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In this work we introduce a class of relativistic models for nuclear matter and neutron stars which exhibits
a parametrization, through mathematical constants, of the nonlinear meson-baryon couplings. For appropriate
choices of the parameters, it recovers current quantum hadrodynamics models found in the literature: the
Walecka model and Zimanyi-Moszkowski modéfdvi and ZM3). For other choices of parameters, the models
give very interesting and new physical results. The phenomenology of neutron stars in ZM models is presented
and compared to the phenomenology obtained in other versions of the Walecka model. We have found that the
ZM3 model is too soft, and predicts a very small maximum neutron star ma&32M . A strong similarity
between the results of ZM-like models and those with exponential couplings is noted. The sensibility of the
results to the specific choice of the values for the binding energy and saturation density is pointed out. Finally,
we discuss the very intense scalar condensates found in the interior of neutron stars, which may lead to
negative effective masses.
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I. INTRODUCTION consistent theoretical framework for describing such a rela-
tivistic interacting many-body system and, based on it, Glen-
Since the discovery of the first pulsar in 19688 and its  denning presenteld] a very comprehensive treatment of the
identification as a rotating neutron star, the structure, commatter in neutron stars, using an extended version which in-
position, dynamics, and evolution of these astrophysical obeluded leptons and the fundamental baryonic octet.
jects became important themes of theoretical and phenom- Alternative versions of the Walecka model, namely the
enological research. According to an early suggesf@n  Boguta-Bodmer(BB) [6] and Zimanyi-Moszkowski(ZM)
neutron stars evolve from an initially hot protoneutron starmodels[7,8], were developed to improve the description of
that forms in the collapse of a massive star in the supernovihe nucleon effective madgl™ (too low) and compression
phenomenon. At densities exceeding that of nuclear mattemodulus of nuclear mattéf (too high as attained with the
important static properties of a neutron star, such as theriginal approach. Boguta and Bodmer introduced cubic and
mass-radius relation, the crust extent, the distribution of theguartic scalar self-interactions in the Lagrangian while the
stellar moments of inertia, and the central density, may b&M models heightened the delineation of these quantities by
determined by its equation of staeOS [3]. replacing the Yukawa scalar coupling term byderivative
During this period, there was a continuous enhancemertouplingcontribution. This derivative coupling may be inter-
concerning relativistic microscopic calculations of the EOSpreted alternatively as a phenomenological coupling between
of neutron stars, improving our understanding of the structhe scalar neutral meson and the nucleon fields through the
ture of these stellar objects. In particular, any theory must aintroduction of a baryon density dependence in the scalar,
least account for a neutron star as massive as the most magector, and isovector coupling constants of the th¢erg0].
sive observed pulsar; the knowledge of pulsar masses pro- In this work we analyze the structure of neutron stars by
vides a very important constraint on the theory. introducing a QHD Lagrangian with a parametrized meson
More recent calculations based on relativistic propertiecoupling contributior11]. This phenomenological approach
of nuclear matter at high densities indicate that the equationsontains high-order self-coupling contributions of the meson
of state are considerable stiffer than those predicted by norfields, and permits one, in particular, to restore the results
relativistic approaches. As a result, the mass of a neutron stabtained with Walecka, ZM, and ZM3 models by making
is believed to be at least as large as (1.6-12.4) suitable choices of the values of the mathematical parameters
From the theoretical point of view, quantum chromody- of the theory. The control of the analytical form of the cou-
namics(QCD) represents the most profound description ofplings allows us to investigate other values of these param-
the strong interaction and would be the ideal tool for neutroreters which give new physical results. By extending the for-
star applications. However, the highly nonlinear behavior ofmalism to include hyperons and leptons, we investigate
QCD at the hadronic energy scales inhibits any practical calseveral static bulk properties of neutron stars using the Wa-
culations leading most theorists to search for phenomendecka, ZM, and ZM3 models, the latter two being applied to
logical descriptions of the structure of nuclear matter. One ofthis problem for the first time. As we have a class of models,
these alternative approaches is quantum hadrodynamiege are able to relate nuclear matter and neutron star proper-
(QHD) [4], a relativistic quantum field theory based on aties. In particular, we have found that some of the studied
local Lagrangian density which uses baryon and meson fieldsiodels describe very strong scalar fields in the interior of the
as the relevant degrees of freedom. This model provides meutron stars, leading to a negative nucleon effective mass.
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Il. GENERAL CHARACTERISTICS OF NEUTRON STAR The BB model describes the complex fermionic composi-
MATTER tion of neutron stars as a generalization of thew, and g
theory:

In the evolution of the protoneutron star, many different
reactions can occur. The electric charge and baryon number o
are conserved on a long-time scale in comparison to the life- L= 2 /=
time of the star. In the core of the protoneutron star, the B

[ ’yMaM_(M B ga’B(T) - ngyMwM

Fermi energy of the nucleons exceed the hyperon masses and 1 .
these particles can be produced in strong interaction pro- - EggBy’Mr o* | g+ E iy, 0" —my) i
cesses with conservation of strangeness in reactions such that !
1 1 1
n+n—n+A+K. (1) _|_E(aﬂaoﬂto._mial)_zw#vw,uv_i_Emiw#wﬂ

However, strangeness is not conserved on the time scale of
] e i 1 1 1
the star, since there occurs a diffusion of neutrinos and pho- -0, 0"+ —m2p,-o*— —bM(g,0)3
. : 4 mv 2 ot u 3 T
tons to the surface of the star: processes like

