization and increment of
variable, respectively, as well as the group <im> represents the lines used to initialize
matrix or vectors. Finally, math operations are classified as <mat>.

In the proposed classification, control structures like conditional and loops were
divided in several groups according to the correspondent control operation, e.g. the
group <for+cm> represents a loop with known number of iterations and with method
calls inside. For conditionals, similar classification was proposed for the command If,
defining the group <if+cm>. Besides For and If, similar structures like Switch/Case and
While were also considered and classified, as well the Try/Catch used for exception

43

handling in Java code. For example, the While was classified as <loop+cm>, which
means a loop with conditional and that have method call inside. In addition, <for+ds>
classified the loop used to manipulate a data structure (matrix or vector). An example of
these lines of code is illustrated in Figure 3.6(a).

Table 3.2: WD lines of code classification

Classification Description

<co> Create objects - Lines of code used to create an object.
 Ex: classA obj = new classA();

<io> Initialization of object (object is already allocated, only will be updated). Ex:
currentObj = objA;

<cm> Call methods - Lines of code used to indicate method invocation.

<ret> Lines of code to represent a method return.

<dv> Lines of code used to declare an auxiliary variable. Ex: int temp;

<iv> Lines of code dedicated to give values for variables. Ex: a = 4647;

<incv> Lines of code used to increment variable value. Ex: a=a+1;

<im> Lines of code used to initialize matrix and vectors. Ex: X[0]=1;

<mat> Math operations. Ex: num = u - y; Ex: num = sqr (a);

<if+cm> Conditional with method call. Ex: if (test) method();

<if+incv> Conditional with a variable increment. Ex: if (test) temp+=2;

<if+iv> Conditional with initialization of variable. Ex: if (EmergencyStop) vc=0;

<if+mat>

Conditional with math operations. Ex: if (num >= max)
 v = max – sqrt (num);
 else v = sqrt (num) + min;

<if+mat+ds>

Conditional with data structure manipulation and math operations.

 Ex: if (a) z = posCar*q [1];

<for+cm> Loops with method invocations.

 Ex: for (int j = 0; j < max; j++) { init(j); }

<for+ds>

Loops used to manipulate a data structure. Ex: for (int i = 0; i < 5; i++)

{ q[i]= q1[i]; }

<for+ds+mat> Loops with math operations under data stored in matrix or vectors.

<for+ds+cm> Loops with method calls used to define contents for a data structure.

<loop+cm> Loops with conditional test, in which methods are invoked.

Ex: while (test) { }

<switch-case> Lines of code used to define a switch-case conditional structure.

<try/catch> Lines of code used to exception treatment.

44

Figure 3.4 (a) shows a block of Java code, which performs the copy of the content
from a vector to another vector. According to the classification presented in Table 3.2, it
was classified as <for+ds>. The same behavior can be described in a single code line in
Python and Matlab, as shown in Figure 3.4 (b). This simplification is possible because
the interpreters and compilers provide by these tools are able to treat that. This allows,
for example, that the user manipulates a matrix as a primitive type in Matlab.

for (int i=0; i<5; i++)
{

q[i] = r[i];
}

q=r

a) Java Code b) Python Code
Figure 3.4: Example of <for+ds> lines of code

From this analysis, we observed also lines of code that could be automatically
generated using templates, e.g. the lines for exception treatment and conditional
structure of type switch-case in Java code. These structures were classified as
<try/catch> and <switch/case> in Table 3.2. Skeleton of code can be automatic
generated using templates for both cases.

3.2.1.1 Crane results

The crane is used as case study in chapter 2 and the same UML model and Java
implementation are used in the analysis presented here. The analysis results for the
Crane control application are summarized in Table 3.3. It is important to notice that this
implementation reuses a library to solve floating point operations. As the library was
reused, these lines of code were not considered in this analysis.

Table 3.3: Crane analysis results

Classes/Interfaces Total AG WD
Crane 20 8.93% 6 30% 14 70%
Controller 77 34.38% 22 28.57% 55 71.43%
CraneInitializer 10 4.46% 6 60% 4 40%
ConsoleInterface 11 4.91% 7 643.34% 4 36.36%
BreakInterface 8 3.57% 5 62.5% 3 37.50%
AngleSensorInterface 19 8.48% 12 63.16% 7 36.84%
positionSensorInterface 19 8.48% 12 63.16% 7 36.84%
MotorInterface 6 2.68% 6 100% 0 0%
SWPosCarMin 6 2.68% 5 83.33% 1 16.67%
SWPosCarMax 6 2.68% 5 83.33% 1 16.67%
PosCarMin 6 2.68% 6 100% 0 0%
PosCarMax 6 2.68% 6 100% 0 0%
DesiredPosition 6 2.68% 6 100% 0 0%
DeltaPosCar 6 2.68% 6 100% 0 0%
VcCheck 6 2.68% 6 100% 0 0%
ParameterTimeOut 7 3.13% 5 71.43% 2 28.57%
Diagnoser 5 2.23% 5 100,00% 0 0%
TOTAL 224 100% 126 56.25% 98 43.75%

45

Table 3.3 presents the total number of lines of code, the number of lines of code
automatic generated (AG) and written by designers (WD) for each class used in the
crane implementation. From these results, we observed that more than 40% of the total
lines of code of the crane were classified as WD, which means that these lines of code
must be described by the designer. Moreover, the results show that for 8 classes from
the 17 classes that compose the application, the number of lines of code written by
designer (WD) is too small, being around 0 and 17%. This is because theses classes
represent shared resources and define only attributes and methods to access its
attributes. For the classes that present a larger number of WD lines of code, a detailed
analysis was made and is presented in the remaining of this section.

The Controller class has 77 lines of code, which represents 34.38% of the total lines
of code in the whole application. The main part of the application behavior, which is the
control algorithm, is encapsulated in this class. A block of code from the Controller
class is illustrated in Figure 3.5. The analysis results show that 28.57% of the lines of
code of the Controller class can be automatically generated. The remaining 55 lines of
code (71.43%) are classified as “Written by Designer” (WD) and then, they must be
described by the designer. The result obtained for the Controller class is illustrated in
Figure 3.6(a). From the 55 lines of code, 10 lines are used to vector initialization
(<im>), 6 lines are loops to vector manipulation (<for+ds>) and 10 lines are loops
where vector are manipulated through methods (<for+ds+cm>). In addition, 11 lines are
conditionals and 14 are method invocations.

public class Controller extends RealtimeThread {
...
public Controller () {

super(null, relParams);
// do initializations (A, B, X, K, kp, q...)

}
private int controll() {

int posdesired = Crane.desiredPosition.get();
poscar= Crane.positionSensorInterface.read();
mul_Bx();
mul_y();
if (EmergencyMode)

z= softfloat.floatAdd(poscar, softfloat.floatMul(0x4500, q[1]));
else

z= softfloat.floatAdd(poscar, softfloat.floatMul(0x4500, alfa));
...
for (int i=0; i < 5; i++) {

q[i]= q1[i]; }
return(VC_temp);

}
public static void mul_Aq() {
for (int i= 0; i < 5; i++) {

q1[i]= 0;}
int lin=0;
for (i=0; i < 5; i++) {

for (int j=0; j < 5; j++)
q1[i]= softfloat.floatAdd(q1[i], softfloat.floatMul(A[lin+j], q[j]));

lin+=5;
}

}
... // more code ...

Figure 3.5: Example of analyzed code: Controller class

46

The analysis results for the Crane class are illustrated in Figure 3.6(b). From the 20
Java lines of code of this class, 6 can be automatically generated because they represent
the class header and method declarations. From the 14 remaining lines of code,
classified as WD, 8 are responsible for the object creation (<co>), 5 are method calls
(<cm>), and 1 is a loop in which there is method call inside (<loop+cm>). Figure 3.7
illustrates the results for the analysis of the remaining classes.

 (a) (b)

Figure 3.6: Analysis results obtained of the Controller and Crane classes

Figure 3.7: Analysis results for Crane classes

3.2.1.2 Address Book results

An Address Book application is another case study. The application allows the
storage of information about contacts, such as name, address, phone, and birthday.
Besides that, it checks for birthdays in the month or in a given-day. This application
includes an alarm and a calculator that performs simple math operations. Figure 3.8
presents the class diagram for our Address Book. Besides the classes presented in this
figure, a class called Console was used in the implementation to facilitate reading the
values from the keyboard. Since the behavior implemented by this class could be reused
from a pre-exiting class or library, this class was not considered in this analysis.

Controller Class

Total: 77 (22 AG + 55 WD)

55 = 3 <iv> + 14 <cm> + 1 <ret>+ 10 <im>

 + 6 <for+ds> + 10 <for+ds+cm>

 + 6 <for+ds+cm>+ 4<if+cm> + 1 <if+iv>

Crane Class

Total: 20 (6 AG + 14 WD)

14 = 8 <co> + 5 <cm> + 1 <loop+cm >

CraneInitializer

Total: 10 (6 AG + 4 WD)

4 WD= 4 <cm>

BreakInterface

Total: 8 (5 AG + 3 WD)

3WD =3 <iv>

ConsoleInterface

Total: 11 (7 AG + 4 WD)

4 WD = 2 <cm> + 2 <co>

AngleSensorInterface

Total: 19 (12 AG +7 WD)

7WD = 2 <co> + 1 <cm> + 1<iv> +3 <for+cm>.

PositionSensorInterface

Total: 19 (12 AG +7 WD)

47

Table 3.4 presents the complete results obtained for the analysis of the lines of code
for each Address Book class (total number of lines of code, number of AG and WD
lines of code. The results show that 66.21% of the Address Book lines of code must be
written by the designer. We observed that the AddressBook presents a better
distribution of lines of code among the classes when compared to the Crane, where
many classes have little number of lines of code and the algorithm behavior is
encapsulated in a single class that contains 28% of all lines of code.

Figure 3.8: Address Book Class diagram

The results show that for simple classes, complete code can be automatically
generated. The entities AlarmHandler and TimeListener, for example, are interfaces and
define only the methods that must be implemented in the classes that implement these
interfaces (Alarm and Application in the Address Book). For that reason, 100% of the
code for them can be automatically generated. The class AddressEntry represents the
contact of the Address Book, defining the attributes (fields) stored for each contact and
the methods used to access these fields. In this way, full lines of code can be generated
for this class from the class diagram.

48

The class AddressBook has 100 lines of code, in which 21 are classified as AG and
79 as WD. This class defines the data structure required to store all AddressBook
contacts, here represented as AddressEntry objects, and provides methods to insert,
remove, and search elements in this structure. However, depending on the used data
structure, the implementation of these methods differs. As this implementation does not
use the Java collection libraries, these methods were defined by the designer. The Java
API has several classes to store collection of data and provides methods to add, remove,
search elements for each of theses classes. The number of lines of code written by the
designer could be reduced with the use of classes from the Java library. In the class
AddressBook, the use of a pre-defined data structure, instead of a simple array, could
reduce in 63% the number of lines of code written by the designer.

Table 3.4: Address Book analysis results

Classes/Interfaces Total AG WD
Application 49 9.68% 15 30.61% 34 69.38%
Calendar 37 7.31% 18 48.65% 19 51.35%
Calculator 17 3.36% 7 41.18% 10 58.82%
CalculatorIhm 61 12.06% 16 26.23% 45 73.77%
AddressBook 100 19.76% 21 21% 79 79%
AddressEntry 32 6.32% 32 100% 0 0%
AddressBookIhm 113 22.33% 20 17.70% 93 82.30%
Alarm 35 6.92% 18 51.42% 17 48.57%
AlarmIhm 42 8.30% 12 28.57% 30 71.43%
Timer 16 3.16% 8 50% 8 50%
TimerListener 2 0.40% 2 100% 0 0%
AlarmHandler 2 0.40% 2 100% 0 0%
Total 506 100% 171 33.79% 335 66.21%

3.2.1.3 Results Analysis

The experiments presented in section 3.2.1 demonstrate that a large number of lines
of code cannot be automatic generated from the UML model. Those lines represent
most of the method behavior. In the Crane case study, this number represents 40% of
the whole application, but this number can vary according to the used SW architecture.
In the Crane model, several classes are used to model shared resources and that do not
encapsulate any behavior. For that reason, 100% of code can be generated for these
classes, increasing the percentage of AG lines of code for the Crane application.

In the Address Book case study, only 171 (33.79%) lines of code out of 506 (100%)
can be automatically generated. Consequently, 66.21% of the lines are written by the
designer. It shows that the challenge of generating code depends on the application and
how it is organized. This case study demonstrates also that the choice of data structure
impacts on the number of lines of code generated automatically. This comes from the
fact that, when data structures are reused, their methods can be reused, avoiding the
need for the designer to implement methods for data structure manipulation.

This study aims to propose an appropriate abstraction that could be used to
complement the UML models, in such way that complete code could be generated from
them. Usually tools use programming or action languages to do this. Both have the
disadvantage of the fact that the designer needs to specify the behavior by a code block

49

that is not smaller than the used in the final implementation. This happens because
action languages do not provide a higher abstraction level than those provided by the
programming languages themselves (e.g. C++, Java, etc). The analysis presented in
section 3.2 was useful to observe the kind of WD lines that are usually found in
embedded applications. In the next section, we propose forms to abstract these lines of
code in order to improve the capabilities of code generation from behavioral UML
diagrams and allow full code generation from them.

3.3 Proposed code generation approach
Most part of the approaches for code generation were defined for the first versions

of UML (1.4 and 1.5). They do not have formal semantic, allowing different
interpretation from UML models. In addition, these versions do not provide a way to
link the several behavioral diagrams in order to allow an easy capture of the system
behavior. The latest version of UML2 proposes a way to link several sequence diagrams
in order to allow the capture of an execution sequence, which turns able the definition of
code generation methods from sequence diagrams.

In addition, the previous sections discussed the existing gap between UML models
and the final implementation in the target programming language, showing that
additional information should be inserted in the model in order to allow the complete
code generation from that. In this context, we propose here an approach for full code
generation from UML2 models, which uses abstractions to describe the behavior of the
methods. The flow of the proposed approach is presented in Figure 3.9, which starts
from the application model described using UML diagrams. After that, the designer
refines this model, specifying the behavior for methods using an abstracted language
called BRISA (BRIdging the Semantic Abstraction). Finally, the resulting model is used
as input for the code generator that generates code in the target programming language.

Application
Model

Code at target
language

Model
refinement

UML Model +
BRISA

Code
generation

designer

automatic

Figure 3.9: Proposed UML-based code generation flow

50

The ultimate objective is the definition of a code generation method able to generate
complete code from a high-level model of an embedded application, which provides an
automatic way to obtain the final implementation from the model. The use of the UML2
notations to define the system behavior is addressed in the section 3.3.1. Section 3.3.2
presents the abstraction that must be provided by BRISA.

3.3.1 Using UML2 notations for code generation from sequence diagrams

UML2 defines thirteen types of diagrams, divided into three categories: six diagram
types represent static application structure; three represent general types of behavior;
and four represent different aspects of interactions. As the focus here is on the
improvement of capturing the dynamic application behavior from the UML model, only
behavioral and interaction diagrams are cited.

Behavior Diagrams include the Use Case Diagram (used by some methodologies
during requirements gathering); Activity Diagram, and State Machine Diagram.

Interaction Diagrams, all derived from the more general Behavior Diagram,
include the Sequence Diagram, Communication Diagram, Timing Diagram, and
Interaction Overview Diagram.

The UML2 specification puts more emphasis on the semantics and, in particular, in
the key area of basic behavioral dynamics. With an evolution of the UML modeling
language, new notations and constructions were proposed. Since we are interested in
generating code from sequence diagrams, our focus here will be on the new features
included in this diagram.

Figure 3.10 shows an example of UML2 sequence diagram. It looks much the same
as the sequence diagrams in UML 1.x, as they still have lifelines, messages and other
similar notations, but there are some apparent differences. In the UML2, the sequence
diagrams can be divided in fragments. Notice the first box at the upper left hand corner
of the diagram. It is a new notation specifying the name of the fragment by the use of
the operator <sd>, in the example, “sd Q”. Using the name of the fragment and another
operator called <ref>, as shown in Figure 3.10, other sequence diagram can reference
this fragment. In this way, different sequence diagrams can be linked, defining the
application execution flow.

Figure 3.10: Combining different iterations notations in a same diagram

51

Figure 3.11: Representing conditionals in UML 2.0

In Figure 3.11, there is another sequence diagram nested within a larger one. It has
the operator <alt>, which is short for "alternative" (if/then/else) and applies to the nested
fragment. The dashed line is used to delimitate the alternative fragments and, if the
guard evaluates to TRUE, then the upper part of that fragment is executed. Otherwise,
the lower part will be executed. The loops are indicated by the operator <loop>.
Together with the operator, a boolean expression (conditional) or a minimum and
maximum index can also be specified. Figure 3.12 shows an example of the use of the
<loop> operator, where the operations inside of the loop are repeated four times. These
notations allow specifying conditionals and loops in the sequence diagrams. Besides
that, the <par> operator can be used to specify parallel (concurrent) behavior.

Figure 3.12: Representing loops in UML 2.0

We considered the UML2 notations for the sequence diagrams previously presented
as an important improvement for the UML behavioral diagrams. They enable the
capturing of method invocation sequences in a scenario or whole application execution

52

flow, barely from the sequence diagrams. These new notations make possible to do
links between model and code, reducing the gap between both and facilitating the code
generation.

Besides the sequence diagram, the activity diagram has gained attention in UML2.
Activity diagrams are similar to flowcharts and can be used to define the behavior of
methods (algorithm), once these diagrams also allow the specification of loops and
conditionals. However, it is important to notice that the use of very detailed diagrams
require so much time to build that the designer may prefer to specify the algorithm
directly as code in the target programming language. In UML 2.0, the activity diagram
semantics is oriented with Petri nets semantics. It defines activities and actions that
produce and consume tokens rather than on state charts. The explicit modeling of
control and object flows are new in UML 2.0, replacing the use of state transitions in
previous versions of UML activity diagrams. Green (2005) proposes the use of this
diagram to specify dataflow.

3.3.2 Bridging the semantic gap

As the experiments in section 3.4 demonstrated, a huge number of lines of code
must be written by the designer using the traditional code generation approaches. In
order to address it, a more abstract language could be used to make the lines of code
specified under the UML model more abstract than the programming language. This
could motivate the designer to use the UML-based code generation approaches.

The analysis of two applications developed in Java, a widely used programming
language, allows identifying and classifying the line codes. Observe that several lines of
code can be replaced by only one line in languages like Matlab or Python, which
provide abstractions to manipulate matrix and vector (see Figure 3.1). In this case, a
library that provides functions to perform operations under matrix can be used to
facilitate the production of implementation for these operations. As embedded
applications involve math operation with matrixes, the use of higher abstraction to
describe these operations allows reducing the time spent in the specification.

Experimental results show that the use of a component library with the UML model
can reduce the number of hand written lines of code in 30% (BRISOLARA, 2005b). To
indicate the reuse of components, stereotypes can be used in the UML diagrams. In this
way, the designer does not need to describe the behavior for the methods marked as
reused, since an implementation is already available in a library. In addition, as
proposed in (MATTOS, 2004), a library with pre-defined components implemented in
different ways and pre-characterized for a given architecture can support design space
exploration and the generation of more efficient code for this architecture.

In the AddressBook application, several routines such as search in a data structure,
sorting elements, insertion and removal of elements, also can be reused from libraries,
avoiding the hand-coding. The results of the analysis performed on this application
show that a reduction of about 63% on the lines of code of a class can be achieved when
operations to manipulation of data structure are reused. According to the classification
of the lines of code required to be written by designers, abstractions are proposed in
order to facilitate the specification of the method behavior and reduce the total lines of
code that the designer is asked to specify.

Some lines of code responsible to create objects (<co>) can be generated
automatically, using the information from the class diagram like the definition of

53

attributes and the relationship between classes. Moreover, the creation of static objects
also can be automatically generated. However, object-oriented implementation can have
also dynamic allocation and, in this case, the creation of objects must be specified by
the designer.

