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Integrals of motion and quantum operators for hydrogenic atoms in external fields
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We report five cases of integrability for a hydrogenic atom under three static external fields: a magnetic field,
an electric field, and a van der Waals interaction. Exact integrals of motion and corresponding quantum
operators are obtained explicitly for each case. Integrals of mdétjpantum operatoyscan be expressed as
components of a suitably generalized Runge-Lenz veoperatoy. Quadratic quantum operators are found to
have the amazing property of requiring a nonclassical extra term proportioridl fbhe structuring of the
classical phase space is investigated numerically via Pdiscafaces of section and corroborates the analyti-
cal results.

PACS numbeps): 32.60-+i, 03.65~w, 31.15—p

[. INTRODUCTION suitable combinations of control parameters which render
such a Hamiltonian integrable. We start by searching for
The investigation of the behavior of a hydrogen atom in agood c,andidates for integrability by performing a standard
static magnetic field has been a source of many exciting rePainleveanalysis[18]. Then, for each candidate, we either
sults in atomic physics during the last two decafie®]. rule it out as being nonintegrable or, if integrable, explicitly
This is so because the quadratic Zeeman effect leads to @nstruct classical integrals of motion as well as correspond-
complicated nonseparable problem which, for suitable pal"d quantum operators, without approximations. Altogether,
rameters, displays deterministic chaotic behavior, display¥e find five new integrals of motions. An interesting finding
quasi-Landau resonances, is not easily quantizable, etc. |& that the quadratic quantum operators associated with the
hydrogen atom in external magnetic fields provides a paralntegrable cases require an additional term proportionafto
digmatic Hamiltonian system because of the decisive advarivhich, obviously, is absent in the classical limit. Analogous
tage of allowing its dynamics to be investigated experimenZ°-dependent terms were found in a different context, among
tally [1—8]. Atomic physics in the presence of external fieldsclasses of duality transformations interconnecting Hamil-
offers a few additional situations where recent developmenttonian systemg19]. To find suchi? corrections is not totally
of laser spectroscopy can be used advantageously to prob@vial, since different quantum systems may share a common
experimentally the effects of chaotic dynamics, e.g., in colcclassical limit[19], a quite interesting fact.
atoms[9,10], in hydrogen atoms in a microwave figlt], 11], The nonrelativistic hydrogenic Hamiltonian studied here
in a resonant tunneling diodgl2,13, in a helium atom is (in units such thap=f=e=ay=1)
[14,15, in the spreading and dispersion of initially localized
wave packet$16], in quantum dots, and in many other situ- -~ 1., Z .
ations in external field§2]. H=5p"~ ?_’_Vext- ey
Most nonlinear problems involving atoms and magnetic

fields are very hard to investigate analytically, and general Y Y I v
solutions are difficult to obtain. Exceptionally, however, forWherer =d1+03+ 03, p"=pi+py+ps, and the term pro-

suitable combinations of parameters, one may be able to ir{:gortlonal to Z corresponds to a generic hydrogenic core

tegrate the equations of motion, i.e., to derive exact solytvhich forz=1 refiluces o .the hy(_JIrogen atom, as usual. The

tions. The explicit location of these suitable parameters, théxternal potentialV/e, considered is

integrable cases, can be rather tricky. Knowledge of inte- R A R R

grable cases is important because, by perturbing them, one Vex= Y(Q3+ 05+ B93) + FQs, 2

obtains insight about the behavior of nearby living noninte-

grable states. For example, sets of known solutions are vemyherey, F, and g are independent control parameters rep-

often useful bases for perturbative and asymptotic expanesenting the magnitude of the applied external fielgs:

sions and analytic continuatiofi7]. Although it is some- measured in unit8,=4.72<10° T, controls the quadratic

times useful to consider “local dynamics” and to solve the Zeeman effectF, in units of Fy=5.14x 10" V/cm, controls

equations of motion for specific trajectories, it is important tothe Stark effect; and the adimensional numpBerontrols the

keep in mind that the quadratic Zeeman effect always reanharmonicity associated to the van der Waals interaction

mains a nonseparable contribution, implying that one{20-22. This combined potential is very interesting because

dimensional solutions are just approximations. of its similarity to the fields seen by an ion confined in a Paul
The purpose of the present paper is to report the results dfap[23].

a systematic investigation of the parameter space of a rather The paper is organized as follows. Section Il briefly re-

general nonrelativistic hydrogenic Hamiltonian, looking for views the derivation of the regularized equations of motion

1050-2947/2000/62)/04341312)/$15.00 62 043410-1 ©2000 The American Physical Society



