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Contribution of close collisions to the Barkas effect: The classical picture
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According to a previous estimation made by LindhgMdicl. Instrum. Method Phys. Re432 1(1976] on
the basis of qualitative arguments and dimensional analysis, the contribution of close collisions to the Barkas
effect in the energy loss of swift ions in solids yields a significant fraction of the total effect, being almost equal
to the contribution coming from distant collisions. Here the classical estimation by Lindhard is reconsidered
and subjected to a tight numerical test. We analyze in quantitative terms the classical description of the Barkas
effect following the line of arguments proposed by Lindhard. We consider a swift ion of cHaligéeracting
with the electrons via a screened potential assuming spherical and nonspherical screening models. We calculate
by numerical integration the differential and total transport cross sections and find an important asymmetry of
both with respect to the sign @, as well as a departure from tlzé behavior. These effects are particularly
important for impact parameters in the range of the classical collision rédissZ,e?/mv?). This approach
clearly shows the contribution of close collisions to the Barkas effect. We analyze the behavior of the Barkas
asymmetry with respect to ion charge and velocity, obtaining a good quantitative agreement with Lindhard’s
prediction. However, an additional term predicted for nonspherical potentials cannot be reproduced.
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I. INTRODUCTION The question of the magnitude of the relative contribu-

The discovery of different penetration ranges for positivetions to the Barkas effect arising from close and distant col-
and negative pions in matter made by Barkas and co-workef&sions has been a point of much interest and has stimulated
[1] was the first evidence of deviations of the stopping powe® significant number of experimental and theoretical studies
of energetic particles from the quadratic dependence on prd12-18§.
jectile chargeZ, predicted by the Bethe theof2]. The ori- In this paper we will analyze in a more quantitative way
gin of this difference, as proposed by Barkas, is due tdhe original calculation of the Barkas effect sketched by
higher-order terms in the perturbative Born series. The firstindhard[8], which was formulated in purely classical terms
theoretical study of this effect, made by Ashley, Ritchie, andand restricted to close collisions. Since a classical treatment
Brandt(ARB) [3,4], was followed by other pioneering stud- is used, the validity of the approach is limited by the condi-
ies [5,6]. The ARB model[3] was based on the classical tion 2Z,e?/#v>1 (i.e., the classical Bohr regimeThis in-
harmonic-oscillator model. The treatment was similar to thecludes part of the range of interest for swift heavy ions. In
Bohr model[7] but the analysis was extended to secondthe present analysiéas well as in the original Lindhard
order (Zﬁ) terms, corresponding to the polarization of thework) only the case of bare ions will be considered. The
atomic oscillators, in the approximation of distant collisions.basic parameter in Lindhard’s formulation is the quantity
They showed that the Barkas effect is characterized by theZ,e?w/muv3, whereZ,e is the ion chargey its velocity, and
classical parametegZ,wy/ve, where Z; is the bare-ion w a characteristic frequency of the electrons in the medium.
charge,wq the oscillator frequency, the particle velocity, In our description this frequency will be set equal to the
andg a numerical constant. The contribution from close col-plasma frequencwp, as we will be dealing with a free elec-
lisions was neglected in this approach. tron gas. Following Lindhard, the parametgmay be ex-

The role of close collisions in the Barkas effect wasplained as the ratio of the two relevant quantities in the clas-
stressed later on by Lindhaf8], who made a brief estima- sical description: the collision radius,=Z,€?/mv?, and the
tion using qualitative arguments also based on a classicadiabatic (or screening length A=v/w. As stressed by
picture of the scattering process. Using simple dimensiondlindhard, { is the only dimensionless parameter that can be
analysis he predicted in a general way that the effect of closeonstructed in a classical treatment of the scattering process
collisions should scale also with the same parametefor high-energy particle@n particular, this is also the param-
gZ,wo/v3. Hence, the contribution of close collisions would eter that appears in the logarithmic term in Bohr's energy
almost duplicate the magnitude of the total Barkas effect. loss formula[7]).

