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Effect of band filling in the Kondo lattice: A mean-field approach

A. R. Ruppenthal, J. R. Iglesias, and M. A. Gusma˜o
Instituto de Fı´sica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brazil

~Received 12 November 1998!

The usual Kondo lattice, including an antiferromagnetic exchange interaction between nearest-neighboring
localized spins, is treated here in a mean-field scheme that introduces two mean-field parameters: one associ-
ated with the local Kondo effect, and the other related to the magnetic correlations between localized spins.
Phases with short-range magnetic correlations or coexistence between those and the Kondo effect are obtained.
By varying the number of electrons in the conduction band, we notice that the Kondo effect tends to be
suppressed away from half filling, while magnetic correlations can survive if the Heisenberg coupling is strong
enough. An enhanced linear coefficient of the specific heat is obtained at low temperatures in the metallic state.
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I. INTRODUCTION

The denominationKondo lattice1 applies to systems
which are characterized by a lattice of localized magne
moments coexisting with a conduction band. Examples
found among cerium compounds, such as CeAl3 , CeCu6 ,
CeCu2Si2, etc.,2 as well as some uranium or other rare-ea
compounds.1 At high temperatures, the localized momen
behave essentially as independent impurities, similarly
what happens in dilute alloys. At low temperatures, a coh
ent heavy-fermionbehavior is observed where the syste
resembles a Fermi liquid with enhanced values of parame
such as the specific-heat constantg and the magnetic suscep
tibility x. This is a scenario found in the cerium compoun
mentioned above. However, deviations from this behav
are observed: some systems can show a magnetically ord
ground state, as happens, for example, in CeAl2 , CeB6, and
CePd2Al3, or become superconducting at low temperatur
as is the case of CeCu2Si2,3,4 CeCu2Ge2 at high pressures,5

and some uranium compounds like UPt3,6 UBe13,7 and
URu2Si2,8 among others. Besides that, neutron-scatter
experiments9–12 point to the presence of strong short-ran
magnetic correlations in CeCu6 , CeInCu2, and CeRu2Si2, for
which a Fermi-liquid ground state is stable, but that are pr
ably close to the conditions for a magnetic instability.

This coexistence of magnetic correlations and Kondo
fect was recently discussed by Iglesias, Lacroix, a
Coqblin13 within a mean-field approach that has points
common with a path-integral treatment by Coleman a
Andrei.14 The analysis in Ref. 13 was restricted to the case
a half-filled conduction band, which is of relevance f
Kondo insulators.15 The role played by the conduction-ban
filling is obviously very important for metallic compound
that show heavy-fermion behavior, and to the discussion
underscreenedsystems.16

In this paper we study the effect of band filling in th
stability of the Kondo state and short-range magnetic co
lations in the Kondo lattice using a mean-field approa
closely related to the one employed in Ref. 13. Two me
field parameters are introduced, in connection with the lo
correlations generated by the Kondo effect, and the nonlo
ones that indicate tendency towards magnetic order. Bes
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the self-consistent determination of these parameters, we
culate the free energy, the specific heat, and the sin
particle density of states. We focus on the changes obse
when one moves away from half filling, as well as the co
petition between correlations induced by the Kondo coupl
and those produced by a Heisenberg exchange term add
the original Kondo lattice model. When this interaction
strong, the system first develops magnetic correlations,
only at a lower critical temperature does the Kondo eff
appear, depleting but not suppressing the existing corr
tions. In contrast, when the Heisenberg interaction is sm
compared to the local Kondo coupling, the latter dominat
giving rise to a single regime where magnetic correlatio
are mostly induced by the Kondo effect, and can ev
change sign when the band filling is low enough. The s
cific heat that we obtain in the metallic case shows an
hanced linear coefficient, indicating that important quali
tive aspects of the physics of heavy-fermion systems
retained in the mean-field approach.