KO—2y, K —u +v, 2 !t 4 5
2 TR R ) 76(9,0)". ©)

can no longer be reversed, and a net strangeness appears._ . . ) ) .
In this evolution process, the star reaches chemical equil NS Lagrangian dergsnerdefcian% a system of eight baryons
librium, a degenerate state where, from the point of view of B=P, N, A, =7, X7, %7, =7, =7) coupled to three me-
its hadronic and leptonic composition, further reactions arns €, @, @) and two free lepton speciese,u ). The
not possible. As an example, in an ideal degenerate systefif@lar and vector coupling constants in the theggy,),
of protons, neutrons, and electrons at chemical equilibrium@nd the coefficients andc are jjgetermmgd to reproduce, at
particle levels are filled in such a way that neutron beta deSaturation densityp,=0.15 fm “, the binding energy of
cay or proton inverse beta decay are not energetically faduclear matterB=—16 MeV, the compression modulus of
vored. nuclear matterK=250 MeV, and the nucleon effective
In general, if one takes into account the fundamentaMass,M*/M=0.75. In fact, the values for these two last

holds (see the Appendix ditionally, to describe the symmetry energy coefficieamt,
=32.5 MeV, we determine the isovector coupling constant
Mi=0pitn— JeiMes 3 Yo We have found
where i=p,n,A, 3% 3" 3" 57 E%e,u; qp; represents g, 2 9,2
the baryon number, angi,; the electric charge of speciés m, =9.86 fnt, m, =5.85 fnf,

In this way, the conditions foB8 equilibrium can be summa-

rized as ( 2

9e =4.80 fn?, b=0.00103, c=0.0100. (6)

e

Ms0= E0= A= Mhn,

In comparison with the results obtained in REB], one
should recall that this author fitted the coupling constants of
the theory with B=—15.95 MeV, po=0.145 fm 3, K
=285 MeV, M*/M=0.77, anda,=36.8 MeV.

Additionally to these chemical equilibrium conditions, we ~ USing the Euler-Lagrange equations, the Dirac equation
have to take into account that a neutron star is electricalljor Uniform matter, in a momentum representation, is
neutral[5,12]. This easily follows from the balance between

My-=Mz-=MnT Me,

Ms+=MHp= Mn™ Me- (4)

. - . e 1
the repulsive electrical and the attractive gravitational forces. 7’#( ki — g, g0t — 50087 Q#) —M%(0) | (k) =0,
Ill. BOGUTA-BODMER MODEL (7
A. Theory whereM§ (0)=Mg—g,g0 is the effective mass of the bary-

In this section we study baryon and lepton populations irPMC SPecies. Furthermore, by applying the mean-field ap-

neutron stars by using the Boguta-Bodmer model with hyProximation, théwo, o3, ando meson field equations for
peron degrees of freedom. In spite of this study having alUniform static matter are

ready been donfb], we reproduce its main results as a guide
for the development in Sec. IV of our new class of nonlinear
relativistic models.

9o ?
_> % Xw,BPB » (8)

w =
Juwo mw
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9o | 1 s 1 st o501 5,
90005=| 1 | 2 Xeslsere, ) p="—3bM(g,0)°~ 7 ¢(g,0)*~ smio?+ Smiwf

2
9
mO'

+2 XoB kaB ME(U)

B 272)o K2+ ME?

1 1 (ks ki*dk

e L
-bM(g,0)?—c(g,0)3 2 3% atlo K+ Mg®

9,0=

1 1 (key k*dk
+§ (16)

2 M2s 2’
(10) I 0 k +m|

In the following we present the results obtained with this

model.
where we defined the ratio between meson-hyperon and

meson-nucleon coupling constants as

k2dk

B. Results
In numerical calculations with the BB model we have

X(o.0.0) BEM- (11)  considered matter with and without hyperons, in order to
e Y(0,0,0) understand how these strange species affect the neutron star
properties.

In these equations, the baryon source terms have been re-
placed by their ground-state values.

The corresponding equations for baryon number and elec- Figure 1, panel$a)—(d), shows baryon and lepton popu-
tric charge conservation are lations and field strengths as functions of the total baryon
density for two different ratiosy= \2/3* and y=1 (univer-
sal coupling. From expressiofil4) for the baryon chemical

1. Matter with nucleons, hyperons, and leptons

3
p=2 @ (12) potential we can see that the charge term in the eigenvalue
B 32 determines whether a species is charge favored or unfavored,
and the isospin term determines whether a species is isospin
favored or not. Baryons with the same sign of the electric
and charge as the proton are unfavored; baryons with the same
sign of its isospin projection are favorddote thatg, s
k3 k3 <0)
> qe'BLE—E L"zzo, (13) At high densities p~0.8 fm 3) the A hyperon becomes
B 3 I 37 the most populous species for the case/2/3 [Fig. 1(@)].

In Fig. 1(b) we see that the electron chemical potential
The baryon chemical potentialag(k), correspond to eigen- '€aches a maximum value &200 MeV and begins to de-
values of the Dirac equatiof?): crease due to the reduction of the eIec'Fron 'populatlorp At
~1.5 fm 3 the nucleon effective mass is still at 200 MeV.
In Fig. 1(c), we see that increasing the meson-hyperon
we(K)=0,800% 9003 38+ VKE g+ ME ()% (14 coupling constantfrom \2/3 to 1) corresponds to an early
emergence of the particles. In comparison with the results of
Fig. 1(a), we can see that the leptons have a greater popula-
tion in this case and that the neutron population remains
always as the most important in the system. The electron

chemical potential anet g, 0 o3 saturates around 200 MeV in

The EOS 1S obtained from the ground-state expe_ctatlorhg. 1(d), and the nucleon effective mass behaves similarly
value of the time and space components of the dlagonafl

energy-momentum tensor. The energy density and pressu @ the casey=2/3.
of the system are given, in the BB model, by

In these expressions;g is the isospin projection of baryon
charge stateB, andk g is the Fermi momentum of species
B.

