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Meson form factors and nonperturbative gluon propagators

M. B. Gay Ducati* and W. K. Sauter†
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The meson~pion and kaon! form factor is calculated in the perturbative framework with alternative forms
for the running coupling constant and the gluon propagator in the infrared kinematic region. These modified
forms are employed to test the sensibility of the meson form factor to the nonperturbative contributions. It is
a powerful discriminating quantity and the results obtained with a particular choice of modified running
coupling constant and gluon propagator have good agreement with the available data for both mesons, indi-
cating the robustness of the method of calculation. Nevertheless, the nonperturbative aspects may be included
in the perturbative framework of the calculation of exclusive processes.
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I. INTRODUCTION

The study of the infrared~IR! limit of the constant cou-
pling of quantum chromodynamics~QCD! has attracted
much attention in recent years, as well as the infrared fi
form of the gluon propagator. The behavior of the runni
coupling constant claimed for several theoretical and exp
mental studies indicates a frozen value in this kinemat
region @1#. The question of the infrared form of the Green
functions of QCD is still a controversial field of research~for
a review see@3,2#!. Because of the different methods em
ployed to analyze the Green’s functions, for example,
Dyson-Schwinger equations~DSEs! and simulations in the
lattice field theory~LFT! ~as well as the approximations use
to avoid several difficulties found in these methods!, we have
distinct different forms of the Green’s functions. However,
we will show, the combination of the results from LFT an
solutions of the DSE’s restricts the form of the gluon prop
gator.

In a recent paper@1#, Aguilar, Mihara, and Natale per
formed a study of the running coupling constant in the inf
red region using the dependence of the meson form fac
on the coupling constant. To calculate the pion form facto
mixed framework between perturbative and nonperturba
physics is employed with the following assumptions: free
ing of the coupling constant and finite gluon propagator
the IR region, although using the perturbative scheme of
culation of the meson form factor@4#.

Nevertheless, the use of a frozen running coupling c
stant to describe QCD exclusive processes, particularly
meson form factor, is not a novelty. Ji and Amiri@5# and
Brodskyet al. @6# used a modified coupling constant to stu
the form factor and the related reactiongg→p1p2. This
modified coupling constant is based on the work by Cornw
@7# in which a gauge-independent set of Dyson-Schwin
equations is solved, giving a coupling constant finite in
infrared and a gluon propagator with a running mass.

However, there are other approaches to include infra
contributions. In@8#, Maris and collaborators performed
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full nonperturbative calculation of the meson form facto
The amplitude for the vertexppg ~or KKg), which is re-
lated to the form factor, is obtained using the following i
gredients: the Bethe-Salpeter amplitudes for the scatte

kernelqq̄ ~solutions of the Bethe-Salpeter equation!, the so-
lution of the DSEs for the quark propagator in the rainbo
truncation, and an ansatz for the quark-photon vertex ba
on a Bethe-Salpeter equation in the ladder truncation. T
approach gives a good description of the experimental d
for the low momentum region for both form factors~pion
and kaon! as well as other observables~see the last paper o
@8#!. In another work@9#, the authors employed a light-fron
Bethe-Salpeter model, where the quark, instead of the gl
as in the model above, has a dynamical mass, giving g
agreement with the experimental data for the pion form f
tor.

The meson form factor, in turn, has had many attempt
a description in pure perturbative QCD@10#. For example,
Stefanis@11# used an unified factorization scheme that
cludes logarithmic corrections~which origin is the gluon
emission! and power correction whose origin is nonperturb
tive. Melić et al. @12# calculated the pion form factor in next
to-leading order~NLO! in perturbation theory. Yeh@13# also
made a NLO calculation and found a fittable expression
the pion form factor which includes nonperturbative effec
However, these attempts have only validity where the per
bation theory is valid—in other words, when the momentu
transfer is large.

