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The solíd-liquíd phase transítíon (PT) in two-dímensional crystals is studied under the assumption that it ís 
driven by the díssocíation of elastic dípoles. It ís shown that thís PT ís of tirst-order and corresponds to a 
díssocíatíon transítion of elastic dipoles. For systems where, via thermal nucleation metastable 
polycrystalline states are possible besides elastic-dipole formation, a more-complex phase díagram is 
postulated with !ines of tirst- and second-order PT. In the light of these concepts molecular-dynamics 
experiments with long- and short-range interactions in two and three dimensions are discussed. Solid-liquid 
PT observed in various experimental monolayer systems and showing tirst- and second-order PT are 
interpreted in terms of the theory developed. 

I. INTRODUCTION 

We study in the following the break down of 
"long-range" order in two-dimensional (2D) crys­
tals which can be considered as a solid-liquid 
phase transition (PT). This problem has been 
considered by Berezinskii, 1 Kosterlitz and Thou­
less,2 and the analogous problem for Bose systems 
by Popov. 3 It has been pointed out by Mermin4 

that the 2D harmonic net has no long-range po­
sitional order at T ,to O due to the divergence of the 
displacement autocorrelation function ([ii(R) 
- ii(R'>:F> -In IR -R' I for IR-R' I - "", where u(R) 
is the di~lacement from the assumed equilibrium 
position R. However, ü the lattice supports stable 
transverse phonons then the system exhibits di­
rectional long-range order4 

([r(R+ ~>- r(R)] • [r(R' + ã1)- r(R')]) -a~ 

for IR-R' 1- 00 • Here r(R) is the instantaneous 
position of the lattice point R and ~ is a lattice 
unit vector. The vanishing of the long-range di­
rectional order or topological order is associated 
with a melting PT at T 0 (n11), where n11 is the den­
sity of elastic dipoles per unit area and will be 
explained later. At T 0(n11) the static shear modulus 
which is proportional to the order parameter of 
the crystalline phase vanishes together with part 
of the long-wavelength transverse phonon branch 
which representa the Goldstone mode of the or­
dered phase. This PT is observed to be in 3D 
systems always discontinuous, but in 2D systems 
first- and second-order melting PT have been 
observed. It is the objective of this paper to con­
tribute to the clarüication of the physical reasons 
for such behavior. 

It has been pointed out in 1, 2, 3 that the destruc­
tion of topological order is associated with the 
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dissociation of bound states of topological objects 
like pairs of dislocations forming elastic dipoles 
in the case of 2D crystals. Such ideas have been 
developed already earlier, e.g., by Kuhlmann­
Wilsdorf, 5 for melting in 3D systems which she 
explains by means of a dislocation mechanism. 
In Sec. TI of this paper a melting theory along sim­
ilar lines is developed. Because the chemical po­
tential for the thermal production o1 elastic dipoles 
is finite in contrast to the chemical potential of a 
single dislocation there exists always a finite con­
centration of elastic dipoles. With increasing T 
the "dielastic" polarizability of these dipoles in­
creases until it diverges at r:. This implies that 
interactions between dipoles have to be taken into 
account even for dilute systems. Kosterlitz and 
Thouless2 study this interaction in the approxima­
tion that they take all interactions into account be­
tween one given dipole and all smaller dipoles 
being located in a circle as illustrated in Fig. l(a). 
The dipoles located outside that circle of influence 
are ignored. We advocate the opposite approach 
in that we take only interactions between dipoles 
into account which do not overlap. This approach 
should be good as long as the density of dipoles 
n, is small compared to the number z= 1/1T(r2), 
where 1r(r) is the average area occupied by one 
dipole and z thus roughly representa the number 
of "lattice sites" available per unit area for the 
dipole gas. It will be shown that the condition 
n11 « z is satisfied over the whole crystalline do­
maio. The interaction between the dipoles which 
is long ranged will be calculated in the L6>rentz 
field àpproximation familiar from the theory of 
dielectric systems. This gives a condition on n, 
as a function of T for a dissociation catastrophe 
to occur for the elastic dipole gas. It is shown 
that this theory is the analog to the Clausius-Mos-
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FIG. 1. Thickly drawn dipole is the reference dipole. 
The dashed circle separates the dipoles interacting with 
the reference dipole into two classes. The class of di­
poles in {a) and {b) indicated by crosses is ignored. {a) 
corresponds to the work of Ref. 2 and {b) to the Lorentz 
field approach. The symbols f, ii, and IJ are explained 
in the text. 

sotti theory for dielectric systems and has also 
to be considered as the first step in a systematic 
many-body theory for such systems. Dueto the 
translational mobility of the elastic dipoles an 
equation of state for such objects taking the Van 
der Waals interaction between them into account 
has to be set up. This is done in Sec. III. It is 
shown there taking the second viria! coefficient 
into account that the solid-liquid PT is of first 
order for T(n11)(T= and that the criticai point T c 
= T} of the equation of state is located on the tem­
perature axis and cannot be approached. 

In Sec. IV we compare the theory with various 
molecular-dynamics computer experiments. There 
also second-order melting PT in 2D systems is 
observed. From the computer experiments of 

Hockney and Brown6 where a polycrystalline phase 
is observed it follows that besides dislocation 
pairs 30" crystalline boundaries forming metastable 
states have to be taken into account for triangular 
lattices when evaluating the free energy of the 
system. It is argued that this may lead to phase 
diagrams {PD) involving lines of first- and second­
order PT. In this context we develop a qualitative 
theory which explains why the PT observed for 
systems interacting with a long-range Coulomb 
interaction 1/r changes from a second-order PT 
in 2D to a first-order PT in 3D. In Sec. V the 
results are discussed in the light of a number of 
representative experiments on adsorbed mono­
layer systems, in particular N 2 on grafoil,7 bu­
tadiene iron tricarbonyl on graphite, 8 and 3He and 
4He monolayers on graphite.9 Some aspects of the 
theory have been presented elsewhere.10 

11. MEAN-FIELD THEORY OF ELASTIC DIPOLE SYSTEM 

We assume that with increasing T dislocations 
appear in pairs1• 2 forming elastic dipoles with 
zero resultant Burgers vector. The elastic dipoles 
dissociate at T(n11) which will be calculated in 
the mean-field approximation. This means that 
we take the polarization effect of neighboring elas­
tic dipoles approximately into account as indicated 
in Fig. l{b) whereas in Ref. 2 the polarization effect 
of the dipoles enclosed by a given dipole [see Fig. 
1{a)] is taken into account. The dipoles neglected 
in each treatment are indicated in Figs. 1 {a) and 
1{b) by big crosses. A rigorous treatment of the 
problem requires, of course, both effects to be 
considered. At the end of this section we will 
show that our approximation is reasonable. 

