
l

PHYSICAL REVIEW E, VOLUME 63, 066104
Criticality in confined ionic fluids
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A theory of a confined two-dimensional electrolyte is presented. The positive and negative ions, interacting
by a 1/r potential, are constrained to move on an interface separating two solvents with dielectric constantse1

and e2. It is shown that the Debye-Hu¨ckel type of theory predicts that this two-dimensional Coulomb fluid
should undergo a phase separation into a coexisting liquid~high-density! and gas~low-density! phases. We
argue, however, that the formation of polymerlike chains of alternating positive and negative ions can prevent
this phase transition from taking place.
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I. INTRODUCTION

Over the last decade the need to understand Coulom
criticality has provided a new impetus to the study of ele
trolyte solutions. The current wave of exploration can
traced to the pioneering experiments of Pitzer and Sin
who have first reported a surprising finding that Coulom
interactions might belong to the mean-field universality cl
@1#. This suggestion has not gone unchallenged and, in f
later experiments are consistent with a crossover from me
field to Ising universality class very close to the critical po
@2#. The crossover, if indeed it exists, is much closer to
critical point than for any other known fluid.

From the theoretical point of view it is very hard to justi
anything but Ising criticality@3,4#. The goal for the theorists
must then lie in a seemingly simpler task of finding why t
crossover region for electrolytes is so narrow. Unfortunat
even this program has failed to produce any satisfactory
planation@5#. Most calculations suggest that the critical r
gion for electrolytes should be comparable to that of
Lennard-Jones fluid. To further confound the myste
Monte Carlo simulations are once again pointing in the
rection of mean-field criticality@6#.

A seemingly unrelated problem concerns the disapp
ance of the anticipated liquid-gas transition in a system
dipolar hard spheres~DHS!. Since the DHS is the simples
realization of a polar fluid, for a long time it has been b
lieved that it must exhibit a liquid-gas phase separation
came, therefore, as quite a surprise when the Monte C
simulations failed to locate this singularity@7#. Instead what
they found was that as the temperature was lowered,
dipolar particles aligned, forming polymerlike chains. Sin
these chains interact weakly@8#, it has been argued that th
liquid-gas transition must be driven entirely by the free u
associated dipoles@9#. In fact a critical density of free di-
poles is needed for the phase transition to occur. At l
temperatures, where most of the theories localize the tra
tion, the formation of dipolar chains depletes the density
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free dipoles below the critical threshold necessary for
transition to take place@9#.

In this paper we shall study a third model, which we ho
might span the gap between the three-dimensional Coulo
gas and the dipolar hard spheres, and thus shed some
tional light on the criticality in these interesting and impo
tant systems. Our new model consists of a neutral electro
confined to a two-dimensional plane@10#. This can be visu-
alized as oppositely charged surfactant molecules adso
to a water-oil interface. An example of such a system
cetyltrimethyl amonium-hydroxy naphthalene carboxyla
which is composed of two surface active parts, CTA1 and
HNC2 @11#.

We shall argue that unlike the 3d electrolyte @12#, the
confined 2d plasma might not phase separate. Instead, as
temperature is lowered, chains composed of alternating p
tive and negative ions will begin to form ( . . .121
2 . . . ) @4#. Just as with dipolar chains, these new clust
interact weakly between themselves. However, they dimin
the concentration of free ions below the critical value nec
sary for the transition to take place.

II. MODEL

Our system consists of an ionic fluid ofN1 positive and
N2 negative ions confined to a plane of areaA located atz
50, separating two different solvents occupying the ha
spaces atz.0 andz,0. We shall restrict our attention to th
neutral electrolytes, for whichN15N25N/2. The solvents
are treated as uniform mediums with dielectric constantse2
and e1 for z.0 and z,0, respectively. The ions of both
species are modeled as hard spheres of diametera and charge
6q located at the center. It will be convenient to define t
dimensionless particle density asr6* 5r6a2, where r i

5Ni /A. The total density of ions isr5r11r2 .
All the relevant thermodynamic information is containe

in the free-energy density,f 5F/A. Unfortunately due to the
complexity of interactions, no exact expression forf can be
found. We shall, therefore, attempt to construct the appro
mate free energy using the most relevant contributio
These can be divided into entropic and electrostatic,
©2001 The American Physical Society04-1
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f ~T,r1 ,r2!5 f ent
(1)~T,r1 ,r2!1 f el~T,r1 ,r2!. ~1!

