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Integrals of motion and quantum operators for hydrogenic atoms in external fields
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We report five cases of integrability for a hydrogenic atom under three static external fields: a magnetic field,
an electric field, and a van der Waals interaction. Exact integrals of motion and corresponding quantum
operators are obtained explicitly for each case. Integrals of motion~quantum operators! can be expressed as
components of a suitably generalized Runge-Lenz vector~operator!. Quadratic quantum operators are found to
have the amazing property of requiring a nonclassical extra term proportional to\2. The structuring of the
classical phase space is investigated numerically via Poincare´ surfaces of section and corroborates the analyti-
cal results.

PACS number~s!: 32.60.1i, 03.65.2w, 31.15.2p
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I. INTRODUCTION

The investigation of the behavior of a hydrogen atom i
static magnetic field has been a source of many exciting
sults in atomic physics during the last two decades@1,2#.
This is so because the quadratic Zeeman effect leads
complicated nonseparable problem which, for suitable
rameters, displays deterministic chaotic behavior, displ
quasi-Landau resonances, is not easily quantizable, et
hydrogen atom in external magnetic fields provides a pa
digmatic Hamiltonian system because of the decisive adv
tage of allowing its dynamics to be investigated experim
tally @1–8#. Atomic physics in the presence of external fiel
offers a few additional situations where recent developme
of laser spectroscopy can be used advantageously to p
experimentally the effects of chaotic dynamics, e.g., in c
atoms@9,10#, in hydrogen atoms in a microwave field@1,11#,
in a resonant tunneling diode@12,13#, in a helium atom
@14,15#, in the spreading and dispersion of initially localize
wave packets@16#, in quantum dots, and in many other sit
ations in external fields@2#.

Most nonlinear problems involving atoms and magne
fields are very hard to investigate analytically, and gene
solutions are difficult to obtain. Exceptionally, however, f
suitable combinations of parameters, one may be able to
tegrate the equations of motion, i.e., to derive exact so
tions. The explicit location of these suitable parameters,
integrable cases, can be rather tricky. Knowledge of in
grable cases is important because, by perturbing them,
obtains insight about the behavior of nearby living nonin
grable states. For example, sets of known solutions are
often useful bases for perturbative and asymptotic exp
sions and analytic continuation@17#. Although it is some-
times useful to consider ‘‘local dynamics’’ and to solve t
equations of motion for specific trajectories, it is important
keep in mind that the quadratic Zeeman effect always
mains a nonseparable contribution, implying that on
dimensional solutions are just approximations.

The purpose of the present paper is to report the resul
a systematic investigation of the parameter space of a ra
general nonrelativistic hydrogenic Hamiltonian, looking f
1050-2947/2000/62~4!/043410~12!/$15.00 62 0434
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suitable combinations of control parameters which ren
such a Hamiltonian integrable. We start by searching
good candidates for integrability by performing a standa
Painlevéanalysis@18#. Then, for each candidate, we eith
rule it out as being nonintegrable or, if integrable, explici
construct classical integrals of motion as well as correspo
ing quantum operators, without approximations. Altogeth
we find five new integrals of motions. An interesting findin
is that the quadratic quantum operators associated with
integrable cases require an additional term proportional to\2

which, obviously, is absent in the classical limit. Analogo
\2-dependent terms were found in a different context, amo
classes of duality transformations interconnecting Ham
tonian systems@19#. To find such\2 corrections is not totally
trivial, since different quantum systems may share a comm
classical limit@19#, a quite interesting fact.

The nonrelativistic hydrogenic Hamiltonian studied he
is ~in units such thatm5\5e5a051)

Ĥ5
1

2
p̂22

Z

r̂
1V̂ext , ~1!

where r̂ 25q̂1
21q̂2

21q̂3
2, p̂25 p̂1

21 p̂2
21 p̂3

2, and the term pro-
portional to Z corresponds to a generic hydrogenic co
which for Z51 reduces to the hydrogen atom, as usual. T
external potentialV̂ext considered is

V̂ext5g~ q̂1
21q̂2

21bq̂3
2!1Fq̂3 , ~2!

whereg, F, andb are independent control parameters re
resenting the magnitude of the applied external fields:g,
measured in unitsB054.723105 T, controls the quadratic
Zeeman effect;F, in units ofF055.1431011 V/cm, controls
the Stark effect; and the adimensional numberb controls the
anharmonicity associated to the van der Waals interac
@20–22#. This combined potential is very interesting becau
of its similarity to the fields seen by an ion confined in a Pa
trap @23#.

The paper is organized as follows. Section II briefly r
views the derivation of the regularized equations of mot
©2000 The American Physical Society10-1
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for electronic motions around a hydrogenic core. Section
presents a Painleve´ analysis which reveals the particular se
of parameters that are possible candidates for integrability
Sec. IV we discriminate those candidates which really lea
integrability and, for each of them, construct correspond
integrals of motion. We also investigate numerically v
Poincare´ surfaces of section the structure of the phase sp
for the integrable cases, comparing them with nearby liv
nonintegrable solutions of the regularized equations of m
tion. In Sec. V we derive the quantum operators associa
with the classical integrals. Finally, Sec. VI contains o
conclusions.

II. EQUATIONS OF MOTION

A popular and useful simplification in the study of a h
drogen atom subjected to external fields is to consider a t
dimensional ‘‘regularized’’ version of the real three
dimensional system@24#. The main reasons for this approac
are that~i! a two-dimensional~2D! problem is computation-
ally simpler to deal with than a 3D one; and~ii ! by ‘‘remov-
ing’’ the Coulomb singularity from the original dynamica
system, the regularization procedure makes the nume
work easier. A further convenient aspect is that the regu
ized 2D Hamiltonian involves two coupled anharmonic o
cillators, a system for which one possesses efficient tools
extracting spectral information. These nice characteris
have made the regularization procedure the standard wa
obtaining the Hamiltonian on which virtually all theoretic
investigations of the quadratic Zeeman effect have been d
to date. Note thatL̂q3

, the component of the angular mome
tum along the magnetic field direction, always remains
good quantum number when magnetic and electric fields
parallel.