MARCUS W. BEIMS AND JASON A. C. GALLAS PHYSICAL REVIEW A62 043410

for electronic motions around a hydrogenic core. Section IlI PuU—p,v
presents a Painlewanalysis which reveals the particular sets Pa,= 752

of parameters that are possible candidates for integrability. In

Sec. v we discriminate those candidates which really Ieaq t%\fter such transformation, the regularized Hamiltonian reads
integrability and, for each of them, construct corresponding
integrals of motion. We also investigate numerically via
Poincaresurfaces of section the structure of the phase space
for the integrable cases, comparing them with nearby living

nonintegrable solutions of the regularized equations of mo®" More explicitly,

H(u,v)=2(u?+0v?)[H(u,v)—E], (5

tion. In Sec. V we derive the quantum operators associated )
with the classical integrals. Finally, Sec. VI contains our 1, 5, € . a;( 1
conclusions. H(uv)=2Z=5(py+p,)+ 5 (U™+v5) + == e
Il. EQUATIONS OF MOTION +AUCHV®) + B+ uPp?)
4_ .4
A popular and useful simplification in the study of a hy- +Cv"—u), (6)

drogen atom subjected to external fields is to consider a two-

dimensional “regularized” version of the real three- Wheree=—2E, A=yp/4, B=y(4—p)/4, andC=F/2. In
dimensional systerf24]. The main reasons for this approach this equation,_ is a conserved quantity and we plg,
are that(i) a two-dimensiona(2D) problem is computation- =m, with m a constant.

ally simpler to deal with than a 3D one; afid) by “remov- The equations of motion associated witfi(u,v) are,
ing” the Coulomb singularity from the original dynamical therefore,

system, the regularization procedure makes the numerical

work easier. A further convenient aspect is that the regular- m?

ized 2D Hamiltonian involves two coupled anharmonic os- U=~ €U+ 13— 6AU°—B(4u’v?+2up®) +4CW3, (7)
cillators, a system for which one possesses efficient tools for

extracting spectral information. These nice characteristics 5

havg r_nade the reg_ular_ization prqcedqre the standard way of - e+ m_a_ 6AV5—B(2u% +4u3)—4Cu3. (8)
obtaining the Hamiltonian on which virtually all theoretical v
investigations of the quadratic Zeeman effect have been done

3 ion in a Paul trap is that while the total energy of the Hamil-

tum along the magnetic field direction, always remains . : o )
good quantum number when magnetic and electric fields a%nlan (6) is 2Z, that of a trapped ion is-2 (for details, see

parallel. ef. [22]).
As a preliminary to the Painlevanalysis, we derive now i
the classical regularized 2D Hamiltonian corresponding to lll. PAINLEVE ANALYSIS
the original 3D problentl). First, we transform each opera- The Painleveanalysis is a powerful technique to uncover
tor of Eq. (1) in the corresponding classical one, i.€i, jnegrability candidates for differential equations in general

=q; and ﬁqi=pqi, fori=1,2, and 3. The regularized Hamil- [18]. In this section we present the results of the Painleve
tonian is then obtained by transforming Ef) to semipara- analysis for the equations of motidid) and (8). A similar

bolic coordinates, namely, analysis for the same problem was previously done in Ref.
[21] which, however, considered the case without electric
q;=Uv cog ), field (C=F/2=0) andm=0. Briefly, the analysis consists

of three stepsi) to find thedominant ternof each equation
of motion; (ii) to find theirresonancesand iii ) to determine

G2=Uv sin(¢), ©) the number of arbitrary constants in series expansions of the
solutions of the equation of motion. A given equation satis-
_ P fies the Painleveonjecture and, therefore, generates a set of
q3_§(u —vo), candidate parameters for which integrability might exist
when, apart from— 1, all additional resonances are positive
and the corresponding momenta integers and the aforementioned series expansion contains a

suitable number of arbitrary constants, four in the case of
Egs.(7) and(8).
Abbreviatingr=t—ty, and substituting

_ PUCOS ) Py Cosd) Ppysin(g)

a1 u+p? u+p? uv

U=a,ort andv = ayr<e 9
_ Pycod9) L P sin(¢) pyv sin(¢)

G2 uv uZ+p? u+ov?

(4)

into Egs.(7) and(8), yields
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ky(ky—1)apra—2

2
m
_ Kk -3k 3 42 _3kq+2k
__EaloT 1+a_3'T 1—B(4a103207' 1 2
10

+2ay ket )
—BAa T 1+ 4Cad o, (10)
Ka(Kp— 1) a2 2

k
= a 24 ——
6207' + 3’7'
20

+4af@ajyr?ha k) —6Aag ke~ 4Caj; ke, (11)

~3ky_ 4k +ky

B(2ajpazr

corresponding t&nsdze for solutions neat=t.
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respectively. The corresponding resonances are

131+24/ A and 1 24/ A 18
e Arg 2 1-2\4g 9

-1,—-1,3, and 3. (19

and

The square root in Eq.18) considerably restricts the pos-
sible choices ofA andB if the resonances are to be positive
integers as required by the Painlemealysis. Let us discuss
the resonances arising from these square roots wie.
As seen from Eqgs(7) and (8), for B=0 the system de-
couples being thus obviously integrable.

For A=0, both square roots give 1 as the resonance, cor-
responding physically to eithga) y=0, thereby reducing
the problem to a pure hydrogen atom in an electric field, or

For_ particular choices ok; an_d k,, some terms_of the (b) B=0, and arbitraryy, reducing the problem to the qua-
equations balance when-1o, while others can be ignored gratic Zeeman effect with a parallel electric field added. This
because of their much smaller magnitudes. The terms whicBecong case, however, does not survive the third step of the

balance are called ‘dominant’ terms of the equation.

