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Effect of band filling in the Kondo lattice: A mean-field approach
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(Received 12 November 1998

The usual Kondo lattice, including an antiferromagnetic exchange interaction between nearest-neighboring
localized spins, is treated here in a mean-field scheme that introduces two mean-field parameters: one associ-
ated with the local Kondo effect, and the other related to the magnetic correlations between localized spins.
Phases with short-range magnetic correlations or coexistence between those and the Kondo effect are obtained.
By varying the number of electrons in the conduction band, we notice that the Kondo effect tends to be
suppressed away from half filling, while magnetic correlations can survive if the Heisenberg coupling is strong
enough. An enhanced linear coefficient of the specific heat is obtained at low temperatures in the metallic state.
[S0163-182699)00534-3

[. INTRODUCTION the self-consistent determination of these parameters, we cal-
culate the free energy, the specific heat, and the single-
The denominationKondo latticé applies to systems particle density of states. We focus on the changes observed
which are characterized by a lattice of localized magnetiavhen one moves away from half filling, as well as the com-
moments coexisting with a conduction band. Examples argetition between correlations induced by the Kondo coupling
found among cerium compounds, such as GeATeCy, and those produced by a Heisenberg exchange term added to
CeCuySi,, etc.? as well as some uranium or other rare-earththe original Kondo lattice model. When this interaction is
compounds. At high temperatures, the localized momentsstrong, the system first develops magnetic correlations, and
behave essentially as independent impurities, similarly t®nly at a lower critical temperature does the Kondo effect
what happens in dilute alloys. At low temperatures, a coherappear, depleting but not suppressing the existing correla-
ent heavy-fermionbehavior is observed where the systemtions. In contrast, when the Heisenberg interaction is small
resembles a Fermi liquid with enhanced values of parametegmpared to the local Kondo coupling, the latter dominates,
such as the specific-heat constarand the magnetic suscep- giving rise to a single regime where magnetic correlations
tibility x. This is a scenario found in the cerium compoundsare mostly induced by the Kondo effect, and can even
mentioned above. However, deviations from this behaviochange sign when the band filling is low enough. The spe-
are observed: some systems can show a magnetically orderefic heat that we obtain in the metallic case shows an en-
ground state, as happens, for example, in GeMleR;, and hanced linear coefficient, indicating that important qualita-
CePgdAl,, or become superconducting at low temperaturestive aspects of the physics of heavy-fermion systems are
as is the case of CeG8i,>* CeCyGe, at high pressures, retained in the mean-field approach.
and some uranium compounds like YPtUBe;3,” and In Sec. Il we introduce the model Hamiltonian and the
URW,Si»,® among others. Besides that, neutron-scatteringermionic representation of localized moments. In Sec. Il we
experiment$ 2 point to the presence of strong short-rangechoose the relevant fields in terms of which we rewrite the
magnetic correlations in CeguCelnCy, and CeRySi,, for ~ Hamiltonian, perform the mean-field decoupling, find the en-
which a Fermi-liquid ground state is stable, but that are prob€rgy eigenvalues, and introduce self-consistency equations
ably close to the conditions for a magnetic instability. for the mean-field parameters, as well as relations to obtain
This coexistence of magnetic correlations and Kondo efthe physical quantities of interest. Our results are presented
fect was recently discussed by Iglesias, Lacroix, andn Sec. IV, with a critical discussion of them and of the
Cogblint® within a mean-field approach that has points inapproximation itself appearing in Sec. V.
common with a path-integral treatment by Coleman and
Andrei!* The analysis in Ref. 13 was restricted to the case of Il. MODEL HAMILTONIAN
a half-filled conduction band, which is of relevance for ) S
Kondo insulators® The role played by the conduction-band ~ The usual Kondo lattice Hamiltonian is
filling is obviously very important for metallic compounds
that show heavy-fermion behavior, and to the discussion of _ ¢
underscreenegystems?® H_% sknkf’_‘]KZ $ S @)
In this paper we study the effect of band filling in the
stability of the Kondo state and short-range magnetic correwheres stands for the total conduction-electron spin at lat-
lations in the Kondo lattice using a mean-field approacttice sitei, S is the spin operator associated to the localized
closely related to the one employed in Ref. 13. Two meanmoments, and the first term in the right-hand side describes
field parameters are introduced, in connection with the locathe conduction band in usual notation. We choose spin-1/2
correlations generated by the Kondo effect, and the nonlocdbcalized moments, assigning them td ¢lectrons.” Here
ones that indicate tendency towards magnetic order. Besidege also add a Heisenberg-like interaction between nearest-
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neighbor localized spins, which is a form of taking into ac- e .
count the Ruderman-Kittel-Kasuya-Yosi®KKY ) interac- S'SHEY =2 Nighi o,
tion when spin fluctuations that would dynamically generate 7
it are left out’* The Kondo lattice Hamiltonian then reads o
stl?ursysjy:_z Lijolij, o 5
H= nt +Ey>, nf —J §-1J ‘S
kzo ke Ozi 7 KZ S5 H(iEj) S5 where we have made explicit usage of the constnaﬁnvtl.
(2 Products involving the component of the spins are slightly

