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Influence of the density of states on the odd-even staggering in the charge distribution
of the emitted fragments in nuclear heavy-ion collisions
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The fragmentation of thermalized sources is studied using a version of the Statistical Multifragmentation Model
which employs state densities that take the pairing gap in the nuclear levels into account. Attention is focused
on the properties of the charge distributions observed in the breakup of the source. Since the microcanonical
version of the model used in this study provides the primary fragment excitation energy distribution, one may
correlate the reduction of the odd-even staggering in the charge distribution with the increasing occupation of
high-energy states. Thus, in the framework of this model, such staggering tends to disappear as a function of the
total excitation energy of the source, although the energy per particle may be small for large systems. We also
find that, although the deexcitation of the primary fragments should, in principle, blur these odd-even effects
as the fragments follow their decay chains, the consistent treatment of pairing may significantly enhance these
staggering effects on the final yields. In the framework of this model, we find that odd-even effects in the charge
distributions should be observed in the fragmentation of relatively light systems at very low excitation energies.
Our results also suggest that the odd-even staggering may provide useful information on the nuclear state density.
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I. INTRODUCTION

Size and isotopic correlations of fragments produced in
nuclear reactions provide important information on both
reaction mechanisms [1–4] and nuclear properties [1–8].
For instance, nuclear isoscaling [9,10] turned out to hold
information on the qualitative shape of the nuclear caloric
curve [11], so that it may, in principle, provide a useful
tool to help to establish experimentally the existence of the
plateau predicted theoretically [12,13] and observed in some
experiments [3,14,15]. However, its properties have exten-
sively been debated in the literature due to the uncertainties in
determining both the temperature and the excitation energies
[7,16,17]. The sensitivity of isoscaling to symmetry energy
[9,10,18,19] has stimulated investigations on the equation
of state of the symmetry energy. However, further studies
revealed that the relationship between symmetry energy and
isoscaling is rather subtle [20–24], so that care must be taken
in drawing conclusions based on such analyses.

Odd-even effects on the fragment charge distributions
produced in different reactions have been recently reported
in the literature [25–29]. Analyses based on the fragmentation
of the quasiprojectile have been made at relativistic energies
[25] as well as at much lower bombarding energies [28]. In
both cases, clear odd-even effects have been observed in the
fragment size distribution. This is surprising, to a certain ex-
tent, since the pairing gap should quickly vanish as the system
is heated [30,31]. The data reported in Ref. [25] have been
analyzed using an abrasion-evaporation model and the odd-
even effects were attributed to the late stages of the evaporation
process, during which the system is relatively cool. In Ref.

[28], it is demonstrated that the deexcitation of the primary
hot fragments plays a very important role. Indeed, it was
found that the adopted deexcitation process leads to the
appearance of staggering effects in charge correlations of
fragments with odd neutron excess, which is not observed in
the primary fragments. Similar conclusions were also drawn
in Ref. [26], where it was suggested that staggering should
occur at low excitation energies. The study of central and
semi-peripheral collisions carried out in Ref. [27] shows that
important odd-even effects are observed for fragments with
Z < 15 and, in the case of peripheral collisions, they can be
observed up to Z = 40. On the other hand, other experimental
results [29] reveal that these effects rapidly decrease as the
fragment size increases.

In this work, we investigate the odd-even staggering
using the version of the Statistical Multifragmentation Model
(SMM) presented in Ref. [32]. In this implementation, the
deexcitation of the primary fragments is treated by using a
generalization of the Fermi breakup model (GFBM) [33], in
which the emitted fragments are excited. As was demonstrated
in Ref. [33], this is equivalent to the standard version of
SMM if the same ingredients are employed in both treatments.
It therefore allows one to investigate the role played by
the pairing energy at different stages of the process if it is
consistently taken into account in the model.

We thus start, in Sec. II, by reviewing the main features
of the treatment presented in Ref. [32] and discussing the
modifications of the model needed to include pairing effects
in the nuclear state density. The predictions of the model are
presented and discussed in Sec. III. Conclusions are drawn in
Sec. IV.
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II. THEORETICAL FRAMEWORK

In the SMM [12,34,35] one assumes that an equilibrated
source of mass and atomic numbers A0 and Z0, respectively,
breaks up simultaneously after having expanded to a breakup
volume V = (1 + χ )V0, where V0 is the volume corresponding
to the normal nuclear density. We use χ = 2 in this work. Be-
sides strict mass and charge conservation, each fragmentation
mode must fulfill the energy conservation constraint

