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dcnsitY remains on the nickel. This seems to bc an 
unrca~onably small amount, especially since the Nia+ 
superhyperfine structure indicates only about 18% 
density on the neighboring ligands. The greater the 
positive charge of an íon, the greater should be its 
participation in covalent bonding with the neighboring 
anions. 

The Ni+ g factor may be reduced also by the Jahn­
Teller effect. The theory in this case would be compli­
cated. The nickel t2 functions can interact with two t2 
normal modes of the tetrahedral cluster and also with 
the e mode. The spin-orbit coupling constant of Ni+ 

is rathcr large anel may bc comparable with thc Jahn­
Tcller interaction, so that thc usual approximations16 

made in treating such a problem would not be valid. 
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We derive the forro of the perturbation factors for the angular correlation of two successive 'Y rays when the 
intermediate state is under the influence of an axially symmetric static electric field gradient plus a small 
randomly fluctuating quadrupole perturbation. The Bloch-Wangness-Redfield theory of nuclear relaxa­
tion is applied to calculate the evolution of the density matrix, and the form of the perturbation factors is 
calculated for severa! special cases in single-crystal and powder sources. 

I. INTRODUCTION 

D URING the past severa! years the study of nuclear 
hyperfi.ne interactions by perturbed angular cor­

relation techniques has been shown to be a profitable 
way of obtaining new infom1ation about solid- and 
liquid-state problems. The great variety of experimental 
information that can be obtained is illustrated in Refs. 
1 and 2, and as experimental technique develops it is to 
be expected that the field will become even broader. 
One area of particular interest that can be studied by 
these techniques seems to be the detection of nuclear 
relaxation processes in solids. 

Relaxation effects on angular correlations have pre­
viously been discussed for special cases by Abragam 
and Pound, 3 who treated the case of isotropic fluctua­
tions in liquids, by Micha4 for the case of magnetic 
relaxation in solids, and by Tang and Osborn, 5 who dis­
cussed relaxation due to crystalline vibrations. 

* Work partially supported by Conselho :\'acionai de Pesquisas 
(Brasil), Conselho de Psequisas (UFRGS), and l'. S. Air Force 
Offi.ce of Scientific Research, Grant ::'\o. AF-AFOSR-1280-67. 

1 Perturbed Angular Correlations, edited by E. Karlsson, E. 
Matthias, and K. Sieghbahn (:\'orth-Holland Puhlishing Co., 
Amsterdam, 1964). 

2 Hyperfine Structure and Nuclear Radiations, editcd by E. 
Matthias and D. A. Shirley (:\'orth-Holland Publishing Co., 
Amsterdam, 1968). 

3 A. Abragam and R. V. Pound, Phys. Rev. 92, 953 (1953). 
4 D. A. Micha, Phys. Rev. 156, 627 (1967). 
5 L. H. Tang and R. K. Osborn, Phys. Rev. 146, 695 (1966). 

In this paper we present an application of the Bloch­
\Vangness-Redfield theory of nuclear relaxation to the 
calculation of the perturbation factors for angular cor­
relations of successive 'Y radiations in solids. In par­
ticular, we treat the case of an odd-A nucleus in the 
presence of an axially symmetric electric field gradient 
and a weak fluctuating perturbation; emphasis is given 
to quadrupole relaxation effects as an example demon­
strating the effects to be expected from some typical 
relaxation mechanisms in solids, such as molecular 
torsion oscillations and planar and isotropic hindered 
rotations. 6 The extension to more general cases is dis­
cussed briefly. 

In Sec. II, we develop the density matrix describing 
the intermediate state as a result of the combined 
static and fluctuating perturbations; in Sec. III, we 
show the application of the resultant density matrix 
elements to the calculation of the perturbation factor 
for several different experimental situations, and in Sec. 
IV a discussion of the results is presented. 

