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Criticality in confined ionic fluids
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A theory of a confined two-dimensional electrolyte is presented. The positive and negative ions, interacting
by a 1f potential, are constrained to move on an interface separating two solvents with dielectric canstants
and e,. It is shown that the Debye-ldkel type of theory predicts that this two-dimensional Coulomb fluid
should undergo a phase separation into a coexisting lithigh-density and gas(low-density phases. We
argue, however, that the formation of polymerlike chains of alternating positive and negative ions can prevent
this phase transition from taking place.
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[. INTRODUCTION free dipoles below the critical threshold necessary for the
transition to take placf9].

Over the last decade the need to understand Coulombic In this paper we shall study a third model, which we hope
criticality has provided a new impetus to the study of elec-might span the gap between the three-dimensional Coulomb
trolyte solutions. The current wave of exploration can begas and the dipolar hard spheres, and thus shed some addi-
traced to the pioneering experiments of Pitzer and SingHﬁjOl’la| light on the criticality in these interesting and impor-
who have first reported a surprising finding that Coulombtant systems. Our new model consists of a neutral electrolyte
interactions might belong to the mean-field universality clas$onfined to a two-dimensional plaf&0]. This can be visu-

[1]. This suggestion has not gone unchallenged and, in facflized as opposltely charged surfactant molecules adsorped
later experiments are consistent with a crossover from mearl© & water-oil interface. An example of such a system is

field to Ising universality class very close to the critical point c€tltrimethyl amonium-hydroxy naphthalene carboxylate,

[2]. The crossover, if indeed it exists, is much closer to theVhich is composed of two surface active parts, CTand

critical point than for any other known fluid. HNC™ [11].

From the theoretical point of view it is very hard to justify V]Ye Zhgll ?rgue thath;mhl;e ghed?.electrcllyt?[ltz], ctjhe th
anything but Ising criticality3,4]. The goal for the theorists confine plasma might not phase separate. ‘nstead, as e

must then lie in a seemingly simpler task of finding why thetemperature is lowered, chains composed of alternating posi-

. . tive and negative ions will begin to form (.+—+
crossover region for electrolytes is so narrow. Unfortunately ) [4]. Just as with dipolar chains, these new clusters
even this program has failed to produce any satisfactory Snteract weakly between themselves. However, they diminish

planation[5]. Most calculations suggest that the critical re-yno concentration of free ions below the critical value neces-
gion for electrolytes should be comparable to that of asary for the transition to take place.

Lennard-Jones fluid. To further confound the mystery,
Monte Carlo simulations are once again pointing in the di-
rection of mean-field criticality6].

A seemingly unrelated problem concerns the disappear-
ance of the anticipated liquid-gas transition in a system of Our system consists of an ionic fluid bf, positive and
dipolar hard sphere(DHS). Since the DHS is the simplest N_ negative ions confined to a plane of akkdocated atz
realization of a polar fluid, for a long time it has been be-=0, separating two different solvents occupying the half-
lieved that it must exhibit a liquid-gas phase separation. Ispaces at>0 andz<0. We shall restrict our attention to the
came, therefore, as quite a surprise when the Monte Carlgeutral electrolytes, for which, =N_=N/2. The solvents
simulations failed to locate this singularify]. Instead what are treated as uniform mediums with dielectric constants
they found was that as the temperature was lowered, thand €, for z>0 andz<0, respectively. The ions of both
dipolar particles aligned, forming polymerlike chains. Sincespecies are modeled as hard spheres of diara@ted charge
these chains interact weakig], it has been argued that the *q located at the center. It will be convenient to define the
liquid-gas transition must be driven entirely by the free un-dimensionless particle density ast=p.a? where p;
associated dipolef]. In fact a critical density of free di- =N;/A. The total density of ions ip=p, +p_.
poles is needed for the phase transition to occur. At low All the relevant thermodynamic information is contained
temperatures, where most of the theories localize the transin the free-energy density=F/A. Unfortunately due to the
tion, the formation of dipolar chains depletes the density ofcomplexity of interactions, no exact expression f@an be

found. We shall, therefore, attempt to construct the approxi-
mate free energy using the most relevant contributions.
*Corresponding author: Email address: levin@if.ufrgs.br These can be divided into entropic and electrostatic,

