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Impact-parameter dependence of electronic energy loss and straggling of incident bare ions
on H and He atoms by using the coupled-channel method
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A first-principles calculation based on an expansion of the time-dependent electronic wave function in

terms of atomic orbitals (coupled-channel method) has been applied to evaluate the impact-parameter
dependence of the electronic energy loss and the fluctuation in energy loss of swift ions colliding on H
and He atoms at energies of 10 to 500 keV/amu. The results have been compared with experimental
data as well as with other existing models, e.g., the local-density approximation in an electron-gas target,
the harmonic-oscillator target treatment, and the first-order plane-wave-Born approximation. Our re-

sults show a nearly exponential shape of the mean electronic energy loss for small impact parameters, in

contrast to the Cxaussian shapes obtained by Mikkelsen and Sigmund [Nucl. Instrum. Methods 8 27, 266
(1987)].

I. INTRODUCTION

The phenomenon of energy loss of ions in matter has
been studied for several decades. Although its overall
properties are well known, there is no general theory that
can accurately describe the energy loss in the whole ener-

gy range. Most of the existing models are based either on
classical and semiclassical theories [1—3] or on first-order
quantum perturbation theory [4—9], and for this reason
their applicability is limited. However, only recently,
some effort has been made to attack the stopping-power
problem starting from first principles [10]. In this treat-
ment, the electronic and nuclear energy losses of an in-
cident bare ion and the corresponding stopping powers
are obtained by solving the electronic time-dependent
Schrodinger equation coupled with the classical motion
of the nucleus.

Besides the stopping-power and energy-straggling in-
formation, in some cases it is necessary to go into more
detail in the energy-loss phenomena. In particular, chan-
neling experiments and measurements of energy loss as a
function of scattering angle demand the knowledge of the
impact-parameter dependence of the electronic energy
loss. Moreover, the full impact-parameter dependence of
the energy loss is a basic quantity to describe spatially
correlated collisions that play an important role in struc-
tured targets, e.g., crystalline and solids and diatomic
gases.

There are few descriptions of the average energy loss as
a function of the impact parameter in the literature.
Most of those models adopt either erst-order perturba-
tion theory [7—9] or local-density approximation in an
electron-gas treatment of the target [11—I S] or other ap-
proaches [2,16,17] in which it is hardly possible to deter-
mine the uncertainty due to the approximations involved.

In this work we will evaluate the average energy loss as
a function of impact parameter Q(b) as well as the aver-
age of the square of energy loss Q (b) (related to the
energy-loss straggling process) by using the improved

quantum calculation of Ref. [10] for very light systems
(p,P in H and He). The obtained Q (b) values will be
used to compute the straggling in energy loss for hydro-
gen ions in H2 and He considering the projectile charge
states and the structure of the target, for the H2 case.
Some of the stopping-power calculations and a compar-
ison with experimental data have already been discussed
in a previous paper [10]. The same notation as in Ref.
[10] is used in this work.

In the following, we shall give a brief description of the
theoretical procedure used to evaluate Q(b) and Q (b).
In Sec. III, numerical results are presented and discussed
in connection with other energy-loss models. Finally, in
Sec. IV, we provide a comparison of the calculated
energy-loss straggling results with some existing experi-
ments. If not indicated otherwise atomic unit (a.u. ) will
be used throughout the paper.

II. THEORY

It is well known that the impact parameter b, the
asymptotic transversal distance of the incoming ion tra-
jectory from the target particle, is a meaningful concept
for heavy colliding particles (m ~ m „„„)even for
thermal energies [1,18].