11. EVOLUTION_ OF DENSITY MATRIX 

The angular correlation function of two successive 'Y 
radiations emitted in directions specified by the wave 
vectors k1 and k2, respectively, and separated by a time 

6 A. Abragam, The Principies oi Nuclear .M axnetism (Oxford 
l'niversity Press, London, 1961), c'hap. X. 
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interval t during which a perturbation acts on the inter- The most important of these conditions for our 
media te state can be written as purposes are: 

W(k1,k2,t) =Tr{p(ki,t)p(k2,0)} 

=L (alp(ki,t)lcl)(a'Jp(k2,0)Ia), (2.1) 
a,a' 

where p(k2,0) is the density matrix of the second radia­
tion and has matrix elements 

(a' 1 p(k2,o) I a) 

= (4-n-) 112 L ( -1)"A k2(1, 
kl a 

I 

-a 
(2.2) 

and p(k1,0) is the density matrix describing the first 
radiation with matrix elements 

(aJ p(k1,0) I a') 

= (471-)1/2 L( -1)"Ak,(I, 
k2 a 

I 

-a 
(2.3) 

The factors Ah and Ak2 appearing in Eqs. (2.1) and 
(2.2) are the usual angular correlation coefficients.7 

During the time the nucleus is in the intermediate 
state, interactions of extra nuclear fields with the elec­
tric quadrupole and magnetic dipole moments of the 
nucleus will cause changes in the density matrix of the 
intermediate state. If H is the Hamiltonian describing 
this interaction, then the evolution of the density 
matrix is governed by the differential equation 

p= ( -i/h)[ll,p] (2.4) 

with the boundary condition given by Eq. (2.3) above. 
We are interested in the solution of Eq. (2.4) for the 

special case where H is composed of a strong static field 
Ko and a weak randomly fluctuating time-dependent 
interaction K(t). We follow the development given in 
Refs. 6, 8, and 9. If 

H=Ko+K(t), 
we have 

p= (-i/ h)[Ko+ K(t), p], 

which has the immediate formal solution 

(2.5) 

(2.6) 

p(t) = e-<illtlKotp*(t)e(i/ft)Kot, (2. 7) 

where p*(t) is the solution of the differential equation 

p*= ( -i/h)[K*(t),p*]. (2.8) 

As is shown in Refs. 6, 8, and 9, Eq. (2.8) can be 
written under certain conditions in the form 

p*= -1"' [K*(t),[K*(t-T),p*(t)]]dt. (2.9) 
----

7 K. Alder and R. M. Steffen, Ann. Rev. Nucl. Sei. 14, 403 
(1964). 

8 C.P. Slichter, Principles oj Magnetic Resonance (Harper and 
Row Publishers, Inc., New York, 1963), Chap. S. 

9 A. G. Redfield, IBM J. Res. Develop. 1, 19 (1957). 

(a) There exists a time Te such that for T>>rc the 
correlation function defined as 

1 ~T g(T)=- K(t)K(t-T)dt 
2T -T 

is zero. Te is called the correlation time. 
(b) The perturbation K(t) is "small enough." This is 

specified by the requirement that there exist times t 
such that 

simultaneously. 
(c) The function K(t) is a stationary random function, 

that is, the average of K(t) over time is equal to the 
average over ensembles. 

(d) It is assun1ed that the time average of the fluctuat­
ing field is zero. However, if this is not the case the re­
quirement can be satisfied by a suitable redefinition of 
the static perturbation K 0• 

(e) Finally the solution of Eq. (2.9) above applies 
only for times t larger than T c· 

Equation (2.9) can be written in a matrix form as 

Paa'*= L Raa•pp•é(a-a'-fl+fJ'Hpfjf3'*(t). (2.10) 
{j{j' 

In this expression the subscripts a and {3 refer to eigen­
states of the Hamiltonian K 0 , while the symbols a and 
{3 appearing within the parentheses are abbreviated 
notations for the angular frequencies w .. = E .. / h of those 
states. This standard notation will be used throughout. 