1. MODEL
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H(Tpr o )=fSUTop i p ) fe(Tpep). (D)
The entropic(mixing) free energy is given by
BISHT.ps o) =[p=IN(psA?)—p,
+p_In(p_A?—p_], )

where A =\27#%/mkgT is the thermal de Broglie wave-
length of the ions. The second term in EQ) is due to

electrostatic interactions. It is important to note that the elec-
trostatic free energy is purely correlational, since the mean-

field contribution is zero. To calculafie,, let us fix one ion

at the origin. Adopting the cylindrical coordinate system

(0,9,2), the central ion is located g=0, z=0. Due to the
electrostatic interactions the other particles will arrang
themselveswithin the planein accordance with the Boltz-

mann distribution. Since no charge is present in the region
z>0 andz<0, the electrostatic potential there must satisfy
the Laplace equation. Appealing to the azimuthal :symmetr)f‘l
and taking into account the fact that the potential should

vanish at infinity, we find 13]

d:l(Q,z):fowAl(k)JO(kg)ekzdk for z<0 (3

and

¢2(g,z):f:Az(k)Jo(kg)e—kde for z>0, (4)

whereJy(x) is the Bessel function of order zero.
The functionsA(k) and A,(k) are determined by the
boundary conditions; continuity of electrostatic potential,

¢2(Q!0):¢1(Qvo)l (5)

and discontinuity of displacement field across the0
plane,
[€:E5(0.2)— €1Ei(0.,2)]-N=4maei(0),  (6)

wherea(0) is the surface charge density ands a unit

vector normal to the interface, pointing from region 1 to 2.

The continuity of electrostatic potential results Ay (k)
=A,(k)=A(k), while Eq.(6) requires that

Toei( Q)

oc 4
2fokA(k)Jo(kg)dk= 5 , (7)

where D=(e;+€,)/2. The surface charge densifg3] is
given by

qo(e)
270

oeif(@)=040)+ (8)

The term o is the charge density of the “ionic cloud”
around the central ion,

oy(@)=qp.e PI¥—qp_e"FI?, (9)

€

PHYSICAL REVIEW E63 066104

Equations(7) and (8) are only valid in the limita—0. Un-
fortunately it is highly nontrivial to take into account the
boundary condition associated with the finite ionic size. To
circumvent this difficulty, we shall first solve all the equa-
tions in the point particle limit. Then to account for the finite
particle size, we shall replace the bare charge of the central
ion g, in Eq. (8), by an effective charg®, g—Q. The ef-
fective chargeQ will be determined by the condition of an
overall charge neutrality

2wf:os<e>e do=—q. (10

For the 3 electrolyte this procedure leads to an electro-
static potential identical with the one found from the exact
solution of the Debye-Htkel equations with the appropriate

ard-core boundary conditiofi§4]. In the present geometry
the procedure outlined above will only be an approximation,
Ithough we believe a rather good one.

In the spirit of the Debye-Hetkel theory[14] we shall
now linearize the Boltzmann factor in E(P). The surface
charge density then reduces to

_ Drso(Q)

2@ (1)

os(0)=

wherex,=2mp*/T*a is the inverse Gouy-Chapman length
andT* =kgTDa/q? is the reduced temperature. Equati@n

can now be solved yielding the expression for the electro-
static potential

= k
¢<e,z)=§JOk+—KSJO<kg)eklzldk. 12

Forz=0, the in-plane potential agrees with the one obtained
by Velazquez and BlufiLlO] and can be conveniently rewrit-
ten as

Q7o(ksQ)

d-(0)= Do (13

The subscript =" is included to stress that for rigid par-
ticles this form will be appropriate only outside the hard-core
exclusion region,o>a. The functionr,(x) is defined as
[10]