more complicated to deal with, and sometimes these are de-

The term with the facto, is just a constant provided that o, 514 as spin field§ However, this breaks the spin sym-
we remain in the subspace of unit occupation number for th?netry, and results in the stability of a magnetic state, with

f electrons at every site, which is the constraint that ensureg, suppression of the Kondo effect, unless the local aver-
the equivalence of Eq¢l) and(2) if the exchange interac- 46 magnetic moment is forced to be zero. Hence we will
tion is also included in the original model. _avoid this procedure, using the same kind of representation

The spin operators are rewritten in the usual fermionic, o) gpin components. After some algebraic manipulations,
representation we obtain

1 1 1 1 ~
Sizzi(nicT_nicl)' Szzz(nifT_nifl)a SiZ$Z=Z(ni°+ nif)—ZniCnif—z %

lo

st=clc,, S =ff,, 3 1 1 .

UGG ® SiZSjZ=Z(nif+n]f)—Znifnjf—§ rs,. (6)

Sf=Cﬁcm Sf=fﬁfm- - . .
Due to the constraim; =1 at all sites, the terms containing

There is no unique way of rewriting the Hamiltonian in number operators in Eq&) will yield a constant shift of the

terms of fermion operators. For instance, the terms involvingnergiesafter summation over the lattice sijeJhis terms

the z component of the spins can be left as in E), or the  can then be dropped, leaving the Kondo and Heisenberg

number operators can be explicitly written as products ofparts of the Hamiltonian respectively written as

creation and annihilation operators, whose ordering can then

be altered using the fermionic anticommutation relations. S S S

The final choicegof form to write down these terms will ac- HK_JK% gt Ni—o)Niors 0

tually depend on the decoupling scheme that will be em-

ployed, as we will discuss in the next section. an

lll. MEAN-FIELD SCHEME HH=‘]H<%U (TijotTij o) Tijo- (8

The first step in constructing the mean-field Hamiltonian ith fiel i
is to choose the relevafiields The original Hamiltonian is We now proceed with a standard mean-field decoupling