The definition of the matrix Raa'fJfJ' in terms of the 
matrix elements of the Hamiltonian K(t) is given by 

1 
Raa'fJfJ' =-[.§JafJa'fJ'(a' -f)')+.§Ja{Ja'fJ'(a-/3) 

2k2 

-Óa'fJ' L .§Jr/lra('Y-/3)- OafJ L .§Jra'r!l'(-y-{3')], (2.11) 
'Y 'Y 

where the spectral densities gj(w) are given by 

.§Jaa'{Jil'(w) =f_~ ((a J K(t) la')(/1' J K(t-T) JP))e 

xe-iwrdT, (2.12) 

where ( ). means an ensemble average. We restrict 
ourselves to Hamiltonians of the form 

K(t) =L f.uq(t)[K ... º+(KI'q)*J' (2.13) 
I' 

where the K.uº are tensor operators of rank q, and the 
f"º(t) are real random functions of time. We will be 
especially interested in the case q= 2 (quadrupole 
perturbations). 
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We further specialize to the case where the static 
Hamiltonian K 0 is axially symmetric, which allows the 
labels a and fJ to be taken as magnetic quantum num­
bers. If this is the case, the spectral density functions 
can be written using the Wigner-Eckart theorem as 

á3aa'flfl'= i~~ g,.q(w)(Ia'qp.Jla)(lfJqp.JlfJ') 

I (IIIKqiJI) 12 

X----, (2.14) 
21+1 

where the g,.q(w) are given by 

g,.q(w) =i~ j,.q(f)j,.q(f-T)é""dT (2.15) 

and j,.(t) and J,.•(t) are assumed to be uncorrelated. 
In solving Eq. (2.10) above, it is usual to restrict 

oneself to those matrix elements for which Ea-Ea' 
-E11+E11.=0, that is, to those terms for which 
ei(a--a'-P+P'>t= 1. (The reasoning behind this approxi­
mation and its limitations are discussed in the refer­
ences, especially in Ref. 3.) The relaxation equation 
(2.10) then becomes 

Paa•*= L Raa'fiii'PP/1'*, (a-a')= (fJ-fJ') • (2.16) 
fi{J' 

These equations have the form of an eigenvalue 
problem and, for given values of the matrix elements 
R, can be solved using the standard techniques for such 
problems. 

lf we assign an index v to each pair of levels aa', the 
element p.*(t) of the density matrix can be written as 

(2.17) 

where the p.*'(O) are the eigensolutions of Eq. (2.16) 
and have the form 

p,*'(O) =L c,,.p,..*(O), (2.18) ,. 
and furthermore the matrix cr,. is the inverse of the 
matrix b ... 

In the general case it is necessary to solve Eq. (2.16) 
numerically to obtain values for the eigenvalues and 
the expansion coefficients c,,.. 

Substituting Eq. (2.18) into Eq. (2.17), we obtain the 
usual form 

p.*(t) = L(P I G*(t) l~~o)p,.*(O), (2.19) ,. 
where 

(2.20) 

The physical case we treat here is that of an odd-A 
nucleus in an axially symmetric electric field gradient. 
In this case, the leveis are pairwise degenerate with 

Ea= E_a, where a is the projection of the nuclear spin 
on the symmetry axis of the field gradient (Kramers 
doublets). Further, no two energy separations between 
different pairs of leveis are equal. 

In this case, it can be seen by inspection that an 
important simplification can be made in the set of equa­
tions represented by Eq. (2.16). Namely, it can be seen 
that there is no coupling between elements of the type 
Paa * and those of the type Paa•*. The "diagonal" ele­
ments are uncoupled from the "off-diagonal" elements. 
Thus these two cases can be treated separately. 