E∗ − BA0,Z0 = Cc

Z2
0

A
1/3
0

1

(1 + χ )1/3
+

∑
{A,Z}

nA,ZEA,Z, (1)

where E∗ is the total excitation energy of the source and BA0,Z0

denotes its binding energy. Except for fragments with A �
4, for which empirical values are adopted, we use the mass
formula developed in Ref. [36]:

BA,Z = CvA − CsA
2/3 − Cc

Z2

A1/3
+ Cd

Z2

A
+ δA,ZA−1/2,

(2)

where

Ci = ai

[
1 − k

(
A − 2Z

A

)2
]

(3)

and i = v,s denotes the volume and surface terms, respec-
tively. The last term in Eq. (2) is the usual pairing contribution
to the binding energy:

δA,Z = 1
2 [(−1)A−Z + (−1)Z]Cp. (4)

The numerical values of all the parameters are listed in Ref.
[36].

The Coulomb interaction between the fragments is taken
into account in the framework of the Wigner-Seitz approxima-
tion [34,37]:

ECoul = Cc

Z2
0

A
1/3
0

1

(1 + χ )1/3

+Cc

∑
A,Z

nA,Z

Z2

A1/3

[
1 − 1

(1 + χ )1/3

]
, (5)

where nA,Z denotes the multiplicity of species (A,Z). The
contribution associated with the homogeneous sphere of
volume V is explicitly written on the right-hand side of Eq. (1),
whereas the other terms are contained in EA,Z , which reads

EA,Z = −BA,Z + ε∗
A,Z − Cc

Z2

A1/3

1

(1 + χ )1/3
+ Etrans

A,Z , (6)

where ε∗
A,Z represents the excitation energy of the fragment

and Etrans
A,Z is its translational energy.

In order to employ the efficient recursion formulas devel-
oped in Ref. [38], Eq. (1) is conveniently rewritten as

Q�Q ≡ E∗ − Bc
A0,Z0

= �Q

∑
α,qα

qαnα,qα
, (7)

so that Q is an integer number. In this way, the energy is
discretized and the parameter �Q controls the granularity of

the discretization. The quantity Bc
A,Z corresponds to

Bc
A,Z ≡ BA,Z + Cc

Z2

A1/3

1

(1 + χ )1/3
(8)

whereas

qA,Z�Q ≡ −Bc
A,Z + ε∗

A,Z + Etrans
A,Z . (9)

The sum over α is carried out through all the isotopic
species whereas that over qα must be consistent with energy
conservation, as stated in Eq. (7). Following Refs. [38] and
[32], the average multiplicity of a species (a,z), with energy
q�Q, is given by

na,z,q = ωa,z,q

�A0,Z0,Q

�A0−a,Z0−z,Q−q . (10)

The statistical weight �A,Z,q is calculated through the
following recurrence relation:

�A,Z,Q =
∑
α,qα

aα

A
ωaα,zα,qα

�A−aα,Z−zα,Q−qα
(11)

and ωA,Z,q is obtained by folding the number of states
associated with the kinetic motion with that corresponding
to the internal degrees of freedom:

wA,Z,q = γA

∫ εA,Z,q

0
dK

√
KρA,Z(εA,Z,q − K), (12)

where

γA = �Q

Vf (2mnA)3/2

4π2�3
, (13)

εA,Z,q ≡ q�Q + Bc
A,Z , Vf = χV0 represents the free volume,

mn is the nucleon mass, and ρA,Z(ε∗) is the density of the
internal states of the nucleus (A,Z) with excitation energy ε∗.
Thus, once the state density is specified, the above relations
allow one to calculate the statistical properties of the system.

As mentioned above, except for the very light fragments,
which have no internal degrees of freedom, the primary frag-
ments are created in excited states, so that their deexcitation
should be taken into account in order to obtain the final dis-
tribution. Different treatments have been adopted in the SMM
[2,39,40]. In Ref. [40] an evaporation scheme based on the
Weisskopf-Ewing treatment has been implemented. In other
realizations of the model [2,39], it has been combined with
the Fermi breakup model to describe the decay of light nuclei
(A � 16) while the Weisskopf-Ewing treatment is reserved
for heavier fragments (A > 16). Recently, a generalization
of the Fermi breakup model, including contributions due to
the fragments’ excited states, has been demonstrated to be
formally equivalent to the SMM [33]. Its implementation
to the deexcitation of the primary fragments was carried
out in Ref. [32]. In this sense, our implementation of the
fragments’ deexcitation differs from the other two treatments
just mentioned but the differences should not appreciably
impact the qualitative properties of the charge distributions,
on which we focus in this work.