naturally written in terms opin fields However, if we just Of the operator products in these Hamiltonians, introducing
introduced a mean-field decoupling of spin products wethe mean-fielda;,=(\;,) andl';; ,=(I'j;,,). This procedure
would end up with a magnetic Hamiltonian. Since we intendiS alternative to path-integral formulations restricted to a
to describe the Kondo effect as well, we have to choos&addle-point solution, as done by Coleman and Antfrei,
fields that couple andf electrons at the same site, as thesewho further explore the gauge symmetries of the model to
will tend to form local singlets. We can also coufilelec- 100k for superconducting instabilities. For instance, the
trons from neighboring sites in order to describe the shortmean-field Hamiltonian that we derive below corresponds to
range magnetic correlations that will develop between thdéhe Fermi liquid case in Ref. 14, although a detailed discus-
localized moments. A convenient way to do this is to definesion of the finite-temperature properties of the solution, as
the (Hermitian fields presented here, was not included in that work. Similar path-
integral formulations had been previously applied to the
single-impurity Kondo problemt! within the slave-boson
(C;rafi(r+f;raci(r), largeN formulation, where again the saddle-point solution
yields a mean-boson-field approximation. The slave-boson
technique, in turn, has been generalized in studies of ex-
P Ei(ffr foo+fl ) 4) tended Hubbard models applied to high-
o ietio T jotial superconductor® 2! There, the mean-field approximation is
applied to fictitious boson fields that are introduced as a
whereo labels the spin orientatiofup or down with respect  means of enforcing correlation constraints, like single occu-
to thez axis,Aandi andj are nearest-neighbor sites in the pancy of a given site in the strong-coupling limit of the Hub-
definition of I';;,,. It is straightforward to write down the bard model. In our approach, as well as in Ref. 14, the new
contributions of transversal spin components in terms ofields are just different representations of the original opera-
these fields. The result is tors appearing in the Hamiltonian.

Xi(r

Il
N| -
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From Eqs.(7) and (8) one sees that after the mean-field determined by the equalign®y=n, wheren is the (chosen
decoupling each field couples to a spin-independent quantityengity of conduction electrong, plays the role of a chemi-

Thus there will be no breakdown of spin symmetry, i.e., NO.5| notential for thef electrons, being fixed by the condition

magnetjc sta}tes. .Taking this intp agcount, toggther With<n-f>=l. The mean-field parametexsandI” are determined
translational invariance, we can simplify the notation, usmgthr'Ough the selfconsistency equations

)\iU.E)\ andFijUEF.
We are now in a position to put all contributions together: 1

the noninteracting terms of E¢2) and the mean-field ver- A= (c} Feot FloCro)s

sions of the interaction Hamiltoniar{g) and (8). Reverting 2N %

to the fermionic representation, and adding a chemical po-

tential u for the conduction electrons, we can write the com- 1
: R F=——— > gnl). (13
plete mean-field Hamiltonian: WN 4 &KMo
HVF=>" (e—pm)nS,+Eo>, Nl We also check the self-consistency process by evaluating
ko i

the free energy, which can be written as

+23 N (¢l fio+ 1l cip) +Ex+ 23T
lo

lo

F=—2T > In[1+e BT+ Ex+Ey— (Eg— un)N,
kK,a=+*

_ (14)
X 2 (fi-r(rf]'l)'—f_f}.(rfizr)—’_EHl (9)
(o whereT is the temperaturén energy units Finally, we can

with calculate the average internal energy

E —_ 2 B o 2 I

Bi=—4NJA% - By=—2ZN4I (10 E=2 3 E{f(E{)+EctEu(Eo—pn)N, (15)
wherez represents the coordination number of a site in the A
lattice, andN is the total number of sites. wheref(g) stands for the Fermi function. The last term in

We will choose the conduction band to be a tight-bindingggs. (14) and (15) is needed to compensate for the fact that
band of width 2V (with nearest-neighbor hopping oflyn a , andE, are already included in the Hamiltonian. The spe-
(hypencubic lattice ind dimensions, so that we can write  Gific heat can now be obtained as=JE/JT, and we can

check for an enhanced linear coefficientwhich is a signa-
£ = — VEV E cogk,a), (11) ture of heavy-fermion behavior.
o

where . labels the wave-vector components, amds the IV. RESULTS

lattice parameter. With this choice, the term with in Eq. In order to be close to real systems, we considered a
(9) will have the samé dependence as the conduction band three-dimensional simple-cubic latticez<£6). However,

except f'or the bandwidth. We see, thus, that the mean—fielgiven that all wave-vector dependence occurs throgigh
decoupling introduces a nonzero band width to thelec- e tyrn allk sums into integrals over the conduction-band

trons. At this point, we have to replace the constraifit energies, for which we use a semielliptical density of states
=1 with the much weaker constraifh/)=1. Hence the of the form

virtual charge fluctuations introduced by the fermion repre-

sentation of the localized spins have been “put in the mass

shell” by the mean-field decoupling. Of course, these real Z(l—sz), —lses<l

charge fluctuations are spurious, but the method relies on the D(e)= (16)
expectation that the physics of the system will be reasonably 0, otherwise.

