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The noncovariant duality symmetric action put forward by Schwarz and Sen is quantized by means of the
Dirac brackets quantization procedure. The resulting quantum theory is shown to be, nevertheless, relativisti-
cally invariant.@S0556-2821~97!01106-5#
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In Ref. @1#, Schwarz and Sen proposed a class of gauge-
invariant actions which are also invariant under discrete du-
ality transformations. In particular, the duality symmetric
generalization of the four-dimensional Maxwell action in-
volves two gauge potentialsAm,a(0<m<3,1<a<2) and
reads@2#

S52
1

2E d4x~Ba,ieabE
b,i1Ba,iBa,i !, ~1!

where

Ea,i52Fa,0i52~]0Aa,i2] iAa,0!, ~2a!

Ba,i52
1

2
e i jkF jk

a 52e i jk] jAk
a , ~2b!

and 1< i , j ,k<3. S is separately invariant under the local
gauge transformations

Aa,0→Aa,01Ca, ~3a!

Aa,i→Aa,i2] iLa, ~3b!

and under the discrete duality transformations

Aa,m→eabA
b,m. ~4!

The use of the equations of motion

e i jkeab]0] jAk
b1] j~] jAa,i2] iAa, j !50 ~5!

allows for the elimination fromS of one of the gauge fields,
the action for the remaining one being the conventional Max-
well action.

In terms of the gauge potentials, the Lagrangian density in
Eq. ~1! reads

L5
1

2
e jki~] jAk

a!eab~]0Ai
b!2

1

2
e jki~] jAk

a!eab~] iA0
b!

2
1

4
Fa, jkF jk

a . ~6!

Clearly, L is not a Lorentz scalar. Some alternatives have
been suggested to reconcile, already at the classical level,
duality and Lorentz symmetries@3,4#. In this paper we dem-
onstrate that the quantum field theory arising from Eq.~6! is,
nevertheless, relativistically invariant.

The present work can be summarized as follows. We start
by presenting the Hamiltonian formulation of the model be-
fore gauge fixing. After choosing the Coulomb gauge, the
theory is quantized by means of the Dirac brackets quantiza-
tion procedure@5–8#. The resulting quantum theory turns out
to be local and quantum mechanically consistent. The next
step consists in building a set of composite operators which
will be shown to verify the Dirac-Schwinger algebra@9,10#.
As a consequence, a set of charges obeying the Poincare´
algebra exist and can inmediately be constructed. We prove,
afterwards, that the full set of composite operators obeying
the Dirac-Schwinger algebra are the components of a
second-rank symmetric tensor. The transformation properties
of the basic fields under the Poincare´ group are also studied
and serve to demonstrate that the noncovariant Coulomb
gauge condition is preserved under Lorentz boosts. We end
by arguing that our results can be generalized for an arbitrary
canonical gauge.

The canonical Hamiltonian (Hc) following from Eq. ~6!
reads

Hc5E d3xF12 e jki~] jAk
a!eab~] iA0

b!1
1

4
Fa, jkF jk

a G . ~7!

Furthermore, the system possesses the primary constraints

V0
a[p0

a'0 , ~8a!

V i
a[p i

a1
1

2
eabe i jk]

jAb,k'0 , ~8b!

where we have designated bypm
a the momentum canonically

conjugate toAa,m. Then, the total Hamiltonian (H8) is given
by H85Hc1*d3x(ua,0V0

a1ua,iV i
a), where the u’s are

Lagrange multipliers. Persistence in time ofV0
a produces

neither secondary constraints nor determines the Lagrange
multipliers. On the other hand, persistence in time of the
primary constraints$V i

a% does not lead to the existence of
secondary constraints but determines partially the Lagrange
multipliers $ui

a%. Indeed, since the Poissons brackets@12#

@V i
a~xW !,V j

b~yW !#P52eabe i jk]x
j d~xW2yW ! ~9!

do not vanish, V̇ i
a5@V i

a ,H8#P'0 yields ua,i5
eab(B

b,i2] ifb), wherefa is an arbitrary scalar. Thus,
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Va~xW !5] iV i
a~xW !'0 ~10!

andV0
a'0 are the first-class constraints in the theory@11#.

