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Effects of trilinear symmetry breaking on the Potts-model transition 
of uniaxially stressed SrTi03 
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A Landau analysis shows that a break of trilinear symmetry in the continuous three-state Potts 
model with linear and quadratic symmetry breaking is re1evant for the trigonal-to-pseudotetragonal 
phase transition in uniaxially stressed SrTi03 along [1 +B 1 +B 1-26], and that the effects of quar­
tic symmetry breaking are vanishingly small. The shift of the tricritical stress parameter B, is large 
enough to mask fluctuation corrections to B,!Bc in d =4-€ dimensions, anda number of quantita­
tive results for the phase diagrams are obtained. 

Attention has been drawn recently to the study of the 
effects of symmetry-breaking perturbations on the phase 
transition of the continuous version of the p-state Potts 
model, motivated by physical realizations of the 
model. I-6 Of particular interest is the three-state model 
which has been pointed out to describe, among other 
things, the magnetic phase transition in cubic ferromag­
nets with easy axes along the cubic axes in a [111] diago­
nal magnetic field, 7 and the first-order trigonal-to­
pseudotetragonal structural phase transition in [111]­
stressed perovskites like SrTi03• 8 Blankschtein and 
Aharony (BA) suggested further than an off-diagonal 
stress along [ 1 + &, 1 + 8, 1 - 2&] applied to SrTi03 should 
yield to a trigonal-to-pseudotetragonal phase transition 
described by the three-state Potts model with linear and 
quadratic symmetry breaking.2<b> The effect of these 
symmetry-breaking tenns is to change the first-order tran­
sition for this model into a second-order transition at a 
tricritical point or the first-order transition may disappear 
at a criticai point. Also, universal ratios of criticai and 
tricritical parameters (reduced temperature, "magnetic 
field," and arder parameter) were proposed on the basis of 
scaling arguments and confinned by renonnalization­
group (RG) calculations, to order E, in d =4-€ 
dimensions.2<bl 

It has been pointed out that quadratic symmetry break­
ing yields a break of trilinear symmetry in the continuous 
version of the Potts model,4•6•9 but a physical realization 
has not been discussed before. In the present paper we 
provide mean-field estimates of the effects of trilinear 
symmetry breaking (TSB) on the Potts-model transition of 
uniaxially stressed SrTi03 with the main purpose of find­
ing out if fluctuation corrections should take into account 
the full trilinear coupling in a RG calculation in d =6-€ 
dimensions, and eventually to stimulate further experi­
mental and theoretical work. We also estimate the effects 
of quartic symmetry breaking (QSB), which shou1d be 
considered together with TSB in the case of SrTi03• 

Our main results are the following: (a) the shift of the 
tricritical point due to TSB is large enough to mask the 
fluctuation corrections calculated with the RG in d = 4- € 

dimensions to the ratio 8, l&c of the tricritical and criticai 
stress parameters, 8, and 8c. (b) TSB does not alter the 
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qualitative picture of the phase diagrams of BA I. (c) 
Quantitative estimates of the effects of TSB on the phase 
diagrams are obtained in tenns of appropriate dimension­
less parameters that contain the experimental variables p, 
T, and 8. (d) It is shown that QSB provides negligible 
corrections to the results with TSB. 

We follow the Landau analysis for perovskites of BA li 
and take the free-energy functional for uniaxial stress 
u;j = -pa;aj in the direction of the unit vector with com­
ponents a; as 

F=tK IQI 2+A IQI 4 

+A, .I, QlQ] + beP .I, ( 3aF -OQl 
i <j i 

+b1p .I, a;ajQ;Qj, 
i <j 

(1) 

where be and b, are coefficients that couple elastic to 
order-parameter degrees of freedom in the cubic system 
with three-component arder parameter Q that represents 
the high-temperature phase of SrTi03 beyond the second­
order pseudocubic-to-trigonal phase transition.8 Experi­
mental values for ali tive constants are available in the 
literature.10 With the stress along [ 1 +&, 1 +&, 1-28], and 
rotating the arder parameter to brin_g one component 
along [111], as St =<Qt +Q2 +QJ)/'\1'3, s2=<Q1-Q2)/ 
v'l, and s3 =(Q1 +Q2-2Q3 )/v'6, Eq. (1) becomes 