1-v

T,(X)=1— 5

[H,() =N, (x)], (14)

whereH (x) andN,(x) are the Struve and the Bessel func-
tions of orderv, respectivelyf15]. The charge neutrality, Eq.
(10), together with Eqs(11) and(13), determines the effec-
tive chargeQ

q

O an(ka) o

In the limit of a— 0, the renormalized charge reduces to the
bare charge.
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To obtain the electrostatic free energy, we require the

potential inside the excluded volume regiaeh (). Unfor-

tunately the procedure presented above leaves this undet%-

mined. The only statement that we can make is thato)
must be of the form

q
¢<(Q)=D—Q+C(Q)-

(16)
For a three-dimensional unconstrained electrolyeis a
constant. This, however, is not the case in the present geo
etry andC(p) is a function of position. In particular the

value C(0) is the potential that the central ion feels due to
the presence of other particles. In their earlier study, Ve

lasquez and Blunj10] approximatedC(g) by a constant,

which they then determined by requiring continuity of elec-

trostatic potential across the exclusion boundafy(a)
=¢-(a). This, however, is a very rough approximation
since there is nothing to preve@(g) from being a very
strongly varying function of position. To avoid this difficulty

we shall use an alternate method of obtaining the value of
f

C(0). Tothis end we note that the potential at the center o
a circularly symmetric charge distribution is

2m (=
co=7 | oerde. a7

where in order to emphasize that the potential depends on th

density of ions, we have explicitly includeal in its defini-
tion. Using Eq.(11) with the potential given by Eq13) we
find

q » 70(2)

C0p)= Dary(ks@) Jxa Z

dz

(18

The excess chemical potential can now be calculated straig
forwardly by appealing to the Gitelberg charging process
[16]. We find u$*=qC(0;p)/2. The chemical potential of
the positive and negative ions is

Eak

The critical point is determined by the conditiongy . /dp
=0 and#’u- /dp?=0, which reduce to

pA?
2

of |
Ip+ -

BqC(0;p)
CREE

B (19)

2T* Ti‘l‘ |7y — 79— 7470=0,
| Ti—4| 7'07'1—37075-1- | T(2)+ 27(2)71+X2| Ti'f‘ | 7'1+X27'f+ Ti
=0, (20
with

=70(2)

wherex= k¢a. Solving Eqs(20), the critical point is located
atT:=0.0517386 ang?’, =p%_=0.00121988.

dz, (21
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Ill. DEBYE-HU CKEL-BJERRUM APPROXIMATION

Clearly the low temperature at which the critical point is
cated should make us worry about the approximations
which have been adopted. Certainly at such extreme condi-
tions the linearization of the Boltzmann factor, Edl), is

no longer valid. Fortunately, all is not lost. Evidently, linear-
ization of the Boltzmann factor in Eq9) diminishes the
weight of configurations in which the oppositely charged
ions are in a close proximity. It is possible, therefore, to
orrect for the omitted nonlinearities by explicitly allowing
or the formation of “clusters.” These clusters are assumed
to be in a chemical equilibrium with the free unassociated

ions, and their density is determined by the law of mass
action [17,18. The most basic such cluster is a dipole
formed by a (+ —) pair. Within the simplest version of this
theory the dipoles are treated as a noninteracting ideal specie.
For the 3 electrolyte this Debye-Htkel-Bjerrum approxi-
mation (DHBj) [3,4] has proven extremely successful, pre-
dicting the location of the critical point in close agreement
ith the Monte Carlo simulationgl2].

The total density of iong can then be subdivided into
that of free unassociated monopoles=p.+p_, and of
dipolar pairsp,, with p=p;+2p,. In the spirit of DHB]
theory we shall first treat the dipoles as ideal noninteracting
entities whose concentration is determined by the law of
mass actionu , + u_ = u,. The Helmholtz free-energy den-

séty is then given by
Btons;=1 (P12, T +fei(pr, T), (22
where the entropic contribution is
PzA4
Bf ((Ezn)t(plnoZvT) = P2 In(§_2> _p2:|
ht plAz

The &, is the internal partition function of a dipolar pair

R
fz(T;R):Zﬂ'J e A2 dp, (24)
a

where BU,=a/T* ¢ is the electrostatic potential between
the associated ions. In order to evalugT;R) we must
define the distancR at which two ions can be considered to
be associated. Following Bjerrupi7] we choose the value
of Rgj at which{,(T;R), as a function oR, has an inflection
point Rg;=a/T* [4]. With this, the integral in Eq(24) can
be evaluated to yield

24b

{b3e P[Ei(b)—Ei(1)+2e]—b(1+b)},
(25)

whereb=1/T* and Ei(x) is the exponential integral func-
tion.