The entropic~mixing! free energy is given by

b f ent
(1)~T,r1 ,r2!5@r1 ln~r1L2!2r1

1r2 ln~r2L2!2r2#, ~2!

where L5A2p\2/mkBT is the thermal de Broglie wave
length of the ions. The second term in Eq.~1! is due to
electrostatic interactions. It is important to note that the el
trostatic free energy is purely correlational, since the me
field contribution is zero. To calculatef el , let us fix one ion
at the origin. Adopting the cylindrical coordinate syste
(%,w,z), the central ion is located at%50, z50. Due to the
electrostatic interactions the other particles will arran
themselveswithin the planein accordance with the Boltz
mann distribution. Since no charge is present in the regi
z.0 andz,0, the electrostatic potential there must satis
the Laplace equation. Appealing to the azimuthal symme
and taking into account the fact that the potential sho
vanish at infinity, we find@13#

f1~%,z!5E
0

`

A1~k!J0~k% !ekzdk for z,0 ~3!

and

f2~%,z!5E
0

`

A2~k!J0~k% !e2kzdk for z.0, ~4!

whereJ0(x) is the Bessel function of order zero.
The functionsA1(k) and A2(k) are determined by the

boundary conditions; continuity of electrostatic potential,

f2~%,0!5f1~%,0!, ~5!

and discontinuity of displacement field across thez50
plane,

@e2E2~%,z!2e1E1~%,z!#•n̂54pse f f~% !, ~6!

wherese f f(%) is the surface charge density andn̂ is a unit
vector normal to the interface, pointing from region 1 to
The continuity of electrostatic potential results inA1(k)
5A2(k)5A(k), while Eq. ~6! requires that

2E
0

`

kA~k!J0~k% !dk5
4pse f f~% !

D
, ~7!

where D5(e11e2)/2. The surface charge density@13# is
given by

se f f~% !5ss~% !1
qd~% !

2p%
. ~8!

The term ss is the charge density of the ‘‘ionic cloud’
around the central ion,

ss~% !5qr1e2bqf2qr2e1bqf. ~9!
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Equations~7! and ~8! are only valid in the limita→0. Un-
fortunately it is highly nontrivial to take into account th
boundary condition associated with the finite ionic size.
circumvent this difficulty, we shall first solve all the equ
tions in the point particle limit. Then to account for the fini
particle size, we shall replace the bare charge of the cen
ion q, in Eq. ~8!, by an effective chargeQ, q→Q. The ef-
fective chargeQ will be determined by the condition of a
overall charge neutrality

2pE
a

`

ss~% !% d%52q. ~10!

For the 3d electrolyte this procedure leads to an elect
static potential identical with the one found from the exa
solution of the Debye-Hu¨ckel equations with the appropriat
hard-core boundary conditions@14#. In the present geometry
the procedure outlined above will only be an approximatio
although we believe a rather good one.

In the spirit of the Debye-Hu¨ckel theory @14# we shall
now linearize the Boltzmann factor in Eq.~9!. The surface
charge density then reduces to

ss~% !52
Dksf~% !

2p
, ~11!

whereks52pr* /T* a is the inverse Gouy-Chapman leng
andT* 5kBTDa/q2 is the reduced temperature. Equation~7!
can now be solved yielding the expression for the elec
static potential

f~%,z!5
Q

DE
0

` k

k1ks
J0~k% !e2kuzu dk. ~12!

For z50, the in-plane potential agrees with the one obtain
by Velazquez and Blum@10# and can be conveniently rewrit
ten as

f.~% !5
Qt0~ks% !

D%
. ~13!

The subscript ‘‘. ’’ is included to stress that for rigid par
ticles this form will be appropriate only outside the hard-co
exclusion region,%.a. The functiontn(x) is defined as
@10#

tn~x!512
px12n

2
@Hn~x!2Nn~x!#, ~14!

whereHn(x) andNn(x) are the Struve and the Bessel fun
tions of ordern, respectively@15#. The charge neutrality, Eq
~10!, together with Eqs.~11! and~13!, determines the effec
tive chargeQ

Q52
q

ksat1~ksa!
. ~15!

