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We study square and triangular optical lattice formation using a diffraction technique with light-possessing orbital
angular momentum (OAM). We demonstrate that it is possible to use Fraunhofer diffraction of light by a square
aperture to unveil OAM about two times bigger than would be possible with a triangular aperture. We notice that
the pattern remains truncated until a topological charge (TC) equal to 20 with good precision. Even though a square
pattern cannot be used to determine the TC sign, it is possible to measure high order of the modulus and sign of the
TC up to 20, combining patterns of the triangular and square apertures. © 2014 Optical Society of America
OCIS codes: (050.0050) Diffraction and gratings; (050.4865) Optical vortices; (050.1940) Diffraction; (050.1220)

Apertures.
http://dx.doi.org/10.1364/OL.39.000949

Light beams with orbital angular momentum (OAM) are
associated with an azimuthal phase structure exp�imϕ�,
where m is called topological charge (TC). This phase is
responsible for rotating the Poynting vector. High-order
Laguerre–Gauss (LG) [1] and high-order Bessel [2] beams
are examples of beams carrying OAM.
Since the seminal work by Allen et al. [3], OAM have

been extensively explored in light-matter interaction
[4–7] and diffraction phenomena [8–10]. Other applica-
tions of light’s OAM range from optical manipulation [11]
to quantum communication [12,13]. Two recent publica-
tions show the importance of this subject applied to op-
tical communications [14] and quantum metrology [15].
Particularly interesting is the rich relationship between

the phase of light with OAM and diffraction phenomena
[9,10,16–20]. This relationship was well explored by a
very simple experiment performed by Hickmann et al.
[10]. The basic idea is to observe the Fraunhofer pattern
of a diffracted light with OAM by a triangular slit or tri-
angular aperture with the phase singularity aligned on
the center of these objects. A truncated triangular optical
lattice in the Fraunhofer plane is observed. The size of
this optical lattice depends on the amount of OAM, and
by counting the number of intensity maxima N of any ex-
tern side of the triangular lattice you can obtain the value
of TC, m, using a very simple rule, m � N − 1. A simple
way to understand the formation of this pattern is to ob-
serve the diffraction of light with OAM due to each edge
of the aperture separately in Fraunhofer plane. Two
points must be observed: firstly, the number of fringes
due to each edge is proportional to the OAM value, and
second, the effect of the azimuthal phase over this dif-
fraction pattern produces a shift proportional to the
amount of OAM. By interfering the light diffracted by
the three edges, a triangular optical lattice is unveiled.
In fact, in [9] the authors showed a detailed study of
the diffraction problem of light with OAM by a single slit.

They considered two situations where the phase singu-
larity of the light beam strikes on the center of and above
a single slit. In the latter case, which is the case for one
side of the triangular aperture, the patterns observed are
asymmetric and shifted.

At this point a very simple question arises: What can
we learn about diffracting OAM beam by other polygonal
shapes? In [20], results of diffraction of light with OAM by
a square aperture were presented. The authors showed
numerically and experimentally that a perfect square
optical intensity lattice takes place only for even values
of the TC.

In this Letter, we show a comparative study of the dif-
fraction problem of light with OAM between square and
triangular shape. Surprisingly, with a square aperture the
value of TC obtained outperforms for more than two
times the maximum value of TC using a triangular
aperture. We present experimental results, computer
simulations, and a heuristic argument that explains this
observation.

Fig. 1. Experimental setup: A is an aperture (triangular or
square), li are lenses, and SLM is the spatial light modulator.
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The experimental setup is shown schematically in
Fig. 1. An Nd:YAG laser operating at 532 nm illuminates
a computer generated hologram [21] with controllable
pixels written in a Hamamatsu Model X10468-01 spatial
light modulator (SLM) and produces high-order LG
modes. A mask with a square or triangular aperture can
be superimposed over the LG beam after lens l3. The
beam at the aperture plane is optically Fourier trans-
formed by lens l4 and displayed in a charge coupled
device (CCD) camera.
For simplicity, we have used LG beams of light whose

transversal profile can be written as

Em�ρ;ϕ� � Aρm exp�imϕ�; (1)

where ρ and ϕ are the polar coordinates, A is a normali-
zation constant, and m is the TC.
We want to determine the Fraunhofer diffraction pat-

tern in the far field region of a beam carrying OAM scat-
tered using a triangular or a square aperture. The
diffracted field is given by a Fraunhofer integral [22]

Ef �k⃗⊥� �
Z �∞

−∞
τ�r⃗⊥�Ei�r⃗⊥�e−ik⃗⊥•r⃗⊥dr⃗: (2)

This integral gives the far field distribution of electrical
field, Ef , as a Fourier transform of the product of the
function describing an aperture, τ, and the incident field,
Ei. Note that the transverse wave vector k⃗⊥ can be asso-
ciated with the coordinate of a generic point in the far
field plane playing the role of reciprocal space. For a
square aperture, this integral can be evaluated ana-
lytically.
The field at the aperture plane could be written as

E � Aρmeimϕ � A�x� iy�jmj, where we choose the pos-
itive sign for positive TC and the negative sign for neg-
ative TC. The Fraunhofer diffraction integral for a
square aperture becomes
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where a is the length of the square aperture side. This
integral can be written as
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where we have considered a positive TC. Equation (4) is
an analytical result for the diffraction pattern corre-
sponding to any TC. A similar analytical result is not
straightforward for a triangular aperture because in this
case the integration limits are not all constants. There-
fore, we use numerical Fraunhofer diffraction integral
in all theoretical results we have presented here.