preserved on the phase-space surface where the constraint _ )
<nif>:1 holds. Here we have satV=1, so that all energies are measured in

units of the half bandwidth. We choose bdthandJ,, to be
negative, which corresponds to the usual Kondo coupling,
and antiferromagnetic Heisenberg interactions between
nearest-neighboring localized spins. The latter would be
1 naturally interpreted as generated by a superexchange
Ef :E[gk(1+ B)+Eq—u mechanism. It could also mimic the RKKY interaction in the
mean-field Hamiltonian, as stated in Sec. Il, although this is
+ [ee(1-B)—Eo— n]?+162\2], (12) @ debatable issue: we will see below that there erbiced
spin correlations due to the Kondo coupling alone, and these
whereB=—4dJyI'/W. These energies are spin degenerateare also closely related to the RKKY mechanism.
as we remarked before. With them and the corresponding After numerically solving the set of self-consistency
eigenvectors we can compute any average of relevant physequations, we find that bothandI” behave as typical mean-
cal quantities in the system. The chemical potentiais  field order parameters, which vanish at high temperatures,

Leaving aside, for the moment, the constant teipsand
Ey, the Hamiltonian(9) is easily diagonalized, yielding the
energy eigenvalué$
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FIG. 1. Mean-field parametersandl as functions of tempera FIG. 2. Same as in Fig. 1, but with a large Heisenberg interac-
ture for n=1 (top) and n=0.6 (bottom), in the case where the . . N ~

- . S - tion: Jx /W=-0.5, J4,/W=-1.0.
Heisenberg interaction is small compared to the Kondo coupling:

J/W=-0.5, J,/W=—-0.1. antiferromagnetic correlations due to the Heisenberg interac-
tion dominate. In order to check this, we would have to

and become nonzero through second-order phase transitiopalculate the averag(ef“izj(,) that appears in the spin-spin
at well defined critical temperatures. This is obviously ancorrelations, Eq(6). Unfortunately, this is related to aver-
artifact of the mean-field approach, as one shawtlexpect ages of products of number operators in each site, which are
either of these regimes to be reached through finitenontrivial in spite of the noninteracting nature of the effec-
temperature phase transitions. We identify the region wheréive Hamiltonian. More specifically, these products involve
A #0 with the Kondo regime, and the corresponding criticalnumber operators at displaced wavevectors, which prevents
temperature is interpreted as the Kondo temperafligg for ~ the transformation of momentum summations into energy
the lattice. We calll ,,, the temperature below which short- integrals. Notice, however, that wh&nhgoes to zero, spins in
range magnetic correlations appedr #0). When |J| different sites become decoupled in the mean-field Hamil-
<|J|, both transitions occur at the same temperature, whiléonian. Then, their correlations go to zero, which should hap-
|Ju| comparable to or larger thady| gives Tco>Tk, as  pen when they change from antiferromagnetic to ferromag-
obtained earlier for the half filled cadéWe show a typical netic.
example of this behavior in Figs. 1 and 2, where we compare In Fig. 3 we plot the mean-field parameters as functions
the results for a half filled and a less than half filled conduc-of the band filling for a fixed(low) temperature T/W
tion band.(Due to particle-hole symmetry, the results are=0.05). For largdJy| (left pane), the Heisenberg coupling
actually symmetric around=1.) dominates, keeping almost unchanged, while is strongly
Departure from the half filled situation causes a reductiorreduced as we move away from=1, since we have an
of the critical temperatures, except fbg,,, in the largeRy| underscreening situation. This picture is completely changed
regime. Although the sign df does not have a direct physi- in the smalllJ,| regime(right pane). Now both parameters
cal meaning, since spin correlations are related to the squaere reduced as one moves away from half filling. One sees
of the operator associated 10 according to Eq.(6), we thatI' is now equally sensitive ta, which suggests that in
believe that the change of sign observed in Fig. 1 for the casthis regime the part of the intersite correlatianducedby
of low band filling indicates that the nearest-neighboringthe conduction electrons is dominant. It eventually yields
spin correlations have become ferromagnetic, as expected ferromagnetic spin correlations, as discussed above. We
this limit. This is only observed at low temperatures, wherechecked that a similar behavior is observed if weJix=0,
the Kondo effect is large, and the induced part of the correwhen all spin correlations are induced by the conduction
lations dominate. In contrast, closeT@, N is small, and the electrons.