In Sec. II we introduce the model Hamiltonian and t
fermionic representation of localized moments. In Sec. III
choose the relevant fields in terms of which we rewrite
Hamiltonian, perform the mean-field decoupling, find the e
ergy eigenvalues, and introduce self-consistency equat
for the mean-field parameters, as well as relations to ob
the physical quantities of interest. Our results are presen
in Sec. IV, with a critical discussion of them and of th
approximation itself appearing in Sec. V.

II. MODEL HAMILTONIAN

The usual Kondo lattice Hamiltonian is

H5(
ks

«knks
c 2JK(

i
si•Si , ~1!

wheresi stands for the total conduction-electron spin at l
tice sitei , Si is the spin operator associated to the localiz
moments, and the first term in the right-hand side descri
the conduction band in usual notation. We choose spin-
localized moments, assigning them to ‘‘f electrons.’’ Here
we also add a Heisenberg-like interaction between near
7321 ©1999 The American Physical Society
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neighbor localized spins, which is a form of taking into a
count the Ruderman-Kittel-Kasuya-Yosida~RKKY ! interac-
tion when spin fluctuations that would dynamically gener
it are left out.14 The Kondo lattice Hamiltonian then reads

H5(
ks

«knks
c 1E0(

i
nis

f 2JK(
i

si•Si2JH(̂
i j &

Si•Sj .

~2!

The term with the factorE0 is just a constant provided tha
we remain in the subspace of unit occupation number for
f electrons at every site, which is the constraint that ensu
the equivalence of Eqs.~1! and ~2! if the exchange interac
tion is also included in the original model.

The spin operators are rewritten in the usual fermio
representation

si
z5

1

2
~ni↑

c 2ni↓
c !, Si

z5
1

2
~ni↑

f 2ni↓
f !,

si
15ci↑

† ci↓ , Si
15 f i↑

† f i↓ , ~3!

si
25ci↓

† ci↑ , Si
25 f i↓

† f i↑ .

There is no unique way of rewriting the Hamiltonian
terms of fermion operators. For instance, the terms involv
the z component of the spins can be left as in Eq.~3!, or the
number operators can be explicitly written as products
creation and annihilation operators, whose ordering can t
be altered using the fermionic anticommutation relatio
The final choice of form to write down these terms will a
tually depend on the decoupling scheme that will be e
ployed, as we will discuss in the next section.

III. MEAN-FIELD SCHEME

The first step in constructing the mean-field Hamiltoni
is to choose the relevantfields. The original Hamiltonian is
naturally written in terms ofspin fields. However, if we just
introduced a mean-field decoupling of spin products
would end up with a magnetic Hamiltonian. Since we inte
to describe the Kondo effect as well, we have to cho
fields that couplec and f electrons at the same site, as the
will tend to form local singlets. We can also couplef elec-
trons from neighboring sites in order to describe the sh
range magnetic correlations that will develop between
localized moments. A convenient way to do this is to defi
the ~Hermitian! fields

l̂ is[
1

2
~cis

† f is1 f is
† cis!,

Ĝ i j s[
1

2
~ f is

† f j s1 f j s
† f is!, ~4!

wheres labels the spin orientation~up or down! with respect
to the z axis, andi and j are nearest-neighbor sites in th
definition of Ĝ i j s . It is straightforward to write down the
contributions of transversal spin components in terms
these fields. The result is
-
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si
xSi

x1si
ySi

y52(
s

l̂ isl̂ i ,2s ,

Si
xSj

x1Si
ySj

y52(
s

Ĝ i j sĜ i j ,2s , ~5!

where we have made explicit usage of the constraintni
f51.

Products involving thez component of the spins are slightl
more complicated to deal with, and sometimes these are
coupled as spin fields.13 However, this breaks the spin sym
metry, and results in the stability of a magnetic state, w
total suppression of the Kondo effect, unless the local av
age magnetic moment is forced to be zero. Hence we
avoid this procedure, using the same kind of representa
for all spin components. After some algebraic manipulatio
we obtain

si
zSi

z5
1

4
~ni

c1ni
f !2

1

4
ni

cni
f2(

s
l̂ is

2 ,

Si
zSj

z5
1

4
~ni

f1nj
f !2

1

4
ni

fnj
f2(

s
Ĝ i j s

2 . ~6!