Thus, the final fragment distribution is obtained by applying
the above treatment successively for each fragment until they
have decayed to the final states, as described in Ref. [32].
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More specifically, each species (A,Z) contributes to the yields
of (a,z) which add up to

na,z,q → na,z,q + n′
a,z,q

1 − n′
A,Z,q0

nA,Z,q0 , a < A. (14)

where

n′
a,z,q = ωa,z,q

�A,Z,q0

�A−a,Z−z,q0−q . (15)

Thus, by starting from the heaviest species down to the lightest
fragment, one generates the final distribution.

The above relationships clearly show that the density of
states plays a key role in the different stages of the process.
The traditional SMM model employs [41]

ρA,Z(ε∗) = ρSMM(ε∗) = ρFG(ε∗)e−bSMM(aSMMε∗)3/2
(16)

with

ρFG(ε∗) = aSMM√
4π (aSMMε∗)3/4

exp(2
√

aSMMε∗) (17)

and

aSMM = A

ε0
+ 5

2
β0

A2/3

T 2
c

, (18)

where ε0 = 16.0 MeV, β0 = 18.0 MeV, and Tc = 18.0 MeV.
The other parameters read bSMM = 0.07A−τ and τ = 1.82(1 +
A/4500), for A > 4. In the case of the α particles, we set
β0 = 0 and bSMM = 0.000848416. For the other light nuclei
with A < 5, which have no internal degrees of freedom, we
use ρA,Z(ε∗) = gA,Zδ(ε∗), where gA,Z represents the empirical
spin degeneracy factor. To avoid numerical instabilities at very
small excitation energies, in this work, we use ρA,Z(ε∗) =
ρ0e

(ε∗−Ux )/τ̃ for ε∗ < Ux , where Ux is defined below. The
parameters ρ0 and τ̃ are adjusted, for each species, in order to
match the value and the first derivative of the density of states
at ε∗ = Ux .

Since this parametrization of the state density does not take
pairing effects into account, this aspect is not consistently
treated by the model. For this reason, these effects appear even
at high excitation energies. This is illustrated in Fig. 1, which
shows the charge distribution obtained in the breakup of the
40Ca nucleus at different excitation energies. The primary and
final yields are, respectively, displayed in Figs. 1(a) and 1(b). In
both cases, odd-even staggering is clearly seen in the charge
distribution, which, in the framework of the model, can be
explained only by the presence of the pairing term in the
fragments’ binding energy [28], as is explicitly written in
Eqs. (2) and (4). However, one should note that the breakup
temperatures [see Eq. (23) below] vary from T = 3.8 MeV
for E∗/A = 1.5 MeV to T = 5.0 MeV for E∗/A = 3.5 MeV.
In this temperature range, pairing effects should not be so
important [30,31].

Empirical information on discrete states has been taken
into account in the SMM version presented in Ref. [41].
However, extremely exotic nuclei enter in the above recursion
formulas, for which information on such states is very scarce
or unavailable. Furthermore, the quick growth of the number
of states with the system size makes the implementation of this
procedure extremely difficult, except in the case of very light

FIG. 1. (Color online) Charge distribution from the breakup of
the 40Ca nucleus at different excitation energies, showing primary (a)
and final (b) yields, respectively. The standard SMM state density,
Eq. (16), is used in all the cases. For details see the text.

nuclei. For this reason, in that work, analytical approximations
have been used to supplement empirical information. There are
different parametrizations of the nuclear level density in the
literature, with different degrees of accuracy and complexity,
such as those discussed in Refs. [31,42–45]. Since we intend
to take into account the essential features of the nuclear level
densities, we use the parametrization proposed by Gilbert and
Cameron [42], as already employed in the SMM of Ref. [41]:

ρGC(ε∗) =
⎧⎨
⎩

√
2πσ0
τ

e(ε∗−E0)/τ , ε∗ � Ex,
√

π

12
e2

√
a(ε∗−�)

(ε∗−�)(a[ε∗−�])1/4 , ε∗ > Ex,
(19)

where � is the pairing energy of the nucleus, Ex = Ux + �,
Ux = 2.5 + 150/A (MeV), σ 2

0 = 0.0888
√

a(Ex − E0)A2/3,
E0 = Ex − τ log[τρ2(Ex)],

ρ2(Ex) = 1

12
√

2

1

σ0

e2
√

a(Ex−�)

(Ex − �)[a(Ex − �)]1/4
, (20)

and

1

τ
=

√
a

Ex − �
− 3

2

1

Ex − �
. (21)

For all nuclei, we use the level density parameter
a = A/8.0 MeV−1.