In this article, we extend the results of@1# for the pion
form factor for a different set of coupling constants a
propagators and compare them with more recent experim
tal data. Also the robustness of the model is tested with
kaon, a more massive meson than the pion. As we will sh
the model employed describes both pion and kaon form
tors with good agreement with the available data for the
nematical region of exchange of low momenta. The article
organized as follows: in Sec. II, we will review the mod
used to calculate the meson form factor. Next, in Sec. III,
present the modified meson form factor calculation sche
with the main features of the nonperturbative gluons and
frozen running coupling constant and their relation. Fina
we present the results and conclusions of the work.
©2003 The American Physical Society14-1
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II. MESON FORM FACTOR CALCULATION

The meson form factor is given by the factorized expr
sion in the perturbative QCD (p QCD) form @4,14,15# ~see
Fig. 1!

FM~Q2!5E
0

1

dxE
0

1

dyfM* ~y,Q̃y!TH~x,y,Q2!fM~x,Q̃x!,

~1!

where Q̃z5min(z,12z)Q(z5x,y) and Q is the four-
momentum transfer by the photon. The equation above
be seen as a convolution of the initial and final states, re
sented by the quark amplitude distributionsfM(z,Q̃z) ~ob-
tained in a nonperturbative calculation! with a hard~pertur-
bative! scattering amplitude TH(x,y,Q2). The quark
amplitude distribution is interpreted as the amplitude to fi
the quark or antiquark within the meson with fractional m
mentumz or 12z, respectively.

The functionTH(x,y,Q2) was calculated in LO in@16#
and in NLO in@12#. The LO expression is given by~Fig. 1!

TH~x,y,Q2!5
64p

3Q2 H 2

3

as@~12x!~12y!Q2#

~12x!~12y!

1
1

3

as~xyQ2!

xy J , ~2!

whereas(Q
2) is the running coupling constant.

The quark amplitude distributionsfM(x,Q̃2) are usually
calculated in a certain energy scale (Q0) by QCD sum rules
@17# and then evaluated in an arbitrary energy scale solvin
Bethe-Salpeter-type evolution equation@4#, the solution of
which is @15#

fM~x,Q2!5x~12x! (
n50

`

Cn
(3/2)~2x21!

3Fas~Q2!

as~Q0
2!

G dn

fn
(M )~Q0

2!, ~3!

whereCn
(3/2)(2x21) are the Gegenbauer orthogonal polyn

mials @18#,

dn52
2An

NS

b0
, ~4!

whereAn
NS is the nonsinglet anomalous dimension given

FIG. 1. The LO Feynman diagram for the meson form fact

wherefM(x,Q̃2) is the meson wave function.
01401
-

an
e-

d
-

a

-

An
NS5

4

3 F2
1

2
1

1

~n11!~n12!
22(

j 52

n11
1

j G , ~5!

andb05112 2
3 nf(nf is the number of flavors!. To obtain the

factorsfn
(M )(Q0

2), given by

fn
(M )~Q0

2!5
4~2n13!

~n11!~n12!
E

0

1

dxCn
(3/2)~2x21!fM~x,Q0

2!,

~6!

we use the quark amplitude distributions in a given scale
energy. From@17#, we have atQ05500 MeV for the pion
and the kaon, respectively,

fp~x,Q0
2!5

30f p

2A3
x~12x!~2x21!2, ~7a!

fK~x,Q0
2!5

30f K

2A3
@0.6~2x21!210.25~2x21!310.08#,

~7b!

where the normalization factorf M is given by

E
0

1

dxfM~x,Q0
2!5

f M

2A3
, ~8!

and therebyf p593 MeV, f K5112 MeV.
Using the orthogonality relation of the Gegenbauer po

nomials, it is easy to find that the only nonzerofn
(M )(Q0

2)’s
for the pion are

f0
(p)~Q0

2!56
f p

2A3
, f2

(p)~Q0
2!54

f p

2A3
,

and, for the kaon,

f0
(K)~Q0

2!56
f K

2A3
, f1

(K)~Q0
2!5

30

28

f K

2A3
, ~9a!

f2
(K)~Q0

2!5
12

5

f K

2A3
, f3

(K)~Q0
2!5

3

7

f K

2A3
; ~9b!

therefore, the exponentsdn are

d050, d15
32

9926nf
, ~10a!

d25
50

9926nf
, d35

314

495230nf
. ~10b!