All the lines of code that represent method invocation (<cm>) can be obtained from
the sequence diagrams, where method calls are used to show the iteration between
objects. The instructions classified as <for + cm> can be specified with a sequence
diagram or with an activity diagram. For example, in an UML 2.0 sequence diagram,
loops can be described and the method calls can be specified inside of them. Loops and
conditionals can also be captured from sequence or activity diagrams, as exemplified in
section 3.5.1. In these cases, only the graphical notation is required.

On the other hand, the instructions <for + de>, which normally are described in 2
lines in Java, could be described in a single line using a language that facilitate the
manipulation of matrixes and vectors. An example is shown in Figure 3.4, where a loop
(for) is used to copy the elements from a vector to another vector. The new version of
the Java language also provides functions to do a copy between vectors, so a single code
line can do the same. Similar abstraction can be used in loops that perform a vector
initialization. The example illustrated in Figure 3.13(a) and (b), show two version of
Java code for a vector initialization. The same code could be described in Python or
Matlab using a single line like as a=0 or a=[0; 0; 0; 0; 0]. In this case, a loop is not
required to describe the initialization.

For (i:=0;i,<5;i++)
{

a[i] = 0;
}

a[0] = 0;
a[1] = 0;
a[2] = 0;
a[3] = 0;
a[4] = 0;

(a) (b)
Figure 3.13: Matrix/vector initialization in Java

Matrix and vector multiplication are common operation in embedded application
that evolves signal processing. Figure 3.14 illustrates an example of vector
multiplication in Java, where two nested loops are used to do the operation. A function
can be defined to facilitate the specification of a vector or matrix multiplication, as
shown bellow.

Mul(a,q); // multiply vector a and vector q

for (i=0; i < N; i++)
{

for (int j=0; j < N; j++)
tmp[i] += a[j] * q[j];

}

Figure 3.14: Vector multiplication in Java

54

In this case, a pre-compiler can be used to verify the number of lines and columns of
variables a and q and to generate the correspondent Java code using a template. The
same approach can be used to perform matrix multiplications, simply using the pre-
compiler to determine the appropriate template through the analysis of the number of
lines and columns found in the matrix. Figures 3.14 and 3.15 show an example of vector
multiplication and matrix multiplication, respectively. Both Java codes could be
produced through the use of templates.

for (i = 0; i < N; i++)
{

for (j = 0; j < N; j++)
{

temp[i][j] = 0;
for (k = 0; k < N; k++)

temp[i][j] += m1[i][k] * m2[k][j];

}
}

Figure 3.15: Matrix multiplication in Java

Furthermore, notations could be used in the UML diagrams to indicate the necessity
of creating structures like <switch/case> and <try/catch>, as exemplified in Figure 3.16.
In this way, from the UML diagrams, skeleton of code could be automatically
generated.

Figure 3.16: Try/catch notation in sequence diagrams

3.4 Concluding remarks
In this chapter, UML-based software generation approaches were discussed and a

proposal to solve a limitation found on these approaches was presented. However, this
proposal leads to the extension of the programming language or the definition of a new
one. We consider that the definition of another language could deviate the main
objective of this thesis, once our main focus is on the modeling approach and strategies
for automating the embedded software design from models.

Moreover, a more detailed analysis of the evolution of the Java language allowed us
to observe that some abstraction proposed here are already treated by the new versions
(Java 5 and Java 6) of the language. This analysis shows that, in the future,
programming languages will also provide very high abstraction.

55

So, we have given up these ideas, although we believe that this proposal could
obtain good results. This happened when the author had the opportunity to work in the
development of a code generator based on Simulink. This has shown to be a very
interesting study, so we decide to follow this new thread.

In the next chapter, a Simulink-based code generation approach will be presented,
which allow one to generate multithread code targeting multiprocessor architectures,
something that is not provided by RealTime Workshop (MATHWORKS, 2004).

56

57

4 SIMULINK-BASED EMBEDDED SOFTWARE
GENERATION

Nowadays, several embedded systems make extensive use of digital signal
processing, requiring a language that supports the dataflow model of computation.
However, despite several efforts to extend UML for modeling dataflow applications,
UML still does not cope very well with this model of computation, as discussed in
chapter 2. In this context, we propose a Simulink-based embedded software generation
approach targeting multiprocessor systems.

The main motivation of this work is the fact that heterogeneous multithreaded
multiprocessor SoC (MPSoC) architectures are becoming an attractive solution for
embedded systems. As indicated by Jerraya (2005), they provide highly concurrent
computation and flexible programmability. However, making software for
heterogeneous multiprocessors in MPSoC platforms is now becoming a major
challenge. The main causes for this are the difficulty of parallelizing target applications,
the software adaptation to different processors and protocols, the short design time, and
low cost implementation.

In addition, the majority of MPSoC applications require a large amount of memory
that may heavily affect the cost and the power consumption. Communicating threads are
distributed in a MPSoC architecture and the communications among them impact also
on system performance. This indicates that an automated code generation method,
which can generate efficient multithreaded code and automatically adapt it to the
heterogeneous processors and protocols, is indispensable.

We propose a Simulink-based multithread code generation approach. Our goal is to
address those software programming difficulties and support the development of
efficient embedded software targeted to heterogeneous MPSoC platforms. To meet hard
requirements for memory size and performance commonly found when designing
embedded systems, memory usage and communication optimizations are proposed to be
applied during the code generation. Some results were published in (BRISOLARA,
2007a).

We have chosen Simulink as a tool for specification and simulation mainly because
it is widely accepted to specify complex systems, and can be considered as a standard
tool in the signal processing domain. It offers a set of algorithms for a variety of
applications, and is powerful to specify data-intensive and control-dependent
algorithms. From a Simulink model, one can generate a single-thread code targeting a
single processor platform using Real Time Workshop (RTW). Another tool called Real-

58

Time Interface for Multiprocessor Systems (RTI-MP) (DSPACE, 2005) automatically
generates software code from a specific Simulink model for multiprocessor systems.
However, the generated software code aims at a specific architecture consisting of
several commercial off-the-shelf (COTS) processors boards, where the main purpose is
high-speed simulation of control-intensive applications.

The proposed multithread code generation approach was developed during a PhD
internship, being part of a major project developed at TIMA Laboratory. The project
proposed a new MPSoC design flow based on Simulink, which is detailed in (HUANG,
2007). The Simulink-based multiprocessor SoC design flow is presented in Figure 4.1
and starts with Simulink modeling (step 1) to make a Simulink application model from
a target application specification. The Simulink application model is transformed into a
Simulink combined application/architecture model (CAAM). That is an unified model,
which combines aspects related to the architecture model, i.e. processing units available
in the chosen platform, into the application model, i.e. multiple threads executed on the
processing units. This happens in step 2. In step 3, Simulink parser parses a Simulink
CAAM and generates a Colif CAAM, which is a XML-based intermediate
representation, as defined in (CESARIO, 2001). Afterwards, Hardware architecture
generator (step 4) produces the multiprocessor hardware architecture models. These
models are composed of CPU subsystems, HW subsystems, memory subsystems, and
communication network between them, all at different abstraction levels. On the other
side, Multithread code generator (step 5) generates a multithreaded code and a main
code. The latter is responsible for creating threads and initializing communication
channels through hardware dependent software (HdS) primitives.

OS libraryHW library

Partitioning & Mapping

Simulink CAAM

2

Simulink parser

Colif CAAM

3

Hardware
architecture generator

4

• Comp. subsystems
• Comm. channels

Virtual Architecture

Transaction Accurate Model

Virtual Prototype

Multithread
code generator

5

Simulink algorithm model

• Thread library
• Comm. library

Model

Step i

Library

i

Simulink modeling
1

Application specification

Figure 4.1: Simulink-based MPSoC design flow (HUANG, 2007)

59

The main objective of the Simulink-based MPSoC design flow is to support a mixed
hardware software refinement procedure. It starts from the Simulink CAAM and uses
three abstraction levels to refine the system, comprising a high-level specification down
to detailed low-level implementation. These abstraction levels are Virtual Architecture,
Transaction-accurate model, and Virtual Prototype, and are generated by the Hardware
architecture generator. The Hardware architecture generator is detailed in (HUANG,
2007) and is out of the scope of this work. Since the focus here is on software
generation, the Multithread code generator will be detailed here.

Firstly, section 4.1 describes the combined application architecture model (CAAM),
which is used as input for the Multithread code generator. The multithread code
generation flow is presented with detailed steps in section 4.2. Proposals for
optimization on memory and communication are presented in section 4.3 and 4.4,
respectively. Section 4.5 presents experiments performed with the Multithread code
generator.

4.1 Combined application architecture model
Traditional design flow makes use of two separate models: application and

architecture. The application is generally specified as an application model made of a
set of multiple cooperating threads (or tasks). Each of them performs a subset of
functions of the application. The multiple threads of the application will be mapped on
the target architecture, which can be specified as a set of processor subsystems
interacting via communication network. The processor subsystem contains processing
unit, specific I/O and different hardware components to speed up communication.

Popovici (2007) proposes combining these two models in a mixed hardware
software architecture, where the software threads are mapped on the abstract CPU
subsystems, as shown in Figure 4.2. The result is a mixed hardware software
architecture model at a very high-level representation, which is called combined
algorithm/architecture model (CAAM).

F3 F4
F1 F2

F5

F7 F8

F9 F10

F11

T1

T3

T2

BUS

memoryCPU1

Interface other periph.

Physical interconnect

CPU-SS 1

BUS

memoryCPU n

Interface other periph.

…

CPU-SS n

ModelingT1

F1 F2

F11 F3 F4

F5

T2 T3

F7 F8

F9 F10

Partitioning

� Simulink application model � Target Hardware Architecture

T3T1

F1 F2

F11 F3 F4

F5 F7 F8

F9 F10

T2

CPU-SS1 CPU-SS2

Abstract communication platform

� Combined Application/
Architecture Model

F3 F4
F1 F2

F5

F7 F8

F9 F10

F11

T1

T3

T2

BUS

memoryCPU1

Interface other periph.

Physical interconnect

CPU-SS 1

BUS

memoryCPU n

Interface other periph.

…

CPU-SS n

ModelingT1

F1 F2

F11

T1

F1 F2

F11

F1 F2

F11 F3 F4

F5

T2

F3 F4

F5

F3 F4

F5

T2 T3

F7 F8

F9 F10

T3

F7 F8

F9 F10

F7 F8

F9 F10

Partitioning

� Simulink application model � Target Hardware Architecture

T3T1

F1 F2

F11 F3 F4

F5 F7 F8

F9 F10

T2

CPU-SS1 CPU-SS2

Abstract communication platform

� Combined Application/
Architecture Model

Figure 4.2: Combining application and architecture models (POPOVICI, 2007)

60

In the proposed Simulink MPSoC design flow, we specify the CAAM using a three-
layered hierarchical Simulink model. The first layer describes a system architecture,
which contains CPU subsystems and inter-subsystem communication channels (Inter-
SS COMM). The second layer describes a CPU subsystem architecture, composed of
software threads and intra-subsystem communication channels (Intra-SS COMM). The
third layer describes a software thread using Simulink blocks and data links.

Figure 4.3 shows an example of CAAM. In this example, there are four CPU
subsystems (CPU0-CPU3) and six Inter-SS COMMs (CH0-CH5) in the first level, and
seven threads (i.e. T0-T6) and three Intra-SS COMMs (CH6-CH8) in the second level.
To simplify the view, the Figure 4.3 only illustrates the Simulink blocks that compose
the threads T0 and T1, allocated for CPU0 and CPU1, respectively. To represent mixed
hardware and software model in Simulink, four kinds of specific Simulink subsystems
are defined as followings.

• Processor subsystem, which includes one or more thread subsystems. It is a
processing element such as RISC processor and DSP. A processor subsystem is
refined to a CPU subsystem, e.g. processor, local bus and local memories, by the
Hardware architecture generator.

• Thread subsystem represents a thread on a processing unit. This subsystem
includes one or more Simulink blocks used to represent the thread functionality.
A thread subsystem is refined to an OS dependent thread by the Multithread
code generator.

• Inter-Subsystems Communication (Inter-SS COMM), which includes one or
more Simulink data links, represents the communication channels between CPU
subsystems. An Inter-SS COMM is refined to a hardware communication
channel by the Hardware architecture generator and software communication
port(s) to access the channel by the Multithread code generator. HWFIFO is a
communication protocol that transfers data via hardware FIFO. GFIFO is
another one that transfers data via a shared memory and a global bus, and
synchronizes via mailboxes.

• Intra-subsystems Communication (Intra-SS COMM), which includes one or
more Simulink data links, represents communication channels between threads
on the same CPU subsystem. An Intra-SS COMM is refined to OS
communication channel(s) by the Multithread code generator. SWFIFO
represents a software FIFO.

These subsystems are normal Simulink subsystems, which do not affect the original
functionality, annotated with several architecture parameters, e.g. processor type and
communication protocol. Currently, this transformation is manually performed by using
the Simulink graphical interface and relies on the designer’s experience. For example, to
make a thread subsystem, the designer can cluster several Simulink blocks into a
Simulink subsystem by a shortcut key and then annotate “Thread” as type to the
subsystem through a parameter setting.

Currently, the environment supports three communication protocols: GFIFO,
HWFIFO, and SWFIFO. GFIFO (Global FIFO) is an inter-subsystem communication
protocol that transfers data using a global memory, a bus, and mailboxes. The data
transfer is divided into two steps. First, the CPU in the source subsystem writes data to a
global memory, and sends an event to the mailbox in the target subsystem. After

61

receiving the event, the CPU in the target subsystem reads the data from the global
memory, and sends another event to the mailbox in the source subsystem, notifying the
completion of the read operation. HWFIFO is also an inter-subsystem communication
protocol that transfers data via a hardware FIFO. SWFIFO is an intra-subsystem
communication protocol based on software FIFO.

F3

F6

F7

F1

Z-1 F9

F5

F0

IAS0

IAS1

FSW

T0 T1

F2

F8

F4

CPU1 (Xtensa)

Z - k

CH0(GFIFO)

CH1(GFIFO)

CH2(GFIFO)

CPU0 (ARM)

CH5(GFIFO)

T2

T3

CPU2 (ARM)

T4

T5

T6

CPU4(Xtensa)

CH3(HWFIFO)

Inter-SS
Comm.

Processor
Subsystem

CH4 (GFIFO)

Intra-SS
Comm.

Thread
Subsystem

CH6(SWFIFO)

CH7(SWFIFO)

CH8(SWFIFO)

Figure 4.3: A Simulink CAAM example (HUANG, 2007)

4.2 Multithread code generation
Our multithread code generation method was designed as an extension for the code

generation method presented in Han (2006b), which is able to generate sequential C
code from Simulink models. We used a restricted Simulink subset in our modeling,
which was defined in (HAN, 2006a) to represent global data and control dependencies
precisely. This Simulink subset includes blocks, delays, links, If-action subsystems
(IAS), and For-iterator subsystems (FIS), as well as a global clock that controls the
execution of blocks and delays. This model is based on the Abstract clock Synchronous
Model, ACSM (HAN, 2006a), and can be statically scheduled and its memory can be
also statically allocated during the code generation.

Multithread code generator produces a set of C thread codes, a main C code and a
Makefile for each CPU subsystem. The proposed software code generation is made in
three steps, as illustrated in Figure 4.4. Firstly, the Simulink parsing traverses the
Simulink CAAM and generates a Colif CAAM that is used as intermediate format. In
the second step (Thread code generation), the blocks within a thread-SS are scheduled
statically according to data dependency and the code generator produces a C code. The
generated threads are dynamically scheduled by the OS scheduler according to the
availability of data for the input port or space for the output port. In the third step (HdS
adaptation), a main code and a Makefile is generated for each CPU-SS. The main code
is responsible to initialize the threads and the communication channels among them. To
build an executable software stack, the generated Makefile compiles the thread codes,

62

the main code and links them with an appropriate HdS library built for the target CPU
subsystem, as shown in Figure 4.4. This approach avoids that the designer needs to
adapt the software code to different processors/protocols, and distributing data and
code.

Designing embedded systems requires concern with hard constraints for memory
size and performance issues. Hence, we propose applying memory and communication
optimizations techniques to reduce memory size and improve performance, during the
code generation. Both optimization proposals are presented in section 4.4 and 4.5.

Step i

Model

Simulink CAAM (.mdl)

Simulink parsing
1

i

Thread code generation
2

Colif CAAM (.xml)

…

HdS adaptation
3

Makefile 1

Makefile 2

Makefile n

SW binary 1

Threads1 Threads2 Threadsn

…

Main code1 Main code2 Main coden

SW binary 2 SW binary n
…

HdS1

HdS2

HdSn

HdS library

SW stack for
CPU SS1

SW stack for
CPU SS2

SW stack for
CPU SSn

Step i

Model

Simulink CAAM (.mdl)

Simulink parsing
1

i

Thread code generation
2

Colif CAAM (.xml)

…

HdS adaptation
3

Makefile 1

Makefile 2

Makefile n

SW binary 1

Threads1 Threads2 Threadsn

…

Main code1 Main code2 Main coden

SW binary 2 SW binary n
…

HdS1

HdS2

HdSn

HdS library

SW stack for
CPU SS1

SW stack for
CPU SS2

SW stack for
CPU SSn

Figure 4.4: Multithread code generation flow

4.2.1 Simulink parsing

Simulink Parser parses a Simulink CAAM model (Figure 4.5(a)) and generates an
equivalent intermediate format called Co-design Language Independent Format (Colif)
(CESARIO, 2001), shown in Figure 4.5b. Colif is a XML-based meta-model used as
intermediate format in the whole proposed Simulink-based design flow.

To generate a multithreaded code communicating with each other, the Simulink data
links with Inter-SS COMM or Intra-SS COMM are translated to a pair of send and
receive operations. Simulink parser reads an input Simulink CAAM (Figure 4.5(a)) and
inserts send (“S” in Figure 4.5(b)) and receive (“R” in Figure 4.5(b)) blocks into a Colif
CAAM. These send and receive blocks are scheduled together with the other blocks in
the Thread code generation, as will be explained in section 4.2.2.

63

F3

F6

F7
F!

Z-1 F9

F5

F0

IAS0

IAS1

FSW

T0 T1

F2

F8

F4

CPU0

Z - k

S0

S1

R2

R4

R0

R1

S2

S4

S3R3

(b) Colif CAAM with communication blocks

F3

F6

F7

F1

Z-1 F9

F5

F0

IAS0

IAS1

FSW

T0 T1

F2

F8

F4

CPU1

Z - k

CH0(GFIFO)

CH1(GFIFO)

CH2(GFIFO)

(a) Simulink CAAM

CPU0

CPU1

Figure 4.5: Simulink parsing

4.2.2 Thread code generation

The thread code generator automatically produces a C-code for each thread, which
includes memory declaration and behavior code for user-defined blocks, communication
blocks, and pre-defined blocks. First, our tool generates memory declaration(s), where a
memory space is declared for each data link according to its data type, e.g. char, short,
int, etc. The allocated memory is used to store the input and output data of Simulink
blocks. Afterwards, a behavioral code for each thread is generated according to the
scheduling result, which statically determines the invocation order of blocks according
with data dependency.

Figure 4.6 illustrates an example of Thread code generation. Each link in the Figure
4.6 (a) is annotated with a buffer name and its size. For example, E2(3) means buffer E2
with size 3. Figure 4.6 (b) shows the code generated for thread T0. Line 1 declares port
data structures used to promote the communication. In line 2-4, buffer memories are
declared. For a user-defined block (i.e. Simulink S-function), our tool generates a
function invocation corresponding to the block (F0-F6 in example) and maps the
allocated memories for the input and output links to the function arguments. When a
pre-defined Simulink block is used, e.g. adder or If-action subsystem (IAS), C codes
corresponding to the specific blocks are generated (if-else for the IAS in example). The
code generator can handle a large subset of pre-defined Simulink blocks such as
mathematical operations, logical operations, discrete blocks, etc.