Due to the constraintni
f51 at all sites, the terms containin

number operators in Eqs.~6! will yield a constant shift of the
energies~after summation over the lattice sites!. This terms
can then be dropped, leaving the Kondo and Heisenb
parts of the Hamiltonian respectively written as

HK5JK(
is

~ l̂ is1l̂ i ,2s!l̂ is , ~7!

and

HH5JH (
^ i j &s

~ Ĝ i j s1Ĝ i j ,2s!Ĝ i j s . ~8!

We now proceed with a standard mean-field decoupl
of the operator products in these Hamiltonians, introduc
the mean-fieldsl is[^l̂ is& andG i j s[^Ĝ i j s&. This procedure
is alternative to path-integral formulations restricted to
saddle-point solution, as done by Coleman and Andre14

who further explore the gauge symmetries of the mode
look for superconducting instabilities. For instance, t
mean-field Hamiltonian that we derive below corresponds
the Fermi liquid case in Ref. 14, although a detailed disc
sion of the finite-temperature properties of the solution,
presented here, was not included in that work. Similar pa
integral formulations had been previously applied to t
single-impurity Kondo problem,17 within the slave-boson
large-N formulation, where again the saddle-point soluti
yields a mean-boson-field approximation. The slave-bo
technique, in turn, has been generalized in studies of
tended Hubbard models applied to high-Tc
superconductors.18–21There, the mean-field approximation
applied to fictitious boson fields that are introduced as
means of enforcing correlation constraints, like single oc
pancy of a given site in the strong-coupling limit of the Hu
bard model. In our approach, as well as in Ref. 14, the n
fields are just different representations of the original ope
tors appearing in the Hamiltonian.
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From Eqs.~7! and ~8! one sees that after the mean-fie
decoupling each field couples to a spin-independent quan
Thus there will be no breakdown of spin symmetry, i.e.,
magnetic states. Taking this into account, together w
translational invariance, we can simplify the notation, us
l is[l andG i j s[G.

We are now in a position to put all contributions togeth
the noninteracting terms of Eq.~2! and the mean-field ver
sions of the interaction Hamiltonians~7! and ~8!. Reverting
to the fermionic representation, and adding a chemical
tentialm for the conduction electrons, we can write the co
plete mean-field Hamiltonian:

HMF5(
ks

~«k2m!nks
c 1E0(

i
nis

f

12JKl(
is

~cis
† f is1 f is

† cis!1ĒK12JHG

3 (
^ i j &s

~ f is
† f j s1 f j s

† f is!1ĒH , ~9!

with

ĒK524NJKl2, ĒH522zNJHG2, ~10!

wherez represents the coordination number of a site in
lattice, andN is the total number of sites.

We will choose the conduction band to be a tight-bindi
band of width 2W ~with nearest-neighbor hopping only! in a
~hyper!cubic lattice ind dimensions, so that we can write

«k52
W

d (
m

cos~kma!, ~11!

where m labels the wave-vector components, anda is the
lattice parameter. With this choice, the term withJH in Eq.
~9! will have the samek dependence as the conduction ban
except for the bandwidth. We see, thus, that the mean-fi
decoupling introduces a nonzero band width to thef elec-
trons. At this point, we have to replace the constraintni

f

51 with the much weaker constraint^ni
f&51. Hence the

virtual charge fluctuations introduced by the fermion rep
sentation of the localized spins have been ‘‘put in the m
shell’’ by the mean-field decoupling. Of course, these r
charge fluctuations are spurious, but the method relies on
expectation that the physics of the system will be reasona
preserved on the phase-space surface where the cons
^ni

f&51 holds.
Leaving aside, for the moment, the constant termsEK and

EH , the Hamiltonian~9! is easily diagonalized, yielding th
energy eigenvalues13

Ek
65

1

2
@«k~11B!1E02m

6A@«k~12B!2E02m#2116JK
2l2#, ~12!

whereB[24dJHG/W. These energies are spin degenera
as we remarked before. With them and the correspond
eigenvectors we can compute any average of relevant ph
cal quantities in the system. The chemical potentialm is
ty.
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determined by the equalitŷni
c&5n, wheren is the~chosen!

density of conduction electrons.E0 plays the role of a chemi-
cal potential for thef electrons, being fixed by the conditio
^ni

f&51. The mean-field parametersl andG are determined
through the selfconsistency equations

l5
1

2N (
k

^cks
† f ks1 f ks

† cks&,

G52
1

WN (
k

«k^nks
f &. ~13!