Finally, the quark amplitude distribution is, for the pion

,

4-2
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fp~x,Q2!5
f p

2A3
x~12x!H 61@30~2x21!226#

3S as~Q2!

as~Q0
2!
D d2J , ~11!

and, for the kaon,

fK~x,Q2!5
f K

2A3
x~12x!H 61

45

14
~2x21!S as~Q2!

as~Q0
2!
D d1

1
6

5
@15~2x21!223#S as~Q2!

as~Q0
2!
D d2

1
3

14
@35~2x21!3215~2x21!#S as~Q2!

as~Q0
2!
D d3J .

~12!

However, Dziembowski and Mankiewicz@19# use the
constituent-quark model to calculate the quark amplitude
tribution for the pion, obtaining

fp
(DM)~x!5N expF2

m2

8x~12x!b2G
3H ~xM1m!@~12x!M1m#

4b4
22x~12x!J ,

~13!

whereN is determined by the normalization condition, E
~8! (N50.622), M is the spin-averaged meson mass (M
5614.4 MeV for the pion!, m is the constituent quark mas
(m5330 MeV), andb is a Gaussian parameter chosen
460 MeV. We will test the changes in the pion form fact
when this quark distribution is employed.

III. MODIFIED MESON FORM FACTOR

In @1#, the modifications introduced in the pion form fa
tor by the change of the usual running coupling amplitude
the frozen infrared one have been tested, as well as the
of the change of the gluon propagator. In this case, the h
scattering amplitude can be written as

T̃H~x,y,Q2!5
64p

3 H 2

3
ãs~ k̂2!D~ k̂2!1

1

3
ãs~ p̂2!D~ p̂2!J ,

~14!

where k̂25(12x)(12y)Q2, p̂25xyQ2, and D(Q2) is the
gluon propagator, andãs is the modified running coupling
constant, the expressions for which are given below.

Therefore, the expression for the meson form factor fr
Eqs.~1! and ~14! is
01401
s-

s

y
se

rd

F̃M~Q2!5E
0

1

dxE
0

1

dyf̃M* ~y,Q̃y!T̃H~x,y,Q2!f̃M~x,Q̃x!,

~15!

where f̃M is the meson wave function with the modifie
running coupling constant.

The infrared form of the gluon propagator is still a co
troversial aspect~for a review for solutions and methods se
@2# and references therein!. The general formula for the
gluon propagator is given by~in the Landau gauge!

Dmn
ab~q2!5dabS dmn2

qmqn

q2 D D~q2!, ~16!

where the usual perturbative propagator is given byD(q2)
51/q2 which diverges whenq2→0. In the literature, there
are several different forms for the gluon propagator, w
different behaviors for the infrared region: finite, zero, a
more divergent than 1/k2, each one with its advantages an
inconveniences. The reasons for these different behaviors
the methods and approximations employed to obtain
gluon propagator. The more popular methods are
Schwinger-Dyson equations and the simulations from lat
field theory. The most recent results in the last meth
@20,21# discard the solution of the type 1/k4 and therefore we
will not use it in this work. In spite of the controversy, th
nonperturbative gluon propagator was used successfull
many phenomenological applications such as, for exam
proton-proton scattering@22# and elastic production of vecto
mesons@23#.

In this work, we use the following gluon propagators.
~i! That calculated by Cornwall@7# using the gauge-

independent pinch technique, given by

DC~q2!5
1

q21Mg
2~q2!

, ~17!

whereMg
2(q2) is a dynamical gluon mass term,

Mg
2~q2!5mg

25 lnS q214mg
2

LQCD
2 D

lnS 4mg
2

LQCD
2 D 6

212/11

, ~18!

with mg
255006200 MeV. With this propagator,@1# obtains

the best description for the pion form factor. Its features
clude the correct ultraviolet behavior~according to the renor-
malization group! and the dynamically generated ma
Mg

2(q2).
~ii ! That from Häbel et al. @24#, calculated using an ap

proach that employs the same features of the perturba
theory, which implies a simplified set of Schwinger-Dyso
equations, the solution of which is given by
4-3
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DH~q2!5
1

q21
b2

q2

. ~19!