64

// port declaration
1: extern port_t *in0, *in1, *in2, *out0, *out1;
2: int cond, int E1[6]; // mem declaration
3: int[5] E7; int[4] E8, E9, E3;
4: int[3] E2, E4, E5, E6, E10;
5: while(1) {
6: recv_data(& in0, E9, 16); //R0(E9);

7: recv_data (& in1, E8, 16); //R4(E8);
... // R3(E2);
8: F0(cond); F1(E1);
9: if(cond){ F2(E1,E3);
10: F3(E3,E9,E5); }
11: else { F4(E1,E4);
12: F5(E4,E6); }
13: if(cond) E10 = E5;
14: else E10 = E6;
15: F6(E2, E8, E7);
16: send_data(&out0, E10, 12); //S1(E10)
... //S2E7)
17: }

a) Colif CAAM b) Thread Code of T0

F1
FSW

F4

F0

F6

F5

F2 F3

IAS0

IAS1

R3

R4

S1

S2

R0

T0
cond(1)

E1(6)

E2(3)

E7(5)

E8(4)

E3(4)

E4(3)

E5(3)

E6(3)

E10(3)

E9(4)

F1
FSW

F4

F0

F6

F5

F2 F3

IAS0

IAS1

R3

R4

S1

S2

R0

T0
cond(1)

E1(6)

E2(3)

E7(5)

E8(4)

E3(4)

E4(3)

E5(3)

E6(3)

E10(3)

E9(4)

Figure 4.6: Example of thread code generation

For communication blocks, e.g. send and receive blocks discussed in section 4.2.1,
our tool inserts communication primitive invocations defined in Table 1 (send_data and
recv_data in the example). These invocations promote the communication between
different threads, which can be in the same CPU (intra-subsystem) or in different CPUs
(inter-subsystems). The arguments of the communication primitives, determined by
Simulink Parser, are port data structure address, memory address allocated, and data
transfer size. For example, the code generator generates line 6 for R0 block where the
associated port data structure is in0, output buffer is E9, and the transfer size is 16 bytes,
as shown in Figure 4.6(b).

As proposed by Han (2006b), we extended the existing dataflow-based scheduling
methods for Simulink models to support nested-conditionals and loops. In the used
scheduling algorithm, all blocks in the input model, including all threads, are scheduled
together according to their precedence dependency. If R0 is invoked prior to S1 in T0,
as shown in Figure 4.7(a), and R1 is invoked prior to S0 in T1, as Figure 4.7(b), a
precedence loop is introduced (R0→S1→R1→S0→R0) in the system, causing
deadlock. In the proposed scheduling algorithm, R1 must be invoked after S0, as shown
in Figure 4.7(c), because they have a precedence dependency even if it is across two
threads. Our approach guarantees that any partitioning of the algorithm model has at
least one deadlock-free schedule.

To guarantee that, designers are asked to build a model that has no precedence loop
without a Delay block, following the ACSM model defined in (HAN, 2006). This
model is composed of a network of state-less functions and delays. Delays are used as a
temporal barrier, like registers in a synchronous circuit. This makes possible to describe
the functionality of a system deterministically independent of the time taken for each
function.

65

void T0() {
while(1) {

...
R0(E9);

...
S1(E10);

... }
}

(a) Thread T0 code

void T1() {
while(1) {

...
R1(E11);

...
S0(Z1);

... }
}

(b) Thread T1 code
with deadlock

void T1() {
while(1) {

...
S0(Z1);

...
R1(E11);

... }
}

(c) Thread T1 code
without deadlock

Figure 4.7: Multithread deadlock problem

4.2.3 HdS adaptation

The Hardware-dependent software (HdS) is responsible to provide architecture-
specific services such as scheduling of application threads, communication inter and
intra-CPU, hardware resources management and control. Multithread code generator
produces a high-level multithread code independent of the architecture details through
the use of high-level primitives provided by an HdS library. To execute the generated
code on a target MPSoC platform, the thread codes should be linked with the
appropriate HdS library that provides architecture dependent implementations for the
high-level primitives.

The HdS library should provide the high-level primitives summarized in Table 4.1.
Using these primitives, Multithread code generator generates a main code, which
initializes thread and channel data structures. A Makefile, linking the generated thread
codes and main code with an appropriate HdS library, is also produced.

The HdS library includes HdS APIs, an Operating System (OS), communication
software and a HAL (Hardware Abstraction Layer). The Operating System is composed
of a Thread Scheduler and an Interrupt Service Routines (ISR). We first assume that
there are pre-built HdS libraries, each of which is targeted to a specific CPU. Currently,
we have targeted the HdS library to ARM7 and Xtensa processors. As mentioned
before, the current HdS library supports three communication protocols: GFIFO,
HWFIFO, and SWFIFO.

Table 4.1: HdS primitives

Types Primitives Description

thread_create Create software thread
Thread

thread_resume/thread_suspend Resume/suspend thread

send_data/recv_data
send/receive data from/to port with
specific protocol

send_event/recv_event
send/receive event, e.g. data transfer
completion, from/to port with
specific protocol

Communication

port_init/channel_init initialize port/channel data structure

ISR_attach/ISR_dettach
attach/detach interrupt service
routine Interrupt

intr_enable/intr_disable enable/disable interrupt

66

Figure 4.8 shows an example of the main code and Makefile generation. Figure
4.8(a) shows a Colif CAAM example that contains four CPU subsystems and seven
threads. Figure 4.8 (b) and (c) illustrate the main code and the Makefile for CPU0,
respectively. The main code performs interrupt registrations (ISR_attach in example),
channel initializations (channel_init in example), initialization (port_init in example),
and thread creations (thread_create in example) according to the CAAM model. The
Makefile defines directives for the compilation of the generated code, e.g. setting the
compiler to be use and the files to be compiled according to the CAAM model. The
Makefile for CPU0 shown in Figure 4.8(c) compiles T0 code and the main code with
ARM compiler and links them with the ARM HdS library since the processor type for
this subsystem was set as ARM in the CAAM model (Figure 4.8(a)).

channel_t ch3, ch0, ch1, ch2;

void main() {

channel_init(&ch0,GFIFO, …);

channel_init(&ch1,GFIFO, …);

…

channel_init(&ch3, HWFIFO, …);

thread_create(T0, …);

…

thread_exit(); }

(b) Main code for CPU0

(a) Simulink CAAM

CH5

(GFIFO)

CPU 3 (Xtensa)

CPU 0(ARM)

T2

T3

CPU 2 (ARM)

T4

T5

T6
CH3

(HWFIFO)

CH4

(GFIFO)

T0 T1

CH7 (SWFIFO)

CH0-2(GFIFO)

CPU 1(Xtensa)

CH8 (SWFIFO)

CH6(SWFIFO)

(c) Makefile for CPU0

CC = arm-elf-gcc // ARM C compiler

...

SRCS=T0.c main.c // file to compile

...

FLAGS= -DCPU=ARM7 -DDEBUG

...

LIBS=libhds-arm.a // library HDS

...

Figure 4.8: Main and Makefile code generation

The Makefile also enables to link the generated multithread code and main code with
application library including user-defined function bodies and appropriate HdS library.
In this way, with the proposed software programming environment, one can build
binary files that are executable on the target heterogeneous MPSoC, making designer
free from laborious programming work.

4.3 Memory optimization
Since the majority of MPSoC applications require a large amount of memory that

heavily impacts on the cost and the power consumption, software memory optimizations
are essential techniques to design cost and power effective embedded systems. In this
section, we focus on memory optimization techniques in generating thread code. As

67

proposed in (HAN, 2006b), two memory optimization techniques: copy removal and
buffer sharing can be applied to reduce the required data memory size during the code
generation. These techniques, firstly proposed for single-thread code generation, were
extended for multithread case and integrated in our Multithread code generator. With
this integration, the Thread code generation is composed of four steps, as explained
bellow.

The example illustrated in Figure 4.8 is used to explain these optimization
techniques. Figure 4.9(a) represents Colif CAAM of thread T0 and Figure 4.9(b) shows
the generated code without optimizations. Figure 4.9(c) and 4.9(d) shows generated
code with copy removal and buffer sharing, respectively.

1: while(1) {

2: recv_data(& in0, E9, 16); //R0(E9);

3: ... //R3(E2); R4(E8);

4: F0(cond); F1(E1);

5: if(cond){ F2(E1,E3);

6: F3(E3,E9,E5); }

7: else { F4(E1,E4);

8: F5(E4,E6); }
9: if(cond) E10 = E5;
10: else E10 = E6;
11: F6(E2, E8, E7);

12: send_data(&out0, E10, 12) //S1(E10);

13: …//S2(E7);

14: }

(b) Original C code of T0

1: while(1) {

2: recv_data(& in0, E9, 16); //R0(E9);

3: ... //R3(E2); R4(E8);

4: F0(cond); F1(E1);

5: if(cond){ F2(E1,E3);

6: F3(E3,E9,E10); }

7: else { F4(E1,E4);
8: F5(E4,E10); }

9: F6(E2, E8, E7);

10: send_data(&out0, E10, 12) //S1(E10);

11: //S2(E7);

12: }

(c) C code of T0 after copy removal

(a) Colif CAAM da T0

1: extern port_t *in0, *in1, *in2, *out0, *out1; // port declaration
2: int mp[15]; // memory pool
3: void T0() {
4: while(1) {
5: F0(cond); // time 0
6: …
7: F6(&mp[1], &mp[4], &mp[8]); // time 3, F6(E2, E8, E7)
8: send_data(&out1, &mp[8], 20); // time 4, S2(E7)
9: recv_data(&in0, &mp[5], 20); // time 5, R0(E9)
10: …
11: send_data(out0, &mp[5], 12); // time 9, S1(E10)
12: } }

(d) C code of T0 after buffer sharing

F1
FSW

F4

F0

F6

F5

F2 F3

IAS0

IAS1

R3

R4

S1

S2

R0

T0
cond(1)

E1(6)

E2(3)

E7(5)

E8(4)

E3(4)

E4(3)

E5(3)

E6(3)

E10(3)

E9(4)

F1
FSW

F4

F0

F6

F5

F2 F3

IAS0

IAS1

R3

R4

S1

S2

R0

T0
cond(1)

E1(6)

E2(3)

E7(5)

E8(4)

E3(4)

E4(3)

E5(3)

E6(3)

E10(3)

E9(4)

Figure 4.9: Thread code generation with memory optimization techniques

Step 1. Copy removal: A Simulink CAAM may include control blocks (e.g.
“Switch” and “Selector”) and delays (e.g. “Unit delay”) that introduce copy operations
between the input buffer(s) and the output buffer(s). These pre-defined Simulink blocks
are required to represent explicit conditionals or loops. Copy removal technique allows
the input and output buffers to share the same memory space. After applying it to the
model, the input buffers “E5”(line 6 in Figure 4.9(b)) and “E6’’(line 8 in Figure 4.9(b))
of switch “Fsw” in Figure 4.9(a) are merged with its output buffer “E10” (see line 6 and
8 in Figure 4.9(c)). This merge operation removes the lines of code 9 and 10 of Figure
4.9(b), as shown in Figure 4.9(c).

Step 2. Scheduling: The original static scheduling was modified in order to
maximize buffer sharing in step 3. Figure 4.10(a) shows a buffer lifetime chart for the

68

T0 illustrated in Figure 4.9(a). In this chart, the horizontal axis indicates the invocation
sequence, i.e. scheduling result, and the vertical axis indicates the buffer memory
address location. Each rectangle denotes the lifetime interval of a buffer memory.
Intuitively, the scheduling objective is to make the fattest point as thin as possible.

Step 3. Buffer sharing: The code generator performs a lifetime-based buffer sharing
algorithm for each thread. This technique allows two buffers within the same thread to
share the same memory space if their lifetimes are disjoint. Since buffer sharing
problem is NP-complete (OH, 2003), an heuristic algorithm is required to solve it. We
use an extension of the LOES heuristic algorithm proposed by Oh (2003) that can
consider the conditionals in a Simulink model. Figure 4.10(b) shows a buffer lifetime
chart after applying buffer sharing to the T0 model (Figure 4.9(a)).

Step 4. Code Generation: Thread code generator produces thread codes according to
the results of the previous steps. As the buffer sharing is applied in the model, the
memory declarations into the code follow the buffer sharing results.

Han (2006b) proposes some memory optimization techniques during single thread
code generation. We extended here these optimizations in order to apply them in the
multithread code generation. The used memory optimization techniques are extensions
of the existing dataflow based scheduling methods (RITZ, 1995)(BALASA, 1995) for
handling data-intensive and control-dependent target applications.

a) b)

cond (1)

0 1 2 3 4 5 8 9 106 7

E2 (3)

E8 (4)

E7 (5)

E9 (4)

E1 (6)

E3 (4)

E10 (3)

time

cond (1)

2 3 4 5 8 9 106 7

F0 R3 R4 F6 S2 R0 F1 F2 F3 S1

F4 F5

offset

1
4

30

27

23

13

E4(3)

33

cond (1)

0 1 2 3 4 5 8 9 106 7

E2 (3)

E8 (4)

E7 (5)

E9 (4)

E1 (6)

E3 (4)

E10 (3)

time

cond (1)

2 3 4 5 8 9 106 7

F0 R3 R4 F6 S2 R0 F1 F2 F3 S1

F4 F5

offset

1
4

30

27

23

13

E4(3)

33

time

offset

cond (1)

0 1 2 3 4 5 8 9 106 7

E
2

(3)

15

2 3 4 5 8 96 7

E

F0 R3 R4 F6 S2 R0 F1 F2 F3 S1

F4 F5

cond (1)
2 (3)

E (4)8

E7 (5)

E9 (4)

E1 (6)

E10 (3)

E3 (4) E4 (3)4
5

8

time

offset

cond (1)

0 1 2 3 4 5 8 9 106 7

E
2

(3)

15

2 3 4 5 8 96 7

E

F0 R3 R4 F6 S2 R0 F1 F2 F3 S1

F4 F5

cond (1)cond (1)
2 (3)2 (3)

E (4)8

E7 (5)

E9 (4)

E1 (6)

E10 (3)

E3 (4) E4 (3)4
5

8

Figure 4.10: Lifetime chart of T0 (a) after scheduling, (b) after buffer sharing

Our multithread code generation supports only discrete model with a global clock.
We do not handle any other models such as discrete model with multiple clocks and
event-driven model, since the conventional memory optimization is hard to apply to
them.

4.4 Communication optimization
When the number of processors increases in a MPSoC, the overall system

performance heavily depends on the performance of communications among the
processors. Therefore, communication optimization techniques are required to improve
the system performance. Message Aggregation (MA) was firstly proposed in

69

(HIRANANDANI, 1992) and it is a well-know communication optimization in the
parallel computing and distributed systems domain. After that, a compiler that integrates
several communication optimizations, such as Message Aggregation and Message
Coalescing, was proposed for distributed-memory multi-computers in (BANERJEE,
1995).

In the proposed multithread code generation, when a Simulink functional model
consists of fine-grain functions and it is partitioned into several processors, the Simulink
parser will insert a large number of communication nodes that exchange messages
through communication channels. Consequently, the communication overhead
increases, which impacts on the system performance and the required memory size. In
this context, Message Aggregation can be applied to increase the granularity of data
transfers, reducing the communication overhead.

The cost for a data transfer in terms of execution time can be divided in start-up cost
(synchronization cost) and effective data transfer cost (rate *length). The start-up cost
does not depend on the number of bytes sent. Message Aggregation (MA) combines
messages with the same source and destination, increasing the granularity of the data
transfers and amortizing the start-up cost. Consequently, this technique can reduce the
total amount of communication overhead in terms of execution time. Moreover, this
technique can reduce the software data structures used to represent the channels to
promote and manage the inter-processors communications. For example, a H.264
decoder Simulink CAAM with 6 CPUs requires 85 data structures for communication
channels, which impacts on data memory size.

Figure 4.11 presents a motivational example. Figure 4.11(a) shows a partitioned high-
level model, which consists of functional nodes (Fx), communication nodes (Sx for
Send operation, and Rx for Receive operation), and links between them. After applying
Message Aggregation technique on the model depicted in Figure 4.11(a), the high-level
model shown in Figure 4.11(b) is obtained. Figure 4.11(c) and 4.11(d) illustrate the
codes obtained from the two models. As result of this optimization, the five Send nodes
(S0-S4) were grouped in a single node (ST1), as shown in Figure 4.11(b). Consequently,
the five Send primitives of Figure 4.11(c) are replaced for only one Send in Figure
4.11(d), which sends all the five messages in a single one, thereby reducing the
communication overhead in execution time and the required software infrastructure by
the use of larger messages and by the reduction on the number of channels.

In order to reduce the cost for inter-processor communication, we integrated the
Message Aggregation optimization technique in our Simulink-based Multithread code
generator. In this way, our code generation method allows one to amortize the
synchronization cost by reduction on the number of messages, thereby reducing the total
amount of communication overhead in the execution time. This optimization also
decreases the memory size by the reduction of data structures required to represent the
communication channels. Figure 4.12 shows the global flow of our Multithread code
generator, after the integration of Message Aggregation step.

70

F2

F5 F10

F9

R1

R2

S0

F4

R0

IAS0

IAS1

FSW

F1

F3

S3

S1

F7 F12R3

F6 S2F11

T1 T2

F8 S4

CPU2channel

R4

R7

R5

R6

R8

...

CPU1

F2

F5 F10

F9

R1

R2

S0

F4

R0

IAS0

IAS1

FSW

F1

F3

S3

S1

F7 F12R3

F6 S2F11

T1 T2

F8 S4

CPU2channel

...

CPU1

RT2
ST1

T1(){

recv (R0,8); //recv

recv (R1,8);

F1();

...

send (S0, 8) ; // send 8B

send (S1, 8);

send (S2, 8);

send (S3, 8);

send (S4, 8);
}

T1(){
recv (RT1, 40); //recv

F1();
...

send (ST1, 40); // send 40B

}

(a) Fine-grain specification

(b) Fine-grain specification after message aggregation (d) Code with message aggregation

(c) Code without message aggregation

RT1
R4

R7

R5

R6

R8

Figure 4.11: Motivational example

Figure 4.12: Multithread code generation flow after Message Aggregation integration

Message Aggregation traverses the Colif CAAM and merges messages whose source
and destination are identical, and with no dependencies between them. Applying
Message Aggregation on the Colif CAAM illustrated in Figure 4.13(a), the CAAM
illustrated in Figure 4.13(b) is obtained. In this example, the Send nodes S1 and S2 in
T0 have the same source and destination threads, and then they are merged in a single
node (S12). As the result, two messages are grouped into one, reducing the start-up cost
and the software data structures to perform the data transfer. Similar group operation is
performed for the receive nodes R1 and R2 in T1, as shown in Figure 4.13(b).

Simulink CAAM (.mdl)

Simulink parsing
1

Thread code generation HdS adaptation
43

Colif CAAM (.xml)

Message Aggregation
2

Binary codes

71

Thread code includes memory declarations for links and behavior codes for nodes in
the CAAM. With the integration of the Message Aggregation step, the Thread code
generator produces memory declarations according to the CAAM resultant of the
Message Aggregation step. When Message Aggregation is not applied, a buffer memory
is declared for each data link with its data type as line 1 of Figure 4.13(c). Otherwise, a
structure is declared to combine all buffer memories connected to the input (output) port
of a merged Send (Recv) node. As an example, the data structure m10 is declared for the
merged node S12 in line 3 of Figure 4.13(d). This structure combines the input buffer
memories m8 and m9 of node S12.