In further studies, the effect of close collisions was calcu- The purpose of this paper is to perform a detailed study of
lated quantum mechanically using second-order scatteringindhard’s argument to explain the origin of the Barkas ef-
theory [9], nonlinear response theof{0], and many-body fect in close collisions and to evaluate the magnitude of its
theory[11]. contribution.
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The paper is organized as follows. In Sec. Il we formulate *dx
the calculation method, present and discuss the results, and 0=6(b*,B)=m-2b* VR0,
analyze the contribution of close collisions to the Barkas X AN

effect. The calculations of the transport cross section by tW?NhereR(x)—1—b*2/x2+28¢(x)/x andx.= ar. is the root of
- ’ 0—&lo

different methods are presented in Sec. I, and in Sec. IV w . . ; .
summarize the conclusions of the paper. We also include tw%(x)' In doing this transformation one finds that the two pa-

Appendixes; the first one contains details of the induced po[ameters that characterize the scattering procesbararb

tential and spherical average used in some of the calcuIa(—“:"dl“'ced impact paramejeand
tions, while in the second one we further illustrate the Barkas
effect using a simple but exactly solvable model.

(2)

B = Z,%a/mu? 3)

(Barkas parametegrlt is interesting to note that this param-
Il. CLASSICAL SCATTERING FORMULATION eter corresponds to the inverse of the reduced enefgym
the nuclear stopping theory.

) . ) ) Next, we consider the transport cross section and also
In the following we will consider the scattering of elec- scale it usingo* = ab,

trons by the screened ion potential in the center of mass

system(which for practical purposes may be assumed to be 1

fixed at the ion position In correspondence with Lindhard’s Oy :f [1-cog6)]27bdb= —0* (B), (4)
assumptiong8] we will consider the target electrons to be @

initially at rest, so that the relative electron-ion velocity will whereo* (B) = [[1-cos(6)|2mb* db*.

be equal to the.ion velocity (note that this assumption' may Finally, we consider the values of the TCS for particles

r3?3> 0) and antiparticlefB<0), and introduce théBarkas

A. General considerations

siders a distribution of electron velocities in the tajget

First we will calculate the differential cross section usingfaCtor by
a fully classical description, and then we will integrate the A
transport cross sectidiCS) y,(v). In the case of swift ions Rearkas= > Tu (5)
(or as long as the electrons-at-rest assumption hdlks (o)

TCS is simply connected with the average energy this&ix . .

by dE/dx= rﬁ)n{ﬂotr(v), wheren is the elecgtron deggity of the whereAat,l is the TCS differenceAoy, = oy (|B) - oy, (=|B),

medium. This description may be generalized to the case dnd(aw) =3[0y (|B|) + o (=[B])].

moving electrons by performing an integration over the rela- From Eq.(4) we find thatRgauas is @ function of the

tive electron-ion velocities in the form indicated in REf9).  single parameteB. This is in accord with the general scaling
Following the spirit of the original Lindhard estimation, argument given originally by Lindhar{8].

we will first use a simplified description of the scattering

potential, represented as a Yukawa potential with a velocity- B. Calculations

dependent screening parameterand after that a full non- ing the d ibed h h ; q |
spherical potential. Both functions include the bare-ion po- USINg the described approach we have performed severa
tential and the induced potential according to dielectricc@lculations for screened potentials assuming different values

theory, as discussed in Appendix A. of the physical parametes;, v, and wp.

In the case of a spherical potential, the scattering angle In Fig. 1 we show an example of the calculated values of

may be calculated as a function of the impact parameter e differential contributions to the transport cross section
using the well-known expression (DTCS in Eq. .(4) fqr the caseleiZ_, v=2au, gndwp
=0.5 a.u.Jatomic units(a.u) are used in the following To

a(b) Zwa dr 0 illustrate the contributions from different impact parameters
= 0o — s . .

o 121 - b2/r2— V(r)/E we show here the values of the DTCS, given classically by
where the turning point valug, is the root of the function F(b) = doy, = 27b[1 - cog )], (6)

R(r)=1-b%/r2-V(r)/E.