In the particular case of the off-diagonal elements, the 
fact that no two pairs of leveis have the same energy 
separation means that in the equation for the density 
matrix element Paa•*(t) only four terms can contribute 
in the right-hand side. These are Raa'/IIJ'• RafJ-a-/1, 
Raa'-11-P'• and Raa'fJ-11'· With a Hamiltonian of the form 
of Eq. (2.13), only the first of these tums out to be non­
zero. Thus Eq. (2.16) for the off-diagonal elements has 
the simple form 

(2.21) 

and the solutions are 

(2.22) 
with 

Àaa•= -Raa'/1/1'• 

The equations for the diagonal elements do not have 
such a simple structure. They can be rearranged and 
written in the form 

with the formal solution [see Eq. (2.19)] 

Paa *(t) =L (aa I G*(t) I flfJ)PtJtJ*(O). 
p 

(2.23) 

(2.24) 

In the general case, it would be necessary to calculate 
the values of the spectral density function using the 
Hamiltonian (2.13) and to solve Eq. (2.12) numerically, 
obtaining solutions of the form of (2.14) for each ele­
ment. For the usual case where polarizations are not 
measured, a total of !(21+ 1) relaxation constants would 
appear in various combinations for each element Paa 
of the density matrix at time t. 

An important special case exists when the relaxation 
mechanism is isotropic, that is, when g,.q(w) in Eq. 
(2.15) is the same for all values of p. and w. It has been 
shown previously that in this case the relaxation con­
stants are given by 

where a, is an eigenvalue of Eq. (2.23), and that the 
expansions coefficients c,,. are proportional to vector 
coupling coefficients. 
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The general case of isotropic perturbations has been 
considered in Ref. 10, where the necessary conditions 
for the expansion coefficients to be proportional to 
vector coupling coefficients are discussed. The angular 
correlation function has a particularly simple fonn when 
this is the case [see Eq. (3.3) below]. 

Starting from Eqs. (2.7) and (2.16), we can write 
the general form 

Paa'(kt,t) = L(aa' I G(t) I1113')P!lw(O), 
ll/3' 

where, from Eqs. (2.7) and (2.19), we see that 

(2.25) 

(aa' I G(t) I 1313')= ei(a-a'lt(aa' I G*(t) l 1313'). (2.26) 

Substituting, finally, Eq. (2.25) into Eq. (2.1), we can 
write the correlation function as 

where we define the perturbation factors Gk,k,""'(t) as 

I 

-a 

X (aa' I G*(t) I 1313'), (2.28) 

and where the factors (aa' I G(t) I 1313') are to be calcu­
lated, as outlined in this section, from the eigensolutions 
of the diagonal and off-diagonal parts of the relaxation 
matrix. Equation (2.28) may be considered as the 
general form for the perturbation factors for sources in 
the form of single crystals. 

III. PERTURBATION FACTORS 

The above solutions (for the elements of the density 
matrix as a function of time) can now be used to derive 
the detailed form of the angular correlation function 
resulting from the combination of a static and a fluctua­
ting perturbation. 

The more usual experimental situation is that of a 
polycrystalline source. The perturbation coefficients for 
this case can be easily obtained using the technique of 
Ref. 11, which consists of averaging over the angles 
specified by k1 and k2 in Eq. (2.27) above while holding 
the angle between k1 and k2 constant. One obtains the 
general relation (valid for time-dependent, time-inde­
pendent, and asymmetric perturbations) 

W(kt,k2,t) =L Ak<ll A kC 2JGk(t)Pk(cosO), (3.1) 
k 

where O is the angle between kt and k2 and where the 

•o D. Dillenburg and Th. A. J. Maris, Phys. Letters 17, 293 
(1965). 

11 S. Devons and L. J. B. Goldfarb, in llandbuch der Physik, 
edited by S. Flügge (Springer-Verlag, Berlin, 1957), Vol. 42, 
p. 362. 

perturbation factors Gk(t) are givcn by 

The following special cases exist: 

(a) The static perturbation is zero and the fluctuating 
Hamiltonian is isotropic. The original density matrix 
may be chosen diagonal, with the result that the off­
diagonal elements are always zero. The diagonal ele­
ments at time t are given by Eq. (2.19). The perturba­
tion factors for the powder source as well as for the 
single-crystal source are given by 

Gk1! 2°0(t)= L (2r+1)[(2k1+1)(2k2+1)]Ii2e-Xrt 
atlhr 

x(I I kt)(I I r)(I I k2)(I I r). 
a -a O a -a O 13 -!3 O i3 -13 O 

(3.2) 