For sake of simplicity we consider in the fol­
lowing an isotropic 2D crystal. Following Koster­
litz and Thouless2 we introduce a stress function 
x {r), 11• 12 which is related to the stress by 

UIJ{r) = Et~EJI_a_a_' E= • 82x\r> (o 1) 
x. x, -1 o 

{1) 

Next one defines a source function 71(-r} describing 
the distribution of dislocations and test sources 
and which obeys in an isotropic medium 

(2} 

where K=4v(v+ X}/(2v+ X} and v and X are Lamé 
coefficients. The solution of Eq. (2} can now be 
written in the form2 

(3} 

where 

g(r)"" (1/81T)rlnlr/r0 l, r»a,g(O}=O. (4) 
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Here a and r 0 is the lattice constant and the hard­
core radius of the dislocation, respectively. The 
contribution of the ath dislocation pair to xlr> is 

(5a) 

where 

.. ~ b"'( a 2(- - .. ) a õ2r.:: - .. )~ 
1) \ri= Eu J axfô r-r - axf \r+ r '} • (5b) 

Here b"' is the Burgers vector and the average 
( ) which involves a configurational and thermal 
average will be calculated in the single-molecule 
approximation where the test source field and the 
mean field of the surrounding elastic dipoles is 
taken into account in linear-response approxima­
tion. This leads to 

(J d 2r'1J"'(?)x~xj) 

= (J d 2r' 'l)"'(r')x íx j 

x e-ll u.u<r'•9'1(1 + 213b~u~,E,..x :>), (6) 

where 

(7) 

(8) 

Here the first term of Eq. (7) is due to the test 

source field and the second term results from the 
stress excerted by the surrounding dipoles. u.u 
(Ref. 12) is the internai energy of an elastic dipole 
where the two dislocations are a distance r apart 
and B is the angle between r and b, as indicated in 
Fig. 1(a), and 2J.L is the self-energy of an elemen­
tary dipole. Using the abbreviation 

Pr1=i(J d 2r'1J"'(r')xíxí), 

it is straightforward to derive a linear equation 
for the Pr1 using Eqs. (6) and (7) 

P"' = EfaEn(c1ut1(r"')+ c2ôu<T~m(r"')] 
#J ndm 

""' P"' ( X"'"'' X'""'' ) +K L.J n C1 a9w+c2 sq;u (6') ....... n,m ' 
where 

and 

c1 = -2{:lb2n1(r)(r 2), c2 = {:lb2n11(r)(r 2 cos28) . 

Here b2 = (b"')2, and the density of dipoles n11(r) per 
unit area has been intr()(.iuced. The averages ( ) 
are calculated using Eq. (8), and Einstein summa­
tion convention is used. For isotropic distribution 
of dipoles one can handle Eq. (6') in the Lorentz 
field approximation which yields 

Pu= E1aE11[c1 u~1(r) + c2ô, 1u~m(r)]+ 4Kc1[4P12(1- õ11)A12, 12 + (P11 +P22)õ11 Aii] 

Kn,(r) [ - 4 (1-õu)c1 P 12 +ôu(P11 +P22)(c1+c2)], (9) 

where P 11 =P#J(r)=Pr1nir), anda unüorm polar­
ization of the dipoles has been assumed. Let us 
point out that in the following no use of the r de­
pendence of n11 (r) will be made. In any case only 
n,(r) distributions are admitted which vary on a 
scale macroscopic in comparison to the extension 
of the Lorentz circle. The second term in Eq. (9) 
originates from summation within the Lorentz 
circle which does not vanish even in the isotropic 
case. The following abbreviations have been used 
in Eq. (9): 

A - ""'' xoa• A - ""'' xoa• 12,12 = 4-J 11,12' #l = 4-J ,,, f/ ' 
o'i<O a'i<O 

where the prime indicates that summation is per­
formed over the dipoles located in the first octant. 
The third term in Eq. (9) is due to the continuous 

integration outside the Lorentz circle which can 
be expressed in terms of a contour integral over 
this circle. Depolarization effects due to the sur­
face of the system, i.e., the contour enclosing 
the whole system are contained in the first term 
of Eq. (9) where the stress field inside the medi­
um is used. The solution of Eq. (9) is easily ob­
tained and using Eqs. (3) and (5), xlr> can be ex­
pressed in the form 

X (r) ""K f d 2r' 'l)(r')g(r -r') 

(10) 

Here 'l)(r) is the test source function inside the 
medium and P ulr> is a linear function of the stress 
{aí1} produced by the test sources inside the med-
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ium as follows from the linear inhomogeneous Eq. 
(9). Using 

{11) 

one can solve the linear inhomogeneous integral 

Here ~. / 1,i:, and f 2,i are the Fourier trans­
forme of g(r), X~~122 , and X :'122 - X ~~w re­
spectively, where one obtains using Eq. (4) 

X ~f; 22 = (1/21Tr 2){8x~2xg2 - 1) , {14a) 

xg:; 22 -X~~~ 11 = (1/1Tr 2)(x~2 - xg2) , (14b) 

and r"' = r(x ~. X g). Furthermore we have intro­
duced the abbreviation 

a' = [Kc1 + (t - 16A12112/n,t1]-1 , (16) 

{3' = (2A11/n,)/[1+ K(!c1 + c2)] , {17) 

where a' and {3' are dimensionless. It follows 
from Eq. {1~) that the presence of the elastic dip­
oles changes K into K'. Because this quantity is 
proportional to the static shear modulus the de­
nominator of Eq. {15) plays the role of .a dielec­
tric function2 for that problem. Its divergence for 
c 1 + c2 = -2/K signals the dissociation of the elastic 
dipoles and K'- o• implies that the long-wavelength 
shear modulus vanishes. 

Let us point out that gm(r- r'} can be evaluated 
by means of contour integration. That it düfers 
from g(r- r') is due to the tensor character of the 
stress field of the elastic dipoles. Because for 
K'- 0+, a' anel {3' remain finite, it follows that 
gm(r)-g(r) and we can restrict our discussion to 
K'. That a' and {3' remain finite for K' -O can be 
sbown as follows. From Eq. (8) together with the 
definition of c1 and c2 it follows that c1 <O and 
c2 >O holds. The denominator of Eq. (17) ap­
proaches ~Kc 2 ;> O for K'- o•. From the definition 
of A12112 and Eq. {14a) follows that A12112/n,« 1 
because for a homogeneous distribution of dipoles 
A12112 =O and the discrete summation will not mod­
ify that result too much. Setting A12112 =O in Eq. 
(1li) and noting that leal« I c1 l shows that a' re­
mains finite for K' -o. It follows from this that 
the essential properties of the system can be dis­
cussed in terms of K' only. 

Let us point out that Eq. (15) has been derived 
within the Lorentz-field approximation. The "di-

Eq. {10) by means of Fourier transformation and 
obtains the stress function x{r) in the form 

x(r) =K' f d 2r' 17{r')gm(r- r'), 

where 

elastic" constant defined by Eq. {15) 

E = 1 _ K(c1 + C2)(1 + tKc1 ) 

e 1+!K(cl +Ca) 

{12) 

(13) 

(18) 

is therefore to be considered as analogous to the 
dielectric constant given by the Clausius-Mossotti 
relation for a 2D Coulomb gas problem. This re­
lation is given by 

(t:-1)/(u1)=1TnaM(T)[1+S(n, T}]. {19) 

Here aM is the electronic polarizability and S(n, T) 
(Ref. 13) represente a virial expansion in the den­
sity n of paired charges when one goes beyond 
the Lorentz-field approximation. In a similar 
fashion Eq. {18) represente the first step to a sys­
tematic solution of Eq. (6} as an expansion in the 
density n, of elastic dipoles. One can improve on 
this result on setting up a density expansion for 
the solution to Eq. {6') as hasbeen done inRef.13 
for dielectric problems. To first order in n, one 
obtains an improvement of Eq. (18) by substituting 
in Eq. {18), c1, 2 -c1, 2 [1+S(n,, T)], where 

S(n11, T)=n,B2K2c~(g1 +g2c2/c1)/n~+ O(n~) 

and g 1 >0, g 2 >0 are numerical factors of 0{1}. 
Here 

where n(r) is the pair distribution function for two 
elastic dipoles and the standard approximation ex­
pressing n(r) in terms of the pair potential cp(r} 
has been made. 