2. Matter with nucleons and leptons

1 1 1 1 In the sequence of the analysis of the _results of Fig. 1,
e= =bM(g,0)3+ = c(g,0)*+ = m2o?+ = m2w? panel(e) shows baryon and lepton populations and the cor-
3 4 27 20 responding chemical potentials when we exclude hyperon
degrees of freedom. In this case, since charge neutrality is

1 1 (ks + o - ;
T Im202.+ _J' ® K+ M*2Kk2dk kept only by thep™, e, andu ™~ particles, the lepton popu-
2MeCos EB: m2Jo B lation increases in the domain of densities shown in the fig-

1 (ke
+> —J KT m2kedk, (15)
I 7<Jo

This choice is based on a quark counting of the barjd&
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FIG. 1. Fermionic populations and field strengths in the BB model for matter with hypépamels(a) and (b) correspond toy
=./2/3 and panel¢c) and(d) to y=1] and without thenjpanels(e) and (f)].

ure. Also, we note the increase of the nucleon effective mass, 3. Neutron star properties
which means a less intense scalar field when compared to the \we are able now to find numerical results for the EOS

previous cases. This indicates that thioduction of hyper-  using Eqgs(15) and(16). However, this EOS corresponds to
ons enhances the scalar meson condensation neutron star matter densities (#9010 g/cnt) and should
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a) general, dominant. However, in the case witk \2/3 we
3.0 . T - obtained important contribution from th® hyperons in the
inner regions of the star. Moreover, we obtained1 km
for the radius of the star with hyperons, and.2 km with-
out these patrticles.

20
IV. MODELS WITH DERIVATIVE COUPLINGS

MM,

The BB model has two additional coupling constahts
andc, associated with self-interactions of the neutral meson
scalar field. This allows a very good description of two im-
portant properties of nuclear matter, the compression modu-
lus and the nucleon effective mass, which concern the high-
density behavior of the equation of state. However, some
0 10 a5 o o5 16.0 authors argued that the model suffers from a serious prob-

£ (gfom’) lem: the constant has negative values for several entries of
M* and K, allowing the energy density to become un-
b) bounded from below for large values of the scalar meson
20 , . mean field, leading to unphysical behavjds].

In the derivative coupling model, introduced in 1990,
the deficiencies of the original Walecka approach were elimi-
nated at the cost of making the theory nonrenormalizable.
ZM models were used in the description of static properties
of neutron starg19], A excitations in nuclear mattd20],
bulk properties of finite nuclej10], in-medium quark and
gluon condensates and restoration of chiral symmiguy,
and thermodynamic properties of nuclear mafg#,23.

The authors of Ref.7] presented two additional versions
of the derivative coupling model. These three models are
known as ZM, ZM2, and ZM38,9]. Concerning the descrip-

tion of static properties of nuclear matter, the ZM2 model
00 = o does not exhibit fundame_ntal differences from the zZM
r(km) model, and will not be considered in the present study.

The Lagrangian density of the ZM and ZM3 models can
FIG. 2. Panela): Neutron star mass as a function of the central pe written in the general form

density for matter with(curve | corresponds tg= 2/3, and curve

10

20

MM,

1.0 |

Il'to y=1) and without(curve IIl) hyperons. Pandb): mass-radius — . - . 1
relation[same labels as in pané)]. L=yliy, (0" +ig,0")—(M—gro) ]+ 5(5’#06’”0
be supplemented by EOS’s from other models for subnuclear 1 1

densities: we adopt the approach developed in Ref] in —-mio?)— —w,,0""+ —miwﬂw"‘, (17
the density interval X10°—1x10' g/cn?, and in the 4 2

range 1x 10''—2x 10" g/cn? we use the EOS presented in
Ref. [15]. Combining these EOS’'s with the Tolman-
Oppenheimer-VolkoffTOV) equationg§ 16,17, we may de-
termine the mass of a neutron star as a function of its central m* = ( 1+
density; the radiuR is obtained with the condition that the

pressure is null at the surface of the s@(R) =0. We have Expression(17) reproduces the Lagrangian density of the

found values for the mass and radius of different neutron Stafiyalecka. ZM. and ZM3 models with the following replace-
sequences as a function of the central density L

with gt=m*g, ,g’,=m*g,,, wheré

900) -t

M (18

' ; ments[9]:
The conversion of nucleons into hyperons reduces the
Fermi pressure associated with the baryons, softening the Walecka: g*—g,, 9/—0e,
equation of state and lowering, as a consequence, the maxi-
mum mass of a neutron star sequence. In Fig), 2ve see ZM: g'—m*g,, g —g,,
the neutron star mass and central density relations for the 7 7 @
situations analyzed above. The results indicate, as expected, ZM3: gl—m*g,, gl —m*g,. (19)

that the presence of hyperons causes a diminution of the
maximum mass of a neutron star sequence.