As a preliminary to the Painleve´ analysis, we derive now
the classical regularized 2D Hamiltonian corresponding
the original 3D problem~1!. First, we transform each opera
tor of Eq. ~1! in the corresponding classical one, i.e.,q̂i

5qi and p̂qi
5pqi

, for i 51,2, and 3. The regularized Hami
tonian is then obtained by transforming Eq.~1! to semipara-
bolic coordinates, namely,

q15uv cos~f!,

q25uv sin~f!, ~3!

q35
1

2
~u22v2!,

and the corresponding momenta

pq1
5

pvu cos~f!

u21v2 1
puv cos~f!

u21v2 2
pf sin~f!

uv
,

pq2
5

pf cos~f!

uv
1

pvu sin~f!

u21v2 1
puv sin~f!

u21v2 , ~4!
04341
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After such transformation, the regularized Hamiltonian rea

H~u,v !52~u21v2!@H~u,v !2E#, ~5!

or, more explicitly,

H~u,v !52Z5
1

2
~pu

21pv
2!1

e

2
~u21v2!1

Lq3

2

2 S 1

u2
1

1

v2D
1A~u61v6!1B~u4v21u2v4!

1C~v42u4!, ~6!

wheree522E, A5gb/4, B5g(42b)/4, andC5F/2. In
this equation,Lq3

is a conserved quantity and we putLq3

5m, with m a constant.
The equations of motion associated withH(u,v) are,

therefore,

ü52eu1
m2

u3 26Au52B~4u3v212uv4!14Cu3, ~7!

v̈52ev1
m2

v3 26Av52B~2u4v14u2v3!24Cv3. ~8!

The only formal difference between the Hamiltonian of
ion in a Paul trap is that while the total energy of the Ham
tonian~6! is 2Z, that of a trapped ion is22 ~for details, see
Ref. @22#!.

III. PAINLEVE´ ANALYSIS

The Painleve´ analysis is a powerful technique to uncov
integrability candidates for differential equations in gene
@18#. In this section we present the results of the Painle´
analysis for the equations of motion~7! and ~8!. A similar
analysis for the same problem was previously done in R
@21# which, however, considered the case without elec
field (C5F/250) andm50. Briefly, the analysis consist
of three steps:~i! to find thedominant termof each equation
of motion; ~ii ! to find theirresonances; and~iii ! to determine
the number of arbitrary constants in series expansions of
solutions of the equation of motion. A given equation sat
fies the Painleve´ conjecture and, therefore, generates a se
candidate parameters for which integrability might ex
when, apart from21, all additional resonances are positiv
integers and the aforementioned series expansion conta
suitable number of arbitrary constants, four in the case
Eqs.~7! and ~8!.

Abbreviatingt[t2t0, and substituting

u5a10t
k1 andv5a20t

k2 ~9!

into Eqs.~7! and ~8!, yields
0-2
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INTEGRALS OF MOTION AND QUANTUM OPERATORS . . . PHYSICAL REVIEW A62 043410
k1~k121!a10t
k122

52ea10t
k11

m2

a10
3

t23k12B~4a10
3 a20

2 t3k112k2

12a10a20
4 tk114k2!

26Aa10
5 t5k114Ca10

3 t3k1, ~10!

k2~k221!a20t
k222

52ea20t
k21

m2

a20
3

t23k22B~2a10
4 a20t

4k11k2

14a10
2 a20

3 t2k113k2!26Aa20
5 t5k224Ca20

3 t3k2, ~11!

corresponding toAnsätze for solutions neart5t0.
For particular choices ofk1 and k2, some terms of the

equations balance whent→t0, while others can be ignore
because of their much smaller magnitudes. The terms w
balance are called ‘dominant’ terms of the equation.

The detailed analysis of Eqs.~10! and~11! involves find-
ing, for each doublet (k1 ,k2) that satisfies the equations, th
dominant terms in the limitt→0 and, from them, obtaining
conditions that constrain the parameters of the model. S
an analysis is long and tedious. We present only the fi
results.

The only case which satisfies the three steps of the P
levé analysis isk15k2521/2, the dominant terms in Eqs
~10! and ~11! then being those proportional tot25/2, which
yield

3

4
16Aa10

4 14Ba10
2 a20

2 12Ba20
4 50, ~12!

3

4
16Aa20

4 14Ba10
2 a20

2 12Ba10
4 50. ~13!

Subtracting Eq.~12! from Eq. ~13! we obtain

2~3A2B!~a10
4 2a20

4 !50. ~14!

Essentially, this equation has two solutions~i! B53A and
~ii ! a10

4 5a20
4 .

For B53A, we obtain

a20
2 52a10

2 6A21/~8A!, ~15!

the corresponding resonances being21,3,0, and 2. Fora20
4

5a10
4 we might have eithera20

2 51a10
2 or a20

2 52a10
2 , when

Eqs.~12! and ~13! lead to

a10
4 52

1

8~A1B!
~16!

and

a10
4 52

3

8~3A2B!
, ~17!
04341
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respectively. The corresponding resonances are

21,3,112A A

A1B
and 122A A

A1B
~18!

and

21,21,3, and 3. ~19!

The square root in Eq.~18! considerably restricts the pos
sible choices ofA andB if the resonances are to be positiv
integers as required by the Painleve´ analysis. Let us discus
the resonances arising from these square roots whenm50.
As seen from Eqs.~7! and ~8!, for B50 the system de-
couples being thus obviously integrable.

For A50, both square roots give 1 as the resonance,
responding physically to either~a! g50, thereby reducing
the problem to a pure hydrogen atom in an electric field,
~b! b50, and arbitraryg, reducing the problem to the qua
dratic Zeeman effect with a parallel electric field added. T
second case, however, does not survive the third step o
Painlevéanalysis.

For B53A the resonances are 0 and 2 and survive
third step. ForB58A the resonances are 1/3 and 5/3, and
not admissible because they are not positive integers. T
instead of the Painleve´ property, one could still have the
so-calledweak Painlevéproperty @25#, with series expan-
sions around 1/3. This possibility is ruled out because
already havek151/2.