The first form of the scattering potential used in theseaccording to Eq(4), as a function of the impact paramekber
calculations was a spherically symmetric one given in the The figure includes the results f@f=2 andZ,=-2 (solid
form V(r)=-(Z,€%/r)$(x), whereZ, is the ion charge and lines) and the values corresponding to Rutherford scattering
#(x) is a screening function which scales witkar. In the ~ (dashed ling given by
present calculations we used(x)=exp—ar), where the
screening constant was taken@s(7/2)wp/v (see Appen- Fry(b) = 27b[1 - cog 6R)] = 47Tbb§| @)

dix A for details. Rut M2+ b

Before describing the results obtained with this approach
it becomes useful to derive an interesting scaling property ofvhich is independent of the sign 4f. In addition, we show
the transport cross section. First, we introduce the variablen the figure the values calculated using the small-angle ap-
x=ar and the parametdr* = ab, so that Eq(1) becomes proximation[20] (dotted ling given by
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4.0

T which yields DTCS values foscreenedpotentialslarger
(a) ] than for a bare Coulomb potentiéRutherford scattering
7.0 R ] Thi; seemingly _conyradictory result may be physi_cally ex-
—_— 7.2 ] plained by considering the changes in {beal velocity of
— — — - Rutherford : electrons as they approach the scattering center: for a Cou-
--------- small angle approx (1 lomb potential the electrons are accelerated as they fall into
T the attractive potential so that they arrive at close distances,
I ~rmine With enhanced local velocitig® y.4>v). Of course
this effect is automatically included in the exact treatment of
Rutherford scattering where the acceleration effect is maxi-
mum. But in the case of a screened potential grisr ac-
celerationeffect is smallerdue to the reduced interactipn
e T and so the electrons arrive at poimts r,;, with relatively
00 . P T R T S smaller velocitiegas compared to “Rutherford electrons”
0.0 0.5 10 15 20 25 30 Therefore, they are more strongly scattered than Rutherford
b (a.u.) electrons.
15 : : : : : For repulsive potential&Z; <0) the opposite effect takes
I (b) place, and thus a reduction of the DTCS is obtained with
tor 1 respect to both the Rutherford and the attractive screened
sl ] potential cases.
il bc, The previous explanation is actually not complete. There
00 R S S T SR S is also a geometrical effect related to the electron trajectories.
00 05 1.0 15 20 25 80 For attractive interactions, the trajectories approaching the
b (a.u.) scattering center lead to distances of closest approach
rmin<<b, while the opposite occurs for repulsive interactions
FIG. 1. Values of the differential transport cross section,(By.  (rn,>b). For a Coulomb field, the differences in the scat-
corresponding to electron scattering by positive and negative patering produced by these effects cancel out exactly with the
ticles calculated by numerical integrations as described in the texyreviously mentioned effects of variations in the local veloci-
(solid liney, together with the Rutherford valugdashed lingand  tjes. Thus, for attractive interactions we get smaller values of
the small-angle approximatiogotted Iing. (b) shows the differ- _ I'min bUt larger values of ..., Whereas for repulsive fields we
ence betwegn the two DTCS results, which represents the contrlblg-et larger values af,, together with smaller values of,...
tion from different impact parameters to the Barkas effect. Theag g result of a mutual cancellation of effects, the deflection
arrow indicates the classical collision radiog=(Z,/e/mo?. angle corresponding to Rutherford scattering turns out to be
independent of the sign of the fielde., ofZ,). But when the
2 [® Vb +2) screening of the interaction is included the twattractive
vzjo b dz,

35|

3.0

25 |-

20|

2nb [1-cos( 6,)]

5 \\\Bytherford

-

-
~-a

1.0

F(b)

0.5

AF(b)

Osmaifb) = = (8 and repulsivgcases split up, leading to different TCS results
(Barkas effect
We also note in Fig. 1 that the small-angle approximation
which is independent of the sign &. The b, value indi- Eq. (8) yields a good approximation to the exact results for
cated by an arrow in this figure is the classical radiyg, b>b,. We observe that in this limit both results f@; >0
=|Z,|€?/ mv?. and Z; <0 converge symmetrically to the small-angle ap-
In Fig. 1(b) we show the differenceAF(b)=F(b), proximation. This indicates the effect Eiﬁ terms in the per-
-F(b)_ between the values for positive and negative chargedurbative expansion, since the range-b; corresponds to
It shows that the maximum difference occurs for impact pathe region where perturbation theory applies. It also indicates
rameters close tdg, i.e., the typical range of close colli- that the conditions for applicability of th&; type of expan-
sions. sion to distant collisions may be more easily achieved than
The figure clearly shows that the accidental coincidencdor close collisions.
of the DTCS for positive and negative charges in the Ruth-
erford picture(dashed lingis broken by the screening of the
potential, yielding DTCS values larger for attractive than for
repulsive fields. It should be noted that a qualitatively similar
behavior has been found in R¢fL8] using a harmonic 0s- From a large set of calculations of the type indicated be-
cillator model. As we can clearly see in Fig. 1, these effectdore we have numerically integrated the TCS values for at-
are localized in a range of distances closé{p indicating tractive and repulsive fields, and from these results we have
the existence of Barkas effects in the range of close collidetermined the Barkas factor defined by E%).
sions. In addition, we have performed numerical calculations of
It is of interest to note also some striking features arisingclassical scattering trajectories in the asymmetric field of the
from Fig. 1. First, one observes an enhancement of thelynamical potential obtained from the dielectric response
DTCS for Z>0 (attractive field for b values close td,, formalism, calculated as indicated in Appendix A.