The detailed analysis of Eq&L0) and(11) involves find-

Painleveanalysis.
For B=3A the resonances are 0 and 2 and survive the

ing, for each doubletl(, ky) that satisfies the equations, the thjrq step. FoiB=8A the resonances are 1/3 and 5/3, and are
dominant terms in the limit—0 and, from them, obtaining ot admissible because they are not positive integers. Then,
conditions that constrain the parameters of the model. Suclpstead of the Painléveroperty, one could still have the
an analysis is long and tedious. We present only the finaly_c51ledweak Painleve property [25], with series expan-

results.

_sions around 1/3. This possibility is ruled out because we

The only case which satisfies the three steps of the Pa'r};ilready havek, = 1/2.

leve analysis isk;=k,=—1/2, the dominant terms in Egs.

(10) and (11) then being those proportional to *? which
yield

§ 4 2 .2 4 _
2t 6Aa;,t+4Bajas,+2Bay=0, (12
E 4 2 .2 4 _
2t 6Aa,,+4Baj@as,t+ 2Baj,=0. (13

Subtracting Eq(12) from Eq. (13) we obtain
2(3A—B)(ajo—a3) =0. (14)
Essentially, this equation has two solutiofis B=3A and

For B=3A, we obtain

a5o= — a0 V- 1I(8A), (15

the corresponding resonances being,3,0, and 2. Foa‘Z‘0
=aj, we might have eithea,= + a2, or a3,= —a3,, when
Egs.(12) and(13) lead to

at,=— 1 (16)
10 8(A+B)
and
a4 = — L (17)
10 8(3A-B)’

For B=15A the resonances are 1/2 and 3/2; the system
satisfies the weak Painleyeoperty, and can be expanded in
powers of 1/2. From the third step we find thatBif 15A,
then we must have the additional conditiGr=0.

All subsequent possibilities, namel@=24A, B=35A,

..., B=(n—1)A lead to resonanceg3/5,7/9, (2/3,4/3,

..., (1=2/\Jn,1+2/n), respectively. From this we do not

expect further additional cases satisfying the Painkavaly-
sis.

Summarizing, we find the following candidates for inte-
grability: (a) B=3A, C arbit., implying A= y/4 and8=1;
(b) B=0, C arbit., implying A=y and 8=4; and(c) B
=15A, C=0, implying A= /16 andB=%. For C=0, the
results above coincide with those found earlier in R24].

IV. CLASSICAL INTEGRALS OF MOTION

We now derive the classical integrals of motion for
Hamiltonian (1) following a very useful procedure used by
Redmond 26]. We start observing that the equations of mo-
tion may be written as

dp zr
m:_ r_z_vvexti (20)

wherer denotes a unitary vector, and

VVer= ﬁVeXtiAJr aVeXLf+ (Ne“‘f\.
eXt x ay ' oz

(21)
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The angular momentum Is=r X p, and obeys
d dp A
aL=rxa=VVextxr=[2y(,8—1)q3+ FllkXr].
(22)

The square brackets in this last equation mean(thatis an
integral of motion when, simultaneouslg=1 andF =0, or

(i) Lq, theds componentalongk) of L, will be always an

integral of motion.
Observe that the original Hamiltonid&g. (1)] has three

PHYSICAL REVIEW A62 043410

d dA 2
—AZ=2A. —=A. FL(VVexX1) X P+ VVeyX (1Xp)].

dt dt
(29

Note that Eqs(28) and (29) are very general expressions
which may be used to find integrals of motion for the Kepler
problem, perturbed not only by the potentigl,; considered

in this paper but also for any time-independent external po-
tential Vq,;. Furthermore, approximated integrals of motion
can be also obtained by integrating E¢&8) and (29) over
one cycle of the unperturbed Kepler motion as done, for

degrees of freedom, and that we already have two integraxample, in Ref[30]. In the remainder of this section we

of motion, namely, the total energy aqu. Therefore, we

derive classic integrals of motion, linear and quadratic in the

just need to find one additional integral of motion to showParameters characterizing field strengths.

that system(1) is integrable for a given set of parameters

B, andF. We refer to Ref[17] for details on the conditions

for integrability.
The key observation here is to use the relafipé|

d:_ 1 Lxr 23
mr—r—z( Xr). (23
Therefore, from
d . _dL L dp o4
a( Xp)—aXer X g0 (24)

and with the help of the relation20) and(22), we obtain

d Z -
&(L><p)=(VVext><r)><p+VVext><(r><p)— r—z(Lxr).
(25

On the other hand, taking the Runge-LdR4.) vector

1 -
A=Z(L><p)+r, (26)
deriving it in time,
dA 1 d L d. )
a—za( p)+mr, (27)
and using relation§23) and (25), we arrive at
dA 1
a: Z[(Vvextxr)xp+VVextX(rXp)]- (28)

In the case of a hydrogen atom without external fields, i.e., +q2pq2)].