For B515A the resonances are 1/2 and 3/2; the syst
satisfies the weak Painleve´ property, and can be expanded
powers of 1/2. From the third step we find that ifB515A,
then we must have the additional conditionC50.

All subsequent possibilities, namely,B524A, B535A,
. . . , B5(n21)A lead to resonances~3/5,7/5!, ~2/3,4/3!,

. . . , (122/An,112/An), respectively. From this we do no

expect further additional cases satisfying the Painleve´ analy-
sis.

Summarizing, we find the following candidates for int
grability: ~a! B53A, C arbit., implying A5g/4 andb51;
~b! B50, C arbit., implying A5g and b54; and ~c! B
515A, C50, implying A5g/16 andb5 1

4 . For C50, the
results above coincide with those found earlier in Ref.@21#.

IV. CLASSICAL INTEGRALS OF MOTION

We now derive the classical integrals of motion f
Hamiltonian ~1! following a very useful procedure used b
Redmond@26#. We start observing that the equations of m
tion may be written as

dp

dt
52

Zr̂

r 2
2“Vext , ~20!

where r̂ denotes a unitary vector, and

“Vext5
]Vext

]x
î1

]Vext

]y
ĵ1

]Vext

]z
k̂. ~21!
0-3
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The angular momentum isL5r3p, and obeys

d

dt
L5r3

dp

dt
5“Vext3r5@2g~b21!q31F#@ k̂3r #.

~22!

The square brackets in this last equation mean that~i! L is an
integral of motion when, simultaneously,b51 andF50, or
~ii ! Lq3

, theq3 component~along k̂) of L , will be always an
integral of motion.

Observe that the original Hamiltonian@Eq. ~1!# has three
degrees of freedom, and that we already have two integ
of motion, namely, the total energy andLq3

. Therefore, we
just need to find one additional integral of motion to sho
that system~1! is integrable for a given set of parametersg,
b, andF. We refer to Ref.@17# for details on the conditions
for integrability.

The key observation here is to use the relation@26#

d

dt
r̂ 5

1

r 2 ~L3 r̂ !. ~23!

Therefore, from

d

dt
~L3p!5

dL

dt
3p1L3

dp

dt
, ~24!

and with the help of the relations~20! and ~22!, we obtain

d

dt
~L3p!5~“Vext3r !3p1“Vext3~r3p!2

Z

r 2 ~L3 r̂ !.

~25!

On the other hand, taking the Runge-Lenz~RL! vector

A5
1

Z
~L3p!1 r̂ , ~26!

deriving it in time,

dA

dt
5

1

Z

d

dt
~L3p!1

d

dt
r̂ , ~27!

and using relations~23! and ~25!, we arrive at

dA

dt
5

1

Z
@~“Vext3r !3p1“Vext3~r3p!#. ~28!

In the case of a hydrogen atom without external fields, i
Vext50, the right hand side of Eq.~28! is equal to zero, and
the RL vectorA is constant in time. The derivation of the R
vector for the Kepler motion without external fields w
done long ago@27–29#.

Our next goal is to integrate in time the right hand side
Eq. ~28! in order to find the integrals of motion. Integratin
Eq. ~28! we find integrals which arelinear functions of the
RL vector. It is also possible to derive an equation analog
to Eq. ~28! and yielding integrals of motion which arequa-
dratic functions of the RL vector. This is done observing th
04341
ls
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d

dt
A252A•

dA

dt
5A•

2

Z
@~“Vext3r !3p1“Vext3~r3p!#.

~29!

Note that Eqs.~28! and ~29! are very general expression
which may be used to find integrals of motion for the Kep
problem, perturbed not only by the potentialVext considered
in this paper but also for any time-independent external
tential Vext . Furthermore, approximated integrals of motio
can be also obtained by integrating Eqs.~28! and ~29! over
one cycle of the unperturbed Kepler motion as done,
example, in Ref.@30#. In the remainder of this section w
derive classic integrals of motion, linear and quadratic in
parameters characterizing field strengths.

A. Linear integrals

The right hand side of Eq.~28! can be written in many
different forms. Using well-known rules of vector algebra,
is not difficult to see that

dA

dt
5

1

Z
@2~p•“Vext!•r2~r•p!•“Vext

2~r•“Vext!•p#, ~30!

with components

dAq1

dt
5

2g

Z
@q2~q1pq2

2q2pq1
!2q1q3pq3

1bq3~2q1pq3

2q3pq1
!#1

F

Z
~2q1pq3

2q3pq1
!, ~31!

dAq2

dt
5

2g

Z
@q1~q2pq1

2q1pq2
!2q2q3pq3

1bq3~2q2pq3
2q3pq2

!#1
F

Z
~2q2pq3

2q3pq2
!,

~32!

d

dt H Aq3
1

F

2Z
~q1

21q2
2!J

5
2g

Z
@q1~2q3pq1

2q1pq3
!q2~2q3pq2

2q2pq3
!2bq3~q1pq1

1q2pq2
!#. ~33!

In Eq. ~33! we have already integrated the term proportion
to the electric field intensityF, transposing it to the left hand
side. The Stark term is always ‘‘integrable’’ and, therefore
is always possible to find the integral of motion in theq3
component. For the pure Stark effect@g50 in Eq. ~33!#, the
integral is

Aq3
1

F

2Z
~q1

21q2
2!, ~34!
0-4
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INTEGRALS OF MOTION AND QUANTUM OPERATORS . . . PHYSICAL REVIEW A62 043410
a component of a sort of ‘‘generalized’’ Runge-Lenz vec
already considered in an almost forgotten paper by Redm
@26#.

The important question here is, how can we integrate E
~31!, ~32! and ~33!? We now show that several cases p
dicted to be integrable by the Painleve´ analysis are indeed
integrable. This is done by determining explicitly the corr
sponding integrals.

~a! b51 (B53A,A5g/4): Writing Eq. ~33! as a func-
tion of the angular momentum, we obtain

d

dt H Aq3
1

F

2Z
~q1

21q2
2!J 5

2g

Z
~q1Lq2

2q2Lq1
!. ~35!