The instability condition K' =O within the present 
approximation can be put into the form 

~K{3b2n,[1 + S(n,, T) ]( (r 2)- i(r 2 cos2 8)} = 1 . (20) 

It follows from this that the perturbation theory 
for the calculation of S(n,, T) = B~n, + qn~ + O(n~) 
can be patterned according to the theory developed 
by De Boer et al.13 We have to point out, however, 
that we did not prove that the general expression 
for the instability condition K' =O has to have the 
form of Eq. (20). The evaluation of B~ and c; 
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T 
2-phase 
coexistence 

FIG. 2. Pbase diagram showing solid-liquid PT medi­
ated by first-order elastic dipole gas-dislocation plasma 
PT. 

requires the knowledge of the two-and three-point 
dipole distribution function. This problem will 
be considered late r. 

For a discussion of Eq. (20) assume first that 
we set S(nd, T) =O. Then Eq. (20) allows twó solu­
tions in T. The low-T solution which is associated 
with the ordering of elastic dipoles is an artüa:ct 
of tlie static treatment of the problem and neglect 
of activation energies dueto the discrete lattice. 
The high- T solution defines for nd- O a criticai 
temperature TJ = (b2K/47T)/ 4k 8 which is obtained 
from (r2)-oo, and for n1 *0 one obtains TJI(n1) 

< T'ft. In Fig. 2 we have drawn the dissociation 
temperature T .v(n1) connecting the points T'ft and 
nc• 

Let us consider next the range of applicability 
of Eq. (20). In connection with this problem it is 
very helpful to have some knowledge of the theory 
of dielectrics which has been reviewed by Brown.14 

The analogous problem there is the problem of in­
teraction of polar and polarizable molecules. The 
polar part of the elastic dipole corresponds to its 
elastic dipolemoment in its ground state, i.e., 
where u.u- 2p. and its extension is of the order of 
the hard core radius r 0 of the dislocation. The 
polarizable part of the dipole moment results from 
its possibility to assume extensions large com­
pared to r0 • It has been pointed out by Onsager 
that the Lorentz-field approximation may be a 
good method for nonpolar molecules, i.e., polar­
izable molecules without permanent moment. For 
polar molecules, however, there is no reason to 
expect it to be a good approximation. It is just the 
spurious low-temperature solution of Eq. (20) which 
corresponds to an ordering transition for the elas­
tic dipoles which must be dismissed on grounds 
of Onsagers objection. In order to treat the very­
low-T problem where the polar part of the elastic 
dipoles is dominating Onsager's reaction field 
method15 has to be used. Because at low T ad­
ditional problema due to activation of dislocation 

motion arise and because it can be assumed that 
the melting PT is driven by the dissociation of the 
elastic dipoles, an effect due to the polarizability, 
we ignore that problem from now on. Consequent­
ly the Lorentz-field method leading to Eqs. (12) 
and (20) can be considered as a first step in a 
systematic approach to calculate the elastic prop­
erties of the system. In order to improve the 
method S(n11, T) should be calculated. It has been 
pointed out that the correct computation of B~ and 
C~ requires the knowledge of the two- and three­
point elastic dipole distribution function. The 
problem now is, however, that due to the mobility 
of the elastic dipoles and their mutual attraction 
via Van der Waals forces such correlation func­
tions have to be calculated self-consistently. Ac­
cordingly further instabilities may arise in the 
system, e.g., gas-liquid-type PT which require 
special treatment. This problem will be studied 
in Sec. m. 

Finally we have to show that in the whole domain 
to the left of the curve T .v(nd) in Fig. 2 the assump­
tion holds on which the Lorentz-field approxima­
tion is based, namely, that overlap effects be­
tween neighboring elastic dipoles can be neglected. 
For sake of simplicity we will demonstrate this 
by neglecting the term S(nd, T) and the term 
(r 2 cos2fl) in Eq. (20) which is certainly less im­
portant than (r 2). Approximately then Eq. (20) 
can be put into the form 

n11/7T(r 2)=Í(T/T~). 

Because 1/7T(r2)= z roughly defines the number of 
sites available for n11 dipoles per unit area we get 

n11/z= Í(T/TJ), 

where the low-T behavior is not correctly des­
cribed as has been explained earlier. It follows 
that each eighth "site" is occupied at T = T~ and 
even less for T < T'ft. This implies that the dis­
sociation catastrophe occurs at densities where 
rather weak overlap exists. Accordingly it is just­
ified to a certain extent to neglect overlap effects 
in the first approximation. We like to point out 
that this is a rather common feature of such prob­
lems and is also observed in the insulator-metal 
PT which arises over a polarization catastrophe.16 

III. VAN DER WAALS THEORY FOR ELASTIC DIPOLE 
INTERACTION 

Due to the polarizability of the elastic dipoles 
they interact with each other via a Van der Waals 
interaction. The interaction energy of the a th elas ti c 
dipole in the strainfield a"' of the a'th dipole is 
given by 

(21) 
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Here (x~, x~) = r"(-sin9"' cosíi .. ), where r" gives 
the extension of the dipole and e" is the angle be­
tween r"' and b"'. The thermal average of Eq. (21) 
can now be calculated in linear-response theory 
leading to 

<P:~= -4{J((b'; CJ f/(;8 X:)2). (22) 

The average in Eq. (22) is computed with respect 
to exp[-13(U~u+ u~;t)], where Uett is defined in Eq. 
(8). In arder to evaluate Eq. (22) one expresses 
a«' by means of Eq. (1), where x"' (r) can be cal­
culated from Eq. (3) by using Eq. (5b). Partial 
integration allows then to express x"' (r} in the 
form 

--a a g(r+ r"'')\] . 
xi,o:' ') 

(23) 

(24) 

Equation (24) has to be inserted into Eq. (22) and 
one obtains after some simple but tedious algebra 

(25) 

where R is the distance between the two dipoles. 
It follows from Eq. (25) by comparison with Eq. 
(20) that the factor (r 2)- t(r 2 cos26) enters both 
formulas in the same fashion. The interaction 
Eq. (25) diverges therefore also at the criticai 
temperature T~. The low-T divergence of Eq. 
(25) is due to the same reasons as the low-T di­
vergence of Eq. (20) and has to be considered as an 
artifact of the method. Because we are not in­
terested in the low-T properties of the system 
and at higher T the main T -dependence is due to 
the term involving the thermal average in Eq. (22) 
the low-T divergence will be ignored from now on. 