To isolate the second-class constraints from Eq.~8b!, we
split V i

a into longitudinal (L) and transversal (T) compo-
nents, namely, V i

a5VLi
a 1VTi

a where VLi
a

52(] i]
j /¹2)V j

a , VTi
a 5(gi

j1] i]
j /¹2)V j

a, and
¹2[2] j]

j . The first-class constraint~10! only involves the
longitudinal componentsVLi

a and states that these compo-
nents vanish individually. Then, the second-class constraints
are

VTi
a 5pTi

a 1
1

2
eabe i jk]

jAT
b,k'0 . ~11!

The determination of the constraint structure is over. It
only remains to be mentioned that the gauge potentialAa,m,
when acted upon by the generator of infinitesimal gauge
transformations,G5*d3x(CaV0

a1LaVa), undergoes the
change Aa,m→Aa,m1dAa,m with dAa,05@Aa,0,G#P5Ca

anddAa,i5@Aa,i ,G#P52] iLa, in agreement with Eq.~3!.
We shall next quantize the model by means of the Dirac

brackets quantization procedure@5–8#. To this end, we start
by fixing the gauge through the subsidiary conditions

xa,0[Aa,0'0 , ~12a!

xa[] iA
a,i'0. ~12b!

The formulation of the quantum dynamics of a gauge theory
in the Coulomb~physical! gauge is of importance for under-
standing its structural aspects. The fact that the Coulomb
condition andAa,0'0 are, when acting together, accessible
gauge conditions is a peculiarity of the model under analysis.
This is not the case, for instance, in quantum electrodynam-
ics.

Since the full set of constraints and gauge conditions is,
by construction, second class, Dirac brackets with respect to
them can be introduced in the usual manner. Afterwards, the
phase-space variables are promoted to operators obeying an
equal-time commutator algebra which is to be abstracted
from the corresponding Dirac brackets algebra, the con-
straints and gauge conditions thereby translating into strong
operator relations. This is the Dirac bracket quantization pro-
cedure, which presently yields@13,14#

@AT
a,i~xW !,AT

b, j~yW !#52 i eabe
i jk

]k
x

¹2 d~xW2yW !, ~13a!

@AT
a,i~xW !,pT j

b ~yW !#5
i

2
dabS gji1 ]x

i ] j
x

¹2 D d~xW2yW !, ~13b!

@pTi
a ~xW !,pT j

b ~yW !#5
i

4
eabe i jk]x

kd~xW2yW !. ~13c!

As for the quantum mechanical Hamiltonian (H), it can be
read off from Eq.~7! after taking into account that con-
straints and gauge conditions act, within the algebra~13!, as
strong operator identities. Then

H5
1

4E d3xFa, jkF jk
a 52

1

2E d3xBa, jBj
a . ~14!

One may wonder whether the right-hand side of Eq.~14! is
afflicted by ordering ambiguities. However, this not so, since

@Ba,i~xW !,Bb, j~yW !#5 i eabe
i jk]k

xd~xW2yW !, ~15!

as follows from Eqs.~13a! and ~2b!.
The Hamilton equations of motion arising from Eqs.~13!

and ~14! are

Dik
~2 !abAT

b,k5 0, ~16a!

]0pTi
a 5

1

2
] jF ji

a , ~16b!

where

Dik
~6 !ab[gikdab]06eabe i jk]

j . ~17!

Notice that, in the Coulomb gauge, the Lagrange equation of
motion ~5! can be cast as

e j l i ] lDik
~2 !abAT

b,k5 0⇒Dik
~2 !abAT

b,k5] ij
a. ~18!

Since ] iDik
(2)abAT

b,k5 0, the function ja must verify
¹2ja50 but is otherwise arbitrary. Thus, the Lagrangian and
the Hamiltonian formulations lead to equivalent equations of
motions only after the introduction of a regularity require-
ment at spatial infinity. This situation resembles that encoun-
tered in connection with the theory of the two-dimensional
@x0,x1,x651/A2(x06x1)# self-dual field (F) put forward
by Floreanini and Jackiw@15,16#, where the equations of
motion in the Lagrangian and Hamiltonian formulations turn
out to be, respectively,]1]2F50 and ]2F50. We also
recall that in order to solve]2F50 one starts by realizing
that ]2F50⇒]1]2F50⇒hF50. The solutions of
]2F50 are then contained in the field of solutions of
hF50. We shall follow here a similar approach, since

Dik
~2 !abAT

b,k5 0⇒D~1 !ca,l iDik
~2 !abAT

b,k5 0⇒hAT
c,l50 .