Now, since

d

dt
Lq1

2 52Lq1

d

dt
Lq1

522Fq2Lq1
, ~36!

d

dt
Lq2

2 52Lq2

d

dt
Lq2

52Fq1Lq2
, ~37!

we integrate the second term on the right-hand side of
~35! to obtain

d

dt H Aq3
1

F

2Z
~q1

21q2
2!2

g

FZ
~Lq1

2 1Lq2

2 !J 50. ~38!

From this bracket we subtract a term proportional toLq3

2 ~i.e.,

a constant integral of motion!, thereby obtaining

d

dt
Cq3

50, ~39!

where

Cq3
5Aq3

1
F

2Z
~q1

21q2
2!2

g

FZ
L2. ~40!

This integral of motion contains the component of the g
eralized RL vector@Eq. ~34!# for the Stark problem, and
includes a new van der Waals term, proportional to the m
netic field strengthg. For F50 the last term is singular
From Eq.~22! one sees the well-known fact@20–22,31,32#
that the componentsLq1

,Lq2
, andLq3

are separately integral

of motion. Forg50 we recover the result for the pure Sta
problem@26#.

Now we want to confirm the existence of the integral
motion @Eq. ~40!# through the numerical investigation o
Eqs. ~7! and ~8! for values ofb aroundb51. This is done
with the help of Poincare´ surfaces of section~PSS’s! in phase
space. For a fixed value of the energye of the four-
dimensional phase space of Eq.~6!, the motion is confined to
a three-dimensional energy shell, and the PSS is a t
dimensional slice in this three-dimensional energy surfa
Most of the information of the classical motion is contain
in the set of all intersections of a given trajectory with t
PSS.
04341
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Figure 1 shows the PSS for different values ofb andF.
We plotted the coordinates (u,pu); therefore, the PSS is de
fined by all trajectories which intersectv50 with pv.0.
The top~bottom! three surfaces of the figure show results f
F51 (F50, no electric field! and different values ofb.
Results forF50 are discussed below, in Sec. IV C. Th
values ofg ande are 6.0 and 0.0, respectively, which mea
that we have very strong magnetic field and high energ
The reason for using strong values is because for those
ues ofb for which the system is nonintegrable we expect
have strong chaos, and therefore we can more clearly ana
the transition from regular to chaotic motion.

For b51 and F51 ~top, center! the surface of Fig. 1
shows a regular structure. One elliptic fixed point at the c
ter of the surface (u5pu50) is surrounded by regular mo
tion. For b50.8 ~top, left!, just below the integrable case
the elliptic fix point is now a hyperbolic fix point and som
irregular motion around it can be recognized. Forb51.2
~top, right!, above the integrable case, the motion is mos
irregular. These numerical results clearly corroborate the
istence of an integral of motion forb51,F51.

~b! b54 (B50,A5g): In this case Eq.~33! is

d

dt H Aq3
1

F

2Z
~q1

21q2
2!J

5
2g

Z
@22q3~q1pq1

1q2pq2
!2pq3

~q1
21q2

2!#,

and can be readily integrated,

d

dt H Aq3
1

F

2Z
~q1

21q2
2!1

2g

Z
q3~q1

21q2
2!J 50, ~41!

yielding the invariant

FIG. 1. Poincare´ surfaces of section forb50.8, 1.0, and 1.2
~from left to right!. The three surfaces on the top are calculated
F51, and the surfaces on the bottom forF50 ~no electric field!.
See the text for more details.
0-5
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Gq3
5Aq3

1F F

2Z
1

2g

Z
q3G~q1

21q2
2!. ~42!

This integral of motion is again a generalized RL integ
which for g50 reduces to the result found by Redmond@26#
for the Stark effect.

The integral of motion@Eq. ~42!# can also be corroborate
numerically as shown in Fig. 2. This figure shows the P
for values ofb near the integrable caseb54. In the PSS at
the center of the topF51 row, we see that the motion i
very regular having just a single fix point atu5pu50. For
values ofb53.9 ~left! andb54.1 ~right! we see the appear
ance of hyperbolic fix points which act to destroy the regu
motion.

For F50 ~no electric field!, Fig. 2 ~center, bottom row!
shows that we still have a regular motion. This is rela
with the fact, that forF50, Eq. ~42! reduces to

Gq3
5Aq3

1
2g

Z
q3~q1

21q2
2!, ~43!

reproducing the known integral of motion for a trapped i
@31#. For b53.9 ~left! andb54.1 ~right! we see once again
the appearance of some hyperbolic fix points which disr
the regular motion. Note, for example, the appearance of
hyperbolic fix points nearu5pu50 on the PSS at the top
right.

~c! b51/4 (B515A,A5g/16): This is the last possibly
integrable candidate predicted by the Painleve´ analysis. Re-
writing Eqs.~31! and ~32! as

FIG. 2. Poincare´ surfaces of section forb53.9, 4.0, and 4.1
~from left to right!. The three surfaces on the top are calculated
F51, and the surfaces on the bottom forF50 ~no electric field!.
See the text for additional details.
04341
l

S

r

d

t
ix

dAq1

dt
5

2g

Z Fq2~q1pq2
2q2pq1

!2
1

2 S q1q3pq3
1

q3
2

2
pq1

D G
1

F

Z
~2q1pq3

2q3pq1
!, ~44!

dAq2

dt
5

2g

Z F2q1~q1pq2
2q2pq1

!2
1

2 S q2q3pq3
1

q3
2

2
pq2

D G
1

F

Z
~2q2pq3

2q3pq2
!, ~45!

we see that, for both equations, the term in parenthe
which multiplies 1

2 can be easily integrated.
For arbitrary values ofF we have not been able to fin

integrals, but forF50 we obtain

d

dt H Aq1
1

g

2Z
q1q3

2J 5
2g

Z
@q2~q1pq2

2q2pq1
!#, ~46!

d

dt H Aq2
1

g

2Z
q2q3

2J 5
2g

Z
@2q1~q1pq2

2q2pq1
!#, ~47!

which might also be written as

d

dt H Aq1
1

g

2Z
q1q3

2J 5
2g

Z
~q2Lq3

!, ~48!

d

dt H Aq2
1

g

2Z
q2q3

2J 5
2g

Z
~2q1Lq3

!. ~49!