(a) Colif CAAM

F1
FSW

F4

F0

F6

F5

F2 F3

m0

R3

S1

S2

R0

F8 S3

R1

R2

S0

F7

Z2
-k

Z1
-1 F9

T0 T1

m1

m2 m9

m4

m3

m5

m6

m7

m8

IAS0

IAS1

(b) Colif CAAM after MA

F1
FSW

F4

F0

F6

F5

F2 F3

m0

R3

S12

R0

F8 S3

R12

S0

F7

Z2
-k

Z1
-1 F9

T0 T1

m1

m2 m9

m4

m3

m5

m6

m7

m8

IAS0

IAS1

1: char m0[1]; int m1[4];
2: // decl m2,m3,m4, m5, m6, m7
3: int m8[4]; int m9[8];
4: T0 () {
5: while (1){
6: F0 (m0); F1 (m1);
7: recv (m5,8); //R0
8: if (m0) {
9: F2(m1,m3); F3(m3,m5,m6); m8=m6 ;
10: else
11: F4(m1,m4); F5(m4,m7); m8=m7 ;}
12: recv (m2,32); F6(m2, m9);
13: send (m8,4); //S1
14: send (m9,32); //S2
15: } }

(c) T0 Code without MA

1: char m0[1]; int m1[4];
2: // decl m2,m3,m4, m5, m6, m7
3: struct {int m8[4]; int m9[8]; } m10;
4: T0 () {
5: while (1){
6: ...
7: recv (m5,8); //R0
8: if (m0){
9: F2(m1,m3); F3(m3,m5,m6); m10.m8=m6 ;
10: else
11: F4(m1,m4); F5(m4,m7); m10.m8=m7 ;}
12: recv (m2,32); F6(m2, m10.m9);
13: send (m10,36); // S12
14: } }

(d) T0 Code with MA

Figure 4.13: Thread code generation with Message Aggregation

72

After memory declaration, a behavior code is generated for each thread according to
the scheduling result. For communication nodes, the code generator produces
communication primitives calls (send_data/recv_data), as shown in the line 13 of
Figure 4.13(d), where the source for the merged node S12 is the data structure m10.
Consequently, the functions that produce data for this merged node use elements of this
data structure as output, as shown in line 12 of Figure 4.13(d), where F6 generates part
of the data to be sent for this node. Similarly, the Recv nodes can be also grouped and,
in this case, a data structure should be declared to store the received data.

As previously mentioned, Message Aggregation technique reduces software channel
structures and consequently, reduces the required data memory size. However, this
technique can increase buffer memories. For example, when a Send node (e.g. S1) is
grouped in two different merged nodes (e.g. S12 and S13). Both of them are connected
to different thread destinations, its buffer memory becomes to be duplicated in two data
structures, and used for each Send operation. This effect is discussed in the experiment
section 4.5.4.

To avoid deadlock, out tool merges Send (or Recv) nodes into another Send (or Recv)
node only when all of them have no precedent dependency. Figure 4.14 illustrates the
deadlock problem. As the node R2 has precedent dependency with R0 in Figure 4.14(a),
when both are grouped in the same merged node, a deadlock has occurred, as shown in
Figure 4.14(b).

R2

S1

R
0

S2

R1

S0

F1

F2

…

…

S1
R1

F1

F2

… …

(a) A Colif CAAM (b) A Colif CAAM with deadlock

loop

R02 S02

Figure 4.14: An example of deadlock by Message Aggregation

4.5 Experiments
To show the applicability of our software generation flow and the effectiveness of

the proposed optimizations, we used two data-intensive applications: Motion-JPEG
video decoder and H.264 video decoder. For both applications, we developed a
Simulink functional model, and validated their functionalities with Simulink simulation
environment. After that, we transformed the Simulink models into Simulink CAAMs
according to the chosen platforms. Section 4.5.1 presents the MJPEG and H264
applications and the built CAAMs, while section 4.5.2 presents the used platforms.
Memory optimization and Message Aggregation results are presented in section 4.5.3
and 4.5.4, respectively.

73

4.5.1 Applications description

4.5.1.1 Motion-JPEG video decoder

M-JPEG decoder decodes a bit stream encoded by JPEG still-image compression
algorithm. From reference C code, we developed a Simulink application model, which
has 7 S-Functions (user-defined blocks), 7 delays, 26 data links, and 4 if-action-
subsystems. From this Simulink application model, a Simulink CAAM was built using
Simulink graphic interface. Figure 4.15 illustrates the built CAAM. This model contains
one ARM7 and two Xtensa CPU subsystems communicating through one GFIFO and
one HWFIFO, as shown in Figure 4.15(a). CPU1 subsystem contains two threads
communicating through software FIFO, as shown in Figure 4.15(b). Figure 4.15(c)
shows the Thread2 subsystem, which is composed of Simulink blocks and links. These
figures are presented in detail in Appendix B.

(b) CPU1 Subsystem(a) CAAM Simulink Model for M-JPEFG – Top level

(c) Thead2 Subsystem

Figure 4.15: Simulink CAAM for Motion-JPEG decoder

4.5.1.2 H264 video decoder

The H.264/AVC video coding standard has been developed and standardized
collaboratively by both the ITU-T VCEG and ISO/IEC MPEG organizations
(WIEGAND, 2003). In our experiment, we used an H.264 decoder, which is based on
the Baseline Profile for video conference and videophone applications.

H.264 decoder receives an encoded video bit stream and iteratively executes
macroblock-level functions. They are variable length decoding (VLD), inverse zigzag
and quantization (IQ), inverse transform (IT), spatial compensation (SC), motion
compensation (MC), reconstruction (REC), and deblocking filter (DF) to construct a
video image sequence (WIEGAND, 2003), as illustrated in Figure 4.16.

From the dataflow illustrated in Figure 4.16, a Simulink functional model of the
H264 decoder was built. This model includes 83 S-Functions, 24 delays, 310 data links,
43 if-action-subsystems, 5 for-iteration subsystems and 101 pre-defined Simulink

74

blocks. Each functional block of Figure 4.16 consists of one or more S-Functions or pre-
defined Simulink blocks. From this functional specification, we built five different
CAAM models, varying the partitioning and the number of processors from two to six
CPU subsystems. The motivation for that was the exploration of the design space of the
H264 video decoder. Section 4.5.3.2 and 4.5.4 show results obtained in this exploration.

Data flow

Function(s)

1st 8x8 luma
Inter/intra Pred.

1st 8x8 luma
Integer transform

1st 8x8 luma
Reconstruction

1st 8x8 luma
Inter/intra Pred.

1st 8x8 luma
Integer transform

1st 8x8 luma
Reconstruction

1st 8x8 luma
Inter/intra Pred.

1st 8x8 luma
Integer transform

1st 8x8 luma
Reconstruction

1st 8x8 luma
Inter/intra Pred.

1st 8x8 luma
Integer transform

1st 8x8 luma
Reconstruction

1st 8x8 luma
Inter/intra Pred.

1st 8x8 luma
Integer transform

1st 8x8 luma
Reconstruction

1st 8x8 luma
Inter/intra Pred.

1st 8x8 luma
Integer transform

1st 8x8 luma
Reconstruction

1st 8x8 luma
MC/SC

1st 8x8 luma
IQ/IT

1st 8x8 luma
REC

1st 8x8 luma
MC/SC

1st 8x8 luma
IQ/IT

1st 8x8 luma
REC

Luminance
VLD

Luminance
DF

4 times

1st 8x8 luma
Inter/intra Pred.

1st 8x8 luma
Integer transform

1st 8x8 luma
Reconstruction

1st 8x8 luma
Inter/intra Pred.

1st 8x8 luma
Integer transform

1st 8x8 luma
Reconstruction

Luminance
VLD

Luminance
Deblock filter

Chroma U
MC/SC

Chroma U
IQ/IT

Chroma U
REC

Chroma U
MC/SC

Chroma U
IQ/IT

Chroma U
REC

Chroma U
DF

Chroma U
VLD

2 times

Macroblock
VLD

Global
ctrl & VLD

Figure 4.16: H.264 decoder block diagram

4.5.2 Target platform

Each CPU subsystem defined in the CAAM model is composed of Processor, Local
Bus, Local Memories, PIC, Timer, Mailbox, and Network Interface (NI). In order to
support simulation, the Simulink-based design flow (HUANG, 2007) provides SystemC
TLM models for these Hardware components by a component library. This includes
instruction-set simulator (ISS) for Xtensa and ARM processors.

The multiprocessor platform architecture is built by Hardware architecture
generator through instantiation of several CPU subsystems, all connected to a bus.
Figure 4.17 shows a platform architecture used for the Motion-JPEG decoder,
composed of three CPUs and a global memory. In this architecture, the GFIFO and
HWFIFO protocol are used for inter-processor communication.

AMBA bus

Mailbox

Xtensa
ISS

Mem

Bus
bridge

PIC
Mem0

Bus
bridge

Mailbox

ARM7
ISS

Mem

Bus
bridge

PIC
Xtensa

ISS
Mem

MailboxBus
bridge

CPU1 (Xtensa)
(4MB~8MB)

GFIFO
(1GB~1GB+64MB)

HWFIFO1

CPU2 (Xtensa)
(8MB~12MB)

CPU3 (ARM7)
(12MB~16MB)

PIC

HWFIFO2

Figure 4.17: MPSoC Platform used for the Motion-JPEG decoder

Similar multiprocessor platforms were built for H264 video decoder. In the
experiment with this application, we have modified the number of processors to explore
the design space of the H264 decoder and to observe the effects of these optimizations
in different MPSoC platforms. These platforms are composed of Xtensa processors

75

communicating through GFIFO channels. At the beginning, we profiled the execution
cycle with a single processor system (SS1). We partitioned the Simulink algorithm
model and built a Simulink CAAM with two processor subsystems (SS1, SS2) based on
the profile result. Similarly, we continued to build Simulink CAAMs by increasing the
number of processors from two to six. The different partitioning versions were done
manually.

4.5.3 Memory optimization

For checking the effect of memory optimization techniques, we generated seven
versions of C codes for each Simulink CAAM: one single-thread version with Real
Time Workshop (RTW), three single-thread codes with the Multithread code generator,
and three multithread ones with the same generator. Table 4.2 specifies all
configurations used in the experiments. We compiled each generated thread code by
ARM GNU C compiler and Xtensa C compiler and measured data memory and code
memory sizes. In both applications, we mapped the image buffers into a global memory
and we traced only on-chip memory that heavily affects on the chip area and cost.
Memory optimization results obtained for Motion-JPEG and H264 are presented in
section 4.5.3.1 and 4.5.3.2, respectively. Besides the memory size, performance
obtained for the generated codes are also presented in these sections to show the impact
of the proposed memory optimizations on this issue.

Table 4.2: C code generation with 7 configurations

Name Configuration for code generation
1 RTW RTW
2 S1 Single-thread without optimization options
3 S2 Single-thread with copy removal
4 S3 Single-thread with copy removal and buffer sharing
5 M1 Multi-thread without optimization options
6 M2 Multi-thread with copy removal
7 M3 Multi-thread with copy removal and buffer sharing

4.5.3.1 Motion-JPEG video decoder

Figure 4.18(a) shows the relative data memory sizes of Motion-JPEG decoder for
the seven configurations defined in Table 4.2. In the single-thread case, the data
memory is composed of buffer and constant memories. The buffer one represents the
memory necessary to implement the Simulink data links, while the constant memory
represents the memory for Huffman table in the Motion-JPEG library. Our code
generator with full optimization options (S3) reduces the total data memory size by
50.9% compared to RTW. Note that RTW provides only limited memory minimization
techniques, so the data memory size of the C code generated with RTW is relatively
close to that with our tool without optimization options (S1). In the multithread case, the
reduction obtained for configuration M3 compared to RTW is 27.7%. In the multithread
case, the reduction obtained for configuration M3 compared to RTW is 27.7%. Notice
that, even though the multithread code requires additional buffers and channel
memories, it gave such gains against the single-threaded code generated with RTW.

In the single-thread case, one thread and one application library represent the whole
implementation code. However, for multithread case, the total code size is increased

76

because it is the sum of all thread codes, main codes, application library, and HdS
library. Our memory optimization techniques also reduce the code size as a
consequence of using the copy removal techniques. Figure 4.18(b) shows the relative
code memory sizes of Motion-JPEG for the seven configurations. Compared to
configuration S1, S3 achieves 6.2% of reduction on code size. In multithread case, M3
presents 1.8% code memory size reduction compared to configuration M1. Experiment
results show that the proposed memory optimization techniques are effective for
multithread code generation, reducing both data and code sizes.

100

(6.0K)
85.3

(5.1K)
80.0

(4.8K)

80.2

(4.8K)

277.7

(16.6K)

272.4

(16.3K)

272.7

(16.3K)

0,0

50,0

100,0

150,0

200,0

250,0

300,0

RTW S1 S2 S3 M1 M2 M3

App. library HdS library Thread+main

403,6

327,0

165,2 165,0

235,4

103,8 103,7

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

RTW S1 S2 S3 M1 M2 M3

100

(4.7K)

90.3

(4.2K)

56.2

(2.6K)
49.1

(2.3K)

106.6

(5.0K)

72.4

(3.4K)

72.3

(3.4K)

0,0

20,0

40,0

60,0

80,0

100,0

120,0

RTW S1 S2 S3 M1 M2 M3

Constant Channel Buffer

a) Relative data memory size (byte) b) Relative code memory size (byte)

c) Execution time (Mcycle/sec)

Figure 4.18: Data memory size, code memory size and execution time of Motion-JPEG
decoder with single- and three-processor platforms

Multithread multiprocessor solutions are used to achieve better performance. To
evaluate the impact on performance, we obtained the number of cycles required to
decode 30 frames QVGA Unicycle JPEG stream for each configuration, which are
presented in Figure 4.18(c). Regarding copy removal technique, configuration S2 (M2)
shows 49.4% (55.9%) execution time reduction compared to S1 (M1). This result shows
that copy removal technique improves significantly the performance of the generated
code, especially when there are copy operations between large-sized arrays. Compared

77

to RTW, the configuration M3 shows 3.89 times faster performance because of the
concurrent execution and the memory optimization, which also impacts in performance.
The multithread solution with all optimization options (M3) is 1.60 times faster than
single thread one with all optimization options (S3). This result is less than our
expectation mainly because two subsystems transfer massive data through global
memory using processor load/store instructions, i.e. GFIFO. The required bandwidth is
19.0 MB/sec and the processors averagely spent 53.3% and 25.3% of the run time for
computation and communication, respectively. The rest is idle time, waiting for
available data or space.

4.5.3.2 H264 video decoder

Firstly, A H264 Simulink CAAM with four CPU subsystems was used to show the
effects of memory optimization on the code generated with different tool configuration
(see Table 4.2). Figure 4.19(a) shows the relative data memory size, where “Constant”
represents VLD tables. In the single-thread case, the configuration S3 achieves 70.9%
data memory size reduction compared to RTW. In the multithread case, the code
generator with full optimization (M3) reduced the data memory size by 66.7%
compared to that without optimization (M1). Regarding code memory size, shown in
Figure 4.19(b), configurations S3 (single-thread case) and M3 (multithread case) show
19% and 20% code size reductions compared to S1 and M1, respectively. These results
also show the effectiveness of the proposed memory optimization techniques in
automatic code generation for both single-thread and multithread cases.

Figure 4.20 presents the performance results obtained from the H264, with four
processors for each code generation configuration. It shows the number of cycles
required to decode 30 frames QCIF H.264 stream. Multiprocessor implementation with
configuration M3 is 2.15 times and 3.04 times faster performance compared to the
single-processor one with configuration S3 and to RTW, respectively. The required
bandwidth is 12.1 MB/sec, and the processors spent around 63.7% of the run time in
computation and 13.7% in communication.

100

(79.0K)

97.7

(77.2K)

79.0

(62.4K)

78.7

(62.1K)

125.9

(99.5K)

105.3

(83.2K)

105.9

(83.6K)

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

RTW S1 S2 S3 M1 M2 M3

App. library HdS library Thread+main

(b) Relative code memory size (byte) (b) Relative code memory size (byte)

100

(27,00K)

98,8

(26,6K)

58,1

(15,7K)

29,1

(7,9K)

110,3

(29,7K)

74,4

(20,0K)

43,6

(11,3K)

0,0

20,0

40,0

60,0

80,0

100,0

120,0

RTW S1 S2 S3 M1 M2 M3

Constant Channel Buffer

(a) Relative data memory size (byte)(a) Relative data memory size (byte)

Figure 4.19: Data memory size and code memory size of H.264 decoder with single-
and four-processor platforms

78

334,1
329,3

236,8 236,8

167,0

110,1 109,7

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

E
x

e
c
u

ti
o

n
 t

im
e

 M
c
y
c
le

/
s
e

c

RTW S1 S2 S3 M1 M2 M3

Figure 4.20: Execution time of H.264 with single- and four-processor platforms

To explore the design space of the H.264 decoder, we designed several
multiprocessor platforms by increasing the number of Xtensa processors from two to
six. Figure 4.21 presents memory sizes with different numbers of processors. In the
figure, Px represents a multiprocessor platform with x processors, varying from 2 to 6
Xtensa subsystems. Figure 4.21(a) shows data memory sizes obtained varying the
number of processors and the configurations options for M1, M2 and M3. It shows that,
when the number of processors grows, the data memory size also increases due to the
increasing of the number of required channel buffer memories and channel data
structures. Regarding code size, similar effect can be observed in Figure 4.21(b),
because the number of threads also increases along as the number of processors grows.
This, as a consequence, increases the number of line codes.

The performance results obtained for each platform were also evaluated. To obtain
performance results, we simulated the execution of the generated codes under the
chosen platform (P2-P6) using instances of Xtensa ISS simulator. Figure 4.22 illustrates
the number of cycles required to decode QCIF H.264 stream at a frame rate of 30
frames/second for each platform. The multiprocessor platform with six Xtensa
subsystems (P6) and configuration M3 (multithread with all optimization options)
shows 2.3 times higher performance compared to single processor platform (P1) with
configuration S3 (single-thread with all optimization options). We also compared our
multiprocessor solutions to a single-processor one and we found that the version P6
achieved 56.4% of performance improvement compared to the single-processor one
(236.8 Mcycles/second). From the design space exploration, we found that VLD parts
(frame, slice, and macroblock VLD in Figure 4.16) limit the performance because they
are sequential, and it does not pay off to add extra processors.

The performance result obtained for the H264 decoder is not appropriate for real
systems, where a frame rate of 15 frames/second can be required. It shows that
optimizations are necessary in the generated code in order to improve its performance.
Observing that a considerable time is spent with communication, we propose here to
apply a communication optimization technique to reduce the communication overhead.
Section 4.5.4 presents the results obtained with the integration of Message Aggregation
in the Multithread code generator.

79

77,2

62,4

62,1

89,1
72,6

72,6

94,3

77,9

78,4

99,5

83,2
83,6

103,1

88,3
88,8

108,2
93,5

93,6

0,0

20,0

40,0

60,0

80,0

100,0

120,0

Memory Size

(KBytes)

P1 P2 P3 P4 P5 P6

M1(S1) M2(S2) M3(S3)

(b) Relative Code memory size (Kbyte)

27,9

15,7

9,3

29,0

19,2

11,2

29,7

20,0

11,3

30,2

20,5

12,4

30,7

21,2

14,2

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

Memory size

(KBytes)

P2 P3 P4 P5 P6

M1 M2 M3

(a) Relative data memory size (Kbyte)

Figure 4.21: H.264 decoder data memory size and code memory size with different

memory optimization configurations and different number of processors

181,3

156,0

109,7 103,9 103,1

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

180,0

200,0

R
eq

ui
re

d
M

cy
cl

es
/s

ec
on

d

P2 P3 P4 P5 P6

Number of processor

Figure 4.22: Execution time of H264 decoder (Mcycles/sec)

80

4.5.4 Communication optimization

In this section, the H264 video decoder is used as a case study. It shows that
performance improvements and memory reductions are achieved when Message
Aggregation (MA) technique is integrated in the code generation flow used by the
Multithread code generator. In this experiment, the same H264 CAAM models with
two, three, four, five and six CPU subsystems used in section 4.5.3.2 were also
employed. For each one of these CAAMs, we generated code using the Multithread
code generator and evaluated the performance and the memory improvements achieved
when MA is applied during the code generation.

Firstly, we analyze the impact of Message Aggregation on the execution time for the
different multiprocessor solutions. Performance results were obtained by simulation of
the execution of the generated codes under the chosen platform through the use of
Xtensa ISS simulators. In this way, for each version of generated code, we obtained the
number of cycles required to decode a QCIF foreman at a frame rate of 30 frames
/second.