A. Linear integrals

The right hand side of Eq28) can be written in many
different forms. Using well-known rules of vector algebra, it
is not difficult to see that

dA 1
E:Z[Z(p'vvext)’r_(r'p)'vvext

_(r'VVext)' p]r (30)

with components

qul . 2y
at ?[QZ(leqz_q2pq1)_q1q3pq3+’8q3(2qlpq3

F
~03Pq,) 1+ 7 (201Pq, ~ GaPg, ), (3D

quz _ 2y
gt~ 7 [91(d2Pg, ~G1Pg,) ~G203Pq,

F
*+B93(202Pq,~ A3Pq,) I+ 7 (202Pg,~ d3Pg,).
(32

d F L,
dat Ag,t ﬁ(‘h"’%)

2y
:?[%(Z%Dql_ 01Pq,)d2(203Pq, ~ d2Pq,) — Bds(A1Pq,

(33

Vexi= 0, the right hand side of E¢28) is equal to zero, and
the RL vectorA is constant in time. The derivation of the RL N EQ. (33) we have already integrated the term proportional
vector for the Kepler motion without external fields was tO the electric field intensity, transposing it to the left hand
done long agd27-29. §|de. The Stark-term is glways “_mtegrable” anql, th(_arefore, it
Our next goal is to integrate in time the right hand side ofiS always possible to find the integral of motion in the
Eq. (28) in order to find the integrals of motion. Integrating cOmMponent. For the pure Stark efféqt=0 in Eq.(33)], the
Eq. (28) we find integrals which arénear functions of the  integral is
RL vector. It is also possible to derive an equation analogous
to Eq.(28) and yielding integrals of motion which agua-

dratic functions of the RL vector. This is done observing that (39

A +i( 21 92)
d3 27 ql q2 ’

043410-4
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a component of a sort of “generalized” Runge-Lenz vector
already considered in an almost forgotten paper by Redmonc
[26].

The important question here is, how can we integrate Egs.
(31, (32 and (33)? We now show that several cases pre- F=1 §
dicted to be integrable by the Painlemealysis are indeed
integrable. This is done by determining explicitly the corre-
sponding integrals.

(& B=1 (B=3A,A=v/4): Writing Eqg. (33) as a func-
tion of the angular momentum, we obtain

d F o, 2y
m Aq3+i(ql+q2) =7(Q1|—q2—Q2|—q1)- (35)

Now, since Fe0
d ,
mL%:ZLQlath: _Zququ’ (36)
d , )
mLQZZZquHquZZFqquz’ (37 FIG. 1. Poincaresurfaces of section fog=0.8, 1.0, and 1.2

(from left to righ®). The three surfaces on the top are calculated for
=1, and the surfaces on the bottom for=0 (no electric field.

we integrate the second term on the right-hand side of Ed;ee the text for more details.

(35) to obtain

q F y Figure 1 shows the PSS for different valuespandF.

— A+ —(g2+0?)— == (L2 +L2 ]:0_ 380  We plotted the coordinatesi(p,); therefore, the PSS is de-

at| Aeet 2709~ Ez (b, P Lg,) 8 fined by all trajectories which intersect=0 with p,>0.
The top(bottom three surfaces of the figure show results for

From this bracket we subtract a term proportionalﬁg(i.e., F=1 (F=0, no electric fieldl and different values of3.
a constant integral of motignthereby obtaining Results forF=0 are discussed below, in Sec. IVC. The
values ofy ande are 6.0 and 0.0, respectively, which means
d _ that we have very strong magnetic field and high energies.
mcqs_o' (39 The reason for using strong values is because for those val-

ues of B for which the system is nonintegrable we expect to
where have strong chaos, and therefore we can more clearly analyze

the transition from regular to chaotic motion.

Fo, Y For B=1 andF=1 (top, center the surface of Fig. 1
ngqu3+ ﬁ(qﬁ%) - ﬁ'— : (40 shows a regular structure. One elliptic fixed point at the cen-

ter of the surface (= p,=0) is surrounded by regular mo-
This integral of motion contains the component of the gention. For 5=0.8 (top, lefy, just below the integrable case,
eralized RL vectofEq. (34)] for the Stark problem, and the elliptic fix point is now a hyperbolic fix point and some
includes a new van der Waals term, proportional to the magirregular motion around it can be recognized. F# 1.2
netic field strengthy. For F=0 the last term is singular. (top, righd, above the integrable case, the motion is mostly
From Eq.(22) one sees the well-known faf20-22,31,32 irregular. These numerical results clearly corroborate the ex-
that the components, ,L,, andL, are separately integrals istence of an integral of motion fg8=1,F=1.

of motion. Fory=0 we recover the result for the pure Stark (b) =4 (B=0A=7): In this case Eq(33) is

problem[26]. d F
Now we want to confirm the existence of the integral of — 1 Aq,t 55 (a5 +03)
motion [Eq. (40)] through the numerical investigation of dt 2Z

Eqgs.(7) and (8) for valyes of3 aroundB=1. This is done 2y

with the help of Poincarsurfaces of sectiofPSS’ in phase =—-[~203(Q1pq, + A2Pg,) — Po,(AT+a3)],
space. For a fixed value of the energy of the four-

dimensional phase space of &6), the motion is confined to 54 can be readily integrated,

a three-dimensional energy shell, and the PSS is a two-

dimensional slice in this three-dimensional energy surface. d F o, . 2y > 2

Most of the information of the classical motion is contained gl Aes T 57 (A1 a2) +—ds(qr+a3) (=0, (41)
in the set of all intersections of a given trajectory with the

PSS. yielding the invariant

043410-5
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FIG. 2. Poincaresurfaces of section fog=3.9, 4.0, and 4.1

(from left to righy. The three surfaces on the top are calculated for d

F=1, and the surfaces on the bottom fé=0 (no electric field.
See the text for additional details.