These expressions are only integrable forLq3
5m50, yield-

ing the generalized RL~GRL! components

Gq1
5Aq1

1
g

2Z
q1q3

2 , ~50!

Gq2
5Aq2

1
g

2Z
q2q3

2 , ~51!

which are the integrals of motion form50. Observe that for
m50 we havetwo additional integrals of motion.

Figure 3 shows the PSS for the integrable caseb51/4
50.25 andF50 ~bottom row, center!. As expected, the mo
tion is regular, and shows two elliptic fixed points on th
upper and lower parts of the surface, both surrounded
ellipses. The surface forb50.2 ~bottom, left! shows what
happens if we slightly change the value ofb from the value
where the system is integrable. There is no longer any re
lar motion, and the trajectories fill most of the phase sp
densely. Some hyperbolic fixed points~or separatrices! can
be observed; for example, nearu5pu50 there are ten iso-
lated island surrounded by ten hyperbolic points. The sa
behavior can be observed forb50.3 ~bottom, right!. In this
case we still see some localized remnants of the regular
tion near the two original elliptic fixed points, but in gener
the motion is rather irregular. The three surfaces on the
of Fig. 3 show what happens if we add an electric fieldF

r
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51) to the problem: the system is no longer integrable, e
whenb51/4. This is also the reason why we could not fi
any integral of motion forFÞ0 andb51/4 ~see Table I!.
All three surfaces show a strong irregular motion.

B. Generalized Runge-Lenz vector

The above results show clearly the existence of a q
general Runge-Lenz-like vector for atomic problems s
jected to the combined external fields defined in Eq.~2!. Its
components define integrals of motion for all three afo
mentioned cases. This vector may be conveniently written

G5A2
2g

3Z
@~r3W!3r #2

F

2Z
@~r3S!3r #, ~52!

where W5q1 î1q2ĵ1bq3k̂ and S5F k̂ are the derivatives
of the potential due to the van der Waals interaction and

FIG. 3. Poincare´ surfaces of section forb50.2,1/4, and 0.3
~from left to right!. The three surfaces on the top are calculated
F51, and the surfaces on the bottom forF50 ~no electric field!.
See the text for more details.

TABLE I. Values ofb for the integrable cases where the com
ponents of the GRL vector@Eq. ~52!# are integrals of motion.

b g F Lq3
5m Classical integrals

1 arb. 0 arb.
G21

2g

Z2 r 2L2

4 arb. arb. arb. Gq3

4 arb. 0 arb. Gq3

1/4 arb. 0 arb.
Gq1

2 1Gq2

2 2g

Z2 r 2Lq3

2

1/4 arb. 0 0 Gq1
,Gq2
04341
n

te
-

-
as

e

electric field, respectively. The GRL vector@Eq. ~52!# is a
generalization to the Zeeman and van der Waals interact
of the pure Stark vector obtained previously by Redmo
@26#.

The components of Eq.~52! are

Gq1
5Aq1

1
2g

3Z
~12b!q1q3

22
F

2Z
q1q3 , ~53!

Gq2
5Aq2

1
2g

3Z
~12b!q2q3

22
F

2Z
q2q3 , ~54!

Gq3
5Aq3

2
2g

3Z
~12b!q3~q1

21q2
2!1

F

2Z
~q1

21q2
2!,

~55!

and do not represent integrals of motion in general, for a
trary values of the fields. These components are integral
motion only for the specific situations discussed in de
above.

Note that forb51, FÞ0 and arbitraryg, the GRL vector
does not reproduce integral~40!. We believe that integra
~40! takes into account a special symmetry which cannot
obtained from the GRL vector. We were not able to find
vector from which one may obtain integral~40!. Apart from
this ‘‘singular’’ case, all other integrals found can be o
tained directly from the GRL vector@Eq. ~52!#. The GRL
vector will be very useful in Sec. IV C.

C. Quadratic integrals

The procedure to obtain the integrals for the quadra
case is analogous to that for the linear case, and we l
ourselves to presenting only the most important final eq
tions. Contributions which are quadratic functions of t
field-strength parameters arise from terms proportional to
square of the GRL vector@see Eq.~29!#. If the square of the
GRL vector was itself an integral of motion, then the follow
ing scalar would be identically zero:

1

2

d

dt
G25G•

dG

dt
5Gq1

dGq1

dt
1Gq2

dGq2

dt
1Gq3

dGq3

dt
.

~56!

Motivated by the expression above, we look for integrals
motion which, while depending on the same individual ter
as the scalar above, are more general. A simple way of do
this is given by theAnsatz

z5c1Gq1

dGq1

dt
1c2Gq2

dGq2

dt
1c3Gq3

dGq3

dt
, ~57!

whereci , i 51, 2, and 3, are constants to be determined
Eq. ~57! we use the GRL vector instead of the RL vector
Eq. ~29!. This simplifies considerably the calculations.
what follows we consider only integrals which are not t
square of the integrals already found for the linear cas

r
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Table I presents a summary of the values ofb for which the
components of the GRL vector@Eq. ~52!# are integrals of
motion.

~a! b51 (B53A,A5g/4): For this combination of pa
rameters we could not find additional integrals of moti
whenFÞ0 and, consequently, we considerF50 only. From
Eq. ~22! we know thatLq1

,Lq2
, andLq3

are integrals of mo-

tion, while Eq. ~40! is no longer an integral forF50. For
ci51, i 51, 2, and 3, Eq.~57! may be rearranged to yield

d

dt
~Gq1

2 1Gq2

2 1Gq3

2 !

52
4g

Z2 ~q1pq1
1q2pq2

1q3pq3
!~Lq1

2 1Lq2

2 1Lq3

2 !.

The right hand side of this equation can be integrated,
serving that

dr

dt
5

1

r
~q1pq1

1q2pq2
1q3pq3

!, ~58!

and that, consequently, the integral of motion has the fo

I 1
S5Gq1

2 1Gq2

2 1Gq3

2 1
2g

Z2 r 2L2. ~59!