PRB 60 EFFECT OF BAND FILLING IN THE KONDO . .. 7325

0.45 L B S e L 045 — T — — 45 T T T T T

04 g 04 | g PR ]
0.35 B 0.35 | A B 35k d
03 b 03| b

0.25 0.25 Bl

02 02| -

specific heat

0.15 0.15 | B

mean-field parameters

0.1

0.05

0

005 PR S R R S S 0.05 N R S 0 f L L L L
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1 ° 0.05 01 015 02 025 03
n n w

FIG. 3. Variation of the mean-field parameters with band filling ~ FIG. 5. Variation of the specific he&per unit cel) with tem-
at fixed temperatureTYW=0.05). In the left panel we have domi- perature forn=1 (continuou$ and n=0.6 (dashed, when the
nant magnetic correlationsl{ /W= —0.5, J,/W=—1.0), while  Heisenberg interaction is weakl{/W=—-0.5, Jy/W=-0.1).
in the right panel the Kondo effect dominatesly (W= Notice the insulating and metallic behavior at low temperatures in

—0.5, Jy/W=-0.1). each case.

We have cut the curves in the right panel of Fig. 3 forSmall values ofx anq r?egative values df asn_is reduced.
small n because the convergence of our numerical calculaEventually, a new minimum appears fo>-0, since the en-
tions, which involve iterating the set of self-consistency©rdy eigenvalues, E¢12), are symmetric with respect to the
equations for the mean-field parameters and occupation nun§ign of " whenh=0. Thus, when\ approaches zer@sn is
bers, becomes very delicate in that region. In order to sekéduced we have two shallow minima separated by a very
what is happening, we evaluate the free endfdfq. (14]  broad and low maximum at=I"=0, which causes prob-
for fixed N, T, n, and T, adjusting onlyx andE,. Typical ~ lems to the numerical iteration of the self-consistency equa-
contour plots ofF at low temperature as a function pfand  tions since distant points in the-I" space are very close in
T, for half filling and for n very small, in the smalld,|  free energy. - .
regime, are shown in Fig. 4. We can see that the minimum at Our results for the specific heat as a function of tempera-

finite A\ andT" that exists at half filling is displaced towards turé are presented in Figs. 5 and 6. The phase transitions
appear in the usual “lambda shape” characteristic of mean-

n=1.0 field approximations. There are two jumps in the case of
large|Jy|, at the temperatures where the Kondo effect and
the magnetic correlations disappear. These points coincide
when|Jy| is small. We can also see the existence of a gap at
the Fermi level for the half filled band, yielding an exponen-

r tially vanishing specific heat fof—0. In contrast, away
from half filling one sees a linear regime at low tempera-
tures. The linear coefficient obtained for=0.6, |J«|=0.5,