We should note that this propagator goes to zero whenq2

→0, unlike the other propagators employed in this wo
which have a nonzero value in this region.

~iii ! von Smekal et al. @25# solve a set of Dyson-
Schwinger equations for the QCD Green’s functions, and
gluon propagator found by this manner can be fitted@1# by

DA~q2!5
bq2

q41c2
, ~20!

whereb53.707 andc50.603.
~iv! Atkinson and Bloch@26# solve a set of Dyson-

Schwinger equations for the gluon and ghost propagator,
proving the solution found by@25#. The asymptotic infrared
behavior of the gluon propagator is

DAB
IR ~q2!;

1

q2 H A0~q2!2kS 11 (
l51

3

f lal~q2!lrD J , ~21!

where A051, k50.769475, a15210.27685, r
51.96964, f 151, f 250.408732, f 3520.761655.

~v! From Gorbar and Natale@27#, who use the operato
product expansion~OPE! to relate the gluon and quar
propagators with their respective condensates, the g
propagator obtained is

DGN~q2!5
1

q21mg
2u~xmg

22q2!1
mg

4

q2
u~q22xmg

2!

,

~22!

wheremg
250.61149 GeV is a parameter fixed by the glu

condensate@27# andx50.9666797. We should note that th
propagator interpolates two different propagators: the p
massive and one similar to the solution of Ha¨bel et al.

The modification of the gluon propagator is closely r
lated to the modification of the running coupling constant
the infrared region. As calculated by Cornwall@7#, the cou-
pling constant is frozen in low momentum by the addition
the massive term, Eq.~18!,

as
(C)~q2!5

4p

b0 lnS q214Mg
2~q2!

LQCD
2 D , ~23!

whereLQCD
2 is the QCD scale parameter, andb05112 2

3 nf

is the first coefficient of the beta function, andnf is the
number of flavors. In the case of the other propagators,
consider the terms in the denominator as massive terms
we will substitute it in Eq.~23! as well as in the Cornwal
propagator, as shown below.
01401
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~i! The propagator of Ha¨bel et al.

as
(H)~q2!5

4p

b0 lnS q21MH
2 ~q2!

LQCD
2 D , ~24!

with

MH
2 ~q2!5

b2

q2
.

~ii ! The Gorbar-Natale propagator gets

as
(GN)~q2!5

4p

b0 lnS q21MGN
2 ~q2!

LQCD
2 D , ~25!

with

MGN
2 ~q2!5mg

2u~xmg
22q2!1

mg
4

q2
u~q22xmg

2!.

However, in the case of the propagators given by E
~20! and~21!, the coupling constant comes from solutions
the Dyson-Schwinger equations for the Green’s functio
For the case of the solution of the Alkoferet al., the coupling
constant can be fitted by the formula@1#

as
A~q2!5H as

a, q2,0.31 GeV2,

as
b , 0.31,q2,1.3 GeV2,

as
c , q2.1.3 GeV2,

~26!

with

as
a~q2!50.216119.2621 expS 22

~q220.0297!2

~0.6846!2 D ,

as
b~q2!51.474118.6072 expS 2

q220.1626

0.3197 D , ~27!

as
c~q2!5

1.4978

ln~1.8488q2!
.

The solution of Atkinson and Bloch@26# is given analyti-
cally in the asymptotic regions

as
AB~q2!;

IR

4pnF12 (
k51

3

bkS q2

V2D krG , ~28!

where n50.912771, V250.1864754, b1521, b2
50.760753,b3520.370785, and
4-4
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as
AB~q2!;

UV 4p

4 logS q2

LQCD
2 D , ~29!

whereLQCD
2 50.06802 GeV2.

The procedure is the following: using Eq.~15!, we sub-
stitute in the hard scattering amplitudeT̃H the different gluon
propagators in the order above as well as the running c
pling constantãs to verify the changes in the form factor.
comparison with the perturbative fit of Yeh@13#, as well as
with the full nonperturbative calculation of Maris and co
laborators@8#, is also performed.

