
TECHNICAL NOTE
Generalized Abelès relations for an anisotropic
thin film with an arbitrary dielectric tensor: comments

Flavio Horowitz

The Cojocaru generalization of the 2 3 2 extended Jones matrix method, placed in a wider context of
previous approaches to anisotropic optical thin films, is analyzed from a complementary perspective.
This, contrary to initial belief, allows for a simple proof that one may include multiple reflections by
taking into account total fields into the anisotropic film, and this therefore provides support for a more
widespread use of the method. © 1998 Optical Society of America
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For more than a century, researchers have known
about thin-film optical anisotropy relative to dichro-
ism in metal coatings,1 which later found application
as metal polarizers in the near infrared.2 In dielec-
tric films, oblique deposition at high angles was
needed to demonstrate significant phase-retarder op-
eration under normal incidence of light.3 This
structure-related form birefringence4 in films is de-
scribed by the columnar model5–7 and can be attrib-
uted to the self-shadowing effect during thermal
deposition.8 Other sources of optical anisotropy,
such as crystalline structure or mechanical stress,
may be present in a wide variety of materials, and
therefore also influence performance of film devices.

Early theories for light propagation in anisotropic
thin films were formulated for particular orienta-
tions, either of the principal axes of symmetry9–11 or
of light incidence.12 They were followed by a general
treatment for layered media,13 although still without
the convenience of associating each layer to a distinct
entity in the multilayer calculation. This was
achieved by 4 3 4 matrix formulations in the context
of magnetic media,14 liquid crystals,15 and solid-state
physics.16 For optical multilayer films in which each
layer is associated with an arbitrary dielectric tensor,
the approach discussed in Ref. 14 was extended to
produce a generalized transfer matrix.5 In the iso-
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tropic limit, this 4 3 4 matrix breaks down into two
2 3 2 submatrices, which are exactly the well-known
characteristic Abelès matrices17 for the two polariza-
tion eigenstates.

More recently, from a 2 3 2 extended Jones matrix
method,18 Cojocaru reported a generalization to
anisotropic optical thin films,19 which, as discussed in
Ref. 5, leads to Abelès relations in the isotropic lim-
it.17 Since the Abelès approach takes into account
total fields and each field corresponds to all waves
propagating in the same direction inside a film layer,
in Ref. 19 it was inferred, without further argumen-
tation, that this should be also the case for the 2 3 2
extended Jones matrix method. This is contrary to
the statement that this method neglects multiple re-
flections in the initial extension by Yeh18 and in sub-
sequent developments.20,21 Note that, unlike the
isotropic case, it is not straightforward in anisotropic
media that boundary conditions and propagation re-
lations may imply any pattern regularity under mul-
tiple reflections and refractions, corresponding to a
zigzag construction that has been treated with
Fresnel relations.22 To clarify the controversy, we
present a complementary point of view, which allows
for simple physical arguments.

Consider Fig. 1 in which all conventions from Ref.
19 are followed and extended with the subscript n,
which refers to the number of reflections that oc-
curred from the last departed interface. If we apply
Stoke’s reversibility principle23 at the x3 5 d inter-
face, reversed ka

2 would reflect onto reversed ka
1

~and reversed kb
2 onto reversed kb

1!. Whatever
the film anisotropic structure, this is analogous to a
second reflection at x3 5 0 ~i.e., once ka

2 is reflected,
resulting k2a

1 from second reflection sees the same
microstructure as ka

1, and is thus parallel to it; the



same applies with subscript b!. By induction, this
also occurs in the third reflection at x3 5 0 and so on,
and the same procedure applies for higher-order re-
flections at x3 5 d. With the same reasoning, by
refraction, all the kna

1, knb
1, kna

2, and knb
2 results

in reflected wave vectors parallel to k1
2 or transmit-

ted wave vectors parallel to k3
1.

Therefore in this situation the multiple reflections
consist of two sets of periodic zigzags in the anisotro-
pic film, which can be represented by the first couple
of zigzag periods for which the total fields are taken.
In other words, the 2 3 2 extended Jones matrix
calculation remains the same as originally per-
formed, and it becomes just a matter of looking at the
fields under consideration for single reflection as total
fields. As a consequence, the method becomes even
more comprehensive than it seemed at first, and the
reduction to the total-field Abelès relations in the
isotropic limit inevitably follows.
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9. H. Schopper, “Zur optik düner dopplelbrechender und di-
chroitischer schichten,” Z. Phys. 132, 146–170 ~1952!.
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