F 2y
§+ —Z s

Gg,=Aq,+ (qi+03). (42)

This integral of motion is again a generalized RL integral

which for y=0 reduces to the result found by Redmd24]
for the Stark effect.

The integral of motiodEq. (42)] can also be corroborated
numerically as shown in Fig. 2. This figure shows the PS

for values of 3 near the integrable cagg=4. In the PSS at

the center of the tof-=1 row, we see that the motion is

very regular having just a single fix point at=p,=0. For
values of3= 3.9 (left) and 3=4.1 (right) we see the appear-

ance of hyperbolic fix points which act to destroy the regular

motion.
For F=0 (no electric field, Fig. 2 (center, bottom row

PHYSICAL REVIEW A62 043410

dAq, 2y 1 a3
gt~ 7 |Y92(d1Pg,~d2Pq,) ~ 5| G2d3Pg, T 5 Pa,
F
+ Z(ZQ1pq3_ d3Pq,) (44)
quz 2y 1 qg
itz ~01(41Pq,~ G2Pq,) ~ 5| G203Pg, T 5 Py,

F
+ Z(Zqu%_ Qquz)a (45)
we see that, for both equations, the term in parentheses
which multiplies3 can be easily integrated.

For arbitrary values of we have not been able to find
integrals, but fo-=0 we obtain

dt

Y 2y
Ag, + ﬁ%qg] :Y[Q2(Q1pq2_Q2pql)], (46)

Y o Ll 2y
gt Aa T 579203 = [~ 01(A1Pg,~G2Pg )], (47)

which might also be written as

d 0 o 2y
a[Aqﬁ §Q1Q3} :7(%—%), (48)
Y o 27
Frika e inQs}—?(—%an)- (49

These expressions are only integrablel.tgg=m=0, yield-

dng the generalized RKGRL) components

Y
ququl+ iqlq%v (50)

Y
Gg,=Ag, T 57 0203 (51)

which are the integrals of motion fon=0. Observe that for

shows that we still have a regular motion. This is related,,_ 5 \ve havetwo additional integrals of motion.

with the fact, that folF=0, Eq.(42) reduces to

2y
Gg,=Aq,+ 7 Ga(ai+a3), (43)

Figure 3 shows the PSS for the integrable cgsel/4
=0.25 andF =0 (bottom row, center As expected, the mo-
tion is regular, and shows two elliptic fixed points on the
upper and lower parts of the surface, both surrounded by
ellipses. The surface fo8=0.2 (bottom, lefy shows what
happens if we slightly change the value®firom the value
where the system is integrable. There is no longer any regu-

reproducing the known integral of motion for a trapped ionlar motion, and the trajectories fill most of the phase space
[31]. For 8=3.9 (left) and 8= 4.1 (right) we see once again densely. Some hyperbolic fixed poinfsr separatricéscan

the appearance of some hyperbolic fix points which disrupbe observed; for example, nearp,=0 there are ten iso-
the regular motion. Note, for example, the appearance of silated island surrounded by ten hyperbolic points. The same
hyperbolic fix points neau=p,=0 on the PSS at the top, behavior can be observed f@r=0.3 (bottom, righj. In this
right. case we still see some localized remnants of the regular mo-

(c) B=1/4 (B=15A,A=+v/16): This is the last possibly tion near the two original elliptic fixed points, but in general

integrable candidate predicted by the Painlamalysis. Re- the motion is rather irregular. The three surfaces on the top
writing Egs.(31) and(32) as of Fig. 3 show what happens if we add an electric fiefd (

043410-6
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electric field, respectively. The GRL vectpEg. (52)] is a
generalization to the Zeeman and van der Waals interactions
of the pure Stark vector obtained previously by Redmond
[26].

F=1
: The components of Eq52) are

2y , F
Gq,=Aq, T 37 (1~ B)A103~ 55 Aids, (53

B=1/4=0.25

2y , F
Gg,=Ag, T 37 (1-B)U03~ 5500, (54

2y F
Gy, =Aq,~ 37 (1= B)0s(ai+a3) + 5 (a1 +a)),
(55)

and do not represent integrals of motion in general, for arbi-
) trary values of the fields. These components are integrals of

FIG. 3. Poincaresurfaces of section fog=0.2,1/4, and 0.3 mpotion only for the specific situations discussed in detail
(from left to right. The three surfaces on the top are calculated forghgye.
F=1, and the surfaces on the bottom f6=0 (no electric field. Note that for3=1, F+0 and arbitraryy, the GRL vector
See the text for more details. does not reproduce integréd0). We believe that integral

. . (40) takes into account a special symmetry which cannot be

=1) to the problem: the system is no longer integrable, eVelyyqinay from the GRL vector. We were not able to find a
Whenﬁ= 1/4. This i§ also the reason why we could not find, o tor from which one may obtain integr@0). Apart from
any integral of motion foi#0 and5=1/4 (see Table)l s “singular” case, all other integrals found can be ob-
All three surfaces show a strong irregular motion. tained directly from the GRL vectdiEq. (52)]. The GRL

vector will be very useful in Sec. IV C.
B. Generalized Runge-Lenz vector

The above results show clearly the existence of a quite C. Quadratic integrals
general Runge-Lenz-like vector for atomic problems sub- . . .
jected to the combined external fields defined in &. Its The procedure to obtain the integrals for the quadratic

components define integrals of motion for all three afore-£85€ 1S analogous to that for the linear case, and we limit

mentioned cases. This vector may be conveniently written agurselves to pre_sentlng_only the most Important final equa-
tions. Contributions which are quadratic functions of the