Due to the attractive nature of the Van der Waals 
interaction and particularly due to its divergence 
for T- T?J a gas-liquid-type PT of the elastic dip­
ole system can be expected. A reasonable approx­
imation to obtain a physical idea of the properties 
of that system is to set up a Van der Waals equa­
tion of state. In arder to calculate the second 
virial coefficient of the equation of state the short­
range interactíon of two elastic dipoles has to be 
known. The point here is that the composite ob­
ject formed by two elastic dipoles must have a 
positive ground-state energy because it also rep­
resents a metastable state. If that would not be 
true the ground state of the crystal would have 

never been stable at all and disintegrated via the 
formation of such objects. For sake of simplicity 
we assume in the following that the repulsive 
interaction which originates from the above effect 
can be represented by a hard core repulsive po­
tential. The hard core is introduced essentially 
for computational reasons and should be of the 
arder of (r 2) 1 12 , i.e., of the order of the distance 
where Eq. (25) breaksdown. We assumethatthe 
hard-core radius r hc is given by r~c =ya 2 =y((r 2) 

- i{r2 cos29)), where y is a factor of 0(1) and will 
be determined later. The second virial coefficient 
B can then be written in the standard form 

B=n11(bv-aJk 8 T), (26a) 

where, however, av and bv are T dependent and 
given by 

(26b) 

The Van der Waals equation of state reads now 

(27) 

Here Pa is the pressure exerted by the dipoles 
and v11 is the specific area per dipole. In the pres­
ent approximation where the harmonic lattice does 
not interact with the dislocations the total pressure 
is obtained by adding Pa to the pressure exerted 
by the harmonic lattice. It is well known that Eq. 
(27) shows gas-liquid PT of first order with a 
criticai point T c defined by the solution of 

kBTc= <f?)av(Tc)/bv(T0 ). (28) 

Inserting av and bv from Eq. (26b) into Eq. (28) 
one obtains 

(29) 

At this stage one has to remember that our theory 
makes sense only as long as the elastic dipoles 
are not dissociated thermally, i.e., for T ~ T~. 
If we identify for the time being T c with T~ then 
we obtain from Eq. (29), y =!f. This leads to a 
hard- core radius r llc =~<r. In case that the region 
1f<T 2 would have been inpenetrable then y = 4 should 
have been obtained. We have obtained thus a rather 
reasonable result considering the rather simple 
theory which has been used. It is, however, ob­
vious that the fitting of y such that T c= T1f results 
does not justüy the assumption that Te= T~ has 
to hold in the first place. That this is suggestive 
on more general grounds is explained presently. 

The theory is based on the following idea. TWo 
elastic dipoles attract each other when they are 
far away compared to (r 2), but repel each other 
when they come too close. The long-range Van 
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der Waals attraction is a well-established phen­
omena and needs not be proven further. The short­
range repulsion results from the fact that the Van 
der Waals attraction must be bounded from below 
due to the assumed stability of the "crystalline" 
ground state. Long-range attraction and short­
range repulsion and in addition well identüiable 
objects as demonstrated at the end of Sec. n are 
the necessary requisites to set up a gas-liquid 
theory. Because with increasing T the Van der 
Waals attraction Eq. (25) increases and approaches 
infinity at r: it follows that the gas-liquid coex­
istence curve in contrast to what happens in T-in­
dependent interacting systems should bend back 
to the T axis. Because approaching T1( the polar­
izability of one single elastic dipole gets infinity 
continuously, but then stays infinite we can assume 
that also in the case that the concentration nd 
approaches zero this point marks a con-
tinuous PT. We postulate therefore that the crit­
icai quantities are Te== r:, Pc ==O, and v c== oo. Be­
cause the coexistence curve labeled T 0 (nlf) in Fig. 
2 connects the origin with Tft whereas the curve 
T M(na) which represents the dissociation catastro­
phe line goes from nc to r: it is plausible topos­
tulate that the region between both curves is a 
two phase coexistence region. Let us point out 
that the concentration na ==n 0 defined by T y(n0 ) ==O 
may be obtained via classical equation of motion 
techniques but is not needed in the following. On 
account of the above argumentation we may assume 
that the liquid phase is not a liquid of elastic dip­
oles but a plasma of unbounded dislocations. Ac­
cordingly the PT leads into the same plasma state 
as the dissociation catastrophe. This implies 
that the equation of state Eq. (27) applies to the 
region of the elastic dipole gas in Fig. 2 and its 
instability into a coalesced state, but not to the 
plasma phase. Because the coalesced phase of 
elastic dipoles gets into the range of density where 
the dissociation catastrophe occurs a transition 
into the plasma phase occurs; without that the sys­
tem recovers in the liquid dipolar phase. It would 
be too difficult to take that effect in Eq. (27} into 
account as it would be too difficult to take the gas­
liquid instability in Eq. (20) into account. This is 
as a matter offact not necessary because one knows 
that the gas-liquid PT at low T leads to densities 
which are of the order of magnitude of the repul­
sive core region. Because n0 is much less than 
this no intermediate liquid dipolar phase should 
arise. 

Let us point out that the given variable in the 
present problem is the chemical potential 2J.J. de­
fined by u.ff in Eq. (8). The density na of elastic 
dipoles has therefore to be obtained via the equa­
tion of state Eq. (27) and the relation 2J.J. 

== jt'avlf(p)dp. In Fig. 2 we have drawn schematical­
ly n==n(T, 2J.J.). According to this theory the solid­
liquid PT is always of first order. The apparent 
decrease of entropy during the gas-liquid PT is 
compensated by the increase of entropy due to 
dissociation of the elastic dipoles which occurs 
simultaneously. Accordingly one does not have 
the paradoxical result that the destruction of crys­
talline order is associated with a net decrease of 
entropy. 

Finally we would like to point out that the "di­
elastic" constant ~e defined by Eq. (18) also allows 
to determine the transversal shear mode velocity 
by means of c~== ctf<-e· Here ct is the shear mode 
velocity when no dislocations are present. In the 
liquid state one has ~e== oo and this leads to a van­
ishing of part of the transversal phonon branch. 
In principie the present theory could be extended 
into the liquid state where a q-dependent "dielas­
tic" constant ~. had to be used and where phonon­
dislocation interaction has to be taken into accounL 
Such a theory for planar rotator system in 2D 
which is a similar problem has been developed by 
one of the authors.17 Without going into detail 
we wish to present only one interesting result of 
such a theory. Assume that one neglects disloca­
tion-phonon interaction in the liquid state then one 
has essentially a gas of interacting dislocations. 
The canonical pressure p of that gas of dislocations 
is given by 

pvd==k8 T(1- ti3q2}, 

where q2 =Kb2/4rr and vd was defined earlier. This 
equation holds for k8 T>~q2 and:Bab"==O, and 
is the same as the one obtained for the two-com­
ponent Coulomb plasma.18 

IV. QUALITATIVE THEORY OF FIRST- ANO SECOND­
ORDER MELTING PHASE TRANSITION 

Although it is well known that in 3D systems so 
far only discontinuous inelting PT from crystalline 
solids to liquids have been observed there exist 
examples of continuous and discontinuous PT in 
two-dimensions. We will study this problem using 
the theory developed in Secs. 11 and In and in ad­
dition already existing arguments based on the 
droplet model of condensation.19• 20 

Consider first the molecular-dynamics computer 
experiments of Hockney and Brown. 6 Here classi­
cal point particles confined to move in the plane 
interact with each other via a 1/r potential. There 
is also a charge compensating background present 
which renders the system stable. Such a system 
orders in a triangular lattice. It can now be seen 
from Fig. 4(a) of Ref. 6 that the ground state of 
that system at T*O is a polycrystalline phase. As 
a matter of fact it consists of two types of domains 
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going over into each other by 30" rotation. Loss 
of long-range directional order occurs via thermal 
production of more and more domains and even­
tually by a ;\-type PT into a state with a distribu­
tion function characteristic of a liquid. It also 
follows from Fig. 4(a) of Ref. 6 that dislocations 
are produced in pairs as T increases and that 
there is a considerable increase of the vibrational 
amplitude when the system approaches the PT. 
The novel aspect of this problem is therefore the 
thermal nucleation of domains and the domain 
boundary dynamics. In contrast to dislocations 
domain boundaries in 2D crystals have to be con­
sidered as 1D topological obj'ects. It is well known 
that thermal nucleation or propagation of domain 
boundaries in three dimensions requires too large 
activation energies as compared to thermal nu­
cleation of 1D dislocation loops. It is therefore 
very suggestive that in cases where (D -1)-dimen­
sional topological objects are possible energetical­
ly continuous melting transition may occur. In 
the following a qualitativa theory for that problem 
will be gi ven. 