F= +rtsf + +r2s~ + +r3s5 +u0 I s 1 4 

in which u0 =A +A,/2, v0 =-A,I2, and 

rt=K+fb,p+0(82), (3) 

r2=K-+b,p+f(6be-b1 )p8+0(82), (4) 

r3 =K- +b,p -t(6be -b,)p8+0(82), (5) 

8t3=(Vl/3)(12be+b,)pô+0(82 ), (6) 

where be >O, b, <O, but 6be- b, >O, for SrTi03. 
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Since r 1 <(r2,r3 ), the order-parameter component s, 
orders first as the temperature is lowered from the pseu­
docubic phase at constant p. The value of s 1 that mini­
mizes F gives the trigonal order parameter 

St =M = [ 4(uo~:o/3) r/2' S2=S3=0. (7) 

As the temperature is lowered further either s 2 or s 3 

(eventually both) will order next, depending on the sign of 
fl for which the coefficients r 2 =r2 +4(u0 +v0 )M2 and 
r 3 =r3 +4(u0 +v0 )M2 of the terms in s~ and s~ vanish. 
These new coefficients include the contributions due to 
the shift of s 1 to s 1 =M +s1 by the small secondary order 
parameter s" given by S't = -[üh(s~ +s~l+813s3)1r" 
where r1 =r1 +4(3uo+vo)M2 and üí1 =4(uo+vo)M. El­
iminating s1, as in BA 11, we obtain to leading order in fl 

) I ( 2 2) I ( 2 2) I 3 3 v 2 ] F(s =2r s 2+s 3 -28 s3-s 2 +u s 3- -;;s2s3 

where r =r2 =r3 at fl=O, 

8=·Hr3-r2>=t<6b,-b,>pfl+O<B2>, 

(8) 

(9) 

with the "externai field" h 3 = -813M, in which 113 is 
given by Eq. (6), while u 4 =uo+tv0 -w j2r" 
u= -(2V2/3)vo8 13/f~o and 

11 3 (uo+vo>8t3 I 
u =w + . r-; 2 , 

4v 2voM (uo+vo/3) 

<uo+vo>8t3 I 
4V2voM2(uo+vo/3) ' 

(10) 

(11) 

in which w = -(2V2/3)voM. Equation (8) is then recog­
nized as the free energy for the three-state Potts model 
with linear, quadratic, and TSB terms,6•11 with QSB. 
Note from Eqs. (3), (6), and (7) that the parameters p, fl, 
and K that can be varied experimentally appear only in 
the dimensionless form 8 131M2v0 • For the purpose of 
constructing phase diagrams that can be both useful for 
experimenta and for comparison with those of BA I, it is 
convenient to define dimensionless parameters 

R =(4u4/9w 2)r , 

H =(16uV27w 3)h 3 , 

and 

G =(4u4/9w 2)8 , 

in which w=u(l+3q)/4, where q=v/u. With this 
choice of parameters, 

u4 _p_§_ 
G =-2 (6b,-b,) 2 , 

3v0 M 
(12) 

and noting that 8 13 cr.pfl, Eq. (6), u/w, and vlw will only 
depend on G (besides a constant) for SrTi03• Although 
when fl::;60 there is no longer a "true" trigonal phase in 

which s 1 =M=;60 but s2 =s3 =0, because the field term 
h 3s 3 will induce a secondary ordering of s 3 along h 3, we 
follow BA 11 in assuming that, at least to lowest order in 
fl, our results should give the correct description of the 
trigonal-to-pseudotetragonal phase transition in SrTi03• 