2y E field-strength parameters arise from terms proportional to the
G=A—5[(rXW)Xr]—55[(rXxS)Xxr], (52)  square of the GRL vectdsee Eq(29)]. If the square of the
3Z 2Z ) ) .
GRL vector was itself an integral of motion, then the follow-

where W=q,i+q,]+ Bqsk and S=Fk are the derivatives "9 Scalar would be identically zero:

of the potential due to the van der Waals interaction and the 1d s dc . dqu . dGq2 . dGqs
TABLE 1. Values of 8 for the integrable cases where the com- 2 dt .~ dt % dt T Ga, dt TGag dt
ponents of the GRL vectdiEq. (52)] are integrals of motion. (56)
B Y F Lg,=m Classical integrals Motivated by the expression above, we look for integrals of

motion which, while depending on the same individual terms
as the scalar above, are more general. A simple way of doing

1 b. 0 b. 2 L
a o G*+ z;rsz this is given by theAnsatz
4 arb. arb. arb. Gq, dGy dGy dGq
=¢,Gq — +C,Gq, — - +C3Gq. —,  (57)
£=C1Gq, gy +¢2Ce, gy +C3Ca gy

4 arb. 0 arb. Gq3
14 arb 0 arb 2 wherec;, i=1, 2, and 3, are constants to be determined. In

' ' G§l+ ngfgrngg Eqg. (57) we use the GRL vector instead of the RL vector of

Eqg. (29). This simplifies considerably the calculations. In

1/4 arb. 0 0 G. .G what follows we consider only integrals which are not the

qi’ —ds

square of the integrals already found for the linear cases.

043410-7



MARCUS W. BEIMS AND JASON A. C. GALLAS PHYSICAL REVIEW A62 043410

Table | presents a summary of the values3dr which the dA 1 . A .
components of the GRL vectdEq. (52)] are integrals of —— = = [(VVeyX ) XP=PX(VVeyXT)
motion. dt 2z

(@ B=1 (B=3A,A=vl/4): For this combination of pa-
rameters we could not find additional integrals of motion
whenF # 0 and, consequently, we consides 0 only. From
Eqg. (22) we know thatqu,qu, and Lg, are integrals of mo-

tion, while Eq.(40) is no longer an integral foF =0. For
¢,=1,i=1, 2, and 3, Eq(57) may be rearranged to yield

+VVeeX (FXP) = (FXP)X VVeyd, (62
where
evext: axvextiA"' (9yVextjA+ azvextR- (63)

Following the same procedure used in Sec. IV, for the

(GZ +62 JrGz ) components of the RL operator we obtain
4y 2 .12 2 a _ 2 0104D:
=~ 7 (G1Pq, + UaPg, + UaPa,) (L5, +LE,+L7). gt = 7 192(01P5,~ G2Pg,) — G:03P5,

+ B[q3(201ps. — GsPg.) — %0
The right hand side of this equation can be integrated, ob- BlAs(201Pg,~ daPg,) ~ 1A du]}

serving that =
+7(201Pg,~ d3Pq,). (64)
dr 1
gt~ 1 (G1Pg, +2Pg, + AaPgy), (58) N
dAg, 2y . . .
, , gt = 7 9a(02Pg, — 01Pg,) — G203Pg,
and that, consequently, the integral of motion has the form
+B[&3(262pa _a3pa2)_iﬁ612]}
|S—G2+Gz+ez+27 22 59 :
1~ qq ds a3 ?r : ( ) F A A
+5(202Pg,~ A3Pg,) (65
Note that now we have a total of five integrals of motion,
H.Lq, Lq, L, andlf, a result telling us that the system is qu 27 i
{q1(2q3p —01Pg,) + 92(203P4, ~ d2P5,)
tion than degrees of freedom. dt . % %2 %
(b) B=4 (B=0,A=7): For this set of parameters we L . F L L
could not find additional integrals of motion. — Bds(d1pg, +d2Pg,)} + Z(iﬁ—qlpal—quaz),
(c) B=1/4 (B=15A,A=vy/16): Here we takec,;=c,
=1 andc;=0 obtaining for Eq.{(57) the simplified expres- (66)
sion
where this last equation may be rewritten as
d 4y
2 2\ _ 2
a(qu"' Gg,)=— ?((hpql"' 02Pq,  A3Pq,) L q,- d AA F (P 3
(60) dt 2z 12

. . . . 2y . . . . . .
Using Eq.(58) once again, we obtain the integral _ 7{(11(2(13%1—(11%3)+QZ(ZQ3PE12—Q2P&3)

2y . .
15=G2 +G? +7r2L2 (61) — BA3(q1pg, +92Pq,) - (67)

Comparing these equations with the corresponding classical
ones in Eqgs(31), (32), and(33), one sees that the quantum
operators contain quantum corrections proportionai .to

The equations above cannot be integrated in general.
V. QUANTUM OPERATORS However, for the situations passing the three steps of the

. . _ _Painleveanalysis we may proceed as follows.
In this section we derive the quantum operators which

correspond to the classical integrals of motion obtained
above. The methodology used in Sec. IV also warkdatis
mutandisfor operators. After suitable symmetrization, the  Similarly to the classical case, we start by deriving the
guantum version of the time derivative of the RL vector is linear quantum operators for cases, (b), and(c).

which is a particular case of integréd9). This integral cor-
responds to that found for the motion of a trapped [i8m].