~19!

The solving ofhAT
a,i50 leads to

Aa,i~x!5E d3yD~x2y!]Jy
0AT

a,i~y!, ~20!

whereD(x2y) is the zero-mass Pauli-Jordand function and
(A]JkB)[A]kB2B]kA. From this last equation and Eq.~13!
follows that the field commutator at different space-time
points reads

@AT
a,i~x!,AT

b, j~y!#

5 i FdabS gi j1 ]x
i ]x

j

¹x
2 D 2eabe

i jk
]k
x]0

x

¹x
2 GD~x2y!.

~21!

By applyingDki
(2)ca(x) to both sides of Eq.~21!, one can

check that the field configurations entering the just men-
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tioned commutator are in fact solutions of~16a!. As known,
the functionD(x2y) can be given as the sum of a positive
plus a negative frequency part and we, therefore, can write

AT
a,i~x!5AT

a,i ~1 !~x!1AT
a,i ~2 !~x!, ~22!

where

AT
a,i ~6 !~x!5

1

~2p!3/2
E d3k

A2ukW u
exp@6 i ~ ukW ux02kW•xW !#

3 (
l51

2

«l
a,i~kW !al

~6 !~kW ! ~23!

and «l
a,i(kW ),l51,2, are unit norm polarization vectors. By

going back with Eq.~23! into Eq. ~21! one obtains

(
l,l851

2

«l
a,i~kW !«l8

b, j
~k8W !@al

~2 !~kW !,al8
~1 !

~k8W !#

5F2dabS gi j1 kikj

ukW u
D 1eabe

i j l
kl

ukW u
Gd~kW2k8W !, ~24!

while all others commutators vanish. The polarization vec-
tors are to be found by replacing~23! into the gauge condi-
tion ~12b! and the equation of motion~16a!. In this way we
arrive, respectively, atki«l

a,i(kW )50 and

S i j
ab~kW !«l

b, j5 0, ~25!

where

S i j
ab~kW ![gi jdabk02eabe i l j k

l . ~26!

The vanishing of the determinant of the matrixS i j
ab is a

necessary and sufficient condition for the homogeneous sys-
tem of equations in Eq.~25! to have a solution different from
the trivial one«l

b, j50. In the present case this determinant is
proportional tok2 and its vanishing merely states that the
theory only propagates zero-mass particles. Furthermore, Eq.
~25! also implies that«l

a,iS i j
ab«l

b, j50. This nontrivial rela-
tionship among the polarization vectors associated with dif-
ferent gauge potentials can be cast as

(
l51

2

«W l
a~kW !3«W l

b~kW !522 eab
kW

ukW u
. ~27!

On the other hand, the Coulomb gauge polarization vectors
span, by construction, the space orthogonal tokW : i.e.,

(
l51

2

«l
a,i~kW !«l

a, j~kW !52S gi j1 kikj

ukW u2
D . ~28!

By using Eqs.~27! and ~28! we can solve at once for the
commutator in Eq.~24! and find

@al
~2 !~kW !,al8

~1 !
~k8W !#5dll8d~kW2k8W !. ~29!

Thus the space of states is, as expected, a Fock space with
positive definite metric.

Hence, the quantization of the Schwarz-Sen model has led
to a local and physically sensible quantum field theory. Our
next task is to demonstrate that this quantum theory is also
relativistically invariant.

We are therefore looking for a set of composite operators
$Qmn% which may serve as Poincare´ densities. By experi-
ence, we try to build them according to the rules

Qmn5Tmn1]lclmn , ~30!

where

Tmn5
]L

]~]mAa,r!
]nA

a,r2gmnL, ~31!

clmn5
1

2
~Slmn1Snml1Slnm!, ~32!