For 2D systems with long-range 1/r interaction 
it has been shown by Meissner et al.21 that the 
triangular lattice has a stable phonon excitation 
spectrum. In the harmonic approximation for a 
1/r'"-interaction with O<a <2 one develops the 
lattice de'Oiations around the triangular lattice 
equilibrium positions. This gives the potential 
part of the Hamiltonian 

H( 2 l=.!a(wn)"''2e2 ~ 1 
a ,t_, I• •- l""'a 

~~~ r 1 - r 1 

x {-(ii,- ii1)2+ (a+ 2) 

x[(ii, -ii1) •ii,.i:F}, (30) 

where ii1 is the ith lattice point deviation from its 
equilibrtum posuion r,, and ii,_i =\r,.- ri> I Ir,- ri I, 
n is the density of particles, (wn)"'' 2e2 has dimen­
sion of energy, and all other quantities are dimen­
sionless. The interaction with the charge compen­
sating background can be neglected as long as one 
is not concerned with the q =O mode of the system. 
The phonon dispersion is obtained by diagonalizing 
the inverse phonon propagator 

(Aa)u= 'S'"' !+2 (1- cos(i • r.,) 
~r" 

x[-ô 11 +(a+2)n,. n,. ], (31} 
&,1· Sol 

where i,j ran over the two coordinates of the 
plane. The interaction between dislocations is 
governed by the Green's-function tensor 

where q integration is done over the first Brillouin 
zone of area (2w)2 • From dimensionality arguments 
it follows now that Eq. (31) allows longitudinal pho­
nons with dispersion w! -q'-'12 for q« 1. Applying 
the Ewald summation method to Eq. (31) (see, e.g., 
Meissner et al. 21) it can be shown that the trans­
versal phonon branch has linear dispersion w! ""q, 
q « 1. From this follows that for O< a < 2 no long­
range positional order is possible. The same ap­
plies to a ~ 2 only that there w!- q. For a =O one 
uses a log10r interaction which is the Coulomb in­
teraction in two dimensions and where the long­
itudinal mode shows the plasma gap but w! -q 
still holds. It follows from the linearity of w! in 
q for q « 1 that the leading term given by Eq. (32) 
which governs the dislocation interaction depends 
logarithmically on the distance as it is the case 
for short-range interaetion. The earlier developed 
theory for dislocations therefore applies qualita­
tively in the same fashion. Concerning now the 
production of 30" domain boundaries in a triangular 
lattice one observes the following. From sym­
metry follows that for a triangular lattice rotation 
by 30" of the center of a domain compromising all 
neighbors up to nth order may lead to metastable 
states. In order to estimate the ene;rgy ôE of 
such a domain we calculate the interaction energy 
of a 30" rotated circular domain of radius r with 
the rest of the crystal. The ideais essentially 
the same as used in Refs. 19,20 in another context. 
Because we do not consider macroscopic charge 
density perturbation the unüorm background does 
not enter. In order to obtain the internai energy 
of the 30" rotated domain one moves each lattice 
point of the originallattice into the position of 
the closest lattice point of the rotated system. In 
this way no macroscopic material transport oc­
curs. Accordingly the magnitude of the deviations 
ii1 of the rotated domain must be a fraction, say 
ô0, of the interatomic distance. From this pre­
scription it follows that the ii,' s in Eq. (30) be­
longing to the circular domain can be averaged 
over all angles and that only interactions in Eq. 
(30} between points inside and outside the circular 
domain have to be taken into account. After some 
simple algebra one obtains for a = 1 

(33) 

where r 1 =w1 12n1 12e2/k 8 T, and n,. is the number 
of lattice points on the boundary of the circular 
domain. Equation ( 33) shows that the interaction 
energy for a = 1 between the domain rotated by 30" 
with respect to the rest of the crystal can be ex­
pressedasaboundary energy. IncasethatEq. (33) 
holds down to sufficiently small crystallites and arbi­
trary circumference the configurational free en­
ergy associated with the polycrystalline domains 
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can be calculated via a two-state Ising model. Al­
though Eq. (33) follows simply from dimensional 
arguments it is not so simple to determine the 
proportionality constant to Eq. (33). As this re­
quires rather specüic assumptions about the lat­
tice displacement in the boundary we are presently 
not in a position to determine the transition tem­
perature from the Ising model. Our interpretation 
of this PT is that there are two disordering mech­
anisms. One is the production of dislocations in 
pairs and the other is the generation of domain 
boundaries. The first mechanism tries to pro­
duce a discontinuous PT and the second a contin­
uous PT. We expect that the domain boundaries 
affect the elastic dipole interaction. The discon­
tinuous condensation phenomena for the elastic 
dipoles predicted in Sec. ni may therefore be 
smoothed out because interaction between dipoles 
may be confined to one crystallite. The latent 
heat going into the first-order PT driven by the 
elastic dipoles alone may therefore lead to a steep­
ening of the specüic heat anomaly, i.e., the log 
anomaly of the Ising model may go over into a 
power law singularity as it is observed by Hockney 
and Brown6 • Let us point out that in phase dia­
grama where lines of second-order PT go over 
into lines of first-order PT at a tricrttical point 
T3c mean-field theory predicts at T3c a specüic­
heat exponent a = ~ in three-dimensions. In gener­
al therefore a considerable steepening of the spe­
cüic heat anomaly can be expected if a system is 
on the brink to change its state discontinuously. 

For general a one obtains instead of Eq. (33) 

õE/kB T {-a~r"' n~2-"'1 12 , O <a< 2, (34a) 

-a~ronclnN, a=O. (34b) 

Here r"'= (1Tn)"' 12e 2/kB T, nc is the number of lattice 
points in a 300 rotated circular domain and N « nc 
the number of lattice points of the total system. 
The proportionality constants to Eqs. (34a) and 
(34b) have not been calculated. It follows from Eq. 
(34b) that thermal nucleation of domains for a= O 
is prohibited above a certain criticai r~ for which 
the change of free energy 

6F /kB T- (fa~r0 nt-1)lnN (35} 

is positive. In Eq. (35) f is a numerical factor and 
nt is the smallest number of lattice points in a 
circular domain for which the model still makes 
sense, i.e., n~ should hold at least the points of 
the nearest- and next-nearest-neighbor circles. 
The argument to derive Eq. (35) is the same as 
the one Kosterlitz and Thouless use for disloca­
tions. The second term of Eq. (35) originates 
from the entropy of the considered domain. For 
r o< rQ" the system is thermodynamically unstable 

against domain formation and will thus disorder. 
However, because elastic dipole nucleation occurs 
already for r o> r~ it can be expected that the 
melting PT is essentially driven by the elastic 
dipoles. In any case the PT will be discontinuous 
for a =O, because both mechanisms mentioned will 
lead to a discontinuous PT. 

Unfortunately there are no molecular dynamics 
experimenta with log potentials (a= O) in two-di­
mensions to confirm these results. However, for 
the 1/r potential which in three dimensions is the 
analogous problem one knows from the computer 
experimenta of Pollock and Hansen22 that at r~ 
= (t-1Tn)l' 3e2/kB T= 155 ± 10 a discontinuous melting 
PT occurs. Going through the same arugments 
which led to Eqs. (34a) and (34b} one obtains for a 
1/r"' potential for the domain energy in three di­
mensions 

(36a) 

(36b) 

Here r"'= (.t1Tn}"' 13e2/kB T, ns the number of points 
in a metastable spherical domain and N the number 
of points in the system. Using the same argumenta 
as below Eq. (35) it follows that for a= 1 a discon­
tinuous PT has to occur in accordance with Pollock 
and Haru;~en.22 Furthermore for Eq. (36a} it follows 
that for a = 2 the analogous situation arises as for 
a = 1 in two dimensions because then 6E /k B T is 