IV. RESULTS

The results obtained for the pion form factor in the fl
vorless case (nf50) are displayed in Fig. 2. A remarkab
feature of the result is the significant difference between
distinct coupling constants and their respective gluon pro
gators. The origin of this difference is the strong depende
of the form factor on the running coupling constant. T
results are also consistent with the infrared behavior of
coupling constant; for example, in the case of the propag
of Häbel et al. @Eq. ~24!# when Q2→0 the massive term
diverges, which implies a divergent behavior. With the oth
propagators, the behavior is distinct because the coup
constant is finite whenQ2→0, giving a finite result.

As already pointed out in@1#, the best description for the
data is given by the Cornwall propagator withmg
5300 MeV while the other choices for the propagator list
above do not give a reasonable result in comparison with
available experimental data.

When a more realistic number of flavors,nf53, is used,
the result for the form factor does not present a signific
change, as expected in@1# and displayed in Fig. 3; howeve
the result with three flavors is better than with no flavors

FIG. 2. The pion form factor calculated using the modified ru
ning coupling constant and gluon propagator from different wor
indicated in the table above. The number of flavors is zero.
labels CZ and DM refer to Eqs.~11! and ~13! for the quark ampli-
tude distributions. The solution of Mariset al. from @8#. The Yeh fit
from Eq. ~31!. Data from@28,29#.
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As the number of flavors, the change in the quark am
tude distribution, Eqs.~11! and~13! does not make a signifi
cant modification to the form factor.

We display in Figs. 2, 3, and 4, the full nonperturbati
solution for the pion form factor obtained by Maris and co
laborators@8#, only in the low momentum transfer regio
(Q2<0.8 GeV2). As pointed out in the Introduction, thi
solution gives a very good description of the low momentu
data. Our best result, using the Cornwall propagator
mg50.3 GeV, is below this prediction although with th
same global behavior. If we diminish the smaller mass
parametermg , we can obtain a better fit to the data~for both
mesons!, but this value is outside of the range of values f
this parameter, which provides a good description of ot
processes@22,23#.

We also display a fit with the experimental points, bas
on the approach of@13#. In that paper, the author uses
collinear expansion to analyze the NLO power corrections
the pion form factor and finds the following expression f
the pion form factor:

-
,
e

FIG. 3. The pion form factor calculated as in Fig.
with nf53.

FIG. 4. Plot ofQ2Fp versusQ2 using the same coupling con
stant and propagators used in Fig. 2, with quark amplitude distr
tion from Eq.~11! andnf53.
4-5
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Fp~Q2!5
16pas~Qeff

2 ! f p
2

Q2 S 12
32p2f p

2 J~Qeff
2 !

Q2 D , ~30!

whereQeff
2 is the effective energy scale andJ(Qeff

2 ) is called
a jet function, introduced to absorb the infrared divergen
from the NLO corrections. In the same paper, a phenome
logical fit to the data for the pion form factor was made w
the following form:

Fp
fit~Q2!5

A

Q2 S 12
B

Q2D . ~31!

In @13#, the best values forA andB to fit the above formula
to the experimental data from@30,28# are A50.46895 and
B50.3009.

The phenomenological fit has a divergence when the
mentum transferred by the photon goes to zero, in opposi
to the results that employ the nonperturbative propaga
and a finite infrared running coupling constant, and theref
does not give a good description for the data in lowQ2.

In order to compare with the previous results found in
literature, we plotQ2Fp(Q2) as a function ofQ2, as shown
in the Fig. 4. In@5#, its prediction does not go to zero, as
our result, and neither describes the data in the region of
Q2. In @29#, a comparison of predictions found in the liter
ture for the pion form factor is made and the best result
this study~Cornwall with mg5300 MeV) still is a good re-
sult.