Figure 4.23 illustrates the performance results for the generated codes for the five
different CAAM models (P2-P6), with and without Message Aggregation. The results
show that when MA is applied in our code generation flow, the performance increases
for all five configurations, with improvements from 14% until 21%. For example,
comparing the performance results for P6 with MA and without MA (w/o MA), we
found a performance improvement of 21.2% obtained by the Message Aggregation
technique. Comparing our multiprocessor solutions with a single-processor one, we
found that the P6 version without MA achieved 56.4% of performance improvement,
while the configuration P6 with MA achieved 65.7%.

181,3

154,8 156,0

134,1

109,7
93,2

103,9

83,0
103,1

81,2

0,0

50,0

100,0

150,0

200,0

R
eq

ui
re

d
M

cy
cl

es
/s

ec
on

d

P2 P3 P4 P5 P6

Number of processors

w/o MA with MA

Figure 4.23: Performance results for H264 decoder

In order to analyze this optimization in more detail, we divided all processor
operations into three classes of different functions: Computation (Comp),
Communication (Com) and Idle. All operations in the application, including
computation and some memory access, are defined as computation class. The
communication class represents the operations for inter and intra-thread communication.
In this class, most of operations are launched by load or store instructions executed in a
processor. Except for Computation and Communication, the remainder operations,

81

which consist of thread switching and waiting for synchronization, are classified as Idle.
Table 4.3 shows the percentage of computation (comp), communication (comm) and
idle per second of the application execution time and the communication Speed in
Bytes/cycle (average for 1cycle) for each multiprocessor platform (P2-P6). These
results show that Message Aggregation decreased the time spent with communication
and accelerate the communication for all multiprocessor platforms.

Table 4.3: Computation, Communication and Idle time of H264 decoder with different
number of processors

 with MA w/o MA

 comp comm idle speed comp comm idle speed

P2 76% 3.7% 19.9% 0.65B/s 70.5% 12.5% 17% 0.17 B/s

P3 59% 5.2% 35.7% 0.56 B/s 55% 14.7% 30.3% 0.17 B/s

P4 64% 7.4% 28.4% 0.57 B/s 58.7% 18.6% 22.6% 0.19 B/s

P5 57% 7.4% 34.9% 0.56 B/s 49.9% 17.4% 32.6% 0.19 B/s

P6 44% 7.4% 47.8% 0.49 B/s 48.6% 19.2% 44.2% 0.15 B/s

Secondly, we analyzed the impact of the Message Aggregation in the number of
required communication channels. Figure 4.24(a) illustrates the effect of this technique
for the different configurations of the H264 model (P2-P6). The results show that
Message Aggregation achieved a reduction on the number of inter-processor channels
of around 90% for all configurations. For example, in the case with four CPU
subsystems (P4), the achieved reduction is from 70 to 5 channels (92.8%). These
reductions depend on the granularity of each block that composes the Simulink model
and the chosen partitioning. The reduction on the number of channels impacts on the
software infrastructure required for communication, reducing data memory size. Figure
4.24(b) shows the results for data memory size obtained for the five versions of the
H264 CAAM. These results show a reduction of 15.9% and 14% in the four CPUs (P4)
version and in the six CPUs (P6) version, respectively, when Message Aggregation is
applied.

41

1

60

3

70

5

78

6

85

10

0

10

20

30

40

50

60

70

80

90

N
um

be
r o

f c
ha

nn
el

s

P2 P3 P4 P5 P6

Number of processors

w /o MA w ith MA

9,3

8,2

11,2

9,6

11,3

9,5

12,4
11,4

14,2

12,2

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

K
by

te
s

P2 P3 P4 P5 P6

Number of processors

w /o MA w ith MA

a) Reduction on the number of channels b) Reduction on the data memory size

Figure 4.24: Reduction on the number of channels and on the data memory size

82

Table 4.4 shows the data memory size of the generated code for four CPUs (P4). As it
is a multiprocessor solution, the data memory is composed of Constant, Buffer and
Channel memories. The constant memory represents constant tables such as VLD table
used in the decoding algorithm. The buffer memory represents the memory required to
implement the Simulink data links. At last, the channel memory represents the channel
data structures required to promote the communication. The results show that Message
Aggregation can achieve a large reduction on the data structures used to manage
channels (channel in Table 4.4), e.g. 92.8% in the case of version P4, by the reduction
on the number of required channels. It means a reduction of 14% in the total data
memory size. Note that the required buffer memories increase by 17% with Message
Aggregation. The reason for this small increase is briefly explained in section 4.4.

Table 4.4: Data memory size in bytes for the solution P4

 Without MA With MA

Constant 2172 2172

Channel 3360 240

Buffer 6006 7320

Total 11538 9732

In addition, MA also improves code size by the reduction on the lines of code
required to declare and initialize channels and to invoke communication primitives in
Main and Thread codes. As in this experiment, these codes represent a small part of the
total code size, which also includes HdS and application libraries, this improvement is
too small. In case of P4 version, where Thread and Main codes represent only 11.5% of
the total code size, MA achieves a reduction of only 0.5% of the total code size.
Regarding only Thread and Main codes, a reduction of 4.4% was observed.

4.5.5 Experiment analysis

Our Multithread code generator extracts necessary information such as number of
threads, types of processors, communication channels from the input Simulink CAAM,
and then produces a set of software binaries, each of which executes on a target
processor. Consequently, our multithread code generator can avoid the designers to do
laborious programming work.

In addition, from the experimental results, the effectiveness of the proposed memory
optimization techniques integrated in our multithread code generator was shown. The
data memory with all optimization options was 34.3% less for a Motion-JPEG decoder
with three processors and 68.0% less for an H.264 decoder with four processors than
that without optimizations. We can achieve more memory reduction in the H.264
decoder than in Motion-JPEG decoder because a H.264 decoder includes a relatively
larger number of buffers with disjoint lifetimes. Our memory optimizations also impact
the code size, reducing the application code size in 19.4% and 15.8% for H.264 decoder
single-thread and multithread cases, respectively. More results for the design
exploration of these applications can be found in (HUANG, 2007).

Moreover, experimental results show that MA can achieve a large reduction on the
number of inter-processor data transfers for a fine-grain system specification. However,
this optimization cannot achieve proportional reduction on the number of cycles

83

required to process one macroblock. One reason for this is because MA can increase the
message latency in some cases, thereby decreasing performance. In terms of data
memory size, MA presents a reduction of around 14%. Compared to H264, the Motion-
JPEG is a simple algorithm and has a very small number of channels. This is the reason
for the Message Aggregation technique could not achieved a large performance
improvement for this application, and then we do not present the Motion-JPEG results
here.

However, the performance of the presented multiprocessor platforms is still not
enough for real systems. For example, the digital video broadcasting system requires
H.264 QVGA decoding with a frame rate of 15fr/sec, which is about one and a half
times faster than the platform with four processors at 93.2 MHz for QCIF 30fr/sec
decoding. The QVGA format is about three times larger than QCIF format. The
platform is pure software approach and thus its performance is somewhat limited to
process data-intensive applications. In order to achieve the required performance, we
need to adopt multiprocessor platforms with configurable processors such as Xtensa
with customized instructions to specific applications (TENSILICA, 2006). Moreover, it
is important to develop a communication architecture that can efficiently handle high-
rate data with large-latency wires to implement the high-performance heterogeneous
MPSoCs.

Currently, we analyze the effect of Message Aggregation in the inter-processor
communication using the GFIFO protocol, which is easy to implement both in hardware
and in software. Experiments with other communication protocols will be considered as
future work.

84

85

5 INTEGRATION OF UML AND SIMULINK

UML was defined in the software engineering domain and is by far the most-used
modeling notation for conventional computational systems. The comparison between
UML and Simulink presented in chapter 2 shows that UML presents some advantages
for requirements specification and represents a higher abstraction level when compared
to Simulink. Moreover, UML provides all benefits from the OO paradigm i.e.
modularity, encapsulation, and reusability. However, using UML-based tools, designers
are asked to write code for some methods in order to obtain the complete application
code. In addition, although some efforts to extend UML, it continues to be not well
suitable to model dataflow systems.

On the other side, Simulink supports dataflow and continuous time, and the whole
code can be automatically generated from a Simulink model. Real-time Workshop
(RTW) can be used to automatically generate sequential code from a Simulink model.
In addition, the Simulink-based code generation approach proposed in chapter 3 can be
used to generate multithread code targeted to an MPSoC architecture from the Simulink
CAAM, which combines algorithm and architecture.

UML and Simulink present advantages for the embedded software development,
which motivates researchers to find a way to simultaneously exploit the benefits of both.
Recent efforts show that both languages are considered attractive for Electronic system-
level design (BOLDT, 2007) (SANGIOVANNI-VICENTELLI, 2006) (BRISOLARA,
2005b). Reichmann (2004) proposes the integration of different models in a same
design flow. In another effort to integrate Simulink and UML, the Rhapsody UML2.0
tool has been integrated with Matlab/Simulink, allowing the building of UML mixed
models which can have modules described in Simulink (BOLDT, 2007). This allows the
use of Simulink resources to describe signal processing algorithms and simulation of
heterogeneous models that can include physical models like a plant, while at the same
time UML is used for requirements specification. Both approaches focus on the use of
different modeling languages to specify each system module.

However, we believe that UML is the preferred language for software engineers, and
that it could be interesting to use UML as a single language for initial specification. In
this context, we propose a way to integrate UML and Simulink in a single design flow,
where UML is used to model whole system and other models can be obtained from
UML diagrams by model transformation in order to allow the use of different code
generation approaches for each system modules. The UML-based code generation can
be used to generate code for event-based (control-flow) modules, using available

86

commercial tools that generate code from state diagrams or FSM models. On the other
hand, Simulink-based strategies can be used to generate code for the dataflow modules.
Besides that, the same UML model can be reused for different code generation
strategies to generate code for different platforms. To support this, mappings from UML
to Simulink and to FSM are required. Figure 5.1 illustrates the proposed design flow for
embedded software development.

Application
model

translation

Code generation

Simulink
CAAM

Platform
model

Mapping

Mapped model

Simulink-
based flow

UML-based
flow

Implementation

translation

FSM
model

UML tool code
generation

Dataflow Control-flow

Figure 5.1: Proposed flow for embedded software development

We also propose the use of UML as front-end for the Simulink-based design flow,
allowing one to exploit the benefits of UML, while generating executable code for
MPSoC from high-level models (BRISOLARA, 2007b). This way, one can avoid the
use of Simulink graphical user-interface to build of the Simulink CAAM required for
the proposed multithread code generation, which can be an error-prone task.

To support the proposed software development flow, a model transformation
mechanism was defined in (BRISOLARA, 2007b). Figure 5.2 illustrates the proposed
flow defined to capture UML and transform it in other modeling language notation. This
flow has two main steps and its input is an UML model built using an UML editor tool.
So, the first step is made by the designer using an UML tool graphical interface. In the
second step, the UML model is traversed to find constructions that can be directly
mapped to the target modeling language e.g. Simulink, which is defined in a meta-
model. According to the mapping rules, the UML model is translated to the target
language, as a model-to-model transformation. In order to be flexible, technologies for
model transformation, such as smartQVT (SMARTQVT, 2007) and ATL (ECLIPSE
DEVELOPMENT TEAM, 2007), should be used to promote this translation. This step
produces another XML file that follows the target language meta-model, which can be
Simulink or FSM, as illustrated in Figure 5.2.

The third and fourth steps shown in the proposed flow are specifically tailored to the
generation of a Simulink model from an UML one. The third step receives as input the
model resulting from the model-to-model transformation, which follows the Simulink

87

meta-model semantic, and performs some optimizations before generating the final
Simulink model. After that, from the optimized model, an mdl file is generated using
model-to-text transformation in the fourth step. Although we have focused on
generating the Simulink model from an UML one the proposed transformation approach
can be extended to support the mapping to other languages, such as UML state
diagrams, other FSM-like languages, or KPN.

UML editor
tool

UML
model

Transformation engine

MDL generator optimize

Mapping
rules

Simulink
meta-model

FSM
meta-model

2

34

1

FSM
model

Simulink
model

Simulink.
mdl

Figure 5.2: Flow for the proposed model transformation

To show the feasibility of our proposal, we defined mapping rules able to transform
an UML model in a Simulink CAAM model used as input for the multithread code
generation. Section 5.1 explains the proposed mapping. In addition, a prototype was
developed and experiments were performed using this prototype, which are presented in
section 5.2 and 5.3, respectively.

5.1 Proposal of mapping from UML to Simulink CAAM
When the Simulink-based MPSoC design flow presented in chapter 3 is used, the

Simulink CAAM is built manually by a Simulink GUI Interface. From the Simulink
functional model, the designer partitions functions into tasks and groups them into
different subsystems, thus defining threads and mapping them to processors. To
maintain UML high abstraction capabilities and eliminate the necessity of manually
building the Simulink CAAM, we propose the mapping from UML to Simulink CAAM.
It allows software engineers to employ UML to model the system, which is their
preferred language, besides giving them high abstraction. The use of the proposed
mapping avoids the necessity of building or modifying Simulink models directly, which
means abstracting low-level details like signals and ports.

The proposed mapping can be applied in the flow illustrated in Figure 5.2, allowing
one to automatically generate a Simulink CAAM from an UML model. Then,
multithread code can be generated from that. As shown in Figure 5.2, to apply the
proposed model transformation, the target language needs to be defined as a meta-

88

model. We defined a meta-model for the Simulink CAAM. This meta-model is similar
to another Simulink meta-model already published in (NEEMA, 2003), differing mainly
regarding the constructions only required in the CAAM. As the Simulink CAAM is an
extension of the default Simulink model, the proposed mapping and the proposed meta-
model can be used to generate both conventional and CAAM Simulink models.

The proposed mapping uses information from the UML deployment and sequence
diagrams to obtain the Simulink CAAM. Following our approach, a sequence diagram
must be defined for each thread that composes the system. Both diagrams are used in
the mapping in order to capture the necessary information to generate the Simulink
CAAM. Besides the sequence diagrams, activity diagrams could also be used to detail
the behavior of complex algorithms. A didactic example is used here to explain the
proposed mapping. Figures 5.3(a) and (b) depict the deployment diagram and sequence
diagram for the T1 and T2 threads, respectively. After apply the mapping, the Simulink
CAAM shown in Figure 5.3(c) is obtained.

From the deployment model, the definition of the threads that compose the system is
captured, as well as the mapping of these threads to processors. In our proposal,
processors and threads are indicated by the <<SAengine>> and <<SAschedRes>> UML-
SPT stereotypes, respectively, as illustrated in Figure 5.3 (a). For each processor, a
Simulink hierarchical subsystem is created in the CAAM model representing a CPU
subsystem (CPU-SS), as can be observed in Figure 5.3(c). For each thread mapped to a
processor, a Thread subsystem (Thread-SS) is created inside the corresponding CPU-
SS.

The Thread-SS is composed by Simulink blocks that are used to specify its behavior.
To capture the thread behavior, these Simulink blocks and the data flow between them
must be captured. We propose to capture it from sequence diagrams, once this diagram
represents the messages exchanged between objects. For this reason, each thread should
have a sequence diagram to describe its behavior in our proposed mapping. The
<<SAtrigger>> stereotype used in the sequence diagram depicted in figure 5.3 (b)
indicates a time event and the invoked method for which the Scheduler selects a thread
to run.

Method calls in the sequence diagrams are translated to Simulink blocks (user-
defined and user-defined blocks) or to communication blocks in the Simulink CAAM.
When a method of a passive object is called from a thread, a Simulink block is
instantiated. To use pre-defined Simulink blocks, the designer needs to indicate its
usage by the invocation of a method from the special object Platform. The name of the
method needs to be equal to the name of the reused component in the Simulink library.
If the method name does not match with the pre-defined component names, a Simulink
S-function block is instantiated. An S-Function can have its behavior described in a C
code that is compiled and linked to the model. In the example illustrated in Figure
5.3(b), the dec and mul methods are invoked from the Dec and Platform objects,
respectively, by the thread T1. Notice that in the resulting Simulink, shown in Figure
5.3(c), a Product block and an S-function were instantiated in the T1 subsystem.

The direction of method parameters (in/out) and the return are used to define input
and output ports of subsystems and blocks, and message arguments indicates the
connection (data links) between ports of different Simulink subsystems/blocks. The a
parameter from calc method has the direction set as in, so an input port is created in T1
subsystem, as shown Figure 5.3(c). In the same way, its return is mapped to an output

89

port in T1 subsystem. The r1 argument is passed as output for calc and also is used as
input for mult, which indicates that the value produced by first is used by the second one
and a connection is created between these ports when generating the Simulink model.

<<SAengine>>

<<SASchedRes>>

T2

CPU1
<<SASchedRes>>

T1

<<SAengine>>

<<SASchedRes>>

T3

CPU2

bus

<<SAengine>>

<<SASchedRes>>

T2

CPU1
<<SASchedRes>>

T1

<<SAengine>>

<<SASchedRes>>

T3

CPU2

bus
(a) UML Deployment diagram

(b) Sequence diagram

Intra-CPU commun.

dec

T1

CPU-SSThread-SS

CPU1

T2r4 r3

x
T3

CPU2

In1

Out1

Inter-CPU commun.

calc

y

X

S-function S-function

In2

r1

r2

r3

(c) Generated Simulink CAAM

Figure 5.3: Example of mapping from UML to Simulink CAAM

When a thread invokes a method from another thread, this indicates a
communication between them. In this case, the designer is asked to use a default prefix

90

in the method name, Set or Get, to indicate send or receive operations, respectively
Ports are created in the Thread-SS and an intra-SS or an inter-SS COMM subsystem is
instantiated, according to the thread mapping. After that, connections are created
between the ports of these subsystems.

In the sequence diagram illustrated in Figure 5.3(b), T1 invokes the method
getValue() from T3, which indicates that T1 receives data from T3. As both threads are
allocated in different processors, an inter-SS COMM block is instantiated in the
Simulink model, as shown in the Figure 5.3(c). The method call setValue(r3) in Figure
5.3(b) indicates that the thread T1 sends data to T2. The same argument r3 is also used
by the decode method, indicating that the value produced by this method must be sent to
T2. As well as, the output of the decode method must be connected to the T1 output.
This communication is translated to an output port in T1 as well as an intra-SS
communication channel is instantiated, since both threads are mapped to the same CPU.

To indicate that an object communicates with external systems, we defined a
modeling rule. The external system is represented as an object in the sequence diagram
decorated with the stereotype <<IO>>, which is a new stereotype we have defined. To
indicate the reading and writing operations between an object and the IO object,
methods with the prefix get and set are used, indicating the message exchange between
the two objects. During the mapping, these get and set methods are mapped to input and
output ports for the system. In Figure 5.4, the thread T3 invokes the method getValue()
from the object sensor that is marked as <<IO>>, which is translated for a system input
port in the Simulink CAAM, as shown in Figure 5.3(c). It should be also used in the
sequence diagrams for the threads T2 to generate the output system port shown in the
correspondent Simulink CAAM.

Figure 5.4: Sequence diagram for thread T3

The deployment diagram defines the number of processors and threads. Thus, to
build this diagram, the designer is asked to partition the system in threads and define the
mapping of threads to processors. We propose the automation of the thread mapping
decision by the use of an optimization algorithm that can determine the number of
required processors and the mapping of threads to the processors. The use of this
optimization can make the deployment diagram unnecessary and, therefore, only the
sequence diagram can be considered compulsory to generate the Simulink CAAM from

91

an UML model. To validate the proposed mapping, a prototype was developed, which is
detailed in section 5.2.

5.2 Prototype
We developed a prototype that implements the mapping proposed in section 5.1.

Figure 5.5 shows the flow used in this prototype, where the input is an UML model. The
first step of the flow is the building of the UML model using MagicDraw or other
EMF/UML2 compliant tool. After that, a XML file is obtained for the UML model.
During the second step, the UML model is traversed and translated to a Simulink model.
This step produces another XML file, which follows the Simulink CAAM meta-model.
In this prototype, this transformation was implemented in Java using the API provided
by the Eclipse EMF, according to the required mapping rules described in section 5.1.
The third step has as input the resulting Simulink CAAM model represented using the
E-core format (XML-like) and performs some optimizations before generating the final
Simulink CAAM model. These optimizations are detailed in section 5.2.1. After that,
from the resulting model, we generate a file that follows the mdl format used as input in
the Simulink environment.