In the limit of a→0, the renormalized charge reduces to t
bare chargeq.
4-2
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To obtain the electrostatic free energy, we require
potential inside the excluded volume region,f,(%). Unfor-
tunately the procedure presented above leaves this und
mined. The only statement that we can make is thatf,(%)
must be of the form

f,~% !5
q

D%
1C~% !. ~16!

For a three-dimensional unconstrained electrolyte,C is a
constant. This, however, is not the case in the present ge
etry andC(%) is a function of position. In particular the
value C(0) is the potential that the central ion feels due
the presence of other particles. In their earlier study, V
lasquez and Blum@10# approximatedC(%) by a constant,
which they then determined by requiring continuity of ele
trostatic potential across the exclusion boundaryf,(a)
5f.(a). This, however, is a very rough approximatio
since there is nothing to preventC(%) from being a very
strongly varying function of position. To avoid this difficult
we shall use an alternate method of obtaining the value
C(0). To this end we note that the potential at the center
a circularly symmetric charge distribution is

C~0;r!5
2p

D E
a

`

ss~% !d%, ~17!

where in order to emphasize that the potential depends on
density of ions, we have explicitly includedr in its defini-
tion. Using Eq.~11! with the potential given by Eq.~13! we
find

C~0;r!5
q

Dat1~ksa!
E

ksa

` t0~z!

z
dz. ~18!

The excess chemical potential can now be calculated stra
forwardly by appealing to the Gu¨ntelberg charging proces
@16#. We find m6

ex5qC(0;r)/2. The chemical potential o
the positive and negative ions is

bm65
] f

]r6
5 lnS rL2

2 D1
bqC~0;r!

2
. ~19!

The critical point is determined by the conditions,]m6 /]r
50 and]2m6 /]r250, which reduce to

2T* t1
21I t12I t02t1t050,

I t1
224I t0t123t0t1

21I t0
212t0

2t11x2I t1
21I t11x2t1

31t1
2

50, ~20!

with

I ~x!5E
x

`t0~z!

z
dz, ~21!

wherex5ksa. Solving Eqs.~20!, the critical point is located
at Tc* 50.051 738 6 andrc1* 5rc2* 50.001 219 88.
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III. DEBYE-HÜ CKEL-BJERRUM APPROXIMATION

Clearly the low temperature at which the critical point
located should make us worry about the approximatio
which have been adopted. Certainly at such extreme co
tions the linearization of the Boltzmann factor, Eq.~11!, is
no longer valid. Fortunately, all is not lost. Evidently, linea
ization of the Boltzmann factor in Eq.~9! diminishes the
weight of configurations in which the oppositely charg
ions are in a close proximity. It is possible, therefore,
correct for the omitted nonlinearities by explicitly allowin
for the formation of ‘‘clusters.’’ These clusters are assum
to be in a chemical equilibrium with the free unassocia
ions, and their density is determined by the law of ma
action @17,18#. The most basic such cluster is a dipo
formed by a (12) pair. Within the simplest version of this
theory the dipoles are treated as a noninteracting ideal sp
For the 3d electrolyte this Debye-Hu¨ckel-Bjerrum approxi-
mation ~DHBj! @3,4# has proven extremely successful, pr
dicting the location of the critical point in close agreeme
with the Monte Carlo simulations@12#.

The total density of ionsr can then be subdivided into
that of free unassociated monopolesr15r11r2 , and of
dipolar pairsr2, with r5r112r2. In the spirit of DHBj
theory we shall first treat the dipoles as ideal noninteract
entities whose concentration is determined by the law
mass action,m11m25m2. The Helmholtz free-energy den
sity is then given by

b f DHB j5 f ent
(2)~r1 ,r2 ,T!1 f el~r1 ,T!, ~22!

where the entropic contribution is

b f ent
(2)~r1 ,r2 ,T!5Fr2 lnS r2L4

j2
D2r2G

1Fr1 lnS r1L2

2 D2r1G . ~23!

The j2 is the internal partition function of a dipolar pair

j2~T;R!52pE
a

R

e2bU2(%)% d%, ~24!

where bU25a/T* % is the electrostatic potential betwee
the associated ions. In order to evaluatej2(T;R) we must
define the distanceR at which two ions can be considered
be associated. Following Bjerrum@17# we choose the value
of RB j at whichj2(T;R), as a function ofR, has an inflection
point RB j5a/T* @4#. With this, the integral in Eq.~24! can
be evaluated to yield

j25
pa2eb

b
$b3e2b@Ei~b!2Ei~1!12e#2b~11b!%,

~25!

whereb51/T* and Ei(x) is the exponential integral func
tion.