In the case of the kaon, we used the same proced
although using only the quark amplitude distribution of E
~12! in Eq. ~14!. The result of the flavorless case (nf50) is
displayed in Fig. 5 while the casenf53 is shown in Figs. 6
and 7. As shown in the figures, the global behavior is
same as in the pion form factor; in other words, the b
description for the data is given again by Cornwall’s choic
for the coupling constant and gluon propagator withmg
5300 MeV.

FIG. 5. The kaon form factor calculated as the pion form fac
but using only the quark amplitude distribution from Eq.~12!. The
phenomenological fit is given by Eq.~32!. Data from@31#.
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In Figs. 5 and 6 we present a result, based on@13#, with
the same functional form of the pion, but now applied to t
available data for the kaon, replacing

FK
fit~Q2!5

C

Q2 S 12
D

Q2D , ~32!

since the only dependence of the meson in Eq.~30! is the
normalization factorf M . We compare Eq.~32! to the data
available for the kaon@31# and find for the coefficientsC
50.0594695 andD50.0130963 withx251.93314.

As the data available for the kaon is restricted to the
gion of lowQ2, the predictions of different models cannot b
tested in the kinematic region of highQ2 for the moment, in
opposition to the case of the pion.

For the pion, as well as for the kaon, when the coupl
constant and the propagator of Atkinson and Bloch@26# are
employed, as a result of the absence of a full analytical fo
for the coupling constant and for the gluon propagator,
use only the infrared analytical forms, except for the case

, FIG. 6. The kaon form factor calculated as in Fig.
with nf53.

FIG. 7. Plot ofQ2FK versusQ2 using same coupling constan
and propagators used in Fig. 5, with the quark amplitude distri
tion from Eq.~12! andnf53.
4-6
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a fixed scale of energy@see Eq.~7a!#, when we use the ul-
traviolet analytical result. There is a difference in the f
numerical result and the analytical asymptotic expression
the coupling constant~see the first paper of@26#!, but it is not
significant for our result.

V. CONCLUSIONS

In this work, we calculated the pion and kaon form facto
following the approach of@1# obtaining a reasonable agre
ment with the data available~for the pion @30,28,29# and
kaon @31#! in the case of the Cornwall gluon propagator@7#
~with parametermg5300 GeV) and the running couplin
constant that is frozen in the small momentum transfer
gion, avoiding infrared divergences. We point out that
smaller mass gives a better result, but its value is out of
mass interval found in previous results for other proces
@23#. The other propagators~Cornwall with mg5700 GeV,
Häbel el al. @24#, Alkofer el al. @25#, Atkinson and Bloch
@26#, and Gorbar and Natale@27#! give results in disagree
ment with the experimental results. The significant differen
between the results has its origin in the well-known mes
form factor sensibility to the running coupling constan
Since we modified the IR behavior of theas , this difference
is expected as in@1#, where the same behavior is observe
The case with a nonzero number of flavors,nf53, does not
have a significant difference in the results. The exchang
the quark amplitude distribution in the pion case also d
not modify significantly the form factor according to@5#. The
model employed also describes the available experime
y
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data in the lowQ2 region for both~pion, kaon! mesons form
factors, in opposition to the results@5#, which employ only a
frozen form of the running coupling constant, without th
finite infrared form for the gluon propagator, but agree w
the results shown in@29# for the pion form factor. In@12,32#,
restrictions are made concerning the applicability of the f
zen coupling constant and the modified gluon propagator
@32# the pion form factor is calculated using the same ide
of this work, although employing a different pion wave fun
tion and a gluon propagator with fixed mass, resulting
Q2Fp(Q2) in a smaller value than the experimental one b
factor of 10. In comparison with the pure nonperturbati
calculation of@8# and the NLO perturbative calculation o
@13#, our results for the pion~except by a normalization fac
tor, given by adjusting the massive parameter! is an interpo-
lation of the above results, having the fit characteristics
both calcutations. The good agreement with the experime
data of this work indicates that it is possible to include no
perturbative effects in exclusive processes in QCD with
dramatic changes in the perturbative scheme of the calc
tion of observables. Otherwise, the inclusion of nonpertur
tive effects is still a field in which much research is require
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