We also check the self-consistency process by evalua
the free energy, which can be written as

F522T (
k,a56

ln@11e2Ek
a/T#1ĒK1ĒH2~E02mn!N,

~14!

whereT is the temperature~in energy units!. Finally, we can
calculate the average internal energy

E52 (
k,a56

Ek
a f ~Ek

a!1ĒK1ĒH2~E02mn!N, ~15!

where f («) stands for the Fermi function. The last term
Eqs.~14! and ~15! is needed to compensate for the fact th
m andE0 are already included in the Hamiltonian. The sp
cific heat can now be obtained ascV5]E/]T, and we can
check for an enhanced linear coefficientg, which is a signa-
ture of heavy-fermion behavior.

IV. RESULTS

In order to be close to real systems, we considere
three-dimensional simple-cubic lattice (z56). However,
given that all wave-vector dependence occurs through«k ,
we turn all k sums into integrals over the conduction-ba
energies, for which we use a semielliptical density of sta
of the form

D~«!5H 3

4
~12«2!, 21<«<1

0, otherwise.

~16!

Here we have setW51, so that all energies are measured
units of the half bandwidth. We choose bothJK andJH to be
negative, which corresponds to the usual Kondo coupli
and antiferromagnetic Heisenberg interactions betw
nearest-neighboring localized spins. The latter would
naturally interpreted as generated by a superexcha
mechanism. It could also mimic the RKKY interaction in th
mean-field Hamiltonian, as stated in Sec. II, although this
a debatable issue: we will see below that there existinduced
spin correlations due to the Kondo coupling alone, and th
are also closely related to the RKKY mechanism.

After numerically solving the set of self-consistenc
equations, we find that bothl andG behave as typical mean
field order parameters, which vanish at high temperatu



itio
an

ite
e
a

t-

hi

a
uc
re

io

i-
ua

a
ng
d
r

rre

rac-
to
n
-
are
c-
ve
ents
rgy

il-
ap-
ag-

ns

ged

ees

lds
We

ion

-

ing

ac-

7324 PRB 60A. R. RUPPENTHAL, J. R. IGLESIAS, AND M. A. GUSMA˜O
and become nonzero through second-order phase trans
at well defined critical temperatures. This is obviously
artifact of the mean-field approach, as one shouldnot expect
either of these regimes to be reached through fin
temperature phase transitions. We identify the region wh
lÞ0 with the Kondo regime, and the corresponding critic
temperature is interpreted as the Kondo temperature (TK) for
the lattice. We callTCorr the temperature below which shor
range magnetic correlations appear (GÞ0). When uJHu
!uJKu, both transitions occur at the same temperature, w
uJHu comparable to or larger thanuJKu gives TCorr.TK , as
obtained earlier for the half filled case.13 We show a typical
example of this behavior in Figs. 1 and 2, where we comp
the results for a half filled and a less than half filled cond
tion band.~Due to particle-hole symmetry, the results a
actually symmetric aroundn51.!

Departure from the half filled situation causes a reduct
of the critical temperatures, except forTCorr in the large-uJHu
regime. Although the sign ofG does not have a direct phys
cal meaning, since spin correlations are related to the sq
of the operator associated toG according to Eq.~6!, we
believe that the change of sign observed in Fig. 1 for the c
of low band filling indicates that the nearest-neighbori
spin correlations have become ferromagnetic, as expecte
this limit. This is only observed at low temperatures, whe
the Kondo effect is large, and the induced part of the co
lations dominate. In contrast, close toTK , l is small, and the