UML editor
tool

(MagicDraw)

Simulink
(E-core)

Simulink.
mdl

Transformation engine

MDL generator optimize

Simulink
meta-model

Mapping
rules

EMF/UML
(E-Core)

2

34

1

Figure 5.5: Prototype for the mapping from UML to Simulink

5.2.1 Model optimization

During the optimization step, our tool can perform three kinds of optimizations:
inference of communication channels, loop detection, and thread grouping. The
inference of communication treats of the instantiation of communication blocks in the
Simulink CAAM when in a sequence diagram there are method invocations between
different threads. In this case, the tool captures the kind of communication (inter-SS
COMM or intra-SS COMM) and set the appropriated protocol. When a variable is used
as input and output of a function, we have a cyclic path (or loop). In a Simulink model,
to avoid deadlock, one needs to insert a temporal barrier (Delay) to guarantee that a
valid value is available for the input function. The tool looks for cyclic paths in the
model and inserts temporal barriers in the generated Simulink model. Furthermore, our
tool analyzes the model and groups threads whenever possible, in order to reduce the

92

communication overhead. The proposed optimizations are detailed in the section
5.2.1.1, 5.2.1.3 and 5.2.1.4.

5.2.1.1 Inference of communication channels

In the Simulink CAAM, the communication is explicitly defined and represented by
communication channels that can be either inter-SS or intra-SS. To capture these
channels from the UML model, we use information from the sequence diagrams and
from the deployment diagram or from the result of the grouping thread algorithm. When
the communicating threads are in different CPUs, an inter-SS channel is required.
Otherwise, an intra-SS channel is instantiated.

The communication protocol is indicated explicitly in the Simulink CAAM using a
specific block parameter. At present, we use only two different communication
protocols, the SWFIFO for intra-SS channels and the GFIFO for inter-SS channels. Our
tool determines the type for each communication channel and sets their parameters.
These protocols are detailed in chapter 4. In the future, different communication
protocols can also be supported. In the example illustrated in Figure 5.3, T1 sends data
to T2 and an intra-SS channel was instantiated to build the Simulink CAAM shown in
Figure 5.3(c), since both threads were allocated in the same CPU-subsystem.

5.2.1.2 Insertion of temporal barriers

When describing a dataflow model, cyclic paths need to be found and temporal
barriers are required to avoid deadlocks. In this step, the Simulink model obtained from
the translation (step2) is searched for cyclic paths. Simulink Delay blocks are then
inserted in the resulting Simulink model. Two different cases of cyclic path can be
found. In the case 1, the output of a functional block is connected to its input, as shown
in Figure 5.6. In the case 2, the cyclic path is between different sub-systems or different
hierarchical levels, as shown in Figure 5.7. Our tool automatically detects these cases
and inserts temporal barriers to avoid deadlock. To represent a temporal barrier, a
Simulink Delay block is inserted in the data link where the loop is detected.

(a) UML sequence diagram

:T1 :Lib

m2(par1=var2,par2=var3)

Sched
main_task()

m1(i1= a,i2=b,o1=c,o2= a)
Z-1

Temporal barrier

m1

T1

...

i1

i2

o1

o2

(b) Simulink model

Figure 5.6: Example of insertion of delay – case 1

93

m3(p1=r1,p2=r2, o1 ,o2)

:T1
main_task()

m1(p1=o1,p2=b):r1)

:T2

(a) T1 sequence diagram

getA(p=o1)

m2(p=c):r2

setC(r1)

:T2 :T1

seto1(o1)

main_task()

geti1(p=r1)

geti2(p=r2)

...

getB(p=b)

...

...

(b) T2 sequence diagram

:T1
main_task()

m1(p1=o1,p2=b):r1)

:T2

(a) T1 sequence diagram

getA(p=o1)

m2(p=c):r2

setC(r1)

:T2 :T1

seto1(o1)

main_task()

geti1(p=r1)

geti2(p=r2)

...

getB(p=b)

...

...

(b) T2 sequence diagram
Simulink model

T1

CPU1

T2
m1

m2

m3

Temporal barrier

o1

o2
b

c

r1

r2

Z-1

Simulink model

T1

CPU1

T2
m1

m2

m3

Temporal barrier

o1

o2
b

c

r1

r2

Z-1

Figure 5.7: Example of insertion of delay – case 2

5.2.1.3 Grouping threads

This optimization allocates threads with data dependencies to the same processor, in
order to reduce the inter-processor communication. When this optimization is applied,
the deployment diagram is not necessary to generate the Simulink CAAM. To observe
the data dependency between threads, we use the information captured from the
sequence diagrams. This information is used to build a task graph. In this graph, the
nodes are threads and the edges have a cost that is determined by the size of data
multiplied by the number of transferred data, as illustrated in Figure 5.8(a).

n1

n2 n3 n4

n5 n6 n7

n8

122 2

1 2 1

1 11

C1
C2 C3

n1

n2 n3 n4

n5 n6 n7

n8

122 2

1 2 1

1 11

n1

n2 n3 n4

n5 n6 n7

n8

122 2

1 2 1

1 11

a) Task graph used as inputb) Task graph after grouping

CPU1
CPU2

CPU3

out

COMM

COMM

COMM

COMM

CPU1
CPU2

CPU3

out

COMM

COMM

COMM

COMM

c) Simulink CAAM: top-level

Figure 5.8: Example of the thread allocation by the linear clustering algorithm

This optimization was implemented in our prototype and the used algorithm is based
on Linear Clustering. Figure 5.9 shows the pseudo code of this algorithm. It evaluates
the costs for the edges in the graph, grouping threads with more data dependencies.
Threads grouped into the same cluster are allocated to the same processor. Figure 5.8
illustrates an example, where 5.8(a) shows a thread graph and 5.8(b) shows the resulting
graph after running the optimization algorithm. The resulting graph shows how the eight
threads were grouped in three different clusters, indicating that three processors will be

94

used. In this example, as the nodes n2 and n5 are in the same cluster, these threads will
be allocated to the same processor.

This optimization algorithm is used to optimize the mapping of threads to
processors. The result of this optimization step is used to generate the top-level
description of the Simulink CAAM, where processors are connected through inter-SS
COMM blocks, as shown in figure 5.8(c). This step is optional, and when the designer
wants to decide the mapping by himself, information from the deployment diagram can
be used to generate the Simulink CAAM top-level, instead using the result of the linear
clustering.

1. Choose the heaviest edge;

2. If nodes n3 or n6 are not taken

1. Add nodes n3 and/or n6 to cluster C1;

3. Find incoming edges of node n3;

4. Choose the heaviest edge of step 3;

5. If node n1 is not taken

1. Add node n1 to C1;

6. Find outgoing edges of node n6;

7. Choose the heaviest edge of step 6;

8. If node n8 is not taken

1. Add node n1 to C1;

9. Repeat steps 1-8 while possible;

10. Store cluster C1 and create a new one;

11. Goto step 1;

12. Stop when every node has a cluster;

Figure 5.9: Pseudo code of the used linear clustering algorithm

It is interesting to note that this algorithm allocates all threads that are in the system
critical path to the same processor. This is a good practice to reduce the communication
cost, once the cost for intra-CPU communication is lower than the cost for
communication between different CPUs (inter-SS COMM).

5.3 Case study
Two case studies are used to validate the proposed mapping and the built prototype.

They are the crane control system and a synthetic example, presented in section 5.3.1
and 5.3.2, respectively.

5.3.1 Crane control system

The crane control system, proposed in (MOSER, 1999) and used as case study in
chapter 2, shows the capabilities to capture a dataflow from an UML model and the
generation of the corresponding Simulink CAAM. In addition, we also show that our
tool can automatically insert the required temporal barriers in the generated Simulink
model.

The UML model for the Crane control algorithm was developed, which is a module
of the Crane system used in chapter 2. In this experiment, we partition the system in
three threads, each one specified using UML sequence diagrams. We have decided to
map the three threads to the same processor, as shown in the deployment diagram
illustrated in Figure 5.10. The grouping algorithm is not applied for this example.
Figure 5.11, 5.12, and 5.13 illustrate the sequence diagram for the thread T1, T2 and T3,

95

respectively, from which a Simulink dataflow diagram can be obtained using our rules.
Figure 5.13 is not well presented here, due to the limited space. Therefore, this figure is
presented in an expanded way in Appendix B.

<<SAengine>>

<<SASchedRes>>

T2

CPU1

<<SASchedRes>>

T1

<<SASchedRes>>

T3

Figure 5.10: Crane system: UML deployment model

Figure 5.11: Crane UML model: T1 sequence diagram

96

Figure 5.12: Crane UML model: T2 sequence diagram

Figure 5.13: Crane system: UML sequence diagram for thread T3

We explain in detail here only the generation of the dataflow for the thread T3,
which has a cyclic path (loop) and the insertion of the delay component can be

97

observed. This cyclic path is found between the call message set and the calcy in the T3
sequence diagram. That is why, the argument out1 is used as output of the method set,
while the same argument is used as input for the method calcy. Figure 5.14 (a) presents
the Simulink block diagram corresponding to the thread T3, where a delay block was
automatically inserted between calc_vc and calc_y blocks.

When method invocations are nested, a hierarchical Simulink subsystem is
instantiated to encapsulate the blocks generated to represent these methods. In the
example, the subsystem control is instantiate to encapsulate the nested invocations for
the methods mult, div, and sum. In addition, a subsystem called calc_vc and the S-
function called calc_y are created. The subsystem control is detailed in Figure 5.14(b)
and is composed of one S-Function and five pre-defined Simulink blocks. The methods
invoked from the Platform (e.g. sum, mult, and div) are translated to adder, multiplier,
and divisor Simulink blocks, respectively. The method calcu is mapped to a S-Function.

In this sequence diagram (Figure 5.13), the method get_poscar() and getalpha()
invoked from thread T1 indicate the communication between the thread T3 and T1. The
get prefix indicates that T1 send data to T3, ports and communication blocks are
instantiated in the Simulink model to represent this communication, as shown in Figure
5.15 (right side). The invocations of methods from the objects Plant, Engine and IHM,
which are stereotyped as <<IO>>, are translated to input and output ports that represent
the interface of the system with external devices. For example, the method get_posdes()
is translated to the input posDesired in the Simulink functional block diagram, as
illustrated in Figure 5.14. The method set_vc() is translated to an output port out1 that
is send to the motor represented by the object <<IO>> Engine in the sequence diagram.

Delay
inserted
Delay

inserted

a) T3 model

b) T3: control subsystem
Figure 5.14: Crane Simulink CAAM: Thread T3 model

Finally, the Simulink CAAM higher hierarchical levels obtained from the Crane
UML model are illustrated in Figure 5.15. The left side illustrates the top level, where

98

there is only one CPU subsystem. The right side shows the threads allocated to this
CPU, where the threads T1, T2 and T3 communicate via intra-SS channels. In the
bottom part, this figure shows also the parameters set for the CPU, thread and intra-
COMM subsystems.

Figure 5.15: Crane Simulink CAAM – CPU1 subsystem

5.3.2 Synthetic example

To validate the proposed grouping thread optimization, we developed a synthetic
example, which has twelve communicating threads. The application was specified using
a sequence diagram that expresses the communication between the application threads.
Figure 5.16 illustrates a block of interactions of this sequence diagram, since the whole
diagram is too big to show here. The complete sequence diagram is presented in
Appendix B.

The communications captured from the sequence diagram are used to build a task
graph, as shown in Figure 5.17(a), where the nodes represent the threads and the edges
represent the communication between them. After the application of the grouping thread
algorithm, the nodes of the graph are merged according to the communication between
them. The result of this optimization is depicted in Figure 5.17(b), which shows that the
twelve threads were allocated in four CPUs.

99

Figure 5.16: Synthetic example: simplified sequence diagram

A

B C D

GF

E

H I

J L

M

A

B C D

GF

E

H I

J L

M

b) Task graph grouping thread result a) Task graph

A

B C D

G
F

E

H I

J
L

M
CPU0

CPU1

CPU2CPU3

A

B C D

G
F

E

H I

J
L

M
CPU0

CPU1

CPU2CPU3

3 3
3

3

2
22

2

12871

11

3

Figure 5.17: Synthetic example: Task graph

After applying the proposed map and the grouping thread algorithm for this
application model, the Simulink CAAM model depicted in Figure 5.18 was obtained.
Figure 5.18 shows the top level, where four CPU subsystems communicate through
inter-SS communication blocks. This Figure shows also the threads allocated to the
CPU0, where there are five thread subsystems (A, E, I, L and M) communicating via
intra-SS COMM. The inference of communication is also performed to build this
Simulink CAAM, in the Figure 5.18 is illustrated also the setting of parameters to
indicate the communication protocol used for an intra-SS communication and an inter-

100

SS communication. The Simulink CAAM models generated by our tool are presented in
the Appendix B in detail.

Figure 5.18: Synthetic example: generated Simulink CAAM

5.4 Concluding remarks
An automatic mapping from UML to Simulink CAAM was proposed. With it, we

eliminated the necessity of manually building the Simulink model used as input for the
Simulink-based design flow for MPSoC architectures, which generates multithread C
code and the HW platform described in SystemC. The mapping is based on sequence
and deployment diagrams. Other diagrams like class and collaboration diagrams could
be used during the modeling, but our tool prototype does not capture information from
them at the moment.

We show that some UML constructions can have a direct mapping to Simulink.
However, the one-to-one mapping is not able to capture the whole model. It is still
needed to make inferences performed in the optimization phase of our mapping tool.
Two case studies were presented to show the proposed optimizations to be executed
during the mapping from UML to Simulink. The first one shows the insertion of
temporal barriers and the second one shows the grouping thread algorithm and the
inference of communication channels.

The proposed mapping allows one to exploit the benefits of UML for requirements
specification and software design, while providing a way to obtain complete executable
code for MPSoC architectures from the high-level specification. Moreover, the same

101

UML model can be used to generate code using either traditional UML tools or a
Simulink-based approach.

As future work, this tool will be integrated with an estimation tool to improve design
space exploration, allowing that the deployment model can be build during the design
space exploration step. Moreover, an analysis tool could be used to automatically
determine which fragments of the system are dataflow and for these fragments the
proposed mapping must be applied.

102

103

6 CONCLUSIONS

This thesis presented a comparison between UML and Simulink, two attractive
modeling approaches for embedded system design. However, evaluating the state-of-
the-art in embedded system design using high-level model, we found some limitations
in the automation provided by available software development tools. In this context,
strategies for embedded software generation from high-level models, using Simulink
and UML languages, were proposed in order to solve the main limitations found on
available design flows and tools.

Our UML-based strategy tried to bridge the gap between model and code though the
use of a higher abstraction language. However, although we believe that this proposal
could obtain good results, this proposed strategy was not developed because we decided
to try a new thread. The author had the opportunity to work in the development of a
code generator based on Simulink, which has shown to be a very interesting study. The
proposed Simulink-based strategy focuses on the generation of multithread code target
to multiprocessor architectures, which is not well addressed by available tools. In
addition, this Simulink-based strategy provides a communication optimization
technique, which can be used to reduce the communication overhead during the code
generation (BRISOLARA, 2007a).

The comparison between UML and Simulink shows that both modeling approaches
present pros and cons, which motivated us to find a way to simultaneously exploit the
benefits of UML and Simulink modeling languages in a single design process. We
proposed a software development flow, which allows to start with an UML model and
generate the Simulink model from that. In this way, when a system module is dataflow,
it is translated to Simulink, which provides more powerful features to model and
simulate dataflow systems. This allows designers to work at a higher abstraction level,
avoiding the necessity of building Simulink models directly, which means abstracting
about low-level details like signals and ports.

The proposed flow allows to use UML as front-end for the proposed Simulink-based
multithread code generation method. To support that, we define the mapping from UML
to the Simulink CAAM that is used as input in this method. As the directly mapping is
not possible, besides the mapping, the inference of communication channels and thread
grouping are performed in order to build the Simulink CAAM model from that
multithread code target to MPSoC architecture can be generated. In addition, temporal
barriers are inserted when there is a cyclic path in the dataflow model in order to avoid
deadlock.

104

Boldt (2007) and Reichamnn (2004) also proposed the integration of the UML and
Simulink. However, differently of the Boldt’s and Reichmann’s approaches, our
approach uses UML as modeling language for initial specification, which presents the
advantages of using a standard language that is widely accepted in the software
engineering community. In addition, the main advantage of the proposed integrated
flow is to enable one to start with an UML model and decide which is the most
appropriated tool to generate code for a system module, whether by Simulink of FSM
based tools. Moreover, the same UML model can be also used to generate code by
UML commercial tools or Simulink-based tools, thus enabling the reuse of models in
different platforms or a comparison of different design alternatives.

Although the proposed flow can support other mappings than the Simulink one, this
work addressed only the mapping from UML to Simulink and Simulink CAAM.
However, to completely support the proposed flow, a FSM-like model should be also
generated from the UML model in order to allow the use of different tools for code
generation for control-flow system modules.

A limitation of the proposed mapping from UML to Simulink is that although the
deployment diagram is not necessary when the grouping threads optimization is applied,
the definition of threads continues to be required. This means that the designer needs to
partition the system in threads and to describe thread behavior using sequence diagrams
in order to apply the proposed mapping. As a future work, we plan to integrate an
estimation step in the proposed software development flow. The estimation can be used
to automatically determine the best partitioning and mapping solution and generate the
deployment model. This avoids the necessity of the designer to specify the deployment
model and partitioning the system in threads, while supporting design space exploration.

To show the usefulness of the proposed design flow, we developed a prototype,
which is able to generate Simulink CAAM from an UML model. Using the developed
prototype, we conducted experiments to show the benefits of our proposed mapping. At
present, the designer applies the mapping from UML to Simulink for a whole system,
but in the future, an analysis tool could be used to determine which fragments of the
system are dataflow and control-flow ones, thus the mapping is applied only to the
dataflow part.

Moreover, only sequence diagrams are used to capture thread behavior in our
mapping. Other behavior diagrams, though, could also be used by a designer, since
UML provides them. We plan to extend this mapping to support even other UML
diagrams, like activity diagram, that is the closest to functional block diagrams.

105

REFERENCES

ARDIS, M. et al. A Framework for Evaluating Specification Methods for Reactive
Systems: experience report. IEEE Transactions on Software Engineering, Los
Alamitos, v. 22, n. 6, p. 378-389, 1996.

APACHE SOFTWARE. Velocity Engine. Available at: <http://velocity.apache.org/>.
Visited on: May 2005.

ARTISAN SOFTWARE. Artisan Studio. Available at:
<http://www.artisansw.com/products/>. Visited on: Feb. 2007.

BABU, E. M. M.; MALINOWSKI, A.; SUZUKI, J. Matilda: A Distributed UML
Virtual Machine for Model-Driven Software Development. In: WORLD MULTI-
CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, 9., 2005.
Proceedings… [S.l.: s.n.], 2005.

BALARIN, F. et al. Metropolis: an integrated electronic system design environment.
IEEE Computer , [S.l.], v.36, n.4, p. 45-52, 2003.

BANERJEE, P. et al. The Paradigm Compiler for Distributed-Memory Multicomputers.
Computer, Los Alamitos, v.28, n.10, p. 37-47, Oct. 1995.

BHATTACHARYYA, S. et al. PtolemyII Heterogeneous Concurrent Modeling and
Design in Java. Tecnhical Report. Jan. , 2007. Available at:
<http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIlatest/ptII6.0.2/doc/design/ptIIdesign1-
intro.pdf>. Visited on: Mar. 2007.

BICHLER, L.; RADERMACHER, A.; SCHÜRR, A. Integrating Data Flow Equations
with UML/Realtime. Real-Time Systems, [S.l.], n. 26, p. 107-125, 2004.

BJÖRKLUND, D.; LILIUS, J.; PORRES, I. A Unified Approach to Code Generation
from Behavioral Diagrams. In: FORUM ON SPECIFICATION AND DESIGN
LANGUAGES, FDL, 2003. Proceedings… [S.l.: s.n.], 2003. p. 21-34.