Since within the DHBj approximation the dipoles are
treated as ideal, the electrostatic free energy only depends on

_’7Ta
52_ b
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the density of free monopolgs,. Substituting the free en-
ergy into the law of mass action, the density of dipoles is

given by
ex eX
p3=&pp_ePlis i), (26)

The charge neutrality requires that =p_=p4/2. The ex-

pression for excess chemical potential was calculated in Se

X

I, u$=pBqC(0;p;)/2, and the inverse Gouy-Chapman

length is nowxs=2mp}/T*a.

PHYSICAL REVIEW E63 066104

Un(ry,ra, ""r”):;j ®ij (i) (29

At zero temperature chains are rigid and the particles are in
contact with one another. The displacement vector between

two ionsi andj is r’;=ali—j|x, wherex is the unit vector

glong the chain. The electrostatic energy of interaction be-
tween the ions of the chain can be evaluated exactly yielding

2

Within the DHBj approximation the dipoles are treated as o 4
ideal specie, therefore, they cannot influence the location of Un:D_aS(”)’ (30
the critical point. Thus, the critical temperature must still be
T%=0.0517386 while the critical density of monopoles
must remainpi.=0.00243975. Substituting these valuesWhere
into Eq. (26), we find that the density of dipoles is5,
=1.08847, which is extremely high. If there are so many ! (—1)%(n—k)
dipoles is it also not possible that there will be higher-order 5(”):;::1 -k (31)

clusters as well?

For nonzero but small temperatures, deviations fftﬂljnoc—
cur. These fluctuations can be taken into account by making
Unfortunately as soon as we get to clusters of three iona Taylor expansion ofJ,, around the ground state up to
the calculations get extremely difficult. The basic problem isquadrupolar order
the internal partition function of the higher-order clusters,
which can no longer be evaluated exactly. Furthermore, 5 n
while it is evident that for a cluster of three ions the low- U.=Uyo— a° 2 (—1)i*i
temperature configurations are chainlike-{+) or "N 2D
(—+—), this is far from obvious for a neutral cluster of two
positive and two negative ions. The entropy favors a chain- (ij —Fﬂ)i’
like configuration ¢ —+—), while the energy favors a T 203 [
. I o . Iriil
compact square cluster. Which will gain in the critical region 1
is hard to say. We note, however, that exactly the same situ-
ation was encountered for dipolar hard sph¢€e$9]. Inthat  Here the subscriptg andy represent the components along
case, in the vicinity of the critical point, the chainlike con- the chain’s direction and perpendicular to it, respectively.
figurations dominated. Since it is much easier to study th&ince we are assuming small deviations from the ground
linear clusters they, therefore, will provide a starting pointstate, for each iom we shall consider only fluctuation con-
for our analysis. tributions to &, arising from the interactions between the
We begin by supposing that at low temperatures our sysaearest and the second-nearest neighbors. Choosing as the
tem will be composed of monopoles of densityand chains it basesc andy, vectors parallel and perpendicular to the

of n monomers with densitigs, . Once again in the spirit of  direction of the chain in the plane=0, the nearest and the
B]errum we shall first treat the clusters as ideal non|nteractsecond nearest disp'acement vectors can be written as

ing species. The particle conservation requires that

IV. LINEAR IONIC CHAINS

> 70 - 20\2
[(rij_rij)x (rij=rijy

(rh)? 2|rg 3

(32

- RO =a(1+\,) Cc_)Sd)‘) (33
p=2, Npn- 27 sing,
Consider an alternating chain composed pbsitive and and
s=n-—t negative ions. The partition function for such a clus-
teris ) (1+X\;)cose;+(1+N\;,1)COSP; 1 34
2 (L+N)sing+(1+\ 1)sing 1]

