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Poincare invariance of a quantized duality symmetric theory
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The noncovariant duality symmetric action put forward by Schwarz and Sen is quantized by means of the
Dirac brackets quantization procedure. The resulting quantum theory is shown to be, nevertheless, relativisti-
cally invariant.[ S0556-282(97)01106-5

PACS numbgs): 11.30.Cp, 11.25.Mj, 11.30.Ly

In Ref. [1], Schwarz and Sen proposed a class of gauge- The present work can be summarized as follows. We start
invariant actions which are also invariant under discrete duby presenting the Hamiltonian formulation of the model be-
ality transformations. In particular, the duality symmetric fore gauge fixing. After choosing the Coulomb gauge, the
generalization of the four-dimensional Maxwell action in- theory is quantized by means of the Dirac brackets quantiza-
volves two gauge potentiald*?(0su<3,1<a<2) and tion procedurg¢5—8|. The resulting quantum theory turns out
reads[2] to be local and quantum mechanically consistent. The next
step consists in building a set of composite operators which
will be shown to verify the Dirac-Schwinger algedi&10].

As a consequence, a set of charges obeying the Poincare
algebra exist and can inmediately be constructed. We prove,
where afterwards, that the full set of composite operators obeying
the Dirac-Schwinger algebra are the components of a

1 4 a,i b,i a,ipa,i
S=—5 | d*x(B*'€xpE™'+B*'B™), (1)

a,i_ _rali_ _;+0paa,i__ 4ipa0
E¥=—-F*"=—(sA IA™), (2a) second-rank symmetric tensor. The transformation properties
1 of the basic fields under the Poincayeup are also studied
Ba~‘=——e”kF'-ak=—e”kajA§, (2bp)  and serve to demonstrate that the noncovariant Coulomb
2 . gauge condition is preserved under Lorentz boosts. We end

by arguing that our results can be generalized for an arbitrary
canonical gauge.
The canonical HamiltonianH) following from Eq. (6)

and 1<i,j,k=3. S is separately invariant under the local
gauge transformations

ARO_, pRO 2 (39 reads
Aa'iHAa'i—&iAa, 3b 1 .. 1 .
(3b) He= f dx| 5 € (A €an( A + ZFHIKFR|. (D)
and under the discrete duality transformations
ABH_ ¢, AP 4) Furthermore, the system possesses the primary constraints
a .
The use of the equations of motion 0=m5~0, (83
€1 €apdodi AR+ 3, (A AY = FAZT) =0 (5) 1 -
Qlaz 7T|a+ E‘EabfijkaJA K~ , (8b)
allows for the elimination fron® of one of the gauge fields,
the action for the remaining one being the conventional Max- . )
well action. where we have designated ly, the momentum canonically
In terms of the gauge potentials, the Lagrangian density ifonjugate toA*#. Then, the total HamiltonianH") is given
Eq. (1) reads by H'=Hc+ [d*(u*?Q3+u?'Q?), where theu's are

Lagrange multipliers. Persistence in time @f produces

neither secondary constraints nor determines the Lagrange

multipliers. On the other hand, persistence in time of the

primary constraint§Q?} does not lead to the existence of

_ }Fa,ijak_ (6) secondary constraints but determines partially the Lagrange
4 ! multipliers {u?}. Indeed, since the Poissons bracKéta]

1 1
£= 5430 €a(doAT) —5 € (91A%) €an(9iA))

Clearly, £ is not a Lorentz scalar. Some alternatives have - - L.

been )s/uggested to reconcile, already at the classical level, [QPX), Q7(Y)]p= — €apeij (X —Y) ©
duality and Lorentz symmetri¢8,4]. In this paper we dem- ] _
onstrate that the quantum field theory arising from @jis, do not vanish, Qf=[Qf H']p~0 yields u*'=
nevertheless, relativistically invariant. €.n(B>'— ' ¢P), where¢? is an arbitrary scalar. Thus,
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Qa()'(’):aiﬂi’:l()'(’)mo (10) One may wonde_r whethgr t_he right-hand sidt_a of &) is_
afflicted by ordering ambiguities. However, this not so, since
andQ§~0 are the first-class constraints in the thefig].

To isolate the second-class constraints from @Bb), we [B21(x),BPI(y)]=ie€ane *aio(x—Y), (15)
split Qf into longitudinal L) and transversalT) compo-
nents, namely, Q2=02+0Q% where 2. as follows from Egs(13a and(2b).
= _(5iaj/V2)Q?’ $i=(gij+c9iﬂj/V2)Q?, and The Hamilton equations of motion arising from E¢$3)

V2=-4,;4. The first-class constrairff.0) only involves the and(14) are
longitudinal component$)?; and states that these compo-

RN ; (—)abpb,k_
nents vanish individually. Then, the second-class constraints Dic AT*= 0, (163
are
1
1 _ domsi=5dF5, (16b)
‘Q"Ell'i: W-?—i‘i‘ Eeabeijk&JA?k%O . (11) b2 !
where

The determination of the constraint structure is over. It
only remains to be mentioned that the gauge poteAtiat,
when acted upon by the generator of infinitesimal gauge
transformations,G= [ d®x(¥2Q3+ A20?), undergoes the
change A%#—A®#+ 5A%# with SA?O=[A?0,G]p=12
and SA*'=[A?' G]p=—3d'A?, in agreement with Eq¢(3).