proportional to the surface of the domains. De­
pending now on the number nm of different meta­
stable domains in three dimensions for the 1/r2 

potential an nm-state Ising model may describe 
the configurational free energy associated with 
the domain structure. Accordingly we conjecture 
that the 1/r 2 potential in three dimensions may 
lead to continuous melting PT, ü the nm-state 
Ising model belonging to the stable crystal struc­
ture of the 1/r 2 potential allows a continuous PT. 

One can also check these ideas against the re­
sults of the corresponding one-dimensional prob­
lem. Here one knows that for the Coulomb poten­
tial r the system is at all temperatures in an 
ordered state.23 Because this system does not 
allow topological defects, i.e., there are no pos­
sible metastable domains and nothing what cor­
responda to dislocations there exists also nothing 
which could invalidate simple perturbation theory 
as the temperature arises. The point is that the 
topological defects or metastable states occuring 
in two and higner-dimensions enter through the 
anharmonic lattice potential where they cannot 
be taken care of by perturbation theory. 

Finally we would like to point out that in systems 
with short-range interaction similar ideas as those 
developed above may apply. In cases where the 
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chemical potential for domain formation is small 
compared to the chemical potential for elastic 
dipole formation a continuous melting PT may 
arise. In the opposite case the PT is mainly driv­
en by the elastic dipole dissociation and therefore 
is discontinuous as argued in Sec. III. Because in 
real systems with hard cores the sytem is not 
characterized by just one r as for the systems 
considered above rather interesting phase dia­
grams over the coupling constant space may arise. 
We expect, however, that with increasing size of 
the constituent particles geometrical effects will 
produce rather large boundary energy and rather 
large activation energy for domain nucleation and 
domain boundary propagation. Intuitively one be­
lieves also that the lower-dimensional topological 
defects will be more favorable energetically. We 
expect that in cases where the melting PT is con­
tinuous rather large deviations from the criticai 
properties of the reference problem discribing 
the configurational free energy of the polydomain 
system may arise. 

In concluding this section we would like to make 
some additional remarks which respect to the 30" 
rotated domains which we have introduced rather 
heuristically. In that context we like to point out 
first that the theory of dislocations and metastable 
states in general can be approached by similar 
methods as developed by Berezinskii1 for the meta­
stable states of the planar rotator model. In this 
approach the phase space of the problem is sub­
divided into sectors, where the sectors correspond 
to metastable states. In order to introduce dis­
locations in this formalism one introduces a set 
of vectors {cu} for each nearest neighbor bond, 
where cfJ is a lattice vector and ciJ =-cu holds. 
The Hamiltonian corresponding to a sector of the 
phase space characterized by {cii} is then given 
by 

(37) 

where v(i) represents a potential which for sake 
of simplicity we restrict to nearest-neighbor in­
teraction. Furthermore u1 is the displacement 
of the ith lattice constituent from its presumed 
equilibrium position in the ground state of the sys­
tem, where {ciJ}=O. One defines next a B'!!gers 
vector for each lattice cell a by means of b"' 
=6c1J, where the contour is taken counterclock­
wise around the a -th cell. Diagonalizing Eq. (37) 
around its equilibrium position which is a function 
of the set {C;1} one obtains the interaction law for 
dislocations. For sake of simplicity one may do 
this using v {i)- x 2 • Using an anharmonic potential 
v(i) allows then in a natural way to introduce pho­
non-dislocation interaction. 
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FIG. 3. Schematic illustration of 30"-rotated domain 
bounded by dashed circle in a triangular lattice. 

In a similar way the 30" rotated domains for a 
triangular lattice may be introduced. For sake 

• 

• 

• 

• 

• 

• 

• 

of simplicity we describe this procedure graph­
ically by means of Fig. 3. The points in Fig. 3 
corresponds to an ideal triangular lattice and the 
crosses to a triangular lattice rotated aroung the 
center point z by 30". The arrows describe the 
path a lattice constituent moves from itS position 
in the ideal triangular lattice to its position in the 
30"-rotated domain. Consider first the domain in­
side the dashed circle and ignore the crosses 
drawn outside of this circle. It is then obvious 
from visual inspection that the lattice constituents 
on either side of the dashed circle will relax only 
slightly from their indicated positions. This is 
a consequence of the high symmetry of the ar­
rangement. It is also a simple matter to convince 
oneself from the metastability of the arrangement 
by using instead ofpoint-like lattice constituents 
particles with a finite core diameter. The energy 
and configuration of that metastable state can now 
be calculated in principie but has not been done as 
yet. It follows also from Fig. 3 that forming a 
30"-rotated domain using nearest neighbors to the 
point Z only leads to an unstable configuration. 
We think therefore that the metastable domain 
with the dashed circle as circumference has low­
est internai energy. Accordingly thermal nuclea­
tion of metastable 30° domains will start with the 
one shown in Fig. 3. Growth of such a domain will 
lead over activation barriers into metastable states 
of higher internai energy. Intuitively one expects 
that for short-range forces growth of the domain 
will not produce macroscopic strain and that there­
fore the internai energy increases proportional 
to its circumference. This, of course, excludes 
pathologically shaped circumferences. The fact 
that for long-range repulsive interaction between 
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point particles and a charge compensating back­
ground a similar result holds for a= 1 [according 
to Eq. (33) and Eq. (34a)] is not immediately ob­
vious. Finally we like to point out that there are 
perhaps other metastable states besides the 30"­
rotated domains. It is clear, however, that mis­
orientated domains have to come into existence 
over a nucleation mechanism starting with smal­
ler-sized domains otherwise their formation prob­
ability will be insignificantly small. The meta­
stable domain shown in Fig. 3 seems to involve 
the smallest number of lattice constituents to be 
displaced appreciably besides the dislocation 
pairs. It is reasonable therefore to assume that 
its formation will be energetically most favorable 
besides the formation of dislocation pairs. Ac­
cordingly also larger-sized 30" domains which 
come into existence over a growth mechanism 
can be expected besides dislocation pairs with 
highest probability. 

V. DISCUSSION OF MONO LA YER MELTING TRANSITION 

In this section we would like to make an inter­
pretation of various solid-liquid-type PT observed 
in monolayer systems adsorbed on graphite in 
terms of the theory developed. One of the pro­
blematic features such interpretational work faces 
is that the substrate potential enters the problem 
and that there are vertical degrees of freedom. 
The latter point is usually not very serious for 
sufficiently -strong adsorption. The periodical 
potential of the graphite substrate, however, may 
confine the adsorbed monolayer to epitaxy and thus 
to true long-range positional order. This effect 
can be taken into account by providing the mono­
layer lattice modes with a mass, i.e., w!•'2 -mt, 
+C~,,q2 , where the ratio m1/c 1 or m,/c, is a mea­