The low-energy part of this state density takes into account
the fact that, in this energy domain, collective modes are also
excited, besides those associated with single-particle states,
so that the density of states is enhanced compared to that of
a Fermi gas due to this extra contribution. For this reason,
ρ(ε∗) increases as a function of exp(ε∗) at low energies,
instead of exp(2

√
aε∗) as it does at higher energies. Its explicit

dependence on ε∗ − � for E > Ex , rather than on ε∗, takes
into account the fact that the nucleon pairs must break in order
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FIG. 2. (Color online) Comparison of different observables,
from the breakup of the 40Ca nucleus, obtained with the standard
state density given by Eq. (16) and the improved formula, Eq. (22).
For details see the text.

to excite single-particle states. In this way, the use of Eq. (19)
takes into account pairing effects in the excited states.

Despite this desirable feature, this density of states differs
from that adopted in the standard SMM, which should lead
to predictions being at odds with previous results. Since we
intend to preserve the properties of the model at high energies,
we proceed as in Ref. [41] and gradually switch from ρGC to
ρSMM, so that we use

ρ(ε∗) = ρGC(ε∗)[1 − f (x)] + ρSMM(ε∗ − �)f (x). (22)

There is freedom in choosing the function f (x), as long
as it leads to a smooth switch from the two expressions for
the density of states. We adopt f (x) = [1 + tanh(x)]/2, with
x = [ε∗ − Ex − (1/2)�E]/δE, �E/A = exp(−A/35 + 1.2)
MeV, and δE = 10.0 MeV, which is simple and fulfills this
requirement.

In order to check the extent to which the main properties of
the model, particularly at high energies, are impacted by the
replacement of Eq. (16) by Eq. (22), in Fig. 2(a) we display
the primary and final charge multiplicities as a function of the
excitation energy for the breakup of the 40Ca nucleus, whereas
Fig. 2(b) exhibits the corresponding caloric curve. The breakup
temperature T is calculated through

1

T
= ∂ ln(�A0,Z0,Q)

∂(Q�Q)
≈ ln(�A0,Z0,Q) − ln(�A0,Z0,Q−1)

�Q

. (23)

The similarity of the results shown in Fig. 2 strongly suggests
that this improved state density can be safely used, and so it is
done from this point on.

FIG. 3. (Color online) Same as Fig. 1 but the state density is
replaced by Eq. (22). For details see the text.

III. RESULTS

We now investigate the role played by the improved state
density given by Eq. (22) in the staggering properties of the
charge distribution. In this way, the primary and final charge
distributions for the fragmentation of the 40Ca nucleus, at a few
excitation energies, are displayed in Fig. 3. In contrast with
the previous results shown in Fig. 1, odd-even effects in the
primary distribution quickly disappear as the excitation energy
increases, being barely noticeable at E∗/A ≈ 2.5 MeV. On the
other hand, these effects are significantly enhanced in the final
yields, as already suggested in former studies [25,26,28]. They
also tend to be smoothed out as Z increases, in agreement with
the findings of Ref. [29].

In order to examine the dependence of the staggering on the
source’s size, we also consider the breakup of the 80Zr nucleus.
The corresponding primary and final charge distributions are
exhibited in Fig. 4. The smoothing of the charge distribution is
much more accentuated in this case than in the fragmentation
of the 40Ca nucleus. The magnitude of the staggering is very
small at E∗/A = 1.5 MeV and disappears almost completely
at slightly higher excitation energies. The effects are somewhat
more important at lower excitation energies, but the yields are
extremely small.

The dependence of the odd-even staggering on the excita-
tion energy, as well as on the fragment and system sizes, can
be understood by examining the excitation energy distribution
of the primary fragments. This is calculated through

ε∗ = γa

ωa,z,q

∫ εa,z,q

0
dK (εa,z,q − K)

√
Kρ(εa,z,q − K). (24)

The results are shown in Fig. 5, for the 24Mg, 28Si, and 32S
fragments, produced in the breakup of the 40Ca and 80Zr
nuclei. Figure 5(a) displays the results corresponding to the
40Ca source at E∗/A = 1.5 MeV. For each of the considered
fragments, the vertical dotted lines represent Ex , which is the
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FIG. 4. (Color online) Same as Fig. 3 for the 80Zr nucleus. For
details see the text.

energy value below which collective states play a relevant
role. One sees that the fraction of fragments produced with
excitation energy higher than Ex quickly increases with the
fragment’s size. Therefore, pairing effects should become
progressively less important as the fragment’s size increases.