Since within the DHBj approximation the dipoles a
treated as ideal, the electrostatic free energy only depend
4-3
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the density of free monopolesr1. Substituting the free en
ergy into the law of mass action, the density of dipoles
given by

r2* 5j2r1r2eb(m1
ex

1m2
ex). ~26!

The charge neutrality requires thatr15r25r1/2. The ex-
pression for excess chemical potential was calculated in
II, m6

ex5bqC(0;r1)/2, and the inverse Gouy-Chapma
length is nowks52pr1* /T* a.

Within the DHBj approximation the dipoles are treated
ideal specie, therefore, they cannot influence the locatio
the critical point. Thus, the critical temperature must still
Tc* 50.051 738 6 while the critical density of monopole
must remainr1c* 50.002 439 75. Substituting these valu
into Eq. ~26!, we find that the density of dipoles isr2c*
51.088 47, which is extremely high. If there are so ma
dipoles is it also not possible that there will be higher-ord
clusters as well?

IV. LINEAR IONIC CHAINS

Unfortunately as soon as we get to clusters of three i
the calculations get extremely difficult. The basic problem
the internal partition function of the higher-order cluste
which can no longer be evaluated exactly. Furthermo
while it is evident that for a cluster of three ions the low
temperature configurations are chainlike, (121) or
(212), this is far from obvious for a neutral cluster of tw
positive and two negative ions. The entropy favors a cha
like configuration (1212), while the energy favors a
compact square cluster. Which will gain in the critical regi
is hard to say. We note, however, that exactly the same s
ation was encountered for dipolar hard spheres@9,19#. In that
case, in the vicinity of the critical point, the chainlike co
figurations dominated. Since it is much easier to study
linear clusters they, therefore, will provide a starting po
for our analysis.

We begin by supposing that at low temperatures our s
tem will be composed of monopoles of densityr1 and chains
of n monomers with densitiesrn . Once again in the spirit o
Bjerrum we shall first treat the clusters as ideal nonintera
ing species. The particle conservation requires that

r5 (
n51

`

nrn . ~27!

Consider an alternating chain composed oft positive and
s5n2t negative ions. The partition function for such a clu
ter is

jn~T!5
1

s! t!

1

AEVn
)
i 51

n

d2r i e2bUn, ~28!

whereVn is the configurational volume andUn is the total
energy of interaction between the ions forming a chain
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Un~r1 ,r2 , . . . ,rn!5(
i , j

n

w i j ~r i j !. ~29!

At zero temperature chains are rigid and the particles ar
contact with one another. The displacement vector betw
two ions i and j is rW i , j

0 [au i 2 j ux̂, wherex̂ is the unit vector
along the chain. The electrostatic energy of interaction
tween the ions of the chain can be evaluated exactly yield

Un
05

q2

Da
S~n!, ~30!

where

S~n!5 (
k51

n21
~21!k~n2k!

k
. ~31!

For nonzero but small temperatures, deviations fromrW i , j
0 oc-

cur. These fluctuations can be taken into account by mak
a Taylor expansion ofUn around the ground state up t
quadrupolar order

Un5Un
02

q2

2D (
iÞ j

n

~21! i 1 j H ~rW i j 2rW i j
0 !x

~rW i j
0 !2

1
~rW i j 2rW i j

0 !y
2

2urW i j
0 u3

2
~rW i j 2rW i j

0 !x
2

urW i j
0 u3 J . ~32!

Here the subscriptsx andy represent the components alon
the chain’s direction and perpendicular to it, respective
Since we are assuming small deviations from the grou
state, for each ioni we shall consider only fluctuation con
tributions to jn arising from the interactions between th
nearest and the second-nearest neighbors. Choosing a
unit basesx̂ and ŷ, vectors parallel and perpendicular to th
direction of the chain in the planez50, the nearest and th
second nearest displacement vectors can be written as

RW 1
( i )5a~11l i !S cosf i

sinf i
D ~33!

and

RW 2
( i )5aF ~11l i !cosf i1~11l i 11!cosf i 11

~11l i !sinf i1~11l i 11!sinf i 11
G , ~34!

respectively. Herel is the radial andf is the angular devia-
tion from the relative positions in the ground state.