sure for the strength of adsorbing forces to mono­
layer forces. Because the dislocation interaction 
is determined by Eq. (32) where the phonon spec­
trum enters, the finite masses m 1 and m, will 
qualitatively change the interaction into a finite­
ranged interaction. This means that the log10r 
interaction between dislocations will be screened 
off for r> 1/m,. This implies that dislocation 
pairs may dissociate at any finite T as it is ob­
served for molecules bound by ordinary forces. 
This effect will certainly depend on the order of 
magnitude of m,!c,. For m,/c,» 1 the system 
is presumably better studied using a static order­
disorder model, whereas for m,/c,« 1 the mono­
layer lattice modes will be important and the theo­
ry as developed here is more appropriate. We 
like to point out that in cases where the size of the 
adatoms is such that a commensurate phase with 

the substrate is not possible due to geometrical 
constraints one should have in the ideal case 
m,c 11/c,(I)=O. Only in the case where defects 
of the substrate are present or there is an elastic 
response of the substrate m 111 ,!c,u>*O is possible. 
It is clear, however, that also in the case of a 
nonregistered phase the substrate potential exerts 
a force field on the monolayer. Linearizing this 
force field around the presumed equilibrium con­
figuration of the nonregistered monolayer, how­
ever, is problematic because of ([Ü(R)]2) -InN. 
For finite-sized monolayers therefore the approx­
imation will work, but not for infinitely extended 
nonregistered monolayers. In the latter case 
on~ quantities depending on the relative deviations 
[Ü(R)-Ü(R')] can be expanded. 1 

In cases where the geometrical size of the adat­
oms allows a registered phase and where the sub­
strate potential holds locally bound states a crys­
talline ordered state is possible at low T. If in 
cases where m,/c,« 1 besides the usual order­
disorder PT' at T N where the system loses long­
range order a topological type of PT occurs is 
not quite clear. We are presently not in a posi­
tion to decide this question. It is clear that for 
m,/c,*O the dislocation pairs will dissociate with 
increasing T and in this way accomplish disorder­
ing. Besides this mechanism there exists, how­
ever, still the possibility of a density type of PT 
at T c(n11 ) where disordering is accomplished dis­
continuously as it is the case for m,/c,=O. In 
the following we propose that this is the case for 
the registered phase of the N2 monolayer on graph­
ite. 

It should also be pointed out that order-disorder 
transitions in monolayers may be continuous or 
discontinuous. A classification of order-disorder 
transitions in commensurate monolayer systems 
has been given by Domany et al. 24 We like to men­
tion in this context that a lattice gas model is pre­
sumably most appropriate for structures which 
are rather loosely packed. In addition the sub­
strate potential should be rather strong so that 
kinetic effects are of no importance. In more 
densely packed commensurate adsorbed systems 
defects in the ordered state may produce rather 
far reaching disturbances in the structure which 
are hard to assess in a short-range interacting 
lattice gas model. The interaction between defects 
over appreciable distances depending on the ratio 
mteu!cteu may change the qualitative nature of 
the problem. In the following we will discuss a 
number of experiments in the light of the ideas 
exposed here. 

Consider first the experiment of Schechter, 
Suzanne, and Dash8 where a discontinuous melting 
PT of 1-3, butadiene iron tricarbonyl (BIT), 
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C4H6 Fe(C0)3 adsorbed on graphite has been ob­
served. A discontinuous PT has been observed 
for three different coverages X= 0.33, 0.63, and 
1.04. The effective molecular area 41 Â2 corre­
sponds to X= 1. Due to the rather large molecular 
extensions of BIT we can assume that the periodic 
substrate potential plays no role. From the dis­
continuous nature of this PT we conclude that it 
is described by the dissociation of elastic dipoles 
as explained in Sec. III. Presumabiy the monolayer 
has a trigonal structure, but thermal nucleation 
of 30°-rotated domains is prohibited on account 
of too large format.ion energy. We do not have an 
explanation of the decrease of melting temperature 
T M with increasing x as exhibited by Fig. 2 of 
Ref. 8. 

As a second example we consider the N2 mono­
layer work of Kjems et al. 7 Here the authors have 
evidence that the low-density phase forms epi­
taxially on the graphite surface in the ..f3 x ..f3 
structure. Accordingly each third of the graphite 
hexagonal potential wells is occupied by a N2 mo­
lecule. The nearest-neighbor distance of the oc­
cupied centers of the hexagonal potential wells 
is 4.26 Â. 25 The extensions of the N 2 molecule 
are given in Ref. 26 by 4.36 and 3.38 Â for length 
and width, respectively. It follows from this that 
walls between domains belonging to one of the 
three possible translated structures arising from 
the x = t coverage must have fairly high energy 
due to geometrical constraints. Furthermore due 
to epitaxy 30° -rotated domains are energetically 
unfavorable because their energy increases with 
the domain size. Formation of dislocation pairs, 
however, is possible. We suggest therefore that 
the discontinuous PT to a presumably liquid phase 
as observed by Kjems et al.7 may be dueto a dis­
sociation of elastic dipoles as argued in Sec. III. 
It is understood, however, that the log10r inter­
action in commensurate phases is screened due 
to m 1/ct*O. Accordingly we cannot make a def­
inite statement about the nature of the transition 
as has been pointed out earlier. Due to the geom­
etrical constraints produced by the rather large 
N2 molecules the static order-disorder aspect of 
the problem where each N2 molecule hops from 
one hexagonal well to another for entropy produc­
tion is presumably not realistic ü longer-ranged 
disturbances are not taken into account. In addition 
it has to be shown that the states used in a lattice 
gas description are really metastable. The order­
disorder transition for a x = t coverage should also 
be continuous if the three-state Potts model would 
apply. Furthermore Kjems et al.7 have observed 
a denser phase where the melting transition is 
continuous. Because this structure is not con­
strained by epitaxy 30°-rotated domains are en-

ergetically possible and we propose therefore that 
the continuous nature of this PT arises from the 
effect explained in Sec. IV. In the present case, 
however, the configurational free energy should 
be described by the two-state Ising model. It 
would be interesting in that context to have ex­
perimental evidence on the domain structure of 
such monolayers. It would also be interesting to 
know the arder of the melting PT of 36Ar mono­
layers which form a nonregistered phase. 27 It 
fbllows from the existence of nonregistered mono­
layer phases on graphite that interatomic forces 
in the monolayers must play the dominant part 
in determining the monolayer structure. 7 This 
implies that the conditions for applying an 1deal 
monolayer theory are well satisfied. 

As a third example we consider the PT observed 
in 3He and 4He monolayers on graphite. In a recent 
experiment Bretz9 has measured the ordering 
transition in 3He and 4He on high-quality graphite 
substrate. He observes a rather strong specific­
heat anomaly with criticai exponent Cl!-0.36. This 
critical-heat exponent is substantially larger as 
Bretz9 emphasizes as the Cl! expected from the 
static three-state Potts model as proposed by 
Alexander28 for this system. Although quantum 
effects do not dominate frequently criticai behav­
ior one expects here that the rather large zero­
point motion and the hexagonal net of weak poten­