BJÖRKLUND, D.; LILIUS, J.; PORRES, I. Code Generation for Embedded Systems.
In: GÉRARD, S.; BABAU, J. ; CHAMPEAU, J (Ed.). Model Driven Engineering for
Distributed Real-time Embedded Systems. London: Hermes Science, 2005.

BOAS, G. van Emde. Template Programming for Model-Driven Code Generation.
July 2004. Available at: <http://www.softmetaware.com/oopsla2004/emdeboas.pdf>.
Visited on: Jan. 2005.

106

BOLDT, R. Combining the Power of MathWorks Simulink and Telelogic
UML/SysML-based Rhapsody to Redefine the Model-Driven Development Experience.
June, 2006. Telelogic White Paper. Available at: <http://www.ilogix.com/whitepaper-
overview.aspx>. Visited on: Feb. 2007.

BRISOLARA, L.; HAN, S.-I.; GUERIN, X.; JERRAYA, A.; CARRO, L.; REIS, R.
Reducing fine-grain communication overhead in multithread code generation for
heterogeneous MPSoC. In: INTERNATIONAL WORKSHOP ON SOFTWARE AND
COMPILERS FOR EMBEDDED SYSTEMS, SCOPES, 10., 2007, Nice.
Proceedings… [S.l.: s.n.], 2007. p. 81-89.

BRISOLARA, L. B.; OLIVEIRA, M. F. S.; NASCIMENTO, F. A.; CARRO, L.;
WAGNER, F. R. Using UML as a front-end for an efficient Simulink-based multithread
code generation targeting MPSoCs. In: INTERNATIONAL WORKSHOP ON UML
FOR SOC, UML-SoC, 4., 2007, San Diego. Proceedings… [S.l.: s.n.], 2007. p. 11-16.

BRISOLARA, L.; BECKER, L. B.; CARRO, L.; WAGNER, F. R.; PEREIRA, C. E.
Comparing High-level Modeling Approaches for Embedded Systems Design. In: ASIA
SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC, 2005,
Shanghai, China. Proceedings… Piscataway, NJ, USA: IEEE, 2005. v.2, p.986-989.

BRISOLARA L.; BECKER, L. B.; CARRO, L.; WAGNER, F. R.; PEREIRA, C. E. A
Comparison between UML and Function Blocks for Heterogeneous SoC Design and
ASIP Generation. In: MARTIN, G.; MUELLER, W. (Ed.). UML for SoC Design.
Berlin: Springer-Verlag, 2005. p. 199-222.

BRISOLARA, L. B.; BECKER, L. B.; CARRO, L.; WAGNER, F. R.; PEREIRA, C. E.;
REIS, R. A. L. Comparing High-level Modeling Approaches for Embedded Systems
Design. In: ASIA SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-
DAC, 2005, Shanghai, China. Proceedings… Piscataway, NJ, USA: IEEE, 2005. v.2,
p.986-989.

BUCK, J. T. et al. Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems. International Journal of Computer Simulation , [S.l.], v. 4,
p. 155-182, 2000.

BURCH, J. R.; PASSERONE, R.; SANGIOVANNI-VICENTELLI, A. L. Using
Multiple Levels of Abstractions in Embedded Software Design. In: INTERNATIONAL
WORKSHOP ON EMBEDDED SOFTWARE, EMSOFT, 2001. Proceedings... Berlin:
Springer, 2001, p.324-343.

CESARIO, W. et al. Multiprocessor SoC Platforms: A Component-Based Design
Approach. IEEE Design & Test of Computers, [S.l.], v. 19, n. 6, Nov.-Dec., 2002.

CHEN, R. et al. Embedded System Design Using UML and Platforms. In: VILLAR, E.;
MERMET, J. (Ed.). System Specification & Design Languages. US: Springer, 2004.
p. 119-128.

DAMM, W.; HAREL, D. LSCs: Breathing Life into Message Sequence
Charts. Formal Methods in System Design, Dordrecht, v.19, n. 1, p. 45-80.

107

DENSMORE, D.; PASSERONE, R.; SANGIOVANNI-VINCENTELLI, A. A
Platform-Based Taxonomy for ESL Design. IEEE Design and Test of Computers,
[S.l.], v.23, n.5, p.359-374, Sept. 2006.

DOUGLASS, B. Real-Time UML: Developing Efficient Objects for Embedded
Systems. Boston: Addison-Wesley, 1998.

DSPACE. Real-time Interface for Multiprocessor systems (RTI-MP). Available at:
<http://www.dspaceinc.com/ww/en/inc/home/products/sw/impsw/rtimpblo.cfm>.
Visited on: Oct. 2005.

DSPACE. TargetLink . Available at:
<http://www.dspaceinc.com/ww/en/inc/home/products/sw/pcgs/targetli.cfm>. Visited
on: Oct. 2005.

ECLIPSE DEVELOPMENT TEAM. ATLAS Transformation Language (ATL) .
Available at: <http://www.eclipse.org/m2m/atl/>. Visited on: Apr. 2007.

ECLIPSE DEVELOPMENT TEAM. EMF (Eclipse Modeling Framework). Available
at: <http://www.eclipse.org>. Visited on: May 2006.

ECLIPSE DEVELOPMENT TEAM. Introduction to JET (Java Emitter Templates).
Available at: <http://eclipse.org/articles/Article-JET/jet_tutorial1.html>. Visited on:
June 2005.

EDWARDS, S. et al. Design of Embedded Systems: Formal Models, Validation, and
Synthesis. Proceedings of IEEE, Piscataway, v. 85, n.3, p. 366-390, 1997.

ESTEREL TECHNOLOGIES. SCADE tool. Available at: <http://www.esterel-
technologies.com/products/scade-suite/>. Visited on: Mar. 2007.

FLANAGAN, C. et al. Extended Static Checking for Java. ACM SIGPLAN Notices,
New York, v.37, n.5, p. 234-245, 2002.

GERY, E.; HAREL, D.; PALACHI, E. Rhapsody: A Complete Life-Cycle Model-
Based Development System. In: INTERNATIONAL CONFERENCE ON
INTEGRATED FORMAL METHODS, IFM, 3., 2002, Turku, Finland. Proceedings…
Berlin: Springer. 2002. p.1-10.

GOMAA, H. Designing Concurrent Distributed, and Real-Time Applications with
UML. Boston: Addison-Wesley, 2000.

GRAAF, B.; LORMANS, M.; TOETENEL, H. Embedded Software Engineering: The
State of the Practice. IEEE Software, Los Alamitos, v. 20, n. 6, p. 61-69, 2003.

GREEN, P. UML as a Framework for Combining Different Models of Computation. In:
MARTIN, G.; MUELLER, W. (Ed.). UML for SoC Design. Berlin: Springer-Verlag,
2005. p. 37-62.

GROSE, T. J.; DONEY, G. C.; BRODSKEY, S. A. Mastering XMI: Java
Programming with XMI, XML, and UML. New York, NY, USA: John Wiley & Sons,
2002.

108

HAN, S.-I.; CHAE, S.-I., JERRAYA, A. Functional modeling techniques for efficient
SW code generation of video codec applications. In: ASIA AND SOUTH PACIFIC
DESIGN AUTOMATION CONFERENCE, ASP-DAC, 2006. Proceedings… New
York, NY, USA: ACM Press, 2006a. p. 935 - 940.

HAN, S.-I. et al. Buffer memory optimization for video codec application modeled in
Simulink. In: DESIGN AUTOMATION CONFERENCE, DAC, 2006, San Francisco,
USA. Proceedings… New York, NY, USA: ACM Press, 2006b. p. 689-694.

HIRANANDANI, S.; KENNEDY, K.; TSENG, C. Compiling Fortran D for MIMD
Distributed Memory Machines. Communications of the ACM, New York, v.35, n.8,
p.66-80, 1992.

HONEKAMP, U. et al. Component-node-network: three levels of optimized code
generation with ASCET-SD. In: IEEE INTERNATIONAL SYMPOSIUM ON
COMPUTER AIDED CONTROL SYSTEM DESIGN, 1999. Proceedings… [S.l.:s.n.],
1999. p. 243-248.

HUANG, K.; HAN, S.-I.; POPOVICI, K.; BRISOLARA, L.; GUERIN, X.; LI, L.;
YAN, X.; CHAE, S.-I.; CARRO, L.; JERRAYA, A. A. Simulink-Based MPSoC Design
Flow: Case Study of Motion-JPEG and H.264. In: DESIGN AUTOMATION
CONFERENCE, DAC, 2007, San Diego, California, USA. Proceedings… New York,
NY, USA: ACM Press, 2007. p. 39-42.

HUBBERS, E.; OOSTDIJK, M. Generating JML Specifications From UML State
Diagrams. In: FORUM ON SPECIFICATION AND DESIGN LANGUAGES, FDL,
2003. Proceedings…[S.l.:s.n.], 2003. p. 263-273.

ITO, S. A.; CARRO, L.; JACOBI, R. Making Java Work for Microcontroller
Applications. IEEE Design & Test, Los Alamitos, v. 18, n. 5, p. 100-110, Set-Oct.
2001.

JACOBSON, I. et al. Object-Oriented Software Engineering: A Use Case Driven
Approach. Boston: Addison-Wesley, 1992.

JERRAYA, A. A.; WOLF, W.; TENHUNEN, H. Guest Editors. Computer, [S.l.], v.38,
n.7, p. 36-40, July 2005. Special Issue on MPSoC.

JOHN, K.; TIEGELKAMP, M. IEC61131-3: Programming Industrial Automation
Systems: Concepts and programming languages, Requirements for programming
systems, Aids to decision-making. Berlin: Springer-Verlag, 2001.

KAHN, G.; MACQUEEN, D.B. Coroutines and Networks of Parallel Processes. In:
IFIP CONGRESS, 1977. Information Processing 77. Amsterdam: North-Holland,
1977. p. 993-998.

KANGAS, T. et al. 2006. UML-Based Multiprocessor SoC Design Framework. ACM
Transactions on Embedded Computing Systems, New York, v.5, n.2, p.281-320,
2006.

KENNEDY CARTER. iUML : Intelligent UML. Available at: <http://www.kc.com>.
Visited on: May 2005.

109

KEUTZER, K. et al. System-level design: Orthogonalization of concerns and platform-
based design. IEEE Transactions on CAD of Integrated Circuits and Systems, New
York, v.19, n.12, 2000.

KUMAR, R. et al. Heterogeneous Chip Multiprocessors. Computer, Los Alamitos,
v.38, n.11, p. 32-38, 2005.

LAVAGNO, L.; MARTIN, G.; SELIC, B. UML for Real: Design of Embedded Real-
Time Systems. Dordrecht: Kluwer Academic, 2003.

LEDECZI, A. et al. The Generic Modeling Environment. In: IEEE INTERNATIONAL
WORKSHOP ON INTELLIGENT SIGNAL PROCESSING, 2001, Budapest, Hungary.
Proceedings… [S.l.:s.n.], 2001.

LIEVERSE, P. et al. A Methodology for Architecture Exploration of Heterogeneous
Signal Processing Systems. Journal of VLSI Signal Processing for Signal, Image,
and Video Technology, Boston, v.29, n.3, p. 197-207, Nov. 2001.

MADISETTI, V. K.; ARPIKANONDT, C. A Platform-Centric Approach to System-
on-Chip (SOC) Design. Netherlands: Springer, 2005.

MARTIN, G.; MUELLER, W. UML for SoC Design. Dordrecht, Netherlands:
Springer, 2005. v.1.

MATHAIKUTTY, D. et al. UMoC++: Modeling environment for heterogeneous
systems based on generic MoCs. In: VACHOUX, A. (Ed.). Applications of
Specification and Design Languages for SoCs. Netherlands: Springer, 2006. p. 115-
130.

MATTOS, J. C. B.; BRISOLARA, L. B.; HENTSCHKE, R.; CARRO, L.; WAGNER,
F. R. Design Space Exploration with Automatic Generation of IP-based Embedded
Software. In: IFIP WORKING CONFERENCE ON DISTRIBUTED AND PARALLEL
EMBEDDED SYSTEMS, DIPES, 2004, Toulouse, France. Proceedings... Boston:
Kluwer Academic, 2004. p.237-246.

MATHWORKS. Real-Time Workshop (RTW). Available at:
<http://www.mathworks.com>. Visited on: Nov. 2004.

MATHWORKS. Simulink . Available at: <http://www.mathworks.com>. Visited on:
July 2003a.

MATHWORKS. Stateflow. Available at:
<http://www.mathworks.com/products/stateflow/>. Visited on: Sept. 2003b.

MELLOR, S.; BALCER, M. Executable UML: A Foundation for Model Driven
Architecture. Boston: Addison-Wesley, 2002.

MENTOR GRAPHICS. BridgePoint UML Suite. Available at:
<http://www.projtech.com>. Visited on: Jan. 2005.

MOHANTY, S. et al. Rapid Design Space Exploration of Heterogeneous Embedded
Systems using Symbolic Search and Multi-Granular Simulation. ACM SIGPLAN
Notices, New York, v.37, n.7, p. 18-27, 2002.

110

MOSER, E.; NEBEL, W. Case Study: System Model of Crane and Embedded Control.
In: DESIGN, AUTOMATION DESIGN, AUTOMATION AND TEST IN EUROPE,
DATE, 1999, Munich, Germany. Proceedings... Los Alamitos: IEEE Computer
Society, 1999.

NATIONAL INSTRUMENTS. Labview. Available at: <http://www.ni.com/labview/>.
Visited on: Jan. 2006.

NEEMA, S. et al. Constraint-Based Design-Space Exploration and Model Synthesis. In:
NEEMA, S. et al. Embedded Software. Berlin: Springer, 2003. p. 290-305. (Lecture
Notes in Computer Science, v. 2855).

NETBEANS DEVELOPMENT TEAM. MDR: Netbeans Metadata Repository.
Available at: <http://mdr.netbeans.org>. Visited on: July 2005.

NO MAGIC. MagicDraw. Available at: <http://www.magicdraw.com/>. Visited on:
April 2007.

OH, H.; HA, S. Memory-optimized Software Synthesis from Dataflow Program Graphs
with Large Size Data Samples. EURASIP Journal on Applied Signal Processing,
Akron, Ohio, v. 2003, p. 514-529, May 2003.

OMG (Object Management Group). Unified Modeling Language (UML), version
2.1.1. Available at: <http://www.omg.org/technology/documents/formal/uml.htm>.
Visited on: June 2007a.

OMG (Object Management Group). QoS&FT: UML Profile for Modeling Quality of
Service and Fault Tolerance Characteristics and Mechanisms. 2004. (OMG document
ptc/04-09-01). Available at: <http://www.omg.org/>. Visited on: June 2007b.

OMG (Object Management Group). SysML: Systems Modeling Language. Available
at: <http://www.omgsysml.org/>. Visited on: in July 2006.

OMG (Object Management Group). UML Profile for Modeling and Analysis of Real-
Time and Embedded systems (MARTE), RFP. [S.l.], 2005. (OMG document:
realtime/05-02-06).

OMG (Object Management Group). UML Profile for Schedulability, Performance,
and Time, 2002. (OMG document n. ptc/02-03-02). Available at:
<http://www.omg.org>. Visited on: Jan. 2003.

OMG (Object Management Group). XMI : XML Model Interchange. (OMG document
formal/2002-01-01). Available at: <http://www.omg.org>. Visited on: Jan. 2002.

OMG (Object Management Group). MOF : Meta-object Facility (MOF). [S.l.], 2001.
(OMG document formal/2001-11-02). Available at: <http://www.omg.org>. Visited on:
June 2005.

OMG (Object Management Group). Unified Modeling Language Specification. v. 1.3.
[S.l.], 1999.

PIMENTEL A. D. et al. Exploring Embedded-Systems Architectures with Artemis.
Computer, Los Alamitos, v.34, n.11, p. 57-63, 2001.

111

PIMENTEL, A. D.; ERBAS, C.; POLSTRA, S. A Systematic Approach to Exploring
Embedded System Architectures at Multiple Abstraction Levels. IEEE Transactions
on Computers, [S.l.], v.55, n.2, Feb. 2006.

PINO, J. L.; BHATTACHARYYA, S. S.; LEE, E. A. A hierarchical multiprocessor
scheduling system for DSP applications. In: IEEE ASILOMAR CONFERENCE ON
SIGNALS, SYSTEMS, AND COMPUTERS, 1995. Proceedings…[S.l.: s.n], 1995.

POPOVICI, K.; GUERIN, X.; BRISOLARA, L.; JERRAYA, A. Mixed Hardware
Software Multilevel Modeling and Simulation for Multithread Heterogeneous MPSoC.
In: INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION & TEST,
VLSI-DAT, Taiwan, 2007. Proceedings... [S.l.: s.n], 2007.

PORRES, I. A toolkit for model manipulation. Software and Systems Modeling,
Berlin, v. 2, n. 4, p. 262-277, Dec. 2003.

PTOLEMY. Available at: <http://ptolemy.eecs.berkeley.edu/>. Visited on: Mar. 2004.

REICHMANN, C. et al. GeneralStore - a CASE-tool integration platform enabling
model level coupling of heterogeneous designs for embedded electronic systems. In:
IEEE INTERNATIONAL CONFERENCE AND WORKSHOP ON THE
ENGINEERING OF COMPUTER-BASED SYSTEMS, ECBS, 11., 2004.
Proceedings… [S.l.: s.n], 2004. p. 225- 232.

RIOUX, L. et al. MARTE: A new profile RFP for the modeling and analysis of real-
time embedded systems. In: UML-SOC WORKSHOP, UML-SoC, 2005.
Proceedings... [S.l.: s.n], 2005.

RUMBAUGH, J. et al. Object-Oriented Modeling and Design. [S.l.]: Prentice Hall,
1991.

SANDER, I.; JANTSCH, A. System Modeling and Transformational Design
Refinement in ForSyDe. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, New York, v.23, n.1, p. 17-32, 2004.

SANGIOVANNI-VINCENTELLI, A. et al. Benefits and Challenges for Platform Based
Design. In: DESIGN AUTOMATION CONFERENCE, DAC, 41., 2004, San Diego,
USA. Proceedings… New York: ACM Press, 2004. p. 409 - 414.

SANGIOVANNI-VINCENTELLI, A.; MARTIN, G. A Vision for Embedded Software.
Invited Talk. In: INTERNATIONAL CONFERENCE ON COMPILERS,
ARCHITECTURE, AND SYNTHESIS FOR EMBEDDED SYSTEMS, CASES, 2001,
Atlanta, USA. Proceedings… New York: ACM Press, 2001. p.1-7.

SCHMIDT, D. C. Guest Editor's Introduction: Model-Driven Engineering. Computer,
Los Alamitos, v. 39, n. 2, p. 25-31, Feb. 2006.

SELIC, B. UML 2: A model-driven development tool. Model-Driven Software
Development. IBM Systems Journal, Riverton, v. 45, n. 3, p. 607-620, 2006.

SELIC, B. Models, Software Models and UML. In: LAVAGNO, L.; MARTIN, G.;
SELIC, B. UML for Real: Design of Embedded Real-Time Systems. Norwell, MA,
USA: Kluwer Academic, 2003. p. 1-16.

112

SMARTQVT. SmartQVT: Open Source Transformation Tool Implementing the MOF
2.0 QVT-Operational Language. Available at: <http://smartqvt.elibel.tm.fr/>. Visited
on: May 2007.

SZTIPANOVITS, J.; KARSAI, G. Embedded Software: Challenges and Opportunities.
In: INTERNATIONAL WORKSHOP ON EMBEDDED SOFTWARE, EMSOFT, 1.,
2001. Embedded Software: proceedings. Berlin: Springer, 2001. p. 403-415. (Lecture
Notes in Computer Science. v. 2211.)

TELELOGIC. Rhapsody. Available at:
<http://modeling.telelogic.com/products/rhapsody/index.cfm>. Visited on: Mar. 2007.

TELELOGIC. Statemate. Available at:
<http://modeling.telelogic.com/products/statemate/index.cfm>. Visited on: Oct. 2003.

TELELOGIC. Telelogic Tau Architecture/Development. Available at:
<http://www.telelogic.com/>. Visited on: Oct. 2004.

