
Contribution of close collisions to the Barkas effect: The classical picture

N. R. Arista,1 P. L. Grande,2 and A. F. Lifschitz3
1División Colisiones Atómicas, Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica,

8400 S. C. de Bariloche, Argentina
2Instituto de Física da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970,

Porto Alegre, RS, Brazil
3Laboratoire de Physique des Gaz et des Plasmas, Université Paris Sud, F-91405 Orsay Cedex, France

(Received 17 May 2004; published 22 October 2004)

According to a previous estimation made by Lindhard[Nucl. Instrum. Method Phys. Res.132, 1 (1976)] on
the basis of qualitative arguments and dimensional analysis, the contribution of close collisions to the Barkas
effect in the energy loss of swift ions in solids yields a significant fraction of the total effect, being almost equal
to the contribution coming from distant collisions. Here the classical estimation by Lindhard is reconsidered
and subjected to a tight numerical test. We analyze in quantitative terms the classical description of the Barkas
effect following the line of arguments proposed by Lindhard. We consider a swift ion of chargeZ1 interacting
with the electrons via a screened potential assuming spherical and nonspherical screening models. We calculate
by numerical integration the differential and total transport cross sections and find an important asymmetry of
both with respect to the sign ofZ1, as well as a departure from theZ1

2 behavior. These effects are particularly
important for impact parameters in the range of the classical collision radiussrcl=Z1e

2/mv2d. This approach
clearly shows the contribution of close collisions to the Barkas effect. We analyze the behavior of the Barkas
asymmetry with respect to ion charge and velocity, obtaining a good quantitative agreement with Lindhard’s
prediction. However, an additional term predicted for nonspherical potentials cannot be reproduced.
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I. INTRODUCTION

The discovery of different penetration ranges for positive
and negative pions in matter made by Barkas and co-workers
[1] was the first evidence of deviations of the stopping power
of energetic particles from the quadratic dependence on pro-
jectile chargeZ1 predicted by the Bethe theory[2]. The ori-
gin of this difference, as proposed by Barkas, is due to
higher-order terms in the perturbative Born series. The first
theoretical study of this effect, made by Ashley, Ritchie, and
Brandt(ARB) [3,4], was followed by other pioneering stud-
ies [5,6]. The ARB model[3] was based on the classical
harmonic-oscillator model. The treatment was similar to the
Bohr model [7] but the analysis was extended to second-
order sZ1

3d terms, corresponding to the polarization of the
atomic oscillators, in the approximation of distant collisions.
They showed that the Barkas effect is characterized by the
classical parametergZ1v0/v3, where Z1 is the bare-ion
charge,v0 the oscillator frequency,v the particle velocity,
andg a numerical constant. The contribution from close col-
lisions was neglected in this approach.

The role of close collisions in the Barkas effect was
stressed later on by Lindhard[8], who made a brief estima-
tion using qualitative arguments also based on a classical
picture of the scattering process. Using simple dimensional
analysis he predicted in a general way that the effect of close
collisions should scale also with the same parameter
gZ1v0/v3. Hence, the contribution of close collisions would
almost duplicate the magnitude of the total Barkas effect.

In further studies, the effect of close collisions was calcu-
lated quantum mechanically using second-order scattering
theory [9], nonlinear response theory[10], and many-body
theory [11].

The question of the magnitude of the relative contribu-
tions to the Barkas effect arising from close and distant col-
lisions has been a point of much interest and has stimulated
a significant number of experimental and theoretical studies
[12–18].

In this paper we will analyze in a more quantitative way
the original calculation of the Barkas effect sketched by
Lindhard[8], which was formulated in purely classical terms
and restricted to close collisions. Since a classical treatment
is used, the validity of the approach is limited by the condi-
tion 2Z1e

2/"v.1 (i.e., the classical Bohr regime). This in-
cludes part of the range of interest for swift heavy ions. In
the present analysis(as well as in the original Lindhard
work) only the case of bare ions will be considered. The
basic parameter in Lindhard’s formulation is the quantityz
=Z1e

2v /mv3, whereZ1e is the ion charge,v its velocity, and
v a characteristic frequency of the electrons in the medium.
In our description this frequency will be set equal to the
plasma frequencyvP, as we will be dealing with a free elec-
tron gas. Following Lindhard, the parameterz may be ex-
plained as the ratio of the two relevant quantities in the clas-
sical description: the collision radiusbcl=Z1e

2/mv2, and the
adiabatic (or screening) length l<v /v. As stressed by
Lindhard,z is the only dimensionless parameter that can be
constructed in a classical treatment of the scattering process
for high-energy particles(in particular, this is also the param-
eter that appears in the logarithmic term in Bohr’s energy
loss formula[7]).