Ill. TRANSPORT CROSS SECTION AND BARKAS
EFFECT

042902-3



ARISTA, GRANDE, AND LIFSCHITZ PHYSICAL REVIEW A70, 042902(2004)

and yields an accurate fitting to all the numerical calculations
obtained using the dielectric response function, on the whole
range of values of interest here, 0.602< 10, with an over-

all precision better than 5%. We think this analytical fit may
be useful for practical estimations of the close collisions con-
tribution to the Barkas effect.

We should also note that a correction facto2 was also
introduced by Lindhard to account for deviations from the
spherical symmetry of the induced potential. This would pro-
duce a total effect corresponding ¢=37/2. Our calcula-
tions for nonspherical potentials, however, do not support

01 F

Barkas Factor

’ e Yukawa Potential, o= (n/2) o/v

Dielectric Potential ] . o . :
. 4 Dielocic Potentia ] this additional correction. We also note that Lindhard’s

Fitting line

analysis did not indicate how large the departure from
000 o e sphierical symmetry should be in order to produce this further
C=Zw/V correction(this is of course a weak point in the argumenta-
! tion). In fact, our results show a remarkably good agreement
FIG. 2. Calculations of the Barkas factor defined by Ey.for ~ Petween both sets of calculationssing Yukawa and non-
a Yukawa potentialcircles and for the dielectric potentiari-  SPherical dielectric potentiglsshowing that the spherical av-
angle$ versus the parametérZ,wp/v3. The straight dashed lines €rage is a very good approximation for this type of estima-
show the approximationRgae= m¢ andRaaac= (m/2)¢. As may  tion in the rangg<0.1. It may be noted that here, as well as
be seen, the former approximation yields the correct limit for in Lindhard’s estimation, second-order effects in the induced
<1. The solid line that goes through the triangles shows the resultgotential used for close collision calculations have been ne-
of Eg. (9) and fits all the values calculated using the dielectric glected.

potential. In summary, our numerical results are in agreement with
N . ! the value
The cylindrical potentiatps.(p,z) from Eq.(A2) was first
stored in a two-dimensional grid and the force components 7Z1€wp
(parallel and perpendicular to the particle veloritere cal- Relose™= 2B = m{ = md (10

culated from the tabulated potential for each time step. Thus, . .
the classical equations of motion were integrated to obtain This result differs fromRys=(37/2)Z,€wo/muv® from
the energy transfer to the target electron or the transpothe Ashleyet al.theory[3], and implies that close and distant

cross section. collisions contribute differently to the Barkas effegte.,
The results of a large number of calculations are shown inhere is no equipartition ruje
Fig. 2, as a function of the parameter Zywp/v®. The nu- We finally note that the saturation observed for high val-

merical values are indicated as data points, and include thges ofB indicates the appearance of higher-order terms in the
two sets of calculations, using) the spherical average expansion ofRgayas @S a function of the chargg;. It also

(circles and(b) the whole dielectric potentidiriangles. We  gyggests the breakdown of the perturbative expansion for
find avery good convergence between.the two sets qf resulis= 1 In this respect, we note that the present approach
over a wide range of values, and a splitting of them in the should be considered an all-order calculation since the scat-

high-{ region. In addition, for/> 1 we _f|nd a saturation of .tering equations were numerically solved, with no perturba-
the Barkas effect as well as a transition to a more compli-