FIG. 1. Mean-field parametersl andG as functions of tempera
ture for n51 ~top! and n50.6 ~bottom!, in the case where the
Heisenberg interaction is small compared to the Kondo coupl
JK /W520.5, JH /W520.1.
ns

-
re
l

le

re
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n

re

se
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e
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antiferromagnetic correlations due to the Heisenberg inte
tion dominate. In order to check this, we would have
calculate the averagêĜ i j s

2 & that appears in the spin-spi
correlations, Eq.~6!. Unfortunately, this is related to aver
ages of products of number operators in each site, which
nontrivial in spite of the noninteracting nature of the effe
tive Hamiltonian. More specifically, these products invol
number operators at displaced wavevectors, which prev
the transformation of momentum summations into ene
integrals. Notice, however, that whenG goes to zero, spins in
different sites become decoupled in the mean-field Ham
tonian. Then, their correlations go to zero, which should h
pen when they change from antiferromagnetic to ferrom
netic.

In Fig. 3 we plot the mean-field parameters as functio
of the band filling for a fixed~low! temperature (T/W
50.05). For largeuJHu ~left panel!, the Heisenberg coupling
dominates, keepingG almost unchanged, whilel is strongly
reduced as we move away fromn51, since we have an
underscreening situation. This picture is completely chan
in the small-uJHu regime~right panel!. Now both parameters
are reduced as one moves away from half filling. One s
that G is now equally sensitive ton, which suggests that in
this regime the part of the intersite correlationsinducedby
the conduction electrons is dominant. It eventually yie
ferromagnetic spin correlations, as discussed above.
checked that a similar behavior is observed if we fixJH50,
when all spin correlations are induced by the conduct
electrons.

:

FIG. 2. Same as in Fig. 1, but with a large Heisenberg inter
tion: JK /W520.5, JH /W521.0.
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PRB 60 7325EFFECT OF BAND FILLING IN THE KONDO . . .
We have cut the curves in the right panel of Fig. 3 f
small n because the convergence of our numerical calc
tions, which involve iterating the set of self-consisten
equations for the mean-field parameters and occupation n
bers, becomes very delicate in that region. In order to
what is happening, we evaluate the free energyF @Eq. ~14!#
for fixed l, G, n, andT, adjusting onlym and E0. Typical
contour plots ofF at low temperature as a function ofl and
G, for half filling and for n very small, in the small-uJHu
regime, are shown in Fig. 4. We can see that the minimum
finite l andG that exists at half filling is displaced toward

FIG. 4. Equal free-energy contours atn51 ~top! and n50.1
~bottom! for uJHu small, showing the complex topology that arises
low filling. The values of the free energy for each contour, quo
on the right, are in units of the half bandwidth.

FIG. 3. Variation of the mean-field parameters with band filli
at fixed temperature (T/W50.05). In the left panel we have dom
nant magnetic correlations (JK /W520.5, JH /W521.0), while
in the right panel the Kondo effect dominates (JK /W5
20.5, JH /W520.1).
r
-

m-
e

at

small values ofl and negative values ofG asn is reduced.
Eventually, a new minimum appears forG.0, since the en-
ergy eigenvalues, Eq.~12!, are symmetric with respect to th
sign ofG whenl50. Thus, whenl approaches zero~asn is
reduced! we have two shallow minima separated by a ve
broad and low maximum atl5G50, which causes prob
lems to the numerical iteration of the self-consistency eq
tions since distant points in thel-G space are very close in
free energy.

Our results for the specific heat as a function of tempe
ture are presented in Figs. 5 and 6. The phase transit
appear in the usual ‘‘lambda shape’’ characteristic of me
field approximations. There are two jumps in the case
large uJHu, at the temperatures where the Kondo effect a
the magnetic correlations disappear. These points coin
whenuJHu is small. We can also see the existence of a ga
the Fermi level for the half filled band, yielding an expone
tially vanishing specific heat forT→0. In contrast, away
from half filling one sees a linear regime at low tempe
tures. The linear coefficient obtained forn50.6, uJKu50.5,
and uJHu50.01 is g;10g0, whereg0 is the corresponding
value in the absence of interactions. We have, thus, so
enhancement ofg, although the true heavy-fermion limi
(g;102g0) is not reached. Such an enhancement sho

t
d FIG. 6. Same as in Fig. 5, but for strong Heisenberg coupl
(JK /W520.5, JH /W521.0).