Figure 2 presents the theoretical results comprising
some values of the TC that we have measured
(m � 18, −19, and 20). Clearly, we cannot define any ex-
tern side of the triangular optical lattice withN lobes well
defined in order to obtain the TC modulus. However, it
still can be used to determine the TC sign. The pattern
obtained with negative TC value is rotated by 180° com-
paring to the positive one. Notwithstanding, the square
aperture can be used to determine the TC modulus up
to m � 20. In addition, we have noticed well-defined re-
lations between the TC values and the number of spots in
any extern side of the pattern, namely, m � 2N − 2 for
even TC value andm � 2N − 1 for odd TC value. It is pos-
sible to decide if the pattern corresponds to an even or
odd value of the TC observing the central region of each
pattern. This difference in the pattern formation have
been explained previously [20].

In order to have a better understanding about the re-
sults presented in Fig. 2, we superimpose the contour
plots of the diffraction pattern of each edge (colorful con-
tour) composing the square and triangular apertures,
with the interference pattern of whole object (white
contour), see Fig. 3. Representations of the square and
triangular apertures, of the same side length, are shown
in Figs. 3(a) and 3(b), respectively, with each edge being
represented by different color so that the colorful con-
tours of Fig. 3(c)–3(f) represent the diffracted pattern
by its respective colorful edge. Figures 3(c)–3(d) show
the colorful and white contours for m � 0. It is evident
as a bright point on the center of the intensity interfer-
ence pattern. This point coincides with the intersection
of the colorful contour. Figures 3(e)–3(f) show the color-
ful and white contours for m � 4. Now, each pattern
from each edge is shifted, and this shift is proportional
to TC value [9]. As a consequence, various intersection
points emerge. These intersection points coincide with
the maxima of interference, similarly for m � 0. In fact,
these intersection points define the optical lattice boun-
dary, and they are responsible for truncating the pattern
[9,10]. Physically, the interference peaks come from the
impossibility of distinguishing between path phase and
azimuthal phase [23].

18m = 19m = − 20m =

18m = 19m = − 20m =

Fig. 2. Diffraction patterns corresponding to the numerical
results of Eq. (2) for square and triangular apertures for
m � 18, −19, and 20.
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Figure 4 shows colorful and white contours form � 20
for square and triangular apertures. The yellow square
shows the optical lattices boundary [Fig. 4(a)], which will
be the line of maximum that should define the TC value. It
is clear, from Fig. 4, that the maxima of interference are
well formed for the square aperture, which is not the case
for the triangular aperture. Observe that the symmetry of
square allows one to have more intersection points than
the triangular lattice. For the latter case, it is not possible
to define a boundary [Fig. 4(b)], which could define the
TC value. It is also interesting to notice that the number
of spots in the external side of the triangular diffraction
pattern isN � m� 1 and in the external side of the square
diffraction pattern is N � �m� 2�∕2 or N � �m� 1�∕2,
for even or odd TC values, respectively. Form ≫ 1, these
relations reduce to N ≃m (triangular aperture) and
N ≃m∕2 (square aperture). Similarly, the total number
of points in the square lattice of odd TC is, roughly, N2 �
�m� 1�2∕4≃m2∕4 and for the triangular lattice is
�m� 1��m� 2�∕2≃m2∕2. This way, for the same side
length of apertures, in the reciprocal space, the optical lat-
tice has more points in the triangular pattern than in the
square pattern. Therefore, we notice an interesting rela-
tion between these two regular polygonal diffractions pat-
terns: We can measure the TC value using a triangular
aperture up to m � 10 and using a square aperture up
to m � 20.
The experimental results are summarized in Fig. 5 for

m � 18, 19, and 20. The experimental results confirm our
theoretical results, i.e., we observe that the triangular

aperture does not reveal the TC modulus. However, it
still can be used to determine the TC sign. Remarkably,
the square aperture can be used to determine the TC
modulus, at least, up to m � 20.

In conclusion, we presented a comparative study of the
diffraction problem of light with OAM using two aper-
tures: square and triangle. By observing in the
Fraunhofer plane, we showed that with the square aper-
ture it is possible to measure up to 20 the value of TC.
This value outperforms two times that obtained with
the triangular aperture. Because of symmetry of square,
it is possible to build an optical lattice with intersection

Fig. 3. Diffraction patterns contour plots for a square aperture
(left column) and a triangular aperture (right column) shown in
white. We also present colorful contour plots for single edges
diffraction patterns superimposed in the same figure. The TC
for (c) to (d) is m � 0 and for (e) to (f) is m � 4.

Fig. 4. Diffraction patterns contour plots for (a) square aper-
ture and (b) triangular aperture shown in white. We also
present colorful contour plots for single edges diffraction pat-
terns superimposed in the same figure. The TC is m � 20 for
both cases.

Fig. 5. Experimental results to the Fraunhofer diffraction pat-
tern by a square (top) and triangular apertures (bottom).
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points, resulting in well-defined maxima of interferences.
These points define the optical lattice boundary, enabling
to determine the amount of OAM. We realized that, even
though the optical square lattice is not enough to deter-
mine the TC sign, it is possible to measure high order of
modulus and sign of TC, up to 20, combining patterns of
the triangular and square apertures. It is important to
point out that the maxima values of TCs of 20, for the
square aperture, and 10, for the triangular aperture,
depend on the experimental arrangement. Specifically,
in our case the pattern continuously becomes blurry
for higher values than the mentioned above.

The authors are thankful for the financial support from
CAPES, CNPq/MCT, Pronex/FAPEAL, INCT-IQ, and
INCT-Fotonicom.
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