A. Linear operators
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(@ B=1 (B=3A, A=1y/4): Here the only possibly inte-
grable component is that of E(G7):
2y . . PN
= 7(Q1La2_|hQ3_Q2Lal)-
(68)

dfs . F o~ o
Fraka Z(Q1+Q2)

The right hand side can be integrated, observing that

. dLl

d . di,. i
N TEMT:

di,. . di,
dt( 1+L2) dt I—l

——L,+ L2 at

F(—02L4,—Lg,02+ale,+ 4,00
=2F(a:Lq,~ doLg,~1%0s),
which yields
% Ast %(&M%)— (L2 +12) =0 (69
Therefore, the quantum operator has the form
Ca,= A4, + - —=(03+03)— —L2 (70
22

analogous to its classical counterpfy. (40)].
(b) B=4 (B=0, A=7y): Once again, we use Eq67),
which now reads

df~ F ] 27 R S

gilAast 57 (A1+d2) [ == [—20s(— 1%+ 0d1Pg, +92Pg,)
—(qi+0)pg,]. (71)

Then, with the help of

d ooy o OO oy o, o d(AE))

GilGs(@i+ap)]= 5 Qi+ @)+ Qs —gr—— = (a1

+a%)|3a3+2&3(_%"‘&1@&14'&2[3&2):
we may integrate Eq(71), obtaining the operator

F
T2z +7q3

A (Q1+Q2) (72

which mimics its classical counterpdiqg. (42)].
(c) B=1/4 (B=15A, A=
is possible to integrate Eq&4) and(65) for F=0, namely,

dA‘il_Z"y oo (g opln oo o
gtz |~ 29193Pa,— %"‘Z% Pg, +d102Pg,
1.
_Z'ﬁ% ,

v/16): For these parameters it

PHYSICAL REVIEW /2 043410

qu 27 1. .. IR
dt ~ 7|~ 29293Pq, qi+ 4Q3 pq2+Q1Q2pql
1.
_Z'ﬁ% )

which may written more conveniently as

Py —i%0;—20,03Pg. — 43R4, + 40,L ;

dt —22( 1701 —20:03Pg, — d3Pg, T 402l q,).
(73

dA;,

Gt =7~ 1702~ 20,05Pg, ~ A43P5,~ 40aL ).
(74)

From the fact that
d A2

dqlA . d
dt (qlq3)

a3
dt q3+q1 dt Q3pql+2q1q3pq _lﬁq1-

we find the relations
A n2n d . YN
_2q1q3pa3_q3p&1:_&(%%)"ﬁ%,

d . .. .
—20,035Pg,~ 93P5,= a(qzqg)—qu.

which, substituted into Eq$73) and(74), yield

AA q Az ( ih,\ 2,\ I:A ) ( 5)
dt Aq1+ZZQ1Q3 -7 41 +20:L4,), /

AA 0 AZ .ﬁ,\ 2,\ |:A 6
dt Ag,* 274243 _Z( ifg,—2q;:L5,). (76

When compared with their classical counterparts, E48)

and(49), the quantum equations are seen to contain one extra
term on the right hand side. With the help of the familiar

commutation relations
[|:E13=E11] = IhaZ ’
[Lg,.02]=—ihay,

we rewrite Eqs(75) and(76) as

SV A+ Ll = 20,8, a0 7
dt d1 22q1q3 Z( q3q2 QZ q3)! ( 7)
U ae + Loz —— Lt qrals), 9
dt] fa T 579245 = 7 7 (Lg 1T Aakgy)s

which for I:glsz m=0 give the operators
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TABLE II. Values of g for the integrable cases where the com-

A R Y oaoa
Gg,=Aq, iqlqé, (79  ponents of the GRL operatpEq. (81)] are good quantum numbers.
y B Y F Lg,=m Quantum operators
Gg,= At 570203, (80)
1 arb. 0 arb. np 2Vapnsp
coincident with the classical integrals in E¢S0) and (51). G vz L

4 arb. arb. arb. G

B. Generalized Runge-Lenz operator a3

As for the classical integrals, here it is also possible to A

. . . . arb. 0 arb. G
define a convenient generalized operator from which, for a3
suitable parameters, we might derive as particular cases all

the_ operators discussed above. This generalized operatorjigl arb. 0 arb. 82 +62 2_¥;z|“_(2‘
defined by vz 3
1/4 arb. 0 0 G. .G
A1’ a2

A oA 2 A . 1 . . .
G=A—§[(r><W)><r]—i[(rxS)Xr], (81

N e aa A a A~ A which, when compared with the corresponding classical in-
whereW=(qyi+qj + Bqsk) and S=Fk are the operators  (eqra|[Eq. (59)], is seen to have an additional quantum cor-
of the potential due to van de Waals interaction and the eleGction proportional td:2.

tric field, respectively. The components of this operator are (b) B=4 (B=0,A=1): For this set of parameters we
were not able to find additional operators.