tial wells on graphite substrate gives the low-
lying excitation modes of the ordered monolayers 
a phonon like character. We suggest considering 
the ordered phase of 3He and 4He as a 2D solid 
with three different types of domains. The latter 
can be obtained from a given domain by translation 
along one of the nearest-neighbor vectors con­
necting the centers of the graphite hexagonal wells. 
In addition there exists the possibility for dislo­
cations and other defects to come into existence 
in an ordered domain. Due to the smaller size 
of the He atoms we expect that the problem allows 
three types of domains in contrast to epitaxial 
N2 layers. Accordingly the configurational free 
energy associated with the network of crystallite 
boundaries can be described by a three-state Potts 
model.30 Because this model cannot hold down to 
smallest crystallites and because there are also 
dislocations produced in pairs, and there are 
phonon vibrations coupled to the metastable states 
above, it follows that the continuous PT of the 
Potts model predicted by Baxter31 will be mod­
ified. We expect this modüication to be similar 
to the one discussed in Sec. IV for the point par­
ticle system studied by Hockney and Brown.6 In 
particular we think that the additional activation 
of degrees of freedom associated with the elastic 
dipoles will produce a steepening of the specific-
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heat anomaly of the pure Potts model as it is ob­
served.9 We have not studied the effect of quantum 
tunneling29 on dislocation formation and propa­
gation. We expect, however, that the generation 
of topological defects is facilitated by such effects 
because the usual activation energy involved is 
reduced. 

With respect to numerical estimates of the tran­
sition temperature T c(n.,) (where n., is determined 
by 2 JJ.) for specific monolayer systems where 
melting occurs via a dissociation of elastic dipoles 
a c rude estimate can be obtained from Tc(n.,) <TJ. 
This requires, however, that K is known which in 
principie can be obtained via the phonon spectrum. 
It is clear, however, that the anisotropy of real 
lattice systems will modify the upper bound to T, 
i.e., T~ from its value in the isotropic system 
appreciably. This has been shown in Ref. 17 for 
planar rotator systems, where the analogous quan­
tity to T~ düfers for square and triangular lattices 
by a factor of 1/..f'S. Itfollowsfrom this thatunder 
the present circumstances we are not in a position 
to give a quantitative justüication of the fairly 
qualitative theory developed. 

Let us point out that our theory in contrast to 
the theory of Kosterlitz and Thouless2 leads to 
a discontinuous melting transition in two dimen­
sions when driven by dislocations. In principie 
it is now possible to incorporate into our formal­
ism the polarization effects of the dipole gas on 
the self-energy of one dipole as it has been done 
in Ref. 2. It is possible that this will produce 
some modification of the theory developed which 
is essentially based on physical concepts famil­
iar from 3D physics. We do not think, however, 
that a more sophisticated theory will change the 
nature of the melting transition obtained by us. 
The theory of Ref. 2 implies softening of the long­
wavelength transversal phonon branch to zero at 
the melting temperature. Such effects have often 
been postulated for three dimensions but failed 
on experiment. Because the dissociation of elastic 
dipoles can occur continuously or discontinuously 
the problem of the order of the PT cannot be de­
cided by means of a symmetry argument but is a 
problem of stability. We propose that the stability 
properties of the model of Ref. 2 should also be 
studied, i.e., the statistical mechanics of the spa­
tial dipole distribution functions should be incor­
porated in the model. The latter distribution furc­
tions are treated by the authors of Ref. 2 purely 
stochastically. Because their melting transition 
leads smoothly into the liquid state where the 
dislocation distribution functions are not stochastic 
it is obvious that this point has to be modified. 

In concluding this section we would like to consider 
briefly melting in three dimensions. From the 

extensive molecular-dynamics experiments of 
Cotterill et al. 32 using a truncated Lennard-Jones 
potential it follows that the melting process there 
is initiated by the generation of tiny dislocation 
loops of the Schockley type (see, e.g., Hirth and 
Lothe33). The self-energy of such loops is -r lnr 
if they are circular33 and of radius r and when they 
are in the dipole configuration their self-energy 
is -llnd, where l is the length and d is the width 
of the elongated loop. The latter configuration is 
presumably energetically more favorable and has 
higher elastic polarizability as the circular loop. 
Because the loops like other defects have finite 
internai energy they will be present at all temper­
atures. If they do not interact with each other they 
will never produce a PT when T increases. Inter­
action, however, between the loops may produce 
a PT. It follows from Figs. 4-6 of Ref. 32 that 
initial overlap effects between tiny loops are not 
present. Accordingly we propose that the dis­
continuous melting PT observed is also here a 
consequence of a condensation phenomena due to 
interaction between metastable objects. In con­
trast to the theory of two-dimensional melting 
developed in Secs. 11 and III the topological defects 
are here one-dimensional loops. That the elastic 
polarizability of the loops does not define a finite 
temperature T~ where it diverges due to the r lnr 
dependence is irrelevant. The main point is that 
the r lnr or lln d self-energy does not allow the 
loops to disintegrate which would open the pos­
sibility to get steadily from the crystalline to 
the liquid phase. Such a transition could be com­
pared to a continuous insulator-semiconductor­
metal transition with increasing T in a system 
where the band gap is produced by the lattice 
potential. The semiconducting properties of the 
latter system would compare to thermal plasticity 
properties of the mechanical system when loops 
are allowed to get infinitely large sized. 

The main point of our argument is that also in 
three dimensions the discontinuous nature of the 
melting PT is a consequence of the interaction be­
tween metastable states which leads to a gas­
plasma-type PT and in this way achieves the melt­
ing of the solid. There is little overlap between 
the topological objects involved in the gas-plasma 
transition when the process is initiated. Accord­
ingly also here the approach to the problem by 
neglecting these effects altogether in lowest ap­
proximation as we did in Secs. 11 and Ill may be 
justified. Similar as in Eq. (20) there exists a 
criticai density n1(T) of loops for which K' =0 and 
a criticai density n~(T) <n 1(T) where a condensation 
phenomena occurs leading presumably into the 
state K'= O. 

In three-dimension thermal nucleation of domain 
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boundaries is of no importance because it involves 
too many atoms and therefore leads to too high 
activation energies. Melting is therefore always 
discontinuous and driven by a dislocation mecha­
nism. The gas-plasma-type PT picture leading 
to a discontinuous transition should therefore 
essentially be the correct one to describe melting 
in three dimensions. In addition it supports the 
theoretical approach for two dimensions where 
due to the configurational effects of domain bound­
aries continuous PT occur and in this way direct 
experimental verification of the theory is pre­
vented. In 3D cases where appreciable effects 
from configurational free energy associated with 
a thermally nucleated polycrystalline structure 
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