The sums over the vector coupling coefficients can be 
performed, yielding the final result for the angular cor­
relation function (see Ref. 1) 

W(kt,k2,t)=L AklllAkC2leXHPk(cos0). (3.3) 
k 

(b) The static perturbation is an axially symmctric 
field gradient, while the fluctuating perturbation is iso­
tropic. The perturbation coefficients can be written for 
a single-crystal source as 

Gk•'•""(t)='L. [(2kt+1)(2k2+1)Jli2 
a 

x(I, I kt)(I 
a -a IJ. a' 

I k2) e- (i/líl (a-a')t 
-a IJ. 

while for a crystalline powder source one obtains 

I k)2 
-a IJ. 

where WQ is the usual quadrupole frequency.I 
(c) Finally, for the most general case treated here 

that of an axially symmetric field gradient combined 
with a fluctuating anisotropic perturbation, we obtain 
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in the single-crystal case the expression 

while in the crystalline-powder case the perturbation 
factor can be obtained from Eq. (3.1'). 

It is interesting to note in the above formulas that 
the relaxation of that term in the angular correlation 
which does not oscillate in time is always connected 
with the diagonal elements of the density matrix, 
while the relaxation of the terms which oscillate in time 
is related onlv to the off-diagonal elements of the density 
matrix. The ·same separation between the two different 
tvpes is observed in NMR experiments, where the be­
havior of the diagonal elements determines the relaxa­
tion time;; T1 while the off-diagonal elements determine 
the relaxation times T2. 

It is, furthermore, interesting to note that if it is 
possible to measure the relaxation constant~ of all of 
the different oscillating parts of the perturbat10n factor, 
a fairly direct relationship between different elements 
of the relaxation matrix R can be determined, and this 
can provide important qualitative information as to 
the structure of the relaxation mechanism. On the other 
hand the structure of the nonoscillating part of the 
pert~rbation factor, especially whether it consists of 
more than one exponential, can provide information on 
the symmetry of the fiuctuating perturbation. 

We note that the equations in this paper have been 
derived for the particular case of an odd-A nucleus in 
an axially symmetric static field gradient. We have 
further emphasized quadrupole-type fluctuating fields, 
although the formulas have been derived for a more 
general form. The generalization to more complex situa­
tions such as asymmetric field gradients or even-A nuclei 
can be clone in a manner similar to that used for the 
case of static perturbations (Ref. 1). In making this 
generalization, it would be necessary to check the sym-

metries of the relaxation matrix and to watch for de­
generacies or for equivalence of energy separations in 
each special case. 

IV. CONCLUSION 

W e have discussed the application of the Bloch­
Wagnness-Redfield theory of nuclear relaxation to t~e 
interpretation of angular correlation measurements m 
solid sources in the presence of fluctuating perturbations 
It has been shown that the theory permits derivation 
of the form of the perturbation factor, and allows one 
to predict the structure and the number of ~he differe;tt 
relaxation coefficients involved for vanous special 
cases. In particular, it also allows one to use the exten­
sive literature of NMR in interpreting, in a very simple 
way, angular correlation experiments involving relaxa­
tion. 

A quite extensive treatment of the effect of relaxation 
on the linewidth of Mossbauer spectra has been made 
by Blume and Tjon12 from a slightly different point of 
view and these authors show that their results can be ' . directly applied to the calculation of the perturbat10n 
coefficients in time dependent angular correlations. 
The technique differs from that adopted here in that it 
is basically model dependent. It has, however, the ad­
vantage that it can be used to discuss situations in 
which t is comparable to or shorter than the correlation 
time Te, and thus allows the study of severa! cases of 
experimental interest that can not be treated by the 
formulas presented here. 

The formalism developed in this paper has been used 
to discuss measurements of the time-dependent angular 
correlation of radiations from Hf181 included in the com­
pound HfF 7(NH4) 3 providing useful information about 
the molecular structure of this compound. 13 
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