Typical results for the mass-radius relation are shown in
Fig. 2b). Our results indicate that neutron populations are, in 2Note that in the ZM models we have*M=M —g’o.
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TABLE I. Values of the coupling constants, the nucleon effective mass, the compression modulus of the
nuclear matter, and scalar and vector potentials at saturation déeasitand ZM3 models

Model (9,/m,)? (9,/m,)? (9,/m,)? M*/M K S \Y
(fm?) (fm?) (fm?) (MeV) (MeV) (MeV)
ZM 7.94 2.84 5.23 0.85 224 —140 84
ZM3 19.57 13.45 9.06 0.71 159 —267 204
The resulting field equations are A. Phenomenological Lagrangians
: x * Koepf et al. [24] studied the contribution of the term
17,0~ (M=g50)~ 0,70 14=0,  (20) pf etal [24] | _
L,n=M*(o) ¢y using several nonlinear functional forms
J, @+ miwﬂz g;%f“w, 1) for M*(0o); GIe;ndenningat al.[19] analyzed a coupling te_rm
of the typeM*=M —g,0/(1+g,0/2M). In these studies
Jgto_ gt the authors assumed, at first ordergipo/M, a similar ex-
(9,0"+ mi)(r:a—gt/n//—a—wzpwﬂy”(//_ (220  pression for the nucleon effective mass as introduced by Wa-
g (o

lecka:M*/M~1—g,0/M. These different models just add

A peculiar aspect of the ZM3 model is the coupling betweenscalar s.elf-coupling corrections terms to the corresponding
the scalar and vector meson fielt®, a kind of coupling expression of the Walecka model.

which is not present in other QHD modelg/alecka, BB, i On the basis of the vanhous appro?cheslft)und n Fhe I|t$rr]a-
and ZM). The scalar and vector mean-field potentials arenuorﬁl'.r‘:‘éifrogrgi?e?rhz\s’oa ?ﬂ?omeﬂon?gtlﬁ:m;tgcr:lngcl)igtvrv;'ntz
defined to beS=—g o andV=g} w,. In these models, the ! P zation, ug ! :

expressions for the energy density and pressure are equiv%e’soﬁr’]_sgfl gn I?:?)ffrﬂﬁtiﬁs of the analytical form of the
lent to the corresponding expressiqhs) and(16) of the BB y piings,

model, withb=c=0 and the replacements shown in Eq. o
(19). L=2 | i7,0"— (Mg—0hp0) —ghpy,0"
The values of the scalag(./m,)? and vector ¢,/m,)? 8
coupling constants which reproduce the saturation density 1 o
po=0.15 fm 3 and the saturation ener@~=—16 MeV, in —Egz,Byﬂr- o* g+ > Y[ V0" —my ]y
the cases of the ZM and ZM3 models, are shown in Table I; A
the table also contains the values of the nucleon effective 1 1 1
mass, the compression modulus of nuclear matter, the scalar + E(&Ma&"a— mf,crz)— wawﬂﬂ— Emiw“w#

and vector mean fieldS andV for both models, and values
for the isovector coupling constfjlnglh(/mg)2 which repro- 1 1
duce the symmetry energy coefficiemt=32.5 MeV. The - ZQ"”' o*r+ Emggﬂ- folal (23
ZM and ZM3 models produce higher values for the nucleon
effective mass since the coupling constagfsand g, de-
crease with increasing densitfhese models also predict a
softer equation of state when compared to the corresponding
results for the Walecka and BB moddlewer compression 9,6=Medsr 9ue=Mzslu, UJoe=Mpd (24)
modulus.

After the work of Zimanyi and Moszkowski, many au- and
thors started to explore extensively the freedom in the choice
of the meson-baryon interaction. Based on these works, in
this paper we introduce a new class of models which enables m’ =
us to make direct comparisons among the properties of
nuclear matter and neutron stars.

where

—n

9T h=nBy. (25

L+ e

In these expressions, we assumge 3, and y as real and
V. A CLASS OF NONLINEAR RELATIVISTIC MODELS positive numbers, since this is the range of best phenomenol-
ogy. As discussed in the Sec. IV, essentially what was done
In this section we present a new class of relativistic hadis the introduction of a rescaling of the scalar and vector
ronic models which exhibits a nonlinear parametrization ofcoupling terms of the Walecka model. For instance, in the
the intensity of the meson couplings, and incorporates somease of the scalar contribution we have made the replacement
QHD models found in the literature. We study, through this
comprehensive approach, the influence of nonlinear meson-

nucleon couplings in the nucleon effective mass, the com- QUU%&HQ}JU!#:LAEW (26)
pression modulus of nuclear matter, and static properties of 14 9,0
neutron stars. AM

065801-6



NEUTRON STARS IN A CLASS OF NONLINEAR . ..

TABLE Il. Values of \, B, andy for different QHD models.

Model A B Yy
Walecka 0 0 0
M 1 0 0
ZM3 1 1 1

PHSICAL REVIEW C 63 065801

up(K)=0,5w0+ Upplod 35+ \/k|2:,|3+ (Mg— 9350)2-( )
34

The expressions for the scalar and vector potent@lsand

(V) are
S=-myg,o, V=mzg,wo. (35

We can see that this model allows some control on the in-

Similar interaction terms may be associated to the vector angnsity of the scalar and vector mesons mean-field potentials.
isovector sector of the Lagrangian density. Note that we havg,,, instance, to the variations kfbetween 0 and 1, keeping

assumed a universal
*)g(o:w,g .

coupling by setting(,, ., 08

)
Table 11 exhibits the correspondence between this modej

B=7y=0, we obtain values o8, V, M*, andK which cor-
respond to the intermediate region of values of Walecka and
M models. Similarly, for values ok, B, andy between 0

and the other models discussed in this work with specifiG,nq 1 e can find intermediate results between the Walecka
values of\, B, and y. One of the main intentions of the 5,4 the ZM3 models.

present study is to consider values of these parameters which Indeed, the range of possible values for the parameters of

give better results for nuclear matter and neutron star propye theory is not very large. Due to the form of the general
erties when compared to the corresponding results of th@oupling termgsee Eq.(25)], there occurs a rapid conver-

traditional models discussed in this work. As far as we know

gence to an exponential form. Taking 8, and y—», we

the first extensions of the ZM-like models to applications to,5,e

neutron star matter with the inclusion of hyperons, X ™)

and leptons was done in R4R5]. Here we consider these

gyg—e 97Msg , glo—e 9% Meg,

known models as well as intermediate values of the param-

eters of our nonlinear coupling, to obtain results for neutron

gpe—e %Meg, . (36)

star properties and relate them to nuclear matter saturation

observables.