In this approach we assumed that the nuclear motion
can be described by classical paths and the electronic
motion is governed by a time-dependent Schrodinger
equation given by

where [r, ] are the electron coordinates and R is the in-
ternuclear distance which is assumed to be only a time-
dependent parameter. R(t) is extracted from the classical
trajectory calculated by using the averaged Hamiltonian
for the heavy particles,

(2)
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Then, for each impact parameter b, we have
R=R(t, b). However, for the cases considered so far we
found no inhuence of the dynamic curved trajectory,
given by Eq. (2), on the electronic energy loss. An
inhuence on the nuclear energy loss at large impact pa-
rameter was found in Ref. [10]

The many-body Hamiltonian in Eq. (1) is treated in the
framework of the independent electron model for an ac-
tive electron, as described by McGuire and Weaver [19].
Of course, correlation effects are not taken into account.
Furthermore, we will only analyze cases where the pro-
jectile is fully stripped. For these cases Eq. (1) can be
solved quite well by expanding N, (t) in terms of the
eigenfunctions of the target without the projectile pertur-
bation (single-center atomic wave functions q&;). Then
Eq. (1) can be replaced by a set of first-order coupled
differential ordinary equations for the coeKcients
a; ( t) = ( y, ~ @,(t) ) originating from this expansion.
These equations are so-called coupled-channel equations
[20].

The essence of the present calculations is to solve nu-
merically in time, step by step, Eq. (1) and the classical
trajectory of the nucleus in order to obtain the
coefficients a; after the collision (t = ~ ) since the proba-
bility of exciting (or ionizing) the active electron from the
target in a collision with impact parameter b [P;(b)] is
given by

P, (b)= lim ~a;(t)~
f —+ oo

(3)

The probability P; (b) should be highly accurate as long
as electron capture by the projectile is of minor impor-
tance. The description of even a single projectile state re-
quires an infinite number of single-centered target states
as basis set, which is impossible to include in any numeri-
cal calculation. However, by choosing an appropriate
basis set, with bound and continuum states of high orbital
angular momenta, electron capture can be simulated for
small internuclear distances. The advantage of this
method, called AO (atomic-orbital expansion), is the
good description of the time evolution of the electronic
wave function at small internuclear distances, from where
the projectile energy loss originates.

Each excited or continuum state corresponds to a
well-defined energy transfer AE, . Then the average elec-
tronic energy loss Q in a given impact parameter b can be
written as

Q(b)= gP;(b)EE,

and the mean squared of the transferred electronic energy
(Q ) is given by

Q = g P;(b)b, E,
I

It is noted that the above sums have to be replaced by in-
tegrals in the case of continuum states.

The electronic stopping power S, and energy strag-
gling 8 per atom can be computed directly from

S, = g o;AE. ,

=2' f b db Q(b),
0

W= g cr, bE,

(6b)

(7a)

=2' f b db Q (b)
0

(7b)

where o, is the cross section for excitation (or ionization)
from the ground state to a state i.

In this work we are only interested in electronic
energy-loss processes. However, the kinetic energy
transferred from the ion to the target core, the nuclear
stopping process, can be obtained directly from the calcu-
lated classical trajectories.

We can also restrict the present computer code to the
so-called semiclassical approximation (SCA) [7—9,18]. In
this approach, the nuclear trajectories are assumed to be
straight lines and the coupled-channel equations are
solved by neglecting all matrix elements, except those
which lead to transition from initial state, 1s or 1s in the
He case, to one of the final states. This model yields the
same cross section as the first-order plane-wave-born-
approximation (PWBA) [21]. It is emphasized that the
present SCA calculation is in disagreement with the one
performed by Kabachnik, Kondratev, and Chumanova
[9] for high-energy H++H collisions. The correspond-
ing stopping cross section derived from Ref. [9] at 625
keV is about 20% less than the one predicted by PWBA.
Therefore, in what follows, comparisons with first-order
theory will be provided only through the present SCA
code.

It was verified that the coupled-channel results agree
with the predictions of the first-order perturbation theory
(SCA) in the case of a small perturbation. Small pertur-
bations correspond to either fast projectiles, large impact
parameters, or small projectile charges. Thus the advan-
tage of coupled-channel calculations compared to first-
order theories show up especially at intermediate incident
energies and for small impact parameters. However, the
range of validity of the present single-centered atomic-
orbital model should be v /Z ~ 1 due to the insufficient
simulation of projectile-centered states, which dominate
the collision process at low energies.