To determine the shift of the criticai and tricritical 
point due to TSB we constructed the phase diagrams that 
follow from Eq. (8) in the standard way.1 Some general 
results are first obtained for the Potts model which we 
later apply to SrTi03• The results for the former are the 
following: first we find that the qualitative picture of the 
phase diagrams is the same as that of BA I, without TSB. 
There are three equilibrium phases: in phase I s 3::;60, 
s2 =0, but s3-o in the limit h 3-o. This is the disor­
dered phase of the model and it corresponds to the trigo­
nal phase for SrTi03• Next, in phase 11 s 3::;60, s2 =0, but 
s3M as h3-o. In phase 111 s 3::;60 and s2::;60. These 
two are ordered phases separated from I by a first-order 
transition ending at a criticai point (in the case of phase 
11) or changing into a continuous transition in which I 
and III are in equilibrium beyond a tricritical point. The 
tricritical point eventually disappears at a criticai end­
point, and a typical phase diagram is shown in Fig. 1. 
The quantitative effect of TSB is to lower the first-order 
transition tine 11-111 in a way that shortens the tine 1-11. 
At the same time the tricritical point is raised. None of 
the qualitative features are changed by QSB and the quan­
titative effect is a small perturbation due to the smallness 
of q4 =u /u4 e::2.6X w-2G for SrTi03. 

lndeed, the criticai point is given by 

16 64 
Rc=G+ 2 , Hc=- 3 z, 

3q (l-q4) 27q (l-q4) 
(13) 

in which q = 1 + 3q and the value of the order parameter 
along the criticai line remains constant at 
s3=Mc(G)= -u/4u4(1-q4). Second, the tine of first­
order transition between phase I and 11 is given by 

(14) 

The tricritical point is located at 

I 1 A2 
R,(G,q)=256; ( tq -m)- 256 -;;o 

+ fq4 ..!.[(q -4m)(7m -q)-mq}}, 
q 

H,<G,q)=l024; {tq2-m(l+4q) 

+tq4..!.[3q(q-4m)(7m -q) q 

-20m 2q]}, 

(15) 

in which m =< 16q2+q 2G)/64(/ and the value of s 3 along 
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the tricriticalline is given by 

s 3(G,q)=3~m [1+3~(7m -q) I· 
u4 q 

(16) 

For SrTi03 we find that the tricritical point becomes a 
criticai endpoint when G ~O. 563, a limiting value for 
which R1 !:!!0.252 and H,~0.084. On the other hand, the 
criticai point disappears when G ~ -O. 200, for which 
Rc !::!!!0.226 and Hc: e -0.053, with an error only in the 
last figures due to neglect of QSB. 

in which 

A;A 
z---=-----

- 48u~(A +A,./3) 

is the term that corrects for TSB and the 
A; /u 4A are the contributions from QSB, while 

U4=A +<A,./4)-A 2/(A +A,./3). 

M1= -(K +tbrPcl/[4(A +A,./3)]. 
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FIG. 1. Phase diagram for the three-state Potts model with 
linear, quadratic, and TSB in terms of dimensionless H, R, and 
G, for fixed G =0.0298 corresponding to u =0.9798 and 
v=l.0061 (Ref. 11, with §=0.217G). First-order transitions 
ending at a criticai point (CP) or at a tricritical point (TCP) 
represented as solid lines and the broken line indicates a 
second-order transition. Since Gc 9!0.0298, CP also lies on a 
line of criticai points in (p, TJ space for SrTi03 if 8 is fixed at 
9!Ôc =0.0077. 

Using the relationships for Rc: and Hc: in terms of the 
physical parameters of the model given by Eq. (1), we find 
for the criticai point, 

PcÔc= nu~1/:::+b,) [1+z[1- 2~ u~~ }]~ 1 
(17) 

_ 3K(l-y) 
Pc- b,(l +2y) ' 

with 

(18) 

With the measured parameters for SrTi03 (in cgs units) at 
4.2 K, K=-3.08X1025, A =1.58X1043, A,.=6.19 
X 1042, be = 7. 34 X 1014, and b, = -1.98 X 1015 we find 

Pc:=25.15(25.38) kgmm-2, Ôc=0.0077(0.0081) 
(23) 

a3c =0.5685(0.568), Me =6.904(6.907)X w-to em 

and for the dimensionless parameter G we obtain 
Gc =0.0298, where in parenthesis are our values without 
TSB and QSB. Neglect of QSB leaves these results un­
changed, except for the last figure in a3c. In view of the 
relatively large uncertainties in the determination of the 
parameters by present experiments, 10 the predicted shift in 
Ôc:, .iôc =4 X 10-4 is too small to be detected. The effects 
on the tricritical point, however, are quite larger. 