As we will see below, foix and/or8=y>2 the results of

Using the mean-field approximation, the field equations inthis model do not strongly differ from the results of the

our approach become

(17,0 = 948700’ ~ (Mg—05g0) 1¢5=0,  (27)

9. |
gwwo=(m—) > M. (28
g 2
gngsz(m_Q) % mJgl3epe (29
0
2
9 Fg(o) Gg(o)
_g"":(m_g) [é ( o )QS'B+9‘””°§B: ( 0.0, |
Hg(o)
+99€03§ ( ng )|3BPB ; (30
oo
whereFg(o), Gg(o), andHg(o) are given by
Fg(o) 9,0
Bg :_mIB"'M_B(mIB)(Hl)D\’ (31
G m*_)(B+1)/8
o(0) __ (M) 7T @)
g(rgw MB
and
H m*_)(r+ 1)y
B(O-) :_( yB) . (33)
ga'gg MB

model with exponential coupling. In this work, we shall con-
sider two cases.

(i) Scalar(caseS): in this case we consider variations of
N with B=vy=0; this case contains the results of the Wa-
lecka and ZM models.

(ii) Scalar-vector(caseS-V): in this case we consider
variations of\, with 8= vy=N\; Walecka and ZM3 models
belong to this category.

Note that the models we are discussing may be uniquely
specified by the. parameter. The Walecka model belongs to
both categories, because in this model the mathematical pa-
rameters\, B, andy are null; however, it does not present
scalar-vector interaction contributions.

B. Nuclear properties

We determine the coupling constargs ,, o /Mg, 0 iN
this model by following the same procedure presented in
Sec. lll. For each cas§andS-V, we obtain numerical val-
ues forg,/m,, g,/m,, M*, andK as functions of. Thus
we can also determing, /m,, .

Figure 3 exhibits the dependence of the coupling con-
stants on the. parameter; it is interesting to note the regular
relative behavior of the coupling constantg,{(m,)? and
(9,,/m,)2. The results indicate that the scalar case suffers a
N-dependent saturation process in a small range of values for
this parameter. On the other hand, the results also reveal that
the scalar-vector case exhibits a wider range of values. of

Figure 4 presents the relation between the compression
modulus and the nucleon effective makss M*/M, for the

From the eigenvalues of the Dirac equation, the FermiS and S-V cases. From the results, one can see that lower

energy is

values of the compression modulus correspond to higher val-
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FIG. 3. Dependence of the coupling constants withxthmaram-
eter for the scala(full lines) and scalar-vectofdotted line$ mod-
els.

FIG. 5. Neutron star mass as a function of the central density in
Walecka(solid line), ZM (dashed ling and ZM3(dotted ling mod-
els.

ues of the nucleon effective mass: to understand this beha\é-nd the equation for the field. We then obtain the EOS for

ior one should remember that the reriulswe mean-field Vectog - svstem. The resulting expressions for the energy density

potentl_al Vv is proportional toM—M*. From_ the results 54 pressure are, again, similar to EAS) and(16) but with

found in the literaturd26], the nucleon effective mass and —c=0 andM3=Mg—g’go. Combining this EOS with
—t= B~ oBU-

the compression modulus should be in the range O. : : - -
. e TOV equations, we obtain values for static properties of
<M*/M<0.7 and 206:K<300 MeV. As stressed above, neutron stargmass, radius, and baryon composition, among

the scalar case leads to a narrow interval of valuee\ghlle others as functions of the central density.

the_scalar—vector case has a_broader range. Accordingly, case Here we explicitly present the neutron star phenomenol-
S gives re_asonable resultf "} the rarVge0.05—h0.07 elmd_ ogy for the Walecka and Zimanyi-Moszkowski models,
caseS-V gives better resu t's m~0'16_0'4' The analysis namely, the original ZM and also the variant ZM3 model.
also reveals the strong similarity between the results of ZMy,g predictions for neutron star masses as a function of the

like models ¢ =1) and those with exponential couplings centra| density in Walecka, ZM, and ZM3 models are shown
(A=), in Fig. 5. The ZM model predicts a maximum mass of ap-
_ proximately 1.8/, in the limit of acceptability for the
C. Neutron star properties mass of a pulsar. In particular, the ZM3 model is very soft,
In this section we consider the determination of neutror@nd predicts a very small maximum neutron star mass,
stars properties using our class of nonlinear models with the"0.-7Mg .
inclusion of hyperon and lepton degrees of freedom. Follow- It may be surprising, at first glance, that the maximum
ing the same procedure of Sec. Ill, we solve a system ofeutron star mass for the Walecka model with hyperons
transcendental equations taking into account chemical equf2.7™ ) exceeds the well-known result (34;) found in
librium, baryon number, and electric charge conservatiorRef.[4] for stars composed of just neutrons, since the addi-
tion of other particles softens the EOS, lowering the resulting
star mass. This apparent contradiction can be explained by
the extreme sensibility of this kind of theory on the specific
choice of the values of the binding energy and saturation
density. The authors cited above uged —15.75 MeV and
po=0.19 fm3; with this choice we were able to reproduce
their results. However, with our choice for these quantities,
which is widely used in the recent literature, for the mass of
] a star composed only by neutrons we obtain the value
3.0My, that is, a difference of almost a half solar mass.
Using the constants frorfd] (a,=33.6 MeV), we obtain
2.33M, for the mass of a neutron star with the inclusion of
1000 X X , hyperons and leptons. In this way, extrapolation for neutron
0.50 060 070 0.80 0.90 star densities from the fitting @& andp, at saturation needs
MM more precision in the choice of the values for these quanti-
FIG. 4. Comparison of the compression modulus of nuclearties.
matterK with the ratioM*/M for the S and S-V cases. The box Figure 6 shows the behavior of the chemical potentials
shows the range of accepted values. and field intensities only for Walecka and ZM models, since