FIG. 5. Variation of the specific heat~per unit cell! with tem-
perature forn51 ~continuous! and n50.6 ~dashed!, when the
Heisenberg interaction is weak (JK /W520.5, JH /W520.1).
Notice the insulating and metallic behavior at low temperatures
each case.
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correspond to a high density of states~DOS! at the Fermi
level. We calculated the DOS as

r~v!52
1

p (
a56

(
ks

Im Gks
a ~v1 i01!, ~17!

in terms of the one-particle Green’s functions

Gks
a ~z!5

1

z2Ek
a

. ~18!

The DOS depends on temperature throughl and G, which
appear in the energiesEk

a . We plot the low-temperature DOS
in Fig. 7, for bothn51 andn50.6, in the small-uJHu regime.
We can see that the Fermi level (v50) falls in the gap for
n51, while it is located at a point corresponding to a ve
high density of states away from half filling. The gap that
observed immediately above the Fermi level in the latter c
explains the reduction~or at least levelling off! of the spe-
cific heat just above the linear region in Fig. 5. As the te
perature is increased, the gap in the DOS as well as the p
around it are narrowed until a superposition of a free c
duction band and a localizedf level is recovered aboveTK .

FIG. 7. Total single-particle density of states atT/W50.01, for
n51 ~top! and n50.6 ~bottom!, with JK /W520.5, JH /W5
20.1. The frequencies are measured in units ofW. Notice that the
Fermi level~vertical dashed line! lies in the gap at half filling, and
inside a high peak forn,1.
e

-
ks
-

V. CONCLUSIONS

We have presented here a detailed mean-field analys
the Kondo lattice, emphasizing the effects of conductio
band filling in the properties of the system. The regim
where the Kondo effect is observed, and the one in wh
short-range magnetic correlations are present appear as
modynamic phases with well defined critical temperatur
These phases are characterized by nonzero values o
mean-field parameters associated to local correlati
between localized and conduction electrons (l), and be-
tween localized electrons on nearest-neighboring s
(G). As already stated in Sec. IV, the existence of su
phase transitions is not expected on physical groun
Fluctuation corrections to the mean-field solution sho
reduce each of them to a crossover. Thus the results sh
for the order parameters are to be interpreted as indica
of the strength of each effect in a given regime. Similar
the obtained specific-heat behavior is only meaningful
low temperatures, while the lambda-shaped transiti
are expected to be significantly rounded off b
fluctuations.

According to our mean-field results, the main cons
quence of changing the electronic density in the conduc
band with respect to half filling is a tendency to suppress
Kondo effect. Magnetic correlations are equally suppres
if a direct Heisenberg interaction between neare
neighboring localized spins is weak, while they are alm
insensitive to the band filling for strong Heisenberg intera
tions. In the latter case one notices a partial suppressio
magnetic correlations in the region where the Kondo effec
significant.

To a good extent, the physics of Kondo systems is rec
ered here, at least qualitatively, despite the simplicity of
approach. For instance, we have obtained hints of hea
fermion behavior through an enhanced linear coefficient
the specific heat at low temperatures in the metallic situa
(nÞ1), corresponding to an enhanced density of states a
Fermi level. This density of states is clearly due to quasip
ticles with a mixed itinerant-localized character. We al
observed the existence of short-range spin correlati
within a Kondo regime, which was one of the aims
this study, as we mentioned in Sec. I. Unfortunately, t
simple treatment cannot describe magnetically orde
states, and consequently does not allow us to fully add
the competition between Kondo effect and magnetism.
remedy this, one would have to review the choice of relev
fields, trying to write down a Hamiltonian in which bot
Kondo and spin fields were present before the mean-fi
decoupling. It would be interesting to improve the meth
along these lines without losing its formal simplicity, whic
constitutes one of the most attractive qualities of this
proach.
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