Note that now we have a total of five integrals of motio
H,Lq1

,Lq2
,Lq3

, and I 1
S , a result telling us that the system

super-integrable@33# because there are more integrals of m
tion than degrees of freedom.

~b! b54 (B50,A5g): For this set of parameters w
could not find additional integrals of motion.

~c! b51/4 (B515A,A5g/16): Here we takec15c2
51 andc350 obtaining for Eq.~57! the simplified expres-
sion

d

dt
~Gq1

2 1Gq2

2 !52
4g

Z2 ~q1pq1
1q2pq2

1q3pq3
!Lq3

2 .

~60!

Using Eq.~58! once again, we obtain the integral

I 2
S5Gq1

2 1Gq2

2 1
2g

Z2 r 2Lq3

2 , ~61!

which is a particular case of integral~59!. This integral cor-
responds to that found for the motion of a trapped ion@31#.

V. QUANTUM OPERATORS

In this section we derive the quantum operators wh
correspond to the classical integrals of motion obtain
above. The methodology used in Sec. IV also worksmutatis
mutandis for operators. After suitable symmetrization, th
quantum version of the time derivative of the RL vector i
04341
b-

,

-

h
d

dÂ

dt
5

1

2Z
@~“̂Vext3 r̂ !3p̂2p̂3~“̂Vext3 r̂ !

1“̂Vext3~ r̂3p̂!2~ r̂3p̂!3“̂Vext#, ~62!

where

“̂Vext5]xVextî1]yVextĵ1]zVextk̂. ~63!

Following the same procedure used in Sec. IV, for t
components of the RL operator we obtain

dÂq̂1

dt
5

2g

Z
$q̂2~ q̂1pq̂2

2q̂2pq̂1
!2q̂1q̂3pq̂3

1b@ q̂3~2q̂1pq̂3
2q̂3pq̂1

!2 i\q̂1#%

1
F

Z
~2q̂1p̂q̂3

2q̂3p̂q̂1
!, ~64!

dÂq̂2

dt
5

2g

Z
$q̂1~ q̂2pq̂1

2q̂1pq̂2
!2q̂2q̂3pq̂3

1b@ q̂3~2q̂2pq̂3
2q̂3pq̂2

!2 i\q̂2#%

1
F

Z
~2q̂2p̂q̂3

2q̂3p̂q̂2
!, ~65!

dÂq̂3

dt
5

2g

Z
$q̂1~2q̂3pq̂1

2q̂1pq̂3
!1q̂2~2q̂3pq̂2

2q̂2pq̂3
!

2bq̂3~ q̂1pq̂1
1q̂2pq̂2

!%1
F

Z
~ i\2q̂1p̂q̂1

2q̂2p̂q̂2
!,

~66!

where this last equation may be rewritten as

d

dtH Âq̂3
1

F

2Z
~ q̂1

21q̂2
2!J

5
2g

Z
$q̂1~2q̂3pq̂1

2q̂1pq̂3
!1q̂2~2q̂3pq̂2

2q̂2pq̂3
!

2bq̂3~ q̂1pq̂1
1q̂2pq̂2

!%. ~67!

Comparing these equations with the corresponding class
ones in Eqs.~31!, ~32!, and~33!, one sees that the quantu
operators contain quantum corrections proportional to\.

The equations above cannot be integrated in gene
However, for the situations passing the three steps of
Painlevéanalysis we may proceed as follows.

A. Linear operators

Similarly to the classical case, we start by deriving t
linear quantum operators for cases~a!, ~b!, and~c!.
0-8
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~a! b51 (B53A, A5g/4): Here the only possibly inte
grable component is that of Eq.~67!:

d

dt H Âq̂3
1

F

2Z
~ q̂1

21q̂2
2!J 5

2g

Z
~ q̂1L̂ q̂2

2 i\q̂32q̂2Lq̂1
!.

~68!

The right hand side can be integrated, observing that

d

dt
~ L̂1

21L̂2
2!5

dL̂1

dt
L̂11L̂1

dL̂1

dt
1

dL̂2

dt
L̂21L̂2

dL̂2

dt

5F~2q̂2L̂ q̂1
2L̂ q̂1

q̂21q̂1L̂ q̂2
1L̂ q̂2

q̂1!

52F~ q̂1L̂ q̂2
2q̂2L̂ q̂1

2 i\q̂3!,

which yields

d

dt H Âq̂3
1

F

2Z
~ q̂1

21q̂2
2!2

g

FZ
~ L̂ q̂1

2
1L̂ q̂2

2
!J 50. ~69!

Therefore, the quantum operator has the form

Ĉq̂3
5Âq̂3

1
F

2Z
~ q̂1

21q̂2
2!2

g

FZ
L̂2, ~70!

analogous to its classical counterpart@Eq. ~40!#.
~b! b54 (B50, A5g): Once again, we use Eq.~67!,

which now reads

d

dt H Âq̂3
1

F

2Z
~ q̂1

21q̂2
2!J 5

2g

Z
@22q̂3~2 i\1q̂1p̂q̂1

1q̂2p̂q̂2
!

2~ q̂1
21q̂2

2! p̂q̂3
#. ~71!

Then, with the help of

d

dt
@ q̂3~ q̂1

21q̂2
2!#5

dq̂3

dt
~ q̂1

21q̂2
2!1q̂3

d~ q̂1
21q̂2

2!

dt
5~ q̂1

2

1q̂2
2! p̂q̂3

12q̂3~2 i\1q̂1p̂q̂1
1q̂2p̂q̂2

!,

we may integrate Eq.~71!, obtaining the operator

Ĝq̂3
5Âq̂3

1F F

2Z
1

2g

Z
q̂3G~ q̂1

21q̂2
2!, ~72!

which mimics its classical counterpart@Eq. ~42!#.
~c! b51/4 (B515A, A5g/16): For these parameters

is possible to integrate Eqs.~64! and~65! for F50, namely,

dÂq̂1

dt
5

2g

Z F2
1

2
q̂1q̂3p̂q̂3

2S q̂2
21

1

4
q̂3

2D p̂q̂1
1q̂1q̂2p̂q̂2

2
1

4
i\q̂1G ,
04341
dÂq̂2

dt
5

2g

Z F2
1

2
q̂2q̂3p̂q̂3

2S q̂1
21

1

4
q̂3

2D p̂q̂2
1q̂1q̂2p̂q̂1

2
1

4
i\q̂2G ,

which may written more conveniently as

dÂq̂1

dt
5

g

2Z
~2 i\q̂122q̂1q̂3p̂q̂3

2q̂3
2p̂q̂1

14q̂2L̂ q̂3
!,

~73!

dÂq̂2

dt
5

g

2Z
~2 i\q̂222q̂2q̂3p̂q̂3

2q̂3
2p̂q̂2

24q̂1L̂ q̂3
!.