- tive assumptions at all.
cated behavior.
The two straight lines shown in this figure are the values
of the scaling parameteyZ; wp/v? in Eq. (3), using numeri- IV. SUMMARY AND CONCLUSIONS

cal factorsg= andg=m/2. As may be observed, the con-  pa contribution from close collisions to the Barkas effect
vergence to the straight line behavior is extremely slow, Sq,.;,,se by Lindhard on the basis of general physical argu-
that one obtains the exact limit predicted by Lindhard, Wlthments was analyzed here in detail in the range of classical

g=r, only for very small values of ({~1073). Instead, for ! .
{~0.01 the numerical results fall between the two lines andnqdels. The ong_mal arguments as well as the sqalmg prop-
' ' “erties are essentially supported by these calculations.

for £~0.1 the results are closer to the line Wtk /2. This The goal of this study was not to consider any particular
illustrates the difficulty in providing a unique quantitative LS
yinp g que g application but to understand at a fundamental level the

prediction of the Barkas factor based only on scaling prop - ) L I
erties. It seems that this may in part explain earlier discrepphys'cs involved in the contribution of close collisions to the

ancies in empirical evaluations of the role of close collisionsBarkas effect.

in the Barkas effect. The effect of close collisions and the differences between
In addition, we have included in this figure a fitting line attractive and repulsive fields have been shown by exact
given by the expression (nonperturbative calculations of the differential transport

_ 25 5 Cross sections.

G(§) = mgl(1 +a’**+ b +cl?) ) The calculations serve to illustrate and clarify the origin
with a=0.92,b=2.75, andc=0.21. This expression is shown of the Barkas differences in the range of close collisions. The
by the solid line that goes through the set of triangle pointsmain differences between particles and antiparticles arise in
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fact from distances around the classical collision radiys W77 7T T
=Z,€°/mv2. 10 exact ]
The most striking effect observed from the DTCS com- A ---- Yukawa ]
parisons is the enhancement of the DTCS for an attractive  o4[
screened potential as compared to the one for a pure Colz
lomb potential, which occurs at short collision distanaes, &
~by=2,¢>/mv? This enhancement may be explained by -
considering the modification of the local velocities of scat- —
tered particles, i.e., by the same physical argument used b< 04
Lindhard to predict the Barkas effect in close collisions. — o3|
From the numerical evaluations of the DTCSs, we obtain o2l
the close-collision contribution to the Barkas effect, which o1l
satisfies the predicted scaling property with the parametel _
Zlezwp/mvg. 00 0
The two sets of calculations, using either the asymmetric r[a.u.]
dynamical-screening potential or the spherical average of it,
yield the same low-limit value of the Barkas factor in agree- FIG. 3. Spherical average of the scattering potential, E§3)
ment with Lindhard’s predictioribut without the additional and(A4), calculated using the dielectric function formalism for
nonspherical potential correctipnin addition, we find a =2,5, and 10au, and Yukawa approximation¥(r)
“saturation” of the Barkas effect fdB~ 1, which is related ~=-(Z1€/r) exp(—ar), with «=1.30p/v.
to higher-order terms in the scattering process, the present

description being applicable to all orders of the interaction wp\2 [ Jo(kp)exp(- k|Z])
strength. bsclp,2) = =25 _> f Tt ol

We finally note that the present considerations apply to v 0 @pU
the range of close collisions where the free electron pictureclnd represents the dynamical screening of the moving ion by

may be regarded as a limiting approximation; this may in'the dielectric medium. In EqA2) p,z are the cylindrical

clude even nonmetallic targets in the high-energy range. I:Oéoordinates relative to the instantaneous position of the ion

the treatment of the complementary range of distant colli- : s .
. . 4 S the induced potential is independent of the azimuthal angle
sions one may resort to the original ARB pictii83 which is ( P P g

characterized by the long-range polarization effect induce
on the atomic shells.

0.7 -
0.6 |-
0.5 |-

dk (A2)

On the other hand, the wake ter#y . is related to col-
lective (plasmon excitations, which is a different mode of
energy loss pertaining to the range of distant interactions not
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(bscn (1) ={Dscdp,Z,9)) = %T J dQ sl p.z,0). (A3)

APPENDIX A: INDUCED POTENTIAL

. _ _ Finally, to obtain the scattering potential we add the Cou-
We refer here to the calculation of the induced potentialomb potential of the bare ion,

using the dielectric function formalism. Following Refs.