600.0

500.0 |

400.0 |

K (MeV)

3000 |

200.0 |

065801-8



NEUTRON STARS IN A CLASS OF NONLINEAR . .. PHSICAL REVIEW C 63 065801
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FIG. 6. Chemical potentials and field intensities in the Waldgamel(a)] and ZM[panel(b)] models.

the ZM3 model gives a poor description of neutron starFig. 8 the predictions of the ZM model for the radial distri-
masses. These results should be compared to the correspotdition of the different lepton and baryon species is pre-
ing one obtained with the BB model. We observe the samegented.

saturation of the electron chemical potentiaka200 MeV We now analyze our new class of models allowing varia-
for the ZM and BB models with universal couplifigee Fig.  tions of the parameter. Tables Ill and IV show results for
1(d)]. The known problem of negative effective md&83—  the radius, redshiftZ), and hyperon/baryon ratio for the
29] manifests itself dramatically in pan@) for the Walecka  aximum mass of a neutron star sequence for a giveme

model. We discuss this pointin Sec. VD. present some nuclear matter properties as well. In Fig. 9 we

In Fig. 7 the populations in a system consisting of hyper-gpq\y the dependence of the maximum mass with this param-
ons, nucleons, and leptons, for the Walecka and ZM modelseter One can see that some models corresponding ®Yhe
are shown. Walecka’s baryonic distribution stabilizes aﬁercasé redict verv small neutron star masses. lower than the
p~1.0 fm 3, and all species appear up tp~0.7 fm 3, P Y ;

which is approximately the density whe[8 exceedsM masses of all pulsars found until now. We again observe the
PP ately Ity v o . similarity of predictions associated with the ZM model com-
The lepton populations never vanish in the ZM distribution,

and even atp~1.2 fm 3 baryonic species are emergin pared to the one with exponential couplings.
: p~12 y P ging. Figure 10 exhibits the dependence of the maximum mass
Essentially, these differences are due to the strength of thgf

scalar potential in these two models. Since a particle is crec 2. neutron star of a sequence with the compression modu-
ated or?ly when ‘ P %us and nucleon effective mass at saturation density irSthe

andS-V cases. In both cases, in general, a less compressible
QBMn—Qe,BMe>g;Bwo+9;BQoa|3B+(MB—QZBU), matter(higherK) corresponds to a higher maximum rjeutron
star mass. Weaker scalar potentials correspond to higher val-
ues of the nucleon effective mass; since the former is also
a large scalar field favors the early emergence of particles. Idirectly related to the compression modulus, the maximum

a) b)
1.000 1.000 . .
n
0.100 0.100 |
& [

0.010 0.010 b
0.001 L

0.00 0.50 1,00 1,50 0.001,5

p(fm'z) p (fm’)

FIG. 7. Baryon and lepton populations for the Walefkanel(a)] and ZM [panel(b)] models.
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1.000 y - ' y - exceeds the free mass of the nuclel@j>M.

D. Negative effective mass

0.100 ¢ The nucleon effective mass is a dynamical quantity and
expresses the screening of the baryon masses by the scalar
meson condensate. In our approach, by analyzing the general

expression for the baryon effective mass,

Ppulfm)

0010 |
9,0

C[1+g,0/ M)

ME:MB

(37

0.001 L L
. 6.0 8.0 10.0 12.0

e (k) in the limit g,0—«, we see that only in case=1 this

quantity does not vanish or become negative. Some internal
FIG. 8. Radial distribution of the different leptonic and baryonic constraints in the theory can avoid this, as in the well-known

species in the ZM model. case of the Walecka model without hyperdA$ However,

as we add more and more baryonic species we open the
neutron star mass decreases Viith. In spite of the fact that possibility for the scalar potenti&§| to become greater than
the two cases represent different descriptions of the neutrothe free masses.
star problem, the figure shows that, for a fixed value of the Let us introduce the scalar field equation in Egj7), for
compression modulus there correspond very close values dfie Walecka case, to obtain a better understanding of the
the neutron star mass; opposite to this, for different values ofroblem; we obtain
the star mass there corresponds the same value of the
nucleon effective mass. This result indicates that the predic-

tions of neutron star masses based mainly on the compres- gi M;, k2dk
sion modulus are more model independent than those based MEg=Mg— 2, — f
on the nucleon effective mass. From Table IV, we see that, B ma w? ) K2+ Mg, 2

for A<0.5 in theS-V case, we have obtained negative values
for the nucleon effective mass, which corresponds to a den-
sity region for which the strength of the scalar condensater

TABLE llI. Stellar properties for theS case:g, is the central density, is the star masR, is the star
radius,Sis the scalar potential in the star centeis a redshift;Y/A is the hyperon/baryon ratio, amds is
the total baryonic number. All these quantities are evaluated for the neutron star with the maximum mass in
the sequence. In addition, we have the compression mo#ulrsd the nucleon effective mabs*/M.