The purpose of this paper is to perform a detailed study of
Lindhard’s argument to explain the origin of the Barkas ef-
fect in close collisions and to evaluate the magnitude of its
contribution.

PHYSICAL REVIEW A 70, 042902(2004)

1050-2947/2004/70(4)/042902(7)/$22.50 ©2004 The American Physical Society70 042902-1



The paper is organized as follows. In Sec. II we formulate
the calculation method, present and discuss the results, and
analyze the contribution of close collisions to the Barkas
effect. The calculations of the transport cross section by two
different methods are presented in Sec. III, and in Sec. IV we
summarize the conclusions of the paper. We also include two
Appendixes; the first one contains details of the induced po-
tential and spherical average used in some of the calcula-
tions, while in the second one we further illustrate the Barkas
effect using a simple but exactly solvable model.

II. CLASSICAL SCATTERING FORMULATION

A. General considerations

In the following we will consider the scattering of elec-
trons by the screened ion potential in the center of mass
system(which for practical purposes may be assumed to be
fixed at the ion position). In correspondence with Lindhard’s
assumptions[8] we will consider the target electrons to be
initially at rest, so that the relative electron-ion velocity will
be equal to the ion velocityv (note that this assumption may
be released using a more general transformation which con-
siders a distribution of electron velocities in the target).

First we will calculate the differential cross section using
a fully classical description, and then we will integrate the
transport cross section(TCS) strsvd. In the case of swift ions
(or as long as the electrons-at-rest assumption holds) the
TCS is simply connected with the average energy lossdE/dx
by dE/dx=nmv2strsvd, wheren is the electron density of the
medium. This description may be generalized to the case of
moving electrons by performing an integration over the rela-
tive electron-ion velocities in the form indicated in Ref.[19].

Following the spirit of the original Lindhard estimation,
we will first use a simplified description of the scattering
potential, represented as a Yukawa potential with a velocity-
dependent screening parametera, and after that a full non-
spherical potential. Both functions include the bare-ion po-
tential and the induced potential according to dielectric
theory, as discussed in Appendix A.

In the case of a spherical potential, the scattering angle
may be calculated as a function of the impact parameterb
using the well-known expression

usbd = p − 2bE
r0

` dr

r2Î1 − b2/r2 − Vsrd/E
, s1d

where the turning point valuer0 is the root of the function
Rsrd=1−b2/ r2−Vsrd /E.

The first form of the scattering potential used in these
calculations was a spherically symmetric one given in the
form Vsrd=−sZ1e

2/ rdfsxd, whereZ1 is the ion charge and
fsxd is a screening function which scales withx=ar. In the
present calculations we usedfsxd=exps−ard, where the
screening constant was taken asa=sp /2dvP/v (see Appen-
dix A for details).

Before describing the results obtained with this approach
it becomes useful to derive an interesting scaling property of
the transport cross section. First, we introduce the variable
x=ar and the parameterb* = ab, so that Eq.(1) becomes

u = usb * , Bd = p − 2b * E
x0

` dx

x2ÎRsxd
, s2d

whereRsxd=1−b*2 /x2+2Bfsxd /x, andx0=ar0 is the root of
Rsxd. In doing this transformation one finds that the two pa-
rameters that characterize the scattering process areb* = ab
(reduced impact parameter) and

B = Z1e
2a/mv2 s3d

(Barkas parameter). It is interesting to note that this param-
eter corresponds to the inverse of the reduced energye from
the nuclear stopping theory.