; . and|Jy|=0.01 is y~ 10y,, where y, is the corresponding
-05 i i i value in the absence of interactions. We have, thus, some
0 0.050.10.150.20.250:30.350.40450.5 enhancement ofy, although the true heavy-fermion limit
A (y~1C%y,) is not reached. Such an enhancement should
25 T T T T T T T T T
2k
1" = 15T
&0
0 0.05 0.1 0.15 0.2 os |
A
0
FIG. 4. Equal free-energy contours a1 (top) and n=0.1 o o102 03 04 05 06 07 08 08

™
(bottom) for |Jy| small, showing the complex topology that arises at

low filling. The values of the free energy for each contour, quoted FIG. 6. Same as in Fig. 5, but for strong Heisenberg coupling
on the right, are in units of the half bandwidth. (Jk/W=-0.5, Jy/W=-1.0).
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DOS

DOS

FIG. 7. Total single-particle density of statesTaiW=0.01, for
n=1 (top) and n=0.6 (bottom), with Jx/W=-0.5, Jy/W=
—0.1. The frequencies are measured in units\bfotice that the
Fermi level(vertical dashed linelies in the gap at half filling, and
inside a high peak fon<1.

correspond to a high density of statd30S) at the Fermi
level. We calculated the DOS as

1
p(w)z—;agi % ImGZ (w+i0"), 17

in terms of the one-particle Green’s functions

ko(2)= (18)

o«

The DOS depends on temperature throaghndI", which
appear in the energidy’ . We plot the low-temperature DOS
in Fig. 7, for bothn=1 andn=0.6, in the smallJ,| regime.
We can see that the Fermi leveb€0) falls in the gap for

n=1, while it is located at a point corresponding to a very
high density of states away from half filling. The gap that is

V. CONCLUSIONS

We have presented here a detailed mean-field analysis of
the Kondo lattice, emphasizing the effects of conduction-
band filling in the properties of the system. The regime
where the Kondo effect is observed, and the one in which
short-range magnetic correlations are present appear as ther-
modynamic phases with well defined critical temperatures.
These phases are characterized by nonzero values of the
mean-field parameters associated to local correlations
between localized and conduction electrong,(and be-
tween localized electrons on nearest-neighboring sites
(I"). As already stated in Sec. IV, the existence of such
phase transitions is not expected on physical grounds.
Fluctuation corrections to the mean-field solution should
reduce each of them to a crossover. Thus the results shown
for the order parameters are to be interpreted as indicative
of the strength of each effect in a given regime. Similarly,
the obtained specific-heat behavior is only meaningful at
low temperatures, while the lambda-shaped transitions
are expected to be significantly rounded off by
fluctuations.

According to our mean-field results, the main conse-
quence of changing the electronic density in the conduction
band with respect to half filling is a tendency to suppress the
Kondo effect. Magnetic correlations are equally suppressed
if a direct Heisenberg interaction between nearest-
neighboring localized spins is weak, while they are almost
insensitive to the band filling for strong Heisenberg interac-
tions. In the latter case one notices a partial suppression of
magnetic correlations in the region where the Kondo effect is
significant.

To a good extent, the physics of Kondo systems is recov-
ered here, at least qualitatively, despite the simplicity of the
approach. For instance, we have obtained hints of heavy-
fermion behavior through an enhanced linear coefficient of
the specific heat at low temperatures in the metallic situation
(n#1), corresponding to an enhanced density of states at the
Fermi level. This density of states is clearly due to quasipar-
ticles with a mixed itinerant-localized character. We also
observed the existence of short-range spin correlations
within a Kondo regime, which was one of the aims of
this study, as we mentioned in Sec. I. Unfortunately, this
simple treatment cannot describe magnetically ordered
states, and consequently does not allow us to fully address
the competition between Kondo effect and magnetism. To
remedy this, one would have to review the choice of relevant
fields, trying to write down a Hamiltonian in which both
Kondo and spin fields were present before the mean-field
decoupling. It would be interesting to improve the method
along these lines without losing its formal simplicity, which
constitutes one of the most attractive qualities of this ap-
proach.
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