A In(e,) M, R, S z YA NgT K M*/M
glen®  (Mg) (km) (MeV) (X108  (MeV)
0 15.18 2.77 13.17 936 0.623  0.27 0.40 566 0.537
0.03 15.24 2.56 12.39 934 0.597  0.30 0.36 396 0.598
0.05 15.31 2.35 11.63 929 0574  0.32 0.33 310 0.650
0.07  15.38 2.17 10.89 923 0.554 0.34 0.30 258 0.694
0.09  15.43 2.02 10.38 910 0.533 0.35 0.28 235 0.725
011  15.47 1.91 9.98 896 0515 0.36 0.26 223 0.749
0.13  15.49 1.83 9.75 877 0495 0.35 0.25 217 0.766
0.15  15.52 1.77 9.59 857 0479 035 0.24 216 0.779
0.17 1554 1.72 9.45 838 0.467 035 0.23 213 0.789
0.20  15.53 1.68 9.48 807 0.446  0.33 0.23 212 0.798
0.25 15.53 1.61 9.49 732 0.416  0.30 0.22 212 0.814
030 1552 1.59 9.61 669 0.399 027 0.21 214 0.822
035 1551 1.58 9.69 618 0.389  0.26 0.21 216 0.828
040 1551 1.58 9.73 580 0.385 025 0.21 218 0.833
0.60  15.49 1.58 9.86 480 0.377 0.22 0.21 223 0.843
1.00  15.47 1.59 9.98 401 0.372  0.20 0.21 224 0.850
150  15.47 1.59 9.98 366 0.373  0.20 0.21 226 0.854
o 15.47 1.59 10.00 350 0.373  0.20 0.21 228 0.856
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TABLE IV. Stellar properties for thé&-V case. Same correspondences as in Table IlI.

PHSICAL REVIEW C 63 065801

A In(e.) M, R, S z YA Ngr K M*/M
glent (Mg) (km) (MeV) (X109 (MeV)
0 15.18 2.77 13.17 936 0.623  0.27 0.40 566 0.537
0.03  15.20 2.70 12.93 944 0.615  0.28 0.39 510 0.545
005  15.22 2.63 12.64 954 0.610  0.29 0.38 458 0.554
007 1524 2.56 12.39 960 0.602  0.30 0.37 417 0.561
009  15.27 2.50 12.12 969 0.598  0.31 0.36 387 0.567
011  15.28 2.43 11.89 973 0.588  0.32 0.34 358 0.574
0.13  15.30 2.37 11.68 977 0579  0.33 0.33 339 0.579
015  15.33 2.30 11.38 985 0574  0.34 0.32 311 0.587
017  15.35 2.24 11.16 986 0563  0.34 0.31 293 0.594
020  15.38 2.17 10.88 993 0.559  0.35 0.30 276 0.600
030 1551 1.83 9.58 1011 0516  0.39 0.25 218 0.630
035  15.56 1.70 9.09 1012 0.491 0.1 0.23 205 0.640
040  15.62 1.57 8.60 1014 0.470  0.42 0.21 195 0.649
060  15.62 1.07 8.08 891 0282  0.35 0.14 169 0.682
1.00 1531 0.72 9.76 577 0.128  0.10 0.09 159 0.710
150 1518 0.67 10.21 468 0.113  0.04 0.08 156 0.728
% 15.14 0.66 10.31 431 0.110  0.03 0.08 155 0.738
Mi=| Mg— > % M;'f <k / 1 g”)z 1f <k (39)
* — _ . + . . —
’ Y el VK2+ME,2 My 72/ \k2+Mj2

As we add more and more baryonic species, the negative We could interpret the vanishing of the effective mass as
term in the numerator of Eq38) becomes more important, a signal of a transition to a quark-gluon plasma phase. How-
and we open the possibility for the scalar potenill to  ever, we should remember that our Lagrangian model does
become greater than the free baryon masses. In fact, evenipt encompass these underlying degrees of freedom. Addi-
we had j.ust considered nucleons, taking into account _the diftionally, as pointed out in Ref30], at such high densities

ference in the neutron and proton masses, the negative terq strong meson fields we have already reached a critical
in the numerator would appear. However, since this d'ffe_r'density where the production of baryon-antibaryon pairs is

ence_is very tin_y, a negati_v_e effective mass will emerge ing,req. in fact, this behavior of the effective mass may in-
practice only with the addition of hyperon degrees of free-

dom|[29].
3.0 T T T T
3.0 Y T T
20 .
2.0 .
. =
H < \E
§ R s
\\ 10 L -
10 | g
0.0 \ , , \
00 ' . ' 0.0 200.0 4000 600.0 800.0 1000.0
0.0 0.5 1.0 15 2.0 K and M (p,) (MeV)

FIG. 10. Dependence of the maximum neutron star mass of a
sequence with the compression module$t) and nucleon effective
mass at saturatiotright). The solid line corresponds to tl&case,
and the dashed line to ti&V case.