Substituting Eqs.~33! and ~34! into Eq. ~32!, for small
fluctuations, the electrostatic energy becomes
4-4
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Un

kBT
5

1

T*
H S~n!1 (

k51

n21

lk2
1

4 (
k51

n22 Flk1lk11

2
1

4
~fk2fk11!2G J . ~35!

In the low-temperature limit, configurational integral, E
~28! can be performed explicitly yielding,

jn~T* !5S a2n22

9 D22npn/2T* 3n/222e2S(n)/T* for n>3.

~36!

The prefactor is the result of thermal fluctuations while t
exponential is due to the ground-state energy.

The condition of chemical equilibrium between the mon
poles and then chains is expressed through the law of ma
action mn5tm11sm2 . The chemical potential for mono
poles is given by Eq.~19! with r→r1, while for n chains the
chemical potential is

mn5kBT lnFrnL2n

jn~T! G . ~37!

The law of mass action reduces to

rn5S r1

2 D n

jn~T* !enbm6
ex

. ~38!

At the level of approximation that we have adopted, t
chains are treated as noninteracting ideal species. This m
that just like in the case of dipoles in Sec. III, they cann
affect location of the critical point. ThereforeTc*
50.051 738 6 andr1c* 50.002 439 75. Substituting these va
ues into Eq.~38! we find that the sum in Eq.~27! diverges. In
fact according to the Cauchy criterion, the sum in Eq.~27!
will converge absolutely, if and only if,

D[ lim
n→`

rn*
1/n,1. ~39!

Using Eq.~38!,

D52r1* ApT* 3 expFa1I ~x!/t1~x!

2T*
G , ~40!

where a52 ln 2 andx5ks(r1)a. Inserting the critical pa-
rameters into the expression above, we find that at critica
Dc55.82706, and the Cauchy criterion is strongly violate
Therefore, the critical density of monopoles lies outside
radius of convergence of Eq.~27!. This means that for any
finite densityr, the density of monopoles never reaches
threshold necessary for the phase separation to occurr1
,r1c .
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V. RESULTS AND DISCUSSION

We have presented an argument that suggests that a
fined 2d electrolyte should not phase separate. Instead,
as for the case of dipolar hard spheres, as the temperatu
lowered, the ions will associate forming polymerlike chai
of alternating positive and negative monomers. Clearly
argument is based on a number of assumptions. First,
have supposed that in the critical region the linear cha
predominate over the compact clusters. This is far from
vious. If the compact clusters have lower free energy th
the chains, they can provide nuclei for the condensation
the gas-liquid phase separation. A second assumption
plicit in our calculations is that the chains interact on
weakly. This is somewhat easier to justify. Consider an in
nitely long rigid line of alternating charges (•••12121
2•••). Suppose that the center to center distance betw
the nearest neighbors isa. It is then possible to show that th
potential produced by such a line of charge decays expon
tially, c(r );exp(2pr/a), where r is the distance perpen
dicular to the chain. Thus, the interactions between lo
polymerlike clusters should, indeed, be quite weak. Ho
ever, the shorter chains can still interact sufficiently stron
to drive phase transition@20#. Finally, even if the formation
of chains prevents the liquid-gas phase separation, it does
forestall other kinds of phase transitions from taking pla
@21#. At sufficiently high densities, the two compone
plasma will crystallize exhibiting a pseudolong-range ord
At low temperatures and densities, where the polymerl
chains predominate, theY-like defect formation@22# can lead
to a coexistence between two phases, one with high and
other with low concentration of defects@23#.

After this paper was completed and submitted for pub
cation, the referee drew our attention to a recently publis
simulation by Weis, Levesque, and Caillol~WLC! @24# of a
2d ionic fluid. Indeed, these authors found coexistence
tween high- and low-density phases. WLC estimated
critical temperature to beTc'0.04, which should be com
pared with our Debye-Hu¨ckel prediction ofTc50.052. Fur-
thermore, in the low-density phase, WLC found predom
nance of chain and ringlike clusters. The high-density ph
resembles a percolating gellike cluster@24#. Although there
is a phase coexistence, it is difficult to associate it with
traditional liquid-vapor transition. Instead the coexistence
sembles more a sol-gel transition in polymer systems. T
task for theorists must now be to quantitatively understa
the phase transition found by WLC. We hope that the curr
paper will provide a first step in this direction.
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