~74!

From the fact that

d

dt
~ q̂1q̂3

2!5
dq̂1

dt
q̂3

21q̂1

dq̂3
2

dt
5q̂3

2p̂q̂1
12q̂1q̂3p̂q̂3

2 i\q̂1 ,

we find the relations

22q̂1q̂3p̂q̂3
2q̂3

2p̂q̂1
52

d

dt
~ q̂1q̂3

2!2 i\q̂1 ,

22q̂2q̂3p̂q̂3
2q̂3

2p̂q̂2
52

d

dt
~ q̂2q̂3

2!2 i\q̂2 .

which, substituted into Eqs.~73! and ~74!, yield

d

dt H Âq̂1
1

g

2Z
q̂1q̂3

2J 5
g

Z
~2 i\q̂112q̂2L̂ q̂3

!, ~75!

d

dt H Âq̂2
1

g

2Z
q̂2q̂3

2J 5
g

Z
~2 i\q̂222q̂1L̂ q̂3

!. ~76!

When compared with their classical counterparts, Eqs.~48!
and~49!, the quantum equations are seen to contain one e
term on the right hand side. With the help of the famili
commutation relations

@ L̂ q̂3
,q̂1#5 i\q̂2 ,

@ L̂ q̂3
,q̂2#52 i\q̂1 ,

we rewrite Eqs.~75! and ~76! as

d

dt H Âq̂1
1

g

2Z
q̂1q̂3

2J 5
g

Z
~ L̂ q̂3

q̂21q̂2L̂ q̂3
!, ~77!

d

dt H Âq̂2
1

g

2Z
q̂2q̂3

2J 52
g

Z
~ L̂ q̂3

q̂11q̂1L̂ q̂3
!, ~78!

which for L̂ q̂3
5m50 give the operators
0-9
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Ĝq̂1
5Âq̂1

1
g

2Z
q̂1q̂3

2 , ~79!

Ĝq̂2
5Âq̂2

1
g

2Z
q̂2q̂3

2 , ~80!

coincident with the classical integrals in Eqs.~50! and ~51!.

B. Generalized Runge-Lenz operator

As for the classical integrals, here it is also possible
define a convenient generalized operator from which,
suitable parameters, we might derive as particular case
the operators discussed above. This generalized operat
defined by

Ĝ5Â2
2

3Z
@~ r̂3Ŵ!3 r̂ #2

1

2Z
@~ r̂3Ŝ!3 r̂ #, ~81!

whereŴ5(q̂1 î1q̂2ĵ1bq̂3k̂) and Ŝ5F k̂ are the operators
of the potential due to van de Waals interaction and the e
tric field, respectively. The components of this operator a

Ĝq̂1
5Âq̂1

1
2g

3Z
~12b!q̂1q̂3

22
F

2Z
q̂1q̂3 , ~82!

Ĝq̂2
5Âq̂2

1
2g

3Z
~12b!q̂2q̂3

22
F

2Z
q̂2q̂3 , ~83!

Ĝq̂3
5Âq̂3

2
2g

3Z
~12b!q̂3~ q̂1

21q̂2
2!1

F

2Z
~ q̂1

21q̂2
2!.

~84!

In Sec. V C we use the above GRL operator to discuss
erators which are quadratic functions of the field stren
parameters.

C. Quadratic operators

The quantum operator corresponding to Eq.~57! is

1

2

d

dt
Ĝ25Ĝ•

dĜ

dt
1

dĜ

dt
•Ĝ, ~85!

which motivates us to consider the extended form

Z5c1S Ĝq̂1

dĜq̂1

dt
1

dĜq̂1

dt
Ĝq̂1

D 1c2S Ĝq̂2

dĜq̂2

dt
1

dĜq̂2

dt
Ĝq̂2

D
1c3S Ĝq̂3

dĜq̂3

dt
1

dĜq̂3

dt
Ĝq̂3

D , ~86!

whereci are arbitrary constants. We now present the fi
results for the integrable cases.

~a! b51 (B53A, A5g/4): Whenci51, i 51, 2, and 3,
we find the quantum operator

Î 1
S5Ĝq̂1

2
1Ĝq̂2

2
1Ĝq̂3

2
1

2g

Z2 r̂ 2L̂21
g\2

Z2 r̂ 2, ~87!
04341
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which, when compared with the corresponding classical
tegral@Eq. ~59!#, is seen to have an additional quantum co
rection proportional to\2.

~b! b54 (B50, A5g): For this set of parameters w
were not able to find additional operators.

~c! b51/4 (B515A, A5g/16): For c15c251 and c3
50, we find

Î 2
S5Ĝq̂1

2
1Ĝq̂2

2
1

2g

Z2 r 2L̂ q̂3

2
1

g\2

2Z2 ~ r̂ 21q̂3
2!. ~88!

Comparing this operator with Eq.~61!, we see that, again
the operator has a quantum correction proportional to\2.
Table II summarizes the values ofb for which the compo-
nents of the GRL operator@Eq. ~81!# are good quantum num
bers.

VI. CONCLUSIONS

We studied the classical and quantum integrability of
problem of hydrogenic atoms subjected to external para
electric and magnetic fields and also to the van der Wa
interaction, as defined by Eqs.~1! and~2!. With the help of a
Painlevéanalysis we discovered five exact integrals of m
tion as well as eight exact quantum operators, which to
knowledge were never given in the literature before. Ta
III presents a summary of our findings. In this table, integr
~operators! which are written between brackets are thought
be new results. All integrals~operators!, with exception of
Cq3

( Ĉq3
) from Eq. ~40! @Eq. ~70!#, were found to be the

components of a generalized Runge-Lenz~GRL! vector~op-
erator! ~52! @Eq. ~81!#.