We shall next quantize the model by means of the Dirac
brackets quantization procedUre-8]. To this end, we start
by fixing the gauge through the subsidiary conditions

+)ab_ i
Dl =0 Sapdo* €abéijkd - (17)

Notice that, in the Coulomb gauge, the Lagrange equation of
motion (5) can be cast as

9D AN = 0= D PARK= g8 (19

Since ¢D{)2°A2k= 0, the function &2 must verify

x*0=A2%~0, (128  V2£2=0 but is otherwise arbitrary. Thus, the Lagrangian and
a ai the Hamiltonian formulations lead to equivalent equations of
X =0d;A*'~0. (12b motions only after the introduction of a regularity require-

ment at spatial infinity. This situation resembles that encoun-

The formulation of the quantum dynamics of a gauge theo X . i : .
in the Coulomb(physica) gauge is of importance for under-n{erEd in connection with the theory of the two-dimensional

01 *t_ 0 1 ;
standing its structural aspects. The fact that the Coulomb* XX = 12(x*x")] self-dual field () put forward
condition andA®°~0 are, when acting together, accessible y Flor_eanml and Ja;klv{15,16], w_here_ the equations of
gauge conditions is a peculiarity of the model under analysis’.nOtlon in the Lagrgngllan and I_-|am|Iton|an f(_)rmulatlonls trn
This is not the case, for instance, in quantum electrodynam@Ut 1 be, respectivelyy,;d_®=0 andJ_®=0. We also
ics. recall that in order to solvé_® =0 one starts by realizing

Since the full set of constraints and gauge conditions isthat ¢-®=0=d,9 ®=0=L]®=0. The solutions of
by construction, second class, Dirac brackets with respect t6-P=0 are then contained in the field of solutions of
them can be introduced in the usual manner. Afterwards, the!®=0. We shall follow here a similar approach, since

hase-space variables are promoted to operators obeying an )
gqual—tinge commutator algl?abra which ispto be abstélctg‘ed Dl 2PAY = 0= D HeRlID A= 0= OAF'=0.
from the corresponding Dirac brackets algebra, the con- (19
straints and gauge conditions thereby translating into stron? _ ai
operator relations. This is the Dirac bracket quantization proJ he solving of JA7"=0 leads to

cedure, which presently yield43,14

L S, A""“(X)=f d®yD(x—y)dyAT'(y), (20)
[AF'(X), AT (Y)]= —ieae* Tz 8(x—y), (133
whereD(x—y) is the zero-mass Pauli-Jordarfunction and
(AJ*B)=AdB—Bd*A. From this last equation and E4.3)
follows that the field commutator at different space-time
points reads

[

a2y b oy i X0 o -
[AT (%), m7i(Y) ] =7 Gan| 9j+ 2 | 6(X—y), (13D

. N -
[7T1a'|(x)'77‘k|"J(Y)]:Zfabfljk‘7§5(x_Y) (13C) [A-?—'I(X),A-?—’J(y)]
As for the quantum mechanical HamiltoniaH) it can be i i ool ik s
read off from Eq.(7) after taking into account that con- =1| 6ap| 9"+ V2 | " €abe 52 D(x—y).
straints and gauge conditions act, within the alggh®), as X X

strong operator identities. Then (21)

—)ca

1 4 1 - By applying D{; °¥(x) to both sides of Eq(21), one can
— 3ypajkpa — _ 3ypa.ipa y applying Ly; () 0 bo siges o q , one cal
H 4f PR 2f d*xB™'B;. (14 check that the field configurations entering the just men-
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tioned commutator are in fact solutions (@63. As known, Hence, the quantization of the Schwarz-Sen model has led
the functionD(x—y) can be given as the sum of a positive to a local and physically sensible quantum field theory. Our
plus a negative frequency part and we, therefore, can writenext task is to demonstrate that this quantum theory is also
A . . relativistically invariant.
AT () =AF 0 +AF (%), (22) We are therefore looking for a set of composite operators
{©,,} which may serve as Poincadensities. By experi-

where ence, we try to build them according to the rules
. 1 d3k . - - A
A0 = | e (KX R -] Q=T St 30
@n®) ik
where
2
x >, e2(kal™(k 23 IL
&, o800 @3 T= s A~ Gl (31
and £2'(k),A=1,2, are unit norm polarization vectors. By 1
going back with Eq(23) into Eq.(21) one obtains (/,K_MZE(SA—MJL SV_WFSMJ: (32
2
2 e (Rl (kal(K).a), (k)] oL
M =1 S)\_M,,Z —mA;\Y_ﬂﬂAaﬁ’ (33)
j, KK i K o ;
=| — %ap gj+ﬁ + €gp€” m S(k=k"), (24 and Ay, ;=079,5—9.0\s- Clearly, ¢, S, and A are anti-

symmetric under the exchange of the underlined indices.
These are, of course, the standard rules for constructing the
symmetric(Belinfante energy-momentum tensor. However,
we cannot yet decide on whether or rédtis a tensof14].