FIG. 9. Maximum mass of a neutron star sequefggversal
coupling as a function of the. parameter, for th& (full line) and
S-V (long dashed linecases.
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dicate that the mean-field approximation is reaching the limthe range\ ~0.05—0.07 and th&-V case gives better results
its of its applicability. for A\~0.16—-0.4. We showed results, allowing a variation of
Concerning the problem of the negative effective massy, for the radius, redshifz) and hyperon/baryon ratio for the
we want to clarify a point which may appear naive but hasmaximum mass of a neutron star sequence, considering hy-
led to misunderstandings. The integrals appearing in th@eron, nucleon, and lepton degrees of freedom. Some models
QHD formalism always present a tef*? and, in this way,  corresponding to the-V case predict very small neutron star
are symmetric with respect to positive or negative values ofnasses. The ZM model gives a maximum mass of approxi-
the effective mass. For example, let us take the integral remately 1.8, for a neutron star, while the ZM3 model,

lated to the scalar density, being too soft, leads te-0.72M, as the limiting mass. We
5 have also pointed out the strong similarity between the re-
(v kodk sults of ZM-like models and those with exponential cou-
I(t,m)= T (39 i
0vk+m plings.

The sensibility of this approach to the specific choic®of
rigorously, the expression fol(t,m) would involve the andp, was noted, with differences of the order of a half
modulus ofm since ym?= [m: solar mass. Thus and extrapolation for neutron star densities
from the fitting of B and p, at saturation needs more preci-
sion in the choice of the values for these quantities.

For some values of in the S-V case, we have obtained

(40) negative values for the nucleon effective mass. We have
shown how the differences in the baryonic bare masses ex-

Some authors assumex hocthe modulus ofM* in the  Plain this result; as discussed in the text, in practice the in-

above logarithm, when the problem of negative values apclusion of hyperons is responsible for this behavior. These

pears. However, we can see from expresdi¢) that this ~ results indicate the existence of very intense scalar conden-

emerges naturally from the symmetry of the integrals. OfSates in the interior region of neutron stars.

course, different results would arise if we Us&*| instead of

t+\t*+m?
m|

=—tJt?+m?— =m?In
2 2

=
0k?+m?

M™ in other expressions, e.g., the cubic term in the energy ACKNOWLEDGMENTS
density expression for the BB model, since this can be re- :
writtelr?l xp ! I ! This work was supported by CNPq.
1 3 APPENDIX: CHEMICAL EQUILIBRIUM
ng(M—M*) . (41

Chemical reactions, e.gA+B=C+D, can be expressed

Finally, we want to stress that, in spite of the interesting:?egti?ggl’ as a symbolic finear combination of its compo-

issue of the physical interpretation of a negative effective
mass, mathematically the QHD models continue to work
even withM*<0. E v;A;=0. (A1)

VI. SUMMARY AND CONCLUSIONS , , . ,
For example, in the reactiom=p* +e~ + v, for the coeffi-

We have performed an analysis of the influence of nucleatients we have/,= - v,= —v,=—v,=1.
matter properties on the structure of neutron stars, using a We shall consider infinitesimal variations of the Gibbs
new class of QHD models with parametrized couplingspotential[G=G(p,T,N;)] with respect to the number of

among mesons and baryons. These couplings allow one fsarticles (\;), at constant temperatufieand pressure:
reproduce, through a suitable choice of mathematical param-

eters {,B,v), results of the Walecka and derivative cou- JG
pling models such as ZM and ZM3 models. As we have dG:Z N dN;. (A2)
shown above, this new class of relativistic models permits RV

some control of the intensity of the scalar, vector, and, is-

ovector meson mean-field potentials. In particular, we havé\t chemical equilibrium, the Gibbs energy obeys the condi-

scanned values of nuclear matter properties which correlion

spond to intermediate region of predictions of the Walecka,

ZM, and ZM3 models. 3 (E aNi g A3)
In this new class of models we considered two cases, the T\ ON; o]\

scalar casdwhich contains the results of the Walecka and TPNjai

ZM modelg and the scalar-vector cagthe ZM3 model be- . ) . .

longs to this categoly The exponential coupling models are with t_he ratio qNJ /AN detgrmmet_j by the C(_)rrespondlng

obtained when we take the limit of the mathematical param&hemical reactions. Accordingly, if an elemensuffers a

eters going to infinity. variation v;, the remaining elements will suffer a variation

For nuclear matter, th& case gives reasonable results in (v;/ v;) v; to maintain the stoichiometry of the reaction. As a
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result, we haveN;/dN;=v;/v;, and we can write the con- N
dition of chemical equilibrium as v10e1t v20e2=— X ViGeis (A7)
i#1,2
> vipi=0, (A4) N
I
v1Qp1+ v20p2= — #212 ViQp; - (A8)

where the chemical potential of elemeénjy; , is defined as

JG As an example we consider element 1, the neutron and ele-
MIE( ) (A5) ment 2, the electron. We then haeg,=—Qe=1, dp

IN; TN =01 =0, and the above equations become
b e
In this way we observe that the chemical potentials obey the _ %
symbolic equatior{Al), with the substitution of\; by wu; . T A ViGbi »
In general, if a chemical reaction respects given conser-

vation laws, the number of independent chemical potentials N
is equal to the number of these laws. In the following we Vo= 20 Vilei- (A9)
consider two conservation laws; the electric charge and the i#n,e
baryon number. In this case we can express these laws, for a _ ) _
chemical reaction, as Replacing Egs(A9) in Eq. (A4), we find

N N N N N

2 %0e=0 and > gy =0, (A6) 2 vimi= 2 (al) v~ 2 (pebe))vi- (AL0)

i i i#n,e i#n,e i#n,e

whered; andqgy,; denote the electric and baryon charges ofSincer; are independent, the equality of this equation will be
elementi, respectively. As in this case we haMevariables  verified only if the coefficients are equal. From this expres-
and two equations, we are able to express only two coeffision,

cients v; in terms of the remainindN—2, which will be
independent: Mi=0OpbiMn~ Jeille - (Al1)
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