Equations ( 15) yield for the tricritical point 

p,ô, = y,M,2 , 

(24) 

Yt =(9A~/128u~) I [A,.(6be -b, )/16u4] -( 12be +b,) 

X [1+ 33z [l-__!Q!__ A; 111- 1 

16 2112 u4A 

where the correction due to TSB is in the last two terms 
of y2, and QSB is in the term 43A;/1280u 4A, 
M,l=-(K +tb1p1 )/[4(A +A,./3)]. With the same 
measured parameters we find, with no significant change 
duetoQSB, 

p,=27.39(28.27) kgmm-2, ô,=-0.0378(-0.0419) 

a 31 =0.621(0.626), M,=6.933(6.944)X w- 10 em (26) 

G,e-0.158. 
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It can easily be seen from Eqs. (17)-(19), (24), and (25) 
that 8c and 8, remain the same with varying K and p. 

The result obtained here for 8,18c!:!! -4.901 with, or 
:!! -4.896 without QSB should now be compared with the 
mean-fie1d prediction 8, 18c!:!! - 5. 18 of BA 11, without 
TSB and QSB. Although the difference is presumably too 
small to be detected experimentally, at present, it is in­
teresting to note that it is much larger than the effect of 
fluctuation corrections in d =4-E dimensions, calculated 
in BA 11, where 

8,18c!:!! -5(81/80)âl•-312 , (27) 

in which â/tf>- f!:!! -E/10+0(~). This yields 
8,/ôc!:!! -4.9988 in three dimensions, which should be 
compared with the result 8,18c!:!! -5, when E=O for the 
fluctuation-free theory of Ref. 2(b), based on the XY 
model. An appreciable effect on õ, lôc implies also one on 
the ratio of the fields h 3,!h3c- One of our maio results, 
that TSB completely masks the fluctuations corrections in 
d =4-E dimensions, suggests that it should be interesting 
to study the effect of fluctuation corrections which take 
fully into account the trilinear coupling of the model by 

•Present address: Instituto de Fisica e Quimica de s-ao Carlos, 
Universidade de São Paulo, 13560 São Carlos, São Paulo, Bra­
zil. 

ID. Blankschtein and A. Aharony, J. Phys. C 13, 4635 (1980), 
referred to in the text as BA I. 

2(a) D. Blankschtein andA. Aharony, Phys. Rev. B 22, 5549 
(1980); (b) J. Phys. C 14, 1919 (1981), referred to in the text as 
BAII. 

3M. J. Stephen and G. S. Grest, Phys. Rev. Lett. 38, 567 (1977). 
4W. K. Theumann and Alba Theumann, Phys. Rev. B 24, 6766 

(1981); Alba Theumann and W. K. Theumann, ibid. 26, 3856 
(1982). 

sw. K. Theumann, Phys. Rev. B 27, 6941 (1983). 
6W. K. Theumann, Phys. Rev. B 28, 6519 (1983). 
7D. Mukamel, M. E. Fisher, andE. Domany, Phys. Rev. Lett. 

means of RG calculations in d = 6-E dimensions. Some 
progress in this direction will be reported elsewhere. 12 
Our other main result, that the Potts-mode1 transition of 
uniaxially stressed SrTi03 is a physical realization of 
TSB, due to the negligible effect of QSB, may be a further 
motivation to consider such RG calculations. The results 
of the present work are expected to apply along the 
Potts-model transition line in uniaxially stressed SrTi03, 

except in the immediate neighborhood of the multicritical 
point where the continuous trigonal to pseudocubic transi­
tion starts, for which the trilinear coupling should be van­
ishing small. 
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