In the present work we have used a basis set with 10
gerade bound states and 80 gerade continuum wave pack-
ets [10]. The energies of the continuum states were
chosen, depending on the projectile energy, from 0 to 500
eV and the largest angular momentum used was l =7.
With this basis set, the estimated error for the probabili-
ties (3) is less than 1% for 10 keV and roughly 0.01% for
higher energies (e.g. , 200 keV). For impact parameters
smaller than 3 a.u. , the accuracy of the calculation de-
pends weakly on the selected impact parameter b. For
larger b, our evaluation is much more precise since only
dipole transitions are important. The computation time
is less than one hour per impact parameter without
counting the time required to generate all matrix ele-
ments (around 20 h).

Further details of the calculation, e.g. , the numerical



2986 P. L. GRANDE AND G. SCHIWIETZ

treatment of continuum states and the adopted basis set,
may be found in Ref. [10]. - 30keV

~ I ~ I I I

H-tH-

III. IMPACT-PARAMETER DEPENDENCE

Q(b) AND Q (b)

The numerical results calculated according to the
preceding section are presented in Figs. 1 —6. Figure 1

shows the energy dependence of Q(b) for protons in-
cident on He. For impact parameter smaller than 2 a.u.
the shape of Q(b) is approximately described by an ex-
ponential e function (dashed line). In fact, this behav-
ior was found for almost all cases studied in this work. In
addition we have found that the coefTicient o,' depends
only weakly on the projectile energy. For protons on H,
a=0. 8, and for p on He, a=1.2, for E )20 keV. For
lower energies, the energy loss Q(b) cannot be fitted with
an exponential function anymore. The exponential be-
havior of the impact-parameter dependence of the elec-
tronic energy loss was already proposed, as an ansatz, by
Oen and Robinson [22]. They have suggested that the a
parameter is a function of interatomic screening length
[3] and independent of the projectile energy.

From Fig. 1 we can also observe that the curves be-
come Aatter at large impact parameters with increasing
ion energy. This is in harmony with results of first-order
perturbation theories [23], where it is known that the
mean impact parameter for excitation and ionization pro-
cesses is proportional to the ion velocity v . It is em-
phasized that the contribution due to excitation becomes
dominant at large impact parameters. We can also note
that Q(0) follows the energy dependence of the electronic
stopping power, showing a maximum around 80 keV
[10].

In Fig. 2 the calculated impact-parameter dependence
of the electronic energy loss for protons on H at 30 and
300 keV is displayed. The dashed lines represent a simple
model where it is assumed that the energy loss is propor-
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FIG. 1. Theoretical results of the mean electronic energy loss
for proton incident on He at 100, 300, and 500 keV. Dashed
line represents an exponential curve with a = 1.2 (see text).
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FICJ. 2. Comparison between our theoretical result of Q(b)
(AO) and the one obtained by assuming that the electronic ener-

gy loss is proportional to the electronic density integrated along
the ion trajectory (dens. ), for H++H collisions at 30 and 300
keV.

tional to the electronic density integrated along the ion
path [24]. As can be seen from the figure, only for very
small impact parameters (b (0.3 a.u. ) may the electronic
energy-loss processes be considered as a local quantity.
As a matter of fact, for larger impact parameters the en-
ergy loss Q(b) falls off very slowly. This tendency, indi-
cating a breakdown of the local-density model, was ob-
served for all cases (H and He targets). This result, which
was already pointed out in Ref. [16], is very important,
since most of the energy-loss models used in channeling
experiments and theories are based on the assumption
that the electronic stopping power is proportional to the
local electron density [22,24].

Figure 3 displays the present calculation for 100-keV
H++H collisions in comparison with other Q(b) models
existing in the literature. The models (O-l) and (0-2) cor-
respond, respectively, to the first- and second-order quan-
tum perturbation theory in a harmonic-oscillator target,
as proposed by Mikkelsen and Sigmund [16,17]. In this
model, they have obtained, for not too large impact pa-
rameters, a near Gaussian dependence of Q(b) in contrast
to the exponential shape found by us. In spite of this, the
(0-2) model predicts quite good energy-loss values at
impact-parameter zero. In this figure, Q(b) is also
presented as evaluated by using a local-density electron-
gas treatment [15]. The agreement with all other calcula-
tions is bad. However, for the present cases, the applica-
bility of such a model is rather dubious.