Figure 5(b) shows that the excitation energy of the source
also plays a very important role. Indeed, E∗/A increases only
by 0.5 MeV from Fig. 5(a) to Fig. 5(b) but the fraction

FIG. 5. (Color online) Average excitation energy of the primary
fragments produced in the breakup of 40Ca and 80Zr nuclei. The
vertical dotted lines represent Ex for 24Mg, 28Si, and 32S, as indicated
by the arrows and labels. For details see the text.

of fragments with excitation energy below Ex decreases
substantially. This should significantly weaken the odd-even
effects on the charge distribution, as is indeed noticed in Fig. 3.

In Fig. 5(c) is shown the average excitation energy for
the same fragments, but for a 80Zr nucleus as a source.
The excitation energy per nucleon, E∗/A = 1.5 MeV, is the
same as in Fig. 5(a), for the 40Ca source. The much larger
amount of the available excitation energy causes the energy
distribution to become broader and its peak to move to
higher excitation energies. Once more, the population with
excitation energy below Ex is significantly reduced, leading
to smoother charge distributions. One should note that the
breakup temperature is T = 3.89 MeV, which is very close to
the value of T = 3.74 MeV obtained with the 40Ca source at
the same excitation energy. These results reveal that, in this
context, the total excitation energy, instead of the excitation
energy per nucleon, is the relevant quantity.

Thus, in the framework of the SMM, the excitation energy,
fragment’s size, and source’s size dependence are explained
by the migration of the population in low-lying to high-lying
states. Therefore, the study of odd-even staggering may help
to obtain information on the nuclear state density.

Finally, we examine the extent to which it is possible to
distinguish among different parametrizations of the pairing
energy from this analysis. Besides that adopted in the SMM,
whose amplitude is � ≡ 11.86/A1/2 MeV, we also carried out
the calculations with the pairing term used in [46], in which
case the amplitude reads � ≡ 34.0/A3/4. The comparison
between these two terms is shown in Fig. 6(a), from which
one sees that these prescriptions lead to important differences
between the pairing energies. Notwithstanding this, the influ-
ence of this change of parametrization on the primary charge

FIG. 6. (Color online) (a) Comparison between different pairing
energies used in this work. (b) and (c) Comparison between the
final charge distributions for the fragmentation of 40Ca obtained with
different symmetry energy parametrizations. For details see the text.
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distribution is very small, so they are not shown in this figure.
The differences are amplified in the deexcitation process, as
is illustrated in the middle and bottom panels of Fig. 6, which
show the final charge distribution for the fragmentation of the
40Ca nucleus at E∗/A = 2.0 MeV and E∗/A = 4.0 MeV. The
larger pairing energy clearly leads to more important odd-even
effects and, therefore, the analyses made in Refs. [25–29] may
be helpful in finding the best parametrization for the pairing
term, but this requires a careful treatment of the deexcitation
of the primary fragments in order to minimize ambiguities.

IV. CONCLUDING REMARKS

By modifying the density of states employed in the SMM,
in order to take the pairing energy into account, we have
studied the odd-even staggering in the charge distribution of
fragments produced in the breakup of excited nuclear systems.
In agreement with previous results [25,26,28], we find that
this staggering is strongly influenced by the deexcitation of
the primary hot fragments, so that it can be useful in tuning
the treatments used to describe this stage of the process.

The smoothing of the charge distribution of primary
fragments is explained in the framework of our model by the
increasing of the population in states of energies for which
the excitation of single-particle states becomes dominant in
comparison to collective modes, being thus well described
by a Fermi gas. Since the density of states is one of the

ingredients of the calculations, our results suggest that the
odd-even effects observed in the charge distribution may also
be used to constrain this quantity.

We also found that a careful comparison with the ex-
perimental results may help to distinguish among different
parametrizations of the pairing energy.

In conclusion, the sensitivity of this odd-even staggering
to the key ingredients of the statistical calculations should be
very useful in improving these models and constraining some
of their parameters and assumptions. However, constraints
brought in by angular momentum conservation, which is
entirely disregarded in our model, may introduce correlations
that can play a role in the staggering properties of the
charge distribution. Therefore, deexcitation schemes based on
the Hauser-Feshbach treatment, such as those discussed in
Refs. [41,47], should also be employed.
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