Slmn52
]L

]~]nAa,a!
Almb

a Aa,b, ~33!

andAlmb
a 5gl

agmb2gm
aglb . Clearly,c, S, andA are anti-

symmetric under the exchange of the underlined indices.
These are, of course, the standard rules for constructing the
symmetric~Belinfante! energy-momentum tensor. However,
we cannot yet decide on whether or notQ is a tensor@14#.
By bringing Eq.~6! into Eqs.~31! and ~33! one obtains

Q0052
1

2
Ba,iBi

a , ~34a!

Q0i5Q i052
1

2
e i jkeabB

a, jBb,k, ~34b!

Q i j5Q j i52Bi
aBj

a1gi j B
a,lBl

a . ~34c!

Thus,Q is symmetric and free of ordering ambiguities.
We look next for the equal-time commutator algebra

obeyed by the components ofQ. According to Eq.~34!, this
algebra is fully determined by the commutator~15!. In par-
ticular, one can corroborate that

@Q00~x0,xW !,Q00~x0,yW !#

52 i $Q0k~x0,xW !1Q0k~x0,yW !%]k
xd~xW2yW !,

~35a!

@Q00~x0,xW !,Q0k~x0,yW !#

52 i $Qk j~x0,xW !2gk jQ00~x0,yW !%] j
xd~xW2yW !,

~35b!

@Q0k~x0,xW !,Q0 j~x0,yW !#

5 i $Q0k~x0,yW !]x
j 1Q0 j~x0,xW !]x

k%d~xW2yW !,

~35c!

which is just the Dirac-Schwinger algebra@9#. As is well
known @9#, this guarantees that the charges

5138 55H. O. GIROTTI



Pm[E d3xQ0m, ~36a!

Jmn[E d3x~Q0mxn2Q0nxm!, ~36b!

obey the Poincare´ algebra, i.e., @Pm,Pn#50,
@Jmn,Ps#5 i (gmsPn2gnsPm), and @Jmn,Jrs#5 i (gmrJns

1gnsJmr2gmsJnr2gnrJms).
It takes just a few more steps to demonstrate thatQ is a

tensor. Indeed, the additional equal-time commutators

@Q i j (x0,xW ),Q00(x0,yW )# and @Q i j (x0,xW ),Q0k(x0,yW )# can also
be readily evaluated by using Eqs.~34! and ~15!. These re-
sults and Eq.~35! can be collected into

@Pm,Qab#52 i ]mQab, ~37a!

@Jmn,Qab#52 i ~xn]m2xm]n!Qab2 i ~Qmagnb1Qmbgna

2Qnagmb2Qnbgma!, ~37b!

which are, respectively, the translation and rotation transfor-
mation laws to be obeyed by a second-rank tensor@17#. The
purported proof of relativistic invariance of the quantized
Schwarz-Sen theory is now complete.

What remains to be done is to demonstrate that the Cou-
lomb gauge formulation of the quantized Schwarz-Sen
theory is in fact covariant. Since translations and ordinary

rotations do not destroy the Coulomb gauge condition we
concentrate on Lorentz boosts. By using~36b!, ~34!, ~2b!,
and ~13a! one finds that

2 i @J0k,AT
a,i #5~x0]k2xk]0!AT

a,i2eabe
kl j

] i] l
¹2 ATj

b .

~38!

The term proportional toeab signalizes that gauge potentials
corresponding to different values ofa get mixed by Lorentz
boosts. This does not occur for ordinary rotations. Further-
more, the mixing term in Eq.~38! describes an operator
gauge transformation, which, as one easily verifies, makes
this commutator compatible with the transversality condition
] iAT

a,i50. Hence, under Lorentz boosts, the fieldAT
a,i under-

goes, besides the usual vector transformation, an operator
gauge transformation which restores the Coulomb gauge in
the new Lorentz frame@18#.

Although this work has been entirely carried out within
the Coulomb gauge, we observe that the quantized Schwarz-
Sen model turned out to be a local theory fully formulated in
terms of the gauge invariant fieldsAT

a, j ,a51,2. Therefore,
our conclusions about relativistic invariance apply equally
well for all canonical gauges.
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