In Fig. 4 the same calculation is shown as in Fig. 3 for
300-keV H++He. The (0-2) calculation was performed
with two harmonic oscillators with the same frequency
co=1.54 a.u. [17]. In this figure an experimental point
from Ref. [25] is also presented for b =0.02 a.u. The
agreement between the experimental value and the calcu-
lated one is reasonable. However, a much better agree-
ment can be achieved by increasing the size of the basis
set used or adapting the basis set to the physical situation
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FIG. 3. Theoretical mean energy loss as a function of impact
parameter for 100-keV H++H collisions. Present theory is
denoted by (AO). Dashed lines (0-1) and (0-2) correspond to a
calculation of Q(b) in a harmonic-oscillator target, with
co=0.55 a.u. , from Refs. [16] and [17]. The solid line (LDA)
represents the evaluation by using local-density approximation
in an electron-gas target [15]. H(ls) ground-state density was
used.

[10,25]. For small impact parameters, e.g. , only states
with angular momentum projection numbers m =0 need
to be considered. It should also be pointed out that
double-ionization processes become important for a He
target mainly for very small impact parameters and the
present calculations cannot properly take into account
these processes because of the independent electron mod-
el which was employed in the calculations. Again we can

observe from this figure that the local-density models,
i.e., theories based on a local behavior of the energy loss,
cannot be applied for large impact parameters.

The impact-parameter dependence of the mean square
of the electronic energy loss for protons and antiprotons
on H at 10 and 30 keV is shown in Fig. 5. These values
are compared with first-order SCA results as described in
Sec. II. In a first-order calculation it is known that the
excitation and ionization probabilities are proportional to
Z, the squared projectile charge. Therefore it predicts
the same behavior for incident p and p. However, as can
be seen from the full Q (b) curves calculated using the
coupled-channel method, they are quite different. For
large-impact parameters this difference comes from the
polarization effect, which is not included in the SCA cal-
culation. The projectile can attract or repel the electrons,
depending on its sign of charge. This implies an enhance-
ment or reduction of the electronic density around the
projectile trajectory and consequently, the of electronic
energy loss. For small impact parameters the presence of
the projectile charge may increase or decrease the elec-
tron binding energy. This can enhance or reduce the
probability to excite or ionize the target electron [see Fig.
5(b)].

In the case of 10-keV protons, Fig. 5(a) shows a re-
markable peak around b =2 a.u. This is due to resonant
electron capture by the projectile. For low velocities U,
it is well known there is an oscillatory behavior of the
capture process probability as a function of I /O (propor-
tional to the collision time). This can easily be seen from
a quasimolecular description, where this oscillation is re-
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FIG. 4. The same as in Fig. 3 for 300-keV H++He col-
lisions. The experimental point in b =0.02 was taken from Ref.
[25]. Calculations (O-l) and (0-2) were performed by assuming
two harmonic oscillators with co= 1.54 a.u. [17]. LDA was cal-
culated by using the He( ls ) ground-state density.

FIG. 5. Mean square of the electronic energy loss as a func-
tion of impact parameter. Solid lines represent the present cal-
culation for p and P on H at 10 and 30 keV. Dashed lines are
the first-order perturbation theory SCA.
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lated to the energy difference between the gerade and
ungerade molecular states formed during the colllision.
Then, for small impact parameters b «2 (short collision
time, At=b/v), the electron of the target remains basi-
cally at the same initial state since the evolution time of
the electronic wave function is very small. On the other
hand, for b )&2, the interaction time is large enough to
"pull out" the electron from the target via capture pro-
cess. For this reason the proton electronic energy loss is
very high when compared with the SCA calculation,
which describes only excitation and ionization mecha-
nisms. For the antiproton case, since there are no
projectile-centered bound states, the shape of the elec-
tronic energy loss is similar to the one calculated in first-
order perturbation theory SCA.

The computation of Q (b) [Eq. (5)] requires a basis set
with high-energy components, i.e., eigenfunctions for
large ionization energies. For example, for 50 keV
H++H with b =0.218 a.u. , the basis set was truncated
at v=400 eV, whereas the mean energy loss is 21 eV and
the root mean square of energy loss is 34 CV. Therefore
the calculation of the mean energy loss is more accurate
than Q (b). We estimate an uncertainty of 10—15 % for
the coupled-channel Q (b) results at incident energies
below 100 keV.