TENSILICA. Xtensa V. Available at: <http://www.tensilica.com>. Visited on: Jan.
2006.

TEMMERMAN, M. et al. Moving Up to the Conceptual Modeling Level for the
Transformation of Dynamic Data Structures in Embedded Multimedia Applications. In:
INTERNATIONAL CONFERENCE ON EMBEDDED COMPUTER SYSTEMS:
ARCHITECTURES, MODELING, AND SIMULATION, SAMOS, 2005. Greece.
Proceedings... [S.l.: s.n.], 2005.

TIDWELL, D. XSLT . [S.l.]: O’Reilly. 2001.

VERKEST, D.; KUNKEL, J.; SCHIRRMEISTER, F. System Level Design Using C++.
In: DESIGN, AUTOMATION AND TEST IN EUROPE, DATE, 2000. Proceedings...
[S.l.]: IEEE Computer Society, 2000.

ZHOU, G.; LEUNG, M.; LEE, E. A. Code Generation Framework for Actor-
Oriented Models with Partial Evaluation. 2007. Technical Report. Available at:
<http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-29.pdf>. Visited on:
May 2007.

WEHRMEISTER, M. A.; BECKER, L.B.; PEREIRA, C. E. Optimizing Real-Time
Embedded Systems Development Using a RTSJ-based API. In: WORKSHOP ON THE
MOVE TO MEANINGFUL INTERNET SYSTEMS, OTM, 2004. Proceedings…
Berlin: Springer, 2004. p. 292-302. (Lecture Notes in Computer Science 3292).

WIEGAND, T. et al. Overview of the H.264/AVC Video Coding Standard. IEEE
Transactions on Circuits and Systems for Video Technology, New York, v.13, n.8,
p. 560-570, July 2003.

113

APPENDIX A ESTRATÉGIAS PARA
DESENVOLVIMENTO DE SOFWARE EMBARCADO

BASEADAS EM MODELOS DE ALTO NÍVEL

O desenvolvimento tecnológico expôs uma nova realidade, o uso intensivo pelo ser
humano de sistemas computacionais. Esses sistemas computacionais, quando embutidos
em um produto, são chamados de sistemas embarcados, pois constituem parte de um
todo e desenvolvem tarefas específicas. Os sistemas embarcados estão presentes em
diversos setores tais como: automotivo, aeronáutico, telecomunicações, eletrônica de
consumo e de dispositivos medicinais. Geralmente, os sistemas embarcados complexos
são implementados como system-on-chip (SoC) heterogêneos compostos de
componentes de hardware dedicado, processadores programáveis, memória,
controladores de interface e outros módulos de hardware.

Muitos sistemas embarcados têm requerimentos que os diferem dos tradicionais
sistemas desenvolvidos para PCs. Muitas vezes esses são inseridos em equipamentos
para os quais a portabilidade é um fator importante, nestes casos, tamanho, peso e
dissipação de potência são requisitos críticos. Muitos sistemas embarcados possuem
restrições de tempo de resposta e de confiabilidade, além das restrições tradicionais de
consumo de energia, área de memória e desempenho. Além disso, o tempo para
lançamento do produto no mercado é crucial para o sucesso do projeto. Portanto,
produtividade e qualidade são simultaneamente requeridas no projeto de sistemas
embarcados a fim de lançar um produto competitivo no mercado.

Projeto baseado em plataformas (PBD) (SANGIOVANNI-VINCENTELLI et al.,
2001; SANGIOVANNI-VINCENTELLI, 2004; VERKEST, 2000) é uma metodologia
de projeto que visa maximizar o reuso de componentes e consequentemente melhorar a
produtividade dos projetos. Com o reuso de plataformas de hardware, o software
embarcado é o que diferencia os produtos.

Segundo Burch (2001), o interesse por implementações baseadas em software
cresceu principalmente motivado pelo aumento no poder computacional das plataformas
de hardware que possibilitou mover mais funcionalidade para o software. Outro fator
motivacional foi o aumento dos custos de desenvolvimento de hardware que motivou o
reuse de uma mesma plataforma em diferentes produtos. A utilização desta abordagem
de projeto baseado em software proporciona flexibilidade e portabilidade, enquanto
diminui o tempo de projeto. Além disso, quando se desloca maior funcionalidade para o
software, o custo do sistema pode ser reduzido, assim como o tempo para colocá-lo no
mercado já que uma plataforma pré-definida será reusada. Porém, alguns aspectos tais
como consumo de potência e desempenho podem ser prejudicados.

114

Atualmente, com o uso de abordagens baseadas em plataformas, o gargalo para a
implementação de sistemas embarcados vem sendo considerado o desenvolvimento de
software, a sua depuração e a sua integração com os componentes de hardware. Deste
modo, o software está se tornando cada vez mais o principal fator de custo nos
dispositivos embarcados (GRAFF, 2003). Este cenário motiva a investigação de
estratégias para acelerar o desenvolvimento de software embarcado através de
ferramentas de automação.

Na área de engenharia de software, ferramentas CASEs (Computer Aided Software
Enginnering) são largamente utilizadas para automatizar o processo de
desenvolvimento. Como softwares convencionais são geralmente homogêneos, ou seja,
dedicados a um único domínio, as ferramentas de automação de software focam na
gerencia do desenvolvimento de grandes sistemas, sem lidar com aspectos como a
heterogeneidade. Porém, sistemas embarcados complexos abrangem uma grande
variedade de aplicações e possuem muitas funcionalidades agregadas em um único
sistema, devido a isso, existem diferentes necessidades de computação requeridas em
um único produto. Por exemplo, a especificação de um telefone celular não requer
somente processamento digital de sinais para o domínio de telecomunicações, que segue
o modelo de computação tempo-discreto. Ela também requer lógica seqüencial para
descrever várias outras aplicações embarcadas no celular (agenda, alarme, etc.). Assim,
pode-se afirmar que os sistemas embarcados são naturalmente heterogêneos e, portanto,
as ferramentas de automação devem suportar diferentes modelos de computação.
Porém, as ferramentas existentes para automação de desenvolvimento de software não
oferecem este recurso.

Além disso, o desenvolvimento de software embarcado difere do software
tradicional quanto às exigências impostas ao projeto de software embarcado. Por
exemplo, restrições de tamanho de memória e consumo de potência são muito mais
rígidas nestes sistemas do que em sistemas tradicionais, o que é um outro fator que
inviabiliza o uso de ferramentas CASE tradicionais para o projeto de software
embarcado. Embora, consideremos estes aspectos de qualidade do software muito
importantes para o domínio de embarcados, isto não faz parte do escopo deste trabalho.

Além do projeto baseado em plataformas, o uso de abstrações de alto nível também
tem sido adotado para lidar com a crescente complexidade dos sistemas embarcados e
aumentar a produtividade do projeto. Selic (2003) e Gomma (2000) ressaltam que o uso
de técnicas de projeto começando por níveis de abstração mais altos é a única maneira
viável para lidar complexidade das novas gerações de sistemas embarcados, sendo
considerada uma prática essencial para o sucesso do projeto.

O uso de abstrações de mais alto nível permite abstrair detalhes de implementação
na linguagem alvo, facilitando a especificação do sistema que é realizada através da
construção de modelos, as invés de escrita de código. Usando esta abordagem, modelos
de sistemas embarcados podem evoluir de abstrações de alto nível até implementações,
assegurando um processo muito mais suave e confiável que o provido pelas práticas de
engenharia de software tradicionais. A tradução automática do modelo de alto nível em
código executável é altamente desejável, mas dependendo da notação de modelagem
usada, diferentes graus de interação com o projetista podem ser requeridos. A
linguagem de modelagem deve prover mecanismos para expressar não só a
funcionalidade como também os requisitos da aplicação, alem de suportar a validação e
mecanismos que facilitem a obtenção de uma implementação do modelo. Muitas
abordagens de modelagem e linguagens têm sido propostas para a especificação de

115

sistemas embarcados, mas não há um consenso, já que nenhuma linguagem é
considerada boa para modelar todas às aplicações encontradas neste domínio.

Dentre as abordagens propostas, duas abordagens se ressaltam, uma que é a baseada
em blocos funcionais e é provida pelo Simulink e a outra que é baseada em orientação a
objetos e provida pela UML. Tradicionalmente, abordagens baseadas em blocos
funcionais têm sido usadas nas comunidades de processamento de sinais e de
engenharia de controle para desenvolvimento de sistemas embarcados. Esta abordagem
tem sido largamente aceita pela indústria, principalmente, devido ao grande número de
ferramentas disponíveis como, por exemplo, Simulink (MATHWORK, 2003a) e
Labview (NATIONAL INSTRUMENTS, 2006).

Por outro lado, a linguagem UML é considerada a linguagem de fato para a
modelagem de sistemas orientados a objetos e tem crescido em popularidade também na
área de projeto e especificação de sistemas embarcados de tempo real. Em
(LAVAGNO, 2003), esforços que descrevem o uso de UML em diferentes fases do
projeto de sistema embarcados são apresentados.

No contexto deste trabalho, as duas abordagens baseadas em UML e Simulink são
avaliadas quanto à modelagem, geração de código e mecanismos de exploração do
espaço de projeto. Os resultados de análise foram publicados em (BRISOLARA, 2004;
BRISOLARA, 2005b) e são apresentados e discutidos no capítulo 2. A partir desta
análise, observou-se que as abordagens de geração de software embarcado baseado em
UML e Simulink possuem limitações, e esta tese propõe estratégias para resolver as
principais limitações encontradas nas duas abordagens.

Apesar dos esforços e propostas para extensão da linguagem, UML continua não
sendo adequada para modelagem de sistemas dataflow, pois ela é uma linguagem
baseada em eventos e, portanto, control-flow. Quanto à geração de código, a maioria
das ferramentas UML geram somente esqueletos de código a partir de modelos
estáticos. Poucas ferramentas são capazes de gerar código a partir de diagramas
comportamentais. Porém, para geração de código completo, as ferramentas exigem que
o projetista insira fragmentos de código junto aos diagramas. Todas as ferramentas
comerciais encontradas geram código somente a partir de diagramas de estado e para
gerar código completo, exigem que o projetista descreva as ações referentes a cada
estado. Muitas vezes, o projetista usa a linguagem de programação alvo para fazer isso,
o que além de tornar o modelo dependente da linguagem alvo. Nós propomos aqui o uso
de abstrações junto aos modelos comportamentais UML para reduzir o esforço
requerido ao projetista, reduzindo o número de linhas de código, enquanto, suportando a
geração de código completo a partir de modelos UML. Esta proposta é discutida no
capítulo 3 desta tese.

Por outro lado, Simulink suporta modelos do tipo dataflow de tempo-discreto e
tempo-contínuo frequentemente encontrados em aplicações embarcadas. Além disso,
completo código pode ser gerado usando Real-time workshop (MATHWORKS, 2004).
Porém, o código gerado é voltado para uma arquitetura mono-processada. Observando
esta limitação, propomos uma estratégia para geração de código multithread voltado
para plataformas multi-processadas (MPSoC) heterogêneas (BRISOLARA, 2007a), que
é apresentada no capítulo 4. Nesta estratégia, código multithread é gerado a partir de um
modelo denominado Simulink CAAM (combined algorithm architecture model). O
modelo Simulink CAAM combina algoritmo (funcionalidade) e arquitetura, contendo
informações sobre o particionamento do sistema em threads e também sobre o

116

mapeamento das threads para processadores. A abordagem de geração de código a
partir de modelos Simulink CAAM proposta aqui faz parte de um fluxo de projeto de
sistemas MPSoC baseado em Simulink proposto em (HUANG et al., 2007).

 A comparação entre UML e Simulink mostra também que as duas abordagens de
modelagem apresentam pros e contras, o que motiva pesquisadores a encontrar uma
maneira de explorar simultaneamente benefícios providos pelas duas linguagens em um
único fluxo de projeto. Recentes esforços mostram que tanto UML como Simulink são
consideradas atrativas para o projeto de sistemas embarcados. Boldt (2007) propõe a
integração de modelos Simulink em modelos UML na ferramenta Rhapsody.
Reichmann (2004) também propôs a integração de modelos desenvolvidos em
diferentes ferramentas incluindo UML, Simulink e Statemate (TELELOGIC, 2003).
Usando esta abordagem, módulos do sistema podem ser modelados usando a ferramenta
mais apropriada e geradores de código de domínio específico são usados para gerar
código para cada módulo. SysML (OMG, 2006) foi proposta como uma extensão de
UML para ser usadas por engenheiros de sistemas, provê um alto grau de integração
com o paradigma de blocos funcionais. Porém, a primeira especificação desta
linguagem ainda é muito próxima da UML, não apresentando melhorias significativas.
Além disso, devido a ser ainda uma novidade, as ferramentas de modelagem que
suportam a linguagem não tiveram ainda suas capacidades devidamente avaliadas.

Nesta tese (capítulo 5), propomos uma maneira de integrar UML e Simulink em um
único fluxo de projeto, permitindo que UML seja usada como a linguagem de
especificação e front-end para diferentes abordagens de geração de código
(BRISOLARA, 2007b). Diferentemente das abordagens propostas por Boldt e
Reichmann, nossa abordagem propõe o uso de UML como a linguagem única para
especificação inicial. O fluxo proposto baseia-se na tradução de modelos UML para
outras notações mais adequadas para a geração de código, por exemplo, modelos
Simulink para dataflow ou máquina de estados (finite state machines, FSM) para
control-flow. Além disso, o fluxo proposto permite que um modelo UML possa ser
reusado para diferentes abordagens de geração de código, sejam abordagens tradicionais
baseadas em UML ou abordagens baseada em Simulink, visando diferentes plataformas.

Uma das principais motivações para a definição deste fluxo de projeto integrador foi
usar UML como front-end para a ferramenta de geração de código multithread baseada
em Simulink proposta em (BRISOLARA, 2007a). Portanto, nós propomos aqui um
mapeamento entre UML e Simulink CAAM. O proposto mapeamento permite a
exploração dos benefícios de UML para especificação de requisitos funcionais e não
funcionais, enquanto provê um caminho para a obtenção de código executável, para
rodar em uma arquitetura composta de múltiplos processadores heterogêneos, a partir de
um modelo de alto nível de abstração. O Simulink CAAM gerado a partir do modelo
UML pode ser usado como entrada para um fluxo completo de projeto de sistemas
MPSoCs, podendo ser usado também na geração da especificação do HW para a
plataforma MPSoC. O emprego da abordagem proposta evita que projetistas construam
ou modifiquem modelos Simulink diretamente, o que significa maior abstração e evita
que projetistas lidem com detalhes de baixo nível como sinais e portas.

O proposto mapeamento de UML para Simulink CAAM baseia-se principalmente
em informações extraídas de diagramas de seqüência e diagrama de distribuição
(deployment). O Diagrama de distribuição é usado para indicar o mapeamento de
threads para processadores. O diagrama de seqüência é o principal diagrama usado
neste mapeamento, sendo assim um diagrama de seqüência deve ser definido para cada

117

thread que compõe o sistema. A partir do diagrama de seqüência captura-se um
diagrama composto de blocos Simulink, compondo um modelo dataflow e que define o
comportamento da thread. A invocação de métodos de objetos passivos no diagrama de
seqüência é mapeada para blocos funcionais (pré-definidos ou definidos pelo projetista).
A invocação de métodos entre diferentes threads indica a comunicação entre elas e são
mapeadas para blocos de comunicação no modelo Simulink CAAM e a invocação de
métodos a partir de objetos decorados com o estereótipo <<IO>> são mapeados para
portas de entrada e saída no modelo Simulink.

Não existe um mapeamento 1 para 1 entre as duas notações. Portanto, além do
mapeamento, propomos três tipos de otimizações, que são a inferência de canais de
comunicação, a inserção de barreiras temporais e o agrupamento de threads. A
inferência de canais de comunicação e o agrupamento de threads são necessários para a
construção do modelo Simulink CAAM, pois tratam de aspectos como comunicação
entre threads e definição do mapeamento de threads para processadores. Estes são
aspectos importantes na definição de um modelo multithread e muti-processado. Além
disso, a fim de evitar deadlocks, barreiras temporais são inseridas automaticamente
quando caminhos cíclicos são encontrados na geração do modelo dataflow Simulink.

Quando o agrupamento de threads é usado, ao invés do projetista definir a alocação
de threads para processadores através do diagrama de distribuição, um algoritmo
baseado no linear clustering é usado para definir o melhor mapeamento de threads para
processadores com base no volume de comunicação entre as threads. A inferência de
canais de comunicação instancia blocos de comunicação para representar a
comunicação entre threads explicitamente no modelo UML. Esta etapa seta também o
protocolo de comunicação dependendo do tipo de comunicação requerida, se é entre
threads alocadas a uma mesma CPU ou em diferentes CPUs.

To show the usefulness of the proposed design flow, we developed a prototype,
which is able to generate Simulink CAAM from an UML model. Using the developed
prototype, we conduct experiments to show the benefits of our proposed mapping. At
present, the designer applies the mapping from UML to Simulink for whole system, but
in the future, an analysis tool could be used to determine which fragments of the system
are dataflow and control-flow, thus the mapping is applied only for the dataflow part.

Embora o fluxo de mapeamento proposto suporte outros mapeamentos além do
Simulink, este trabalho endereça somente o mapeamento de UML para Simulink e
Simulink CAAM. Para completamente suportar o fluxo proposto, o mapeamento de
UML para modelos do tipo máquina de estados (FSM) também deveria ser provido.
Desta maneira, além de um caminho para geração de código baseado em modelos
Simulink, o fluxo suportaria o uso de diferentes ferramentas para geração de código
para módulos do sistema que sejam do tipo control-flow. A tradução de UML para FSM
será considerada como trabalho futuro.

Para mostrar a utilidade de nossa proposta, um protótipo foi desenvolvido no
contexto desta tese, o qual implementa o mapeamento de UML para Simulink CAAM.
Usando este protótipo, experimentos foram realizados. Atualmente, o mapeamento é
aplicado para todo o modelo UML, porém, futuramente ele deve ser aplicado apenas a
parte dataflow do sistema. A fim de automatizar ainda mais o processo de
desenvolvimento de software embarcado e o suporte a modelos heterogêneos,
planejamos usar uma ferramenta de análise para particionar o sistema em módulos
dataflow e control-flow. Após o particionamento, cada fragmentos do modelo pode ser

118

mapeado para a notação mais adequada a seu tipo e após o mapeamento, a abordagem
de geração de código apropriada pode ser usada para obter uma implementação para
cada módulo do sistema.

119

APPENDIX B EXPANDED FIGURES

This section presents expanded figures used in chapter 4 and 5. Figures of the
MJPEG Simulink CAAM, used as case study in chapter 4, are presented here in detail.
In addition, it includes the Simulink CAAM metamodel, all sequence diagrams used in
the Crane case study in chapter 5. For the synthetic example, whole sequence diagram
(partially presented in section 5.3.2) and the hierarchical levels of the Simulink CAAM
generated for our tool are presented here.

Fig. 1: MJPEG decoder Simulink CAAM: top level (Fig. 4.15a)

120

Fig. 2: MJPEG decoder Simulink CAAM: CPU1 subsystem (Fig. 4.15b)

Fig. 3: MJPEG decoder Simulink CAAM: Thread2 subsystem (Fig. 4.15c)

122

Fig 4: Simulink CAAM meta-model

123

Fig. 5: Crane control system: Sequence diagram of Thread T3 (Fig. 5.13)

124

Fig. 6: Crane control system: Sequence diagram of Thread T1 (Fig. 5.11)

125

Fig. 7: Crane control system: Sequence diagram of Thread T2 (Fig 5.12)

Fig. 8: Synthetic example: Sequence diagram of whole application (Fig. 5.17)

Fig. 9: Synthetic example: generated Simulink CAAM – top level

Fig. 10: Synthetic example: generated Simulink CAAM – CPU0 subsystem

128

Fig.11: Synthetic example: generated Simulink CAAM – CPU1 subsystem

Fig. 12: Synthetic example: Simulink CAAM – CPU2 subsystem

129

Fig.13: Synthetic example: generated Simulink CAAM – CPU3 subsystem