By bringing Eq.(6) into Egs.(31) and(33) one obtains

while all others commutators vanish. The polarization vec
tors are to be found by replacing3) into the gauge condi-
tion (12b) and the equation of motio(l64a. In this way we

arrive, respectively, dtisi"i(IZ)=0 and

N ) 1
33%(k)eli= 0, (25) ®oo=—5B*'Bf, (343
where
1 .
- == ——ei a,jgb.k
Eﬁb(k)Egij5abko_Eabfi|j K. (26) ©0i=0io 26”"'5abB B (34D
The vanishing of the determinant of the matE{’} is a @ij:@)“:_B?B?JrgijBaJB?. (349

necessary and sufficient condition for the homogeneous sys-

tem of equations in E(25) to have a solution different from Thus,® is symmetric and free of ordering ambiguities.

the trivial ones2!=0. In the present case this determinantis e look next for the equal-time commutator algebra
proportional tok? and its vanishing merely states that the obeyed by the components 6f. According to Eq.(34), this
theory only propagates zero-mass particles. Furthermore, Egjgebra is fully determined by the commutatas). In par-
(25) also implies thats}'S%/=0. This nontrivial rela- ticular, one can corroborate that

tionship among the polarization vectors associated with dif-

ferent gauge potentials can be cast as [@oo(xo,;)@oo(xo,;)]
2 - N N s> -
I K =—i{O®%(x%x)+ O%(x° y)l g s(x—y),
S SRR = ~2 gy @7 (070X + 0T Ab(x—y)
A=1 K| (359

On the other hand, the Coulomb gauge polarization vectors

. 0%(x%,x),0%(x%,y
span, by construction, the space orthogonat:toe., [O7X ) 0Oy)]

=—i{0M(x° %)~ ge X% y)}ds(x—y),

) .
oL . K'K
S X K)edK)=—|gl+—|. (28 (350)
N=1 k|2
By using Eqgs.(27) and (28) we can solve at once for the [0%(x°,%),0%(x%,y)]
commutator in Eq(24) and find :i{®0k(xoy)’;)a£(+®0j(xo,)’(’)&§} 5(;_37)’
[al (k) 8}, (K")]= 8,00 8(k—K). (29 (350

Thus the space of states is, as expected, a Fock space witlhich is just the Dirac-Schwinger algebfé]. As is well
positive definite metric. known [9], this guarantees that the charges
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30 rotations do not destroy the Coulomb gauge condition we
P“EJ d°x@®%, (363 concentrate on Lorentz boosts. By usi(®6b), (34), (2b),
and (133 one finds that

Jur= f d3x(®%x"— @%xH), (36b) | . d'9)
_i[JOk,A_?il_,l]:(XOO-,k_Xko-,O)A_éIl_,I_Eabeklj 72 A'kl)'j'
obey the Poincare algebra, ie., [P*P"]=0, (39)
[J#,P7]=i(g*“P"—=g"?P*), and [J*",J°7]=i(g""J"’

g QW‘] - grane). . The term proportional te,, signalizes that gauge potentials
It takes just a few more steps to demo_nstrate Bt a corresponding to different values afget mixed by Lorentz
ten__sor. Jnd%d’ Ehe add|t|_qnal 9equal-t|mei commUIatorg, osts. This does not occur for ordinary rotations. Further-
[07(x°,x),0%(x°y)] and[©"(x°x),0%(x%y)] can also  more, the mixing term in Eq(38) describes an operator
be readily evaluated by using Eq84) and (15). These re-  gauge transformation, which, as one easily verifies, makes
sults and Eq(35) can be collected into this commutator compatible with the transversality condition
[PA,@B]= | gh@ P, (373 3;AT'=0. Hence, under Lorentz boosts, the ﬂél%i' under-
goes, besides the usual vector transformation, an operator

[J47, @8] = —i(x g — x"3") @ B —|(@rg B+ @HBgre gauge transformation which restores the Coulomb gauge in
’ the new Lorentz framg&l8].
—Qregrh— O Vhgre), (37b Although this work has been entirely carried out within

_ _ ) ) the Coulomb gauge, we observe that the quantized Schwarz-
which are, respectively, the translation and rotation transforsen model turned out to be a local theory fully formulated in
mation laws to be obeyed by a second-rank tefsdf. The  teyms of the gauge invariant fields! ,a=1,2. Therefore,

purported proof of relativistic invariance of the quantized o conclusions about relativistic invariance apply equally
Schwarz-Sen theory is now complete. well for all canonical gauges.

What remains to be done is to demonstrate that the Cou-
lomb gauge formulation of the quantized Schwarz-Sen This work was supported in part by Conselho Nacional de
theory is in fact covariant. Since translations and ordinaryDesenvolvimento Cieffico e Tecnolgico (CNPg), Brazil.
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