Next, we consider the transport cross section and also
scale it usingb* = ab,

str =E f1 − cossudg2pbdb=
1

a2s * sBd, s4d

wheres* sBd=ef1−cossudg2pb* db*.
Finally, we consider the values of the TCS for particles

sB.0d and antiparticlessB,0d, and introduce theBarkas
factor by

RBarkas=
Dstr

2kstrl
s5d

whereDstr is the TCS difference,Dstr =strsuBud−strs−uBud,
and kstrl= 1

2fstrsuBud+strs−uBudg.
From Eq. (4) we find that RBarkas is a function of the

single parameterB. This is in accord with the general scaling
argument given originally by Lindhard[8].

B. Calculations

Using the described approach we have performed several
calculations for screened potentials assuming different values
of the physical parametersZ1, v, andvP.

In Fig. 1 we show an example of the calculated values of
the differential contributions to the transport cross section
(DTCS) in Eq. (4) for the caseZ1= ±2, v=2 a.u., andvP
=0.5 a.u.[atomic units(a.u.) are used in the following]. To
illustrate the contributions from different impact parameters
we show here the values of the DTCS, given classically by

Fsbd ; dstr = 2pbf1 − cossusbddg, s6d

according to Eq.(4), as a function of the impact parameterb.
The figure includes the results forZ1=2 andZ1=−2 (solid

lines) and the values corresponding to Rutherford scattering
(dashed line), given by

FRuthsbd = 2pbf1 − cossuRdg =
4pbbcl

2

b2 + bcl
2 , s7d

which is independent of the sign ofZ1. In addition, we show
in the figure the values calculated using the small-angle ap-
proximation[20] (dotted line) given by
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usmallsbd = −
2

v2E
0

` ]VsÎb2 + z2d
]b

dz, s8d

which is independent of the sign ofZ1. The bcl value indi-
cated by an arrow in this figure is the classical radius,bcl
= uZ1ue2/mv2.

In Fig. 1(b) we show the differenceDFsbd=Fsbd+

−Fsbd− between the values for positive and negative charges.
It shows that the maximum difference occurs for impact pa-
rameters close tobcl, i.e., the typical range of close colli-
sions.

The figure clearly shows that the accidental coincidence
of the DTCS for positive and negative charges in the Ruth-
erford picture(dashed line) is broken by the screening of the
potential, yielding DTCS values larger for attractive than for
repulsive fields. It should be noted that a qualitatively similar
behavior has been found in Ref.[18] using a harmonic os-
cillator model. As we can clearly see in Fig. 1, these effects
are localized in a range of distances close tobcl, indicating
the existence of Barkas effects in the range of close colli-
sions.

It is of interest to note also some striking features arising
from Fig. 1. First, one observes an enhancement of the
DTCS for Z.0 (attractive field) for b values close tobcl,

which yields DTCS values forscreenedpotentials larger
than for a bare Coulomb potential(Rutherford scattering).
This seemingly contradictory result may be physically ex-
plained by considering the changes in thelocal velocity of
electrons as they approach the scattering center: for a Cou-
lomb potential the electrons are accelerated as they fall into
the attractive potential so that they arrive at close distances,
r , rmin, with enhanced local velocitiessvlocal.vd. Of course
this effect is automatically included in the exact treatment of
Rutherford scattering where the acceleration effect is maxi-
mum. But in the case of a screened potential thisprior ac-
celerationeffect is smaller(due to the reduced interaction),
and so the electrons arrive at pointsr , rmin with relatively
smaller velocities(as compared to “Rutherford electrons”).
Therefore, they are more strongly scattered than Rutherford
electrons.

For repulsive potentialssZ1,0d the opposite effect takes
place, and thus a reduction of the DTCS is obtained with
respect to both the Rutherford and the attractive screened
potential cases.

The previous explanation is actually not complete. There
is also a geometrical effect related to the electron trajectories.
For attractive interactions, the trajectories approaching the
scattering center lead to distances of closest approach
rmin,b, while the opposite occurs for repulsive interactions
srmin.bd. For a Coulomb field, the differences in the scat-
tering produced by these effects cancel out exactly with the
previously mentioned effects of variations in the local veloci-
ties. Thus, for attractive interactions we get smaller values of
rmin but larger values ofvlocal, whereas for repulsive fields we
get larger values ofrmin together with smaller values ofvlocal.
As a result of a mutual cancellation of effects, the deflection
angle corresponding to Rutherford scattering turns out to be
independent of the sign of the field(i.e., ofZ1). But when the
screening of the interaction is included the two(attractive
and repulsive) cases split up, leading to different TCS results
(Barkas effect).