A A 2y ~ A F..

Gy =A; +=5(1—B)a105— 550103, (82 (c) B=1/4 (B=15A, A=v/16): Forc;=c,=1 andc;
3z ez ~0, we find

N ~ 2y ang Foaa 2y yh?
G, =Ag, o (1- -5 1S_G2 4 &2 212 co, 02

qu Aq2+3z(l B)d203 22Q2Q3y (83 |2—Ga1+Ga2+?r La3+ ﬁ(r +03). (88

. - 2y Aoy ap  Foa Comparing this operator with Eq61), we see that, again,
Gg,=A4,~37 (1= B)As(q1+02) + 57 (A1 +d2). the operator has a quantum correction proportionak o
(84)  Table Il summarizes the values gf for which the compo-
nents of the GRL operatdEqg. (81)] are good quantum num-
In Sec. VC we use the above GRL operator to discuss oppers.
erators which are quadratic functions of the field strength

parameters. VI. CONCLUSIONS

We studied the classical and quantum integrability of the

C. Quadratic operators ' !
problem of hydrogenic atoms subjected to external parallel

The quantum operator corresponding to E%f) is electric and magnetic fields and also to the van der Waals
A A interaction, as defined by Eg4) and(2). With the help of a
l iézzé. d_G+ d_G e (85) Painleveanalysis we discovered five exact integrals of mo-
2 dt dt dt tion as well as eight exact quantum operators, which to our
] ) ) knowledge were never given in the literature before. Table
which motivates us to consider the extended form Il presents a summary of our findings. In this table, integrals
A - - . (operatorswhich are written between brackets are thought to
2ol & dGg, dG&léA (G‘ dGg, dGazéA be new results. All integraloperatory with exception of
=C1| Gq, dt * dt ~u T Ca| Gg, dt * dt ~% Cq3 (a%) from Eg. (40) [Eq. (70)], were found to be the
1S de- components of a generalized Runge-LéBRL) vector(op-
Lol 6 _%+ qaéA 86) erato) (52)_ _[Eq.(81)]. _ _
3\ Pas (¢ dt ~9s)’ An additional result is that concerning the quantum cor-

. ~ rections for the operators which are quadratic functions of
wherec; are arbitrary constants. We now present the finakhe aforementioned GRL operator. All such corrections are

results for the integrable cases. invariably found to be proportional th?, a term obviously
(@ B=1 (B=3A, A=y/4): Whenc;=1,i=1,2,and 3, absent from the corresponding classical integral linfstse
we find the quantum operator Table Ill). Proportionality factors depending @< were pre-
) 42 viously found to occur for certain classesdfality transfor-

rs_a2 a2 a2 EVarn Yy mations interconnecting integrable Hamiltonian systems

11= G, TG, T G T 2 Lo 221 (&7) [19]. To a given classical system, such duality transforma-
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TABLE Ill. Summary of all known integrable cases along with their associated classical integrals and
quantum operators. Results inside curly brackets are thought to be new.

B y F Lg,=m Classical integrals Quantum operators
1 arb. arb. arb. {Cay} {Ca,}
1 arb. 0 arb. 2y o (A 2y. . yRA.
2 2] 2 ~ ~ 2 212 2
Loplay{G*+5717L ] Loy Lo, | G2+ 5ot L2+ oot
4 arb. arb. arb. {Gg,} {Gy.}
3
4 arb. 0 arb. Gq, {Gq,}
0 0 arb. arb. Gq, Gq,
1/4 arb. 0 arb. 2 2 2V 55 no s 2V ay YRZ
Gy, T Gq, T 721 Ly, G§1+G§2+?rZL§3+ﬁ(r2+q§)
1/4 arb. 0 0 {Gq }{Gq,} {Gq,}{Gq,}

tions allow one to associate a quantum system which is ndormula to describe photoabsorption in atoms in external
necessarily uniqugl 9. fields which have a regular spectrysb|, to understand fun-
We believe the exact results reported in this paper to belamental questions in the semiclassical description of width-
helpful to understand the dynamics of more complicatedyeighted spectra in atoms due to tunneling through a poten-
classical and quantum systems. For example, the new intga| barrier[36], to analyze the interaction of atoms through
grals of motion can be used in the study of quantum chaos igan der Waals forcef37], and to investigate the effect of
atoms along the lines of what was done in, e.g., Refsyelaxing the perpendicular orientation of the electric and
[20,22,30,34 (and references therginAnother interesting magnetic fieldd38]. An interesting open problem is to re-
problem is to investigate what happens to initially localizedpeat the present computations for the experimental setup dis-

wave packets when one smoothly varies the relevant parangussed by Baumanii89], and for some variants of it.
eters away from the integrable limit. How much does the

spreading and the speed of dispersion depend on the devia-

tion from integrability, and so forth. In this respect, the in- ACKNOWLEDGMENTS

teresting technique used in REE6] could be of interest. Our
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