Figure 6 shows the average of the squared and the
square of the mean electronic energy loss as a function of
the impact parameter for j.0 and 100 keV H++H. The
mean energy-loss Auctuation, for a fixed impact parame-
ter, is just EQ (b)=Q (b) —Q (b). In general, we have

Q (b) » Q (b) so that the fluctuation, for a given impact

10keV H' 4 H-

10

10

10

parameter b, is basically determined by Q (b). However,
for low energies (E & 10 keV) the Iluctuation falls down
very drastically around b =2 a.u. [Fig. 6(a)]. This means
that the excitation and ionization probabihty behaves like
a 6 function. As a matter of fact, this is a signature of
resonant electron capture, which is very important at
these energies [10].

IV. STRAGGLING CALCULATION
AND COMPARISON

fl =Nox2rr I b db[AQ (b)+Q (b)],
0

X6x8

(Sa)

(Sb)

where N is the target density (atm/cm ) and 8'is given
by Eq. (7b). The last term in Eq. (Sa) arises after assum-
ing Poisson statistics to describe the Auctuations in the
number of ion-target collisions.

For an extremely thin penetrated layer, the energy-loss
spectrum will exhibit a single collision energy-loss struc-
ture. On the other hand, if many more collisions happen,
the energy-loss distribution will be broadened. If addi-
tionally the mean energy loss is much less than the initial
projectile energy, the final energy-loss distribution will
tend to a Gaussian profile [1].

According to Bohr [1],the straggling of a high-velocity
particle with atomic number Z&, penetrating matter with
atomic number Z2, is given by

X6x 4vrZ iZ2

which is independent of the ion velocity v .
For not too high projectile energies, Fano evaluated

the asymptotic straggling using quantum-mechanical per-
turbation theory [26]. The following expression was de-
rived by Fano and corrected later [27]:

0„,„, (1/Z2)S{1) 2v2= 1+— —ln (10)g2 2

The fl.uctuation in energy loss of a monoenergetic in-
cident beam passing through matter is not only due to
the EQ (b), calculated in the preceding section, but also
due to the statistical Auctuation in the number of col-
lisions suAered by the penetrating ion. Assuming statisti-
cal independence of the collision events, the variance of
the energy-loss distribution {0 ) can be calculated, for a
thin penetrated layer 5x, as [1]

10

0 1.0 P. .O 3.0 4.0 5.0 6.0
impact Parameter (a.u. )

FIG. 6. Comparison between the squared and the square of
the mean electronic energy loss for H++H collisions at 10 and
100 keV. For 10 keV the two curves do not cross over.

where Ii and ( I /Zz)S(1) are given in terms of the atom-
ic dipole oscillator strength fo, related to the transition
from the ground state (Eo) to an excited state (E, ). For
H targets we can take ( I /Zz )5 ( 1 ) =0.67 a.u. and
Ii =0.88 a.u. [33]. Both formulas (9) and (10) assume a
fully stripped projectile.

In Fig. 7 we show 0,&, A, zgQQp for p in H 1n comparison
to straggling values (Q~o) calculated to the procedure
described in Sec. II [Eqs. (7b) and (Sa)]. In addition we
have included the straggling results obtained by the
plane-wave-Born approximation (QpwB&) [16]. The
dNcr ence between Qp and ApwBA 1S Rtf 11butcd to thc
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for HinHFina y, t e oa11 h total straggling in energy loss for H in 2

and He ases can be obtained through Eqs. (7b), (,an
(15) and compared with experimental va1 values from Refs.
[32] and [33].

alcula-Figures 9 and 10 show the present straggling calcu a-
tion in comparison wi exp'th xperimental data. The dashed
lines correspon o e

' '
u ard t th evaluation without the molecu ar

term (12). For the He target, it is also necessary to eva u-
d —+0 in (12) sinceate the molecular correlation term for d —+

we are assuming, accor ingding to the independent electron
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model, the He target as being two full overlapping
ch havin the same"effective one-electron atoms eac av'

- 1 tron wave function. It should be pointed out thatone-e ec ron w

1 d b B senbacher, Andersen, and Bonder-
up [31],is evaluated without using the electron-gas mo e
31,33 .