We also note in Fig. 1 that the small-angle approximation
Eq. (8) yields a good approximation to the exact results for
b@bcl. We observe that in this limit both results forZ1.0
and Z1,0 converge symmetrically to the small-angle ap-
proximation. This indicates the effect ofZ1

3 terms in the per-
turbative expansion, since the rangeb@bcl corresponds to
the region where perturbation theory applies. It also indicates
that the conditions for applicability of theZ1

3 type of expan-
sion to distant collisions may be more easily achieved than
for close collisions.

III. TRANSPORT CROSS SECTION AND BARKAS
EFFECT

From a large set of calculations of the type indicated be-
fore we have numerically integrated the TCS values for at-
tractive and repulsive fields, and from these results we have
determined the Barkas factor defined by Eq.(5).

In addition, we have performed numerical calculations of
classical scattering trajectories in the asymmetric field of the
dynamical potential obtained from the dielectric response
formalism, calculated as indicated in Appendix A.

FIG. 1. Values of the differential transport cross section, Eq.(6),
corresponding to electron scattering by positive and negative par-
ticles calculated by numerical integrations as described in the text
(solid lines), together with the Rutherford values(dashed line) and
the small-angle approximation(dotted line). (b) shows the differ-
ence between the two DTCS results, which represents the contribu-
tion from different impact parameters to the Barkas effect. The
arrow indicates the classical collision radiusbcl= uZ1ue2/mv2.
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The cylindrical potentialfscrsr ,zd from Eq.(A2) was first
stored in a two-dimensional grid and the force components
(parallel and perpendicular to the particle velocity) were cal-
culated from the tabulated potential for each time step. Thus,
the classical equations of motion were integrated to obtain
the energy transfer to the target electron or the transport
cross section.

The results of a large number of calculations are shown in
Fig. 2, as a function of the parameterz=Z1vP/v3. The nu-
merical values are indicated as data points, and include the
two sets of calculations, using(a) the spherical average
(circles) and(b) the whole dielectric potential(triangles). We
find a very good convergence between the two sets of results
over a wide range ofz values, and a splitting of them in the
high-z region. In addition, forz.1 we find a saturation of
the Barkas effect as well as a transition to a more compli-
cated behavior.

The two straight lines shown in this figure are the values
of the scaling parametergZ1vP/v3 in Eq. (3), using numeri-
cal factorsg=p andg=p /2. As may be observed, the con-
vergence to the straight line behavior is extremely slow, so
that one obtains the exact limit predicted by Lindhard, with
g=p, only for very small values ofz sz,10−3d. Instead, for
z,0.01 the numerical results fall between the two lines, and
for z,0.1 the results are closer to the line withg=p /2. This
illustrates the difficulty in providing a unique quantitative
prediction of the Barkas factor based only on scaling prop-
erties. It seems that this may in part explain earlier discrep-
ancies in empirical evaluations of the role of close collisions
in the Barkas effect.

In addition, we have included in this figure a fitting line
given by the expression

Gszd = pz/s1 + az0.25+ bz + cz2d s9d

with a=0.92,b=2.75, andc=0.21. This expression is shown
by the solid line that goes through the set of triangle points,

and yields an accurate fitting to all the numerical calculations
obtained using the dielectric response function, on the whole
range of values of interest here, 0.001,z,10, with an over-
all precision better than 5%. We think this analytical fit may
be useful for practical estimations of the close collisions con-
tribution to the Barkas effect.

We should also note that a correction factorp /2 was also
introduced by Lindhard to account for deviations from the
spherical symmetry of the induced potential. This would pro-
duce a total effect corresponding tog=3p /2. Our calcula-
tions for nonspherical potentials, however, do not support
this additional correction. We also note that Lindhard’s
analysis did not indicate how large the departure from
spherical symmetry should be in order to produce this further
correction(this is of course a weak point in the argumenta-
tion). In fact, our results show a remarkably good agreement
between both sets of calculations(using Yukawa and non-
spherical dielectric potentials), showing that the spherical av-
erage is a very good approximation for this type of estima-
tion in the rangez,0.1. It may be noted that here, as well as
in Lindhard’s estimation, second-order effects in the induced
potential used for close collision calculations have been ne-
glected.