An additional result is that concerning the quantum c
rections for the operators which are quadratic functions
the aforementioned GRL operator. All such corrections
invariably found to be proportional to\2, a term obviously
absent from the corresponding classical integral limits~see
Table III!. Proportionality factors depending on\2 were pre-
viously found to occur for certain classes ofduality transfor-
mations interconnecting integrable Hamiltonian syste
@19#. To a given classical system, such duality transform

TABLE II. Values of b for the integrable cases where the com
ponents of the GRL operator@Eq. ~81!# are good quantum numbers

b g F Lq3
5m Quantum operators

1 arb. 0 arb.
Ĝ21

2g

Z2 r̂ 2L̂2

4 arb. arb. arb. Ĝq3

4 arb. 0 arb. Ĝq3

1/4 arb. 0 arb.
Ĝq1

2 1Ĝq2

2 2g

Z2 r̂ 2L̂q3

2

1/4 arb. 0 0 Ĝq1
,Ĝq2
0-10
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TABLE III. Summary of all known integrable cases along with their associated classical integral
quantum operators. Results inside curly brackets are thought to be new.

b g F Lq3
5m Classical integrals Quantum operators

1 arb. arb. arb. $Cq3
% $Ĉq̂3

%

1 arb. 0 arb.
Lq1

,Lq2
,HG21

2g

Z2 r 2L2J L̂ q̂1
,L̂ q̂2

,H Ĝ21
2g

Z2 r̂ 2L̂21
g\2

Z2 r̂ 2J
4 arb. arb. arb. $Gq3

% $Ĝq3
%

4 arb. 0 arb. Gq3 $Ĝq3
%

0 0 arb. arb. Gq3 Ĝq3

1/4 arb. 0 arb.
Gq1

2 1Gq2

2 1
2g

Z2 r 2Lq3

2 HĜq1

2 1Ĝq2

2 1
2g

Z2 r2L̂q̂3

2
1

g\2

2Z2 ~r̂21q̂3
2!J

1/4 arb. 0 0 $Gq1
%,$Gq2

% $Ĝq1
%,$Ĝq2

%

n

b
te
in
s
f

ed
a
h
ev
n-

tio
l

nal

th-
ten-
h
f
nd
-
dis-
tions allow one to associate a quantum system which is
necessarily unique@19#.

We believe the exact results reported in this paper to
helpful to understand the dynamics of more complica
classical and quantum systems. For example, the new
grals of motion can be used in the study of quantum chao
atoms along the lines of what was done in, e.g., Re
@20,22,30,34# ~and references therein!. Another interesting
problem is to investigate what happens to initially localiz
wave packets when one smoothly varies the relevant par
eters away from the integrable limit. How much does t
spreading and the speed of dispersion depend on the d
tion from integrability, and so forth. In this respect, the i
teresting technique used in Ref.@16# could be of interest. Our
integrals of motion may also be used to analyze the mo
of an ion in a Paul trap@31,32#, to obtain a semiclassica
y

n

e

04341
ot

e
d
te-
in
s.

m-
e
ia-

n

formula to describe photoabsorption in atoms in exter
fields which have a regular spectrum@35#, to understand fun-
damental questions in the semiclassical description of wid
weighted spectra in atoms due to tunneling through a po
tial barrier @36#, to analyze the interaction of atoms throug
van der Waals forces@37#, and to investigate the effect o
relaxing the perpendicular orientation of the electric a
magnetic fields@38#. An interesting open problem is to re
peat the present computations for the experimental setup
cussed by Baumann@39#, and for some variants of it.
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Törmä, V. Savichev, E. Mayr, A. Zeiler, and W. Schleich
Phys. Rev. Lett.78, 4181 ~1997!; M. Moore and R. Blu¨mel,
Phys. Rev. A48, 3082 ~1993!; R. Blümel, J. M. Chen, F.
Diedrich, E. Peik, W. Quint, W. Schleich, Y. R. Shen, and
Walther, Nature~London! 334, 309 ~1988!.

@24# J. Main and G. Wunner, Phys. Rev. A55, 1743 ~1997!; G.
Tanner, K. T. Hansen, and J. Main, Nonlinearity9, 1641
~1996!; M. Courtney and D. Kleppner, Phys. Rev. A53, 178
~1996!; M. W. Beims and G. Alber,ibid. 48, 3123 ~1993!; J.
M. Mao and J. B. Delos,ibid. 45, 1746 ~1992!; H. Friedrich
and D. Wintgen, Phys. Rep.183, 37 ~1989!.

@25# A. Ramani, B. Dorizzi, and B. Grammaticos, Phys. Rev. Le
49, 1539~1982!.

@26# P. J. Redmond, Phys. Rev.133, 1352~1964!.
@27# O. Halpern, Z. Phys.18, 287 ~1923!; O. Klein, ibid. 22, 109

~1924!; W. Lenz,ibid. 24, 197~1924!; N. R. Sen,ibid. 56, 673
~1929!.
04341
.

.

.

@28# W. Pauli, Z. Phys.36, 336 ~1926!, translated inSources of
Quantum Mechanics, edited by B. Van der Waerden~Dover,
New York, 1968!; discussions of this paper were given by C.
Wulfman, inGroup Theory and its Application II, edited by E.
M. Loeb ~Academic Press, New York, 1971! and B. G. Ad-
ams, Algebraic Approach to Simple Quantum Syste
~Springer, Berlin, 1994!.

@29# D. M. Fradkin, Prog. Theor. Phys.37, 789~1967!; L. H. Buch
and H. H. Denman, Am. J. Phys.43, 1046 ~1975!; W. H.
Heintz, ibid. 42, 1078~1974!.

@30# J. B. Delos, S. K. Knudson, and D. W. Noid, Phys. Rev. Le
50, 579~1983!; Phys. Rev. A28, 7 ~1983!; R. L. Waterland, J.
B. Delos, and M. L. Du,ibid. 35, 5064~1987!.
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