The difference between the two upper and lower curves
is due to the treatment used to obtain Qo in

neutral ro ectilePWBA calculation, we can assume the neu ra pr j
to act as a screene od Coulomb potential (lower curves, or
we can take the dynamic motion of the projectile e ectron
into account ~34~. This implies, especially for small im-
pact parameters, a so-t so-called antiscreening effect upper
curves). Nevertheless, the treatment described in e .
[34] usually overestimates the excitation and ionization
cross sections. ereTh fore we expect that an exact two-
electron treatment will yield a curve between the ones
plotted as solid lines.

(200 keV theAs can be observed from Fig. 9, for E &200 keV t e
1

' t 1' between the calculated values
showing consistence of the theoretical results. But or
the energy rangeh range between 200 and 600 keV, the theoreti-
cal pre ictions un ea' '

derestimate the experimenta a a y
= 10%. For these energies, there are basically H ~ 2
reactions an e md the molecular correlation term (12 is negli-

n reasonable ex-gible. In principle, we did not find any reasona e ex-
planation or esef th discrepancies. However, as can be
seen from the scatter of the data points at E = e
the experimental error seems to e ge 1ar er than 5 —7%, as
quoted in Ref. [33].

ver oodIn e.R f [33] the authors have claimed a very goo
nd theagreement e weenb t their experimental values and

ntones obtaine y ano
'

ed b Fano [26] for H in H. This agreemen
was acci en a'd t 1 since they have used the origina ano or-
mula (10) which is uncertain by a factor 1.5 as no e y
Si mund and Haagerup in Ref. [27].igmun

The same systematic deviation from t e y,
~ ~ ~

e theor, for
E )300 keV, can be seen in Fig. 10, for the e arge .
this case, the discrepancies are still higher ababout 15%).

FIG. 10. The same as in Fig. 9 for incideincident H in He gas tar-
get.
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For lower energies, the agreement is also not good. How-
ever, in this energy range, the dominant contribution to
the electronic straggling comes from H +He collisions
for which we have computed the excitation and ioniza-
tion cross sections in the PWBA. Besides the problems
which may emerge from'the description of projectile ion-
ization, we have used hydrogenlike wave functions to de-
scribe the target excitation and ionization processes. It is
well known that these functions deviate significantly from
more sophisticated He target wave functions. It is em-
phasized that the solid curves in Fig. 10, i.e., "molecular
correlation, " stand for an independent particle treatment
of double ionization. The double-ionization probabilities
are known to be overestimated by a factor of 6 in the in-
dependent particle model [25]. However, it is not possi-
ble to determine from the existing experimental data the
uncertainties due to approximations involved in our
treatment.

V. CONCLUSIONS

In the present work we have presented for the first time
a coupled-channel calculation of the mean and mean
square energy loss as a function of the impact parameter
for bare ions colliding with H and He atoms. We have
obtained a near exponential shape of Q(b) for small im-

pact parameters, in analogy to the one suggested by Oen
and Robinson [22].

Comparisons with previous theoretical results have
shown that the model (0-2), based on second-order quan-
tum perturbation theory in a harmonic-oscillator target,

is more accurate than any other model based on local-
density approximation. The (0-2) model reproduces
quite well the mean energy loss at zero impact parameter
but predicts a different behavior of Q(b) for nonzero b
values.

The effect of a molecular target structure in the
energy-straggling process was also exactly computed by
using Q(b) calculated with the coupled-channel method.
For the present cases, this effect is very small if we com-
pare with the one proposed by Sigmund [30] (by a factor
of 4).

By considering the charge states of the projectile and
the target structure we have utilized the mean square en-
ergy transfer from the coupled-channel and PWBA cal-
culations to evaluate the straggling in energy loss for hy-
drogen atoms in Hz and He gases. The theoretical strag-
gling values are in relatively good agreement (to within
10%) with the experimental ones. However, there is a
need for more experimental data with improved accura-
cy.

This work shows the possibility of performing first-
principles (coupled-channel) calculations of the energy-
loss phenomenon, which until now was very scarce in the
stopping-power literature.
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