In summary, our numerical results are in agreement with
the value

Rclose> 2B = pz =
pZ1e

2vP

mv3 . s10d

This result differs fromRdist=s3p /2dZ1e
2v0/mv3 from

the Ashleyet al. theory[3], and implies that close and distant
collisions contribute differently to the Barkas effect(i.e.,
there is no equipartition rule).

We finally note that the saturation observed for high val-
ues ofB indicates the appearance of higher-order terms in the
expansion ofRBarkas as a function of the chargeZ1. It also
suggests the breakdown of the perturbative expansion for
B.1. In this respect, we note that the present approach
should be considered an all-order calculation since the scat-
tering equations were numerically solved, with no perturba-
tive assumptions at all.

IV. SUMMARY AND CONCLUSIONS

The contribution from close collisions to the Barkas effect
proposed by Lindhard on the basis of general physical argu-
ments was analyzed here in detail in the range of classical
models. The original arguments as well as the scaling prop-
erties are essentially supported by these calculations.

The goal of this study was not to consider any particular
application but to understand at a fundamental level the
physics involved in the contribution of close collisions to the
Barkas effect.

The effect of close collisions and the differences between
attractive and repulsive fields have been shown by exact
(nonperturbative) calculations of the differential transport
cross sections.

The calculations serve to illustrate and clarify the origin
of the Barkas differences in the range of close collisions. The
main differences between particles and antiparticles arise in

FIG. 2. Calculations of the Barkas factor defined by Eq.(5) for
a Yukawa potential(circles) and for the dielectric potential(tri-
angles) versus the parameterz=Z1vP/v3. The straight dashed lines
show the approximationsRBarkas>pz andRBarkas>sp /2dz. As may
be seen, the former approximation yields the correct limit forz
!1. The solid line that goes through the triangles shows the results
of Eq. (9) and fits all the values calculated using the dielectric
potential.
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fact from distances around the classical collision radiusbcl
=Z1e

2/mv2.
The most striking effect observed from the DTCS com-

parisons is the enhancement of the DTCS for an attractive
screened potential as compared to the one for a pure Cou-
lomb potential, which occurs at short collision distances,r
,bcl=Z1e

2/mv2. This enhancement may be explained by
considering the modification of the local velocities of scat-
tered particles, i.e., by the same physical argument used by
Lindhard to predict the Barkas effect in close collisions.

From the numerical evaluations of the DTCSs, we obtain
the close-collision contribution to the Barkas effect, which
satisfies the predicted scaling property with the parameter
Z1e

2vP/mv3.
The two sets of calculations, using either the asymmetric

dynamical-screening potential or the spherical average of it,
yield the same low-limit value of the Barkas factor in agree-
ment with Lindhard’s prediction(but without the additional
nonspherical potential correction). In addition, we find a
“saturation” of the Barkas effect forB,1, which is related
to higher-order terms in the scattering process, the present
description being applicable to all orders of the interaction
strength.

We finally note that the present considerations apply to
the range of close collisions where the free electron picture
may be regarded as a limiting approximation; this may in-
clude even nonmetallic targets in the high-energy range. For
the treatment of the complementary range of distant colli-
sions one may resort to the original ARB picture[3] which is
characterized by the long-range polarization effect induced
on the atomic shells.
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APPENDIX A: INDUCED POTENTIAL

We refer here to the calculation of the induced potential
using the dielectric function formalism. Following Refs.
[21,22] one obtains the expression for the induced potential
for an ion moving along thez axis,

findsr,zd = − Z1e
v
p
E

0

`

kdkJ0skrdE
−`

+`

dv
expsivz/vd
v2 + k2/v2

3F 1

«svd
− 1G . sA1d

Using the classical plasmon-pole approximation«svd
>1−vP

2 /vsv+ igd, with g!vP, and separating the real and
imaginary parts of the dielectric function, we may separate
find into a screening componentfscr and a wake component
fwake [21], wherefscr is given by

fscrsr,zd = − Z1eSvP

v
D2E

0

` J0skrdexps− kuzud
k2 + vP

2/v2 dk sA2d

and represents the dynamical screening of the moving ion by
the dielectric medium. In Eq.(A2) r ,z are the cylindrical
coordinates relative to the instantaneous position of the ion
(the induced potential is independent of the azimuthal angle
w).