21,22 one obtains the expression for the induced potential Ze
gor anaion moving along thzz axis, P bscall) = Tl + (oo (I). (Ad)
v (* * expliwzv) This yields the spherical average of the potential energy
Sindlp,2) == Zle_f kd k‘l)(kp)f do——5— Vo(r) =—€dsca(r).
/o — W K In Fig. 3 we compare the numerically averaged dielectric
1 potential, Eq.(A4), with the Yukawa approximatiorv(r)
XL((») - 1]- (A1)  =—(Z,€%Ir) exp(—ar), where the screening constant scales

with ion velocity asa=gwp/v. A very good approximation
Using the classical plasmon-pole approximatietw) in the range of close distances is obtained vgth1.3. The
zl—w%/m(mﬂy), with y<< wp, and separating the real and value suggested by Lindhard=w/2, has the advantage of
imaginary parts of the dielectric function, we may separateyielding also the correct value for the energy shifiy(0)
&g INtO @ screening componerit., and a wake component =(7/2)Z,€wp/v in agreement with the dielectric theory.
bwake [21], Where ¢, iS given by Hence, we used this value in the current evaluations.
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The calculations reported in this paper have been made ' ' " T ) ' ' T
using two approaches: the first set of calculations were mades, (a)
using the spherical average approximation by a Yukawa po-Z Z=2
tential, whereas the second set of calculations were mad§ 3l s .
using the dielectric potential provided by H#2).

2zb [1-¢
I
'

-
-
- -
-
-

APPENDIX B: A SOLUBLE PROBLEM I [ Z=-2

b)

A case that admits an exact analytical solution was noted™L
by Nagy [23], who obtained the result for the so-called ) , , )
Mensing potential given by 0.0 05 1.0 15 20

-Z(1r-1R), r<R, b (a.u.)
V()= (B1)
0, r>R,

10 g

whereR represents the screening distandéote that atomic

units are used in this Append)x. 5
The scattering angl® for this potential is given, as a ‘g
function of the impact parametér by [23,24 w1

[}
6y Z \? 1-(b/IR)? g
FONEN S N
2 bv?/ [1-Z/(Rv?)]? (B2 =

Using this, one can readily obtain the differential transport o1k

Cross section,

F(b) = 27b[1 - cog6,)], (B3)

and by integration one obtains the total transport cross sec-
tion in the form

¢ =Z/RV?

FIG. 4. (a) Differential transport cross section for the Mensing

2 potential, for attractive and repulsive fields, given analytically by
Oy = S[AN(N) = (M- 1)] (B4) Egs.(B2) and(B3), and Rutherford limit for unscreened fieldb)
(-1 shows the corresponding Barkas factor Eg).for this case, which
with may be expressed analytically using EqB4) and (B5). The
dashed line here yields the liMRyean®= 2{=2Z/Rv? correspond-
Ruv? 2 ing to the present potential.
A= ? -1]. (B5)
L. . tanz(%) - (£>2; (B6)
The characteristics of the DTCS and TCS corresponding 2)  \o?) [1-Z(RDP

to this model are shown in Fig. 4. Parga) shows the impact

parameter dependence of the DTCS, showing also the splitvhich is valid forb<R, to derive its Barkas-effect expres-

ting of the cases witiZz>0 andZ<0 with respect to the sion. Indeed, he assumed a constant offset of the incoming

Rutherford value, as previously observed in Fig. 1. electron energy (in the projectile framg of AV(0)
Figure 4b) shows the Barkas factor defined by E§), =(m/2)Z,wp!v, which according to Eq(B1) meansR™?

namely, Reaka= Aoy /2(oy). In this model Rg as SCales  =(m/2)wp/v. Since the leading term of the Barkas factor, as

with the parametef=Z/Ruv?. The dashed line here shows the can be calculated analytically from EgB4), is Rgaas

line Rgaas2Z/Rv?, which yields the limiting behavior for =2Z/Rv?, we easily get the Lindhard expressiamithout his

Z/Rv?>—0. Again, the results of this model are in good extraad hocw/2 factoh) Rganas 7216 wp/ Moo,

gualitative agreement with those of Fig. 2. In summary, this simple model yields exact results, which
It is interesting to note that Lindhaf@®] used an expres- serve to illustrate the general aspects of the behavior ob-
sion similar to Eq(B2), namely, tained from the calculations reported in Secs. Il and Il
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