11 LI s
gn(T):mKJHHdrie n,

Qui=1

(28)

respectively. Hera is the radial andp is the angular devia-

tion from the relative positions in the ground state.
Substituting Egs(33) and (34) into Eq. (32), for small

fluctuations, the electrostatic energy becomes

where(),, is the configurational volume and, is the total
energy of interaction between the ions forming a chain
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U V. RESULTS AND DISCUSSION

1 n—-1 1n72
n = — _——
e S I 2

k=1

Mt Niera

We have presented an argument that suggests that a con-
fined 2d electrolyte should not phase separate. Instead, just
as for the case of dipolar hard spheres, as the temperature is
]. (35 lowered, the ions will associate forming polymerlike chains
of alternating positive and negative monomers. Clearly our
argument is based on a number of assumptions. First, we
have supposed that in the critical region the linear chains

1 2
- (b b

In the low-temperature limit, configurational integral, Eq.

(28) can be performed explicitly yielding, predominate over the compact clusters. This is far from ob-
P vious. If the compact clusters have lower free energy than

¢ (T*)=( )22n,n_n/2T* 32-2-SVT*  for =3 the cham;, t_hey can provide r)uclel for the condensatlpn gnd
n ' the gas-liquid phase separation. A second assumption im-

(36)  plicit in our calculations is that the chains interact only
weakly. This is somewhat easier to justify. Consider an infi-
The prefactor is the result of thermal fluctuations while thenitely long rigid line of alternating charges (- + —+—+
exponential is due to the ground-state energy. —---). Suppose that the center to center distance between
The condition of chemical equilibrium between the mono-the nearest neighborsas It is then possible to show that the
poles and then chains is expressed through the law of masspotential produced by such a line of charge decays exponen-
action w,=tu, +su_. The chemical potential for mono- tially, #(r)~exp(-t/a), wherer is the distance perpen-
poles is given by Eq19) with p— p;, while for n chains the dicular to the chain. Thus, the interactions between long

chemical potential is polymerlike clusters should, indeed, be quite weak. How-
ever, the shorter chains can still interact sufficiently strongly
pn A2 to drive phase transitiof20]. Finally, even if the formation
un=kgTIn £ (T)} (37 of chains prevents the liquid-gas phase separation, it does not
n

forestall other kinds of phase transitions from taking place
[21]. At sufficiently high densities, the two component
plasma will crystallize exhibiting a pseudolong-range order.
h At low temperatures and densities, where the polymerlike
pn= (ﬂ) £ (T* )enﬁuix_ (38)  chains predominate, thélike defect formatior22] can lead
2 to a coexistence between two phases, one with high and the
o other with low concentration of defecf23].

At the level of approximation that we have adopted, the  After this paper was completed and submitted for publi-
chains are treated as noninteracting ideal species. This meaggtion, the referee drew our attention to a recently published
that just like in the case of dipoles in Sec. lll, they cannotgjmylation by Weis, Levesque, and CaillWLC) [24] of a
affect location of the critical point. ThereforeT? 24 jonic fluid. Indeed, these authors found coexistence be-
=0.0517386 ang,=0.002439 75. Substituting these val- tween high- and low-density phases. WLC estimated the
ues into Eq(38) we find that the sum in Eq27) diverges. In  critical temperature to b&.~0.04, which should be com-
fact according to the Cauchy criterion, the sum in B2¥)  pared with our Debye-Hkel prediction ofT,=0.052. Fur-

The law of mass action reduces to

will converge absolutely, if and only if, thermore, in the low-density phase, WLC found predomi-
. nance of chain and ringlike clusters. The high-density phase
A=lim prih<1, (39  resembles a percolating gellike clusfed]. Although there

n—o

is a phase coexistence, it is difficult to associate it with a
traditional liquid-vapor transition. Instead the coexistence re-
sembles more a sol-gel transition in polymer systems. The
task for theorists must now be to quantitatively understand
the phase transition found by WLC. We hope that the current
paper will provide a first step in this direction.

Using Eq.(38),

a+1(X)/11(X)

2T* ’ 40

A=2p}yoT*3 ex;{

where =2 In2 andx=«¢(p;)a. Inserting the critical pa- ACKNOWLEDGMENTS
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