On the other hand, the wake termfwake is related to col-
lective (plasmon) excitations, which is a different mode of
energy loss pertaining to the range of distant interactions not
considered here[21,22]. (For the contribution of distant col-
lisions to the Barkas effect we refer to the original article by
Ashley et al. [3].)

From Eq.(A2) we can calculate thespherical averageof
the screening potential by performing the total angular aver-
age

kfscrlsrd = kfscrsr,z,wdl =
1

4p
E dVfscrsr,z,wd. sA3d

Finally, to obtain the scattering potential we add the Cou-
lomb potential of the bare ion,

fscatsrd =
Z1e

r
+ kfscrlsrd. sA4d

This yields the spherical average of the potential energy
Vssrd=−efscatsrd.

In Fig. 3 we compare the numerically averaged dielectric
potential, Eq.(A4), with the Yukawa approximationVsrd
=−sZ1e

2/ rd exps−ard, where the screening constant scales
with ion velocity asa=gvP/v. A very good approximation
in the range of close distances is obtained withg>1.3. The
value suggested by Lindhard,g=p /2, has the advantage of
yielding also the correct value for the energy shift,DVs0d
=sp /2dZ1e

2vP/v in agreement with the dielectric theory.
Hence, we used this value in the current evaluations.

FIG. 3. Spherical average of the scattering potential, Eqs.(A3)
and (A4), calculated using the dielectric function formalism forv
=2, 5, and 10 a.u., and Yukawa approximationsVsrd
=−sZ1e

2/ rd exps−ard, with a=1.3vP/v.
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The calculations reported in this paper have been made
using two approaches: the first set of calculations were made
using the spherical average approximation by a Yukawa po-
tential, whereas the second set of calculations were made
using the dielectric potential provided by Eq.(A2).

APPENDIX B: A SOLUBLE PROBLEM

A case that admits an exact analytical solution was noted
by Nagy [23], who obtained the result for the so-called
Mensing potential given by

Vsrd = H− Zs1/r − 1/Rd, r , R,

0, r . R,
J sB1d

whereR represents the screening distance.(Note that atomic
units are used in this Appendix.)

The scattering angleu for this potential is given, as a
function of the impact parameterb, by [23,24]

tan2Sub

2
D = S Z

bv2D2 1 − sb/Rd2

f1 − Z/sRv2dg2 . sB2d

Using this, one can readily obtain the differential transport
cross section,

Fsbd = 2pbf1 − cossubdg, sB3d

and by integration one obtains the total transport cross sec-
tion in the form

str =
2pR2

sl − 1d2fllnsld − sl − 1dg sB4d

with

l = SRv2

Z
− 1D2

. sB5d

The characteristics of the DTCS and TCS corresponding
to this model are shown in Fig. 4. Panel(a) shows the impact
parameter dependence of the DTCS, showing also the split-
ting of the cases withZ.0 and Z,0 with respect to the
Rutherford value, as previously observed in Fig. 1.

Figure 4(b) shows the Barkas factor defined by Eq.(5),
namely, RBarkas=Dstr /2kstrl. In this model RBarkas scales
with the parameterz=Z/Rv2. The dashed line here shows the
line RBarkas=2Z/Rv2, which yields the limiting behavior for
Z/Rv2→0. Again, the results of this model are in good
qualitative agreement with those of Fig. 2.

It is interesting to note that Lindhard[8] used an expres-
sion similar to Eq.(B2), namely,

tan2Sub

2
D = S Z

bv2D2 1

f1 − Z/sRv2dg2 , sB6d

which is valid for b!R, to derive its Barkas-effect expres-
sion. Indeed, he assumed a constant offset of the incoming
electron energy (in the projectile frame) of DVs0d
=sp /2dZ1e

2vP/v, which according to Eq.(B1) meansR−1

=sp /2dvP/v. Since the leading term of the Barkas factor, as
can be calculated analytically from Eq.(B4), is RBarkas
=2Z/Rv2, we easily get the Lindhard expression(without his
extraad hocp /2 factor) RBarkas=pZ1e

2vP/mv3.
In summary, this simple model yields exact results, which

serve to illustrate the general aspects of the behavior ob-
tained from the calculations reported in Secs. II and III.
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