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S-wave meson-nucleon scattering in an SU(3) claudy bag model
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The cloudy bag model (CBM) is extended to incorporate chiral SU(3) & SU(3) symmetry, in order
to describe 5-wave KX and KX scattering. In spite of the large mass of the kaon, the model yields
reasonable results once the physical masses of the mesons are used. We use that version of the CBM
in which the mesons couple to the quarks with an axial-vector coupling throughout the bag volume.
This version also has a meson-quark contact interaction with the same spin-flavor structure as the
exchange of the octet of vector mesons. The present model strongly supports the contention that the
A*(1405) is a FYX bound state.

INTRODUCTION

Over the past five years the various extensions of the
MIT bag model which incorporate PCAC (partial conser-
vation of axial-vector current) have attracted a great deal
of interest. ' This area remains controversial, and issues
such as the nucleon bag size, the penetration of the meson
field into the bag interior, and the role of the meson field
in generating baryon number ' are still being hotly de-
bated. Nevertheless, these developments have certainly
led to some remarkable improvements in our understand-
ing of low-energy hadronic properties (for example,
baryon magnetic moments and charge radii, " ' and the
axial-vector form factor of the nucleon' '

) as well as
low-energy pion-nucleon scattering ' ' ' and photopro-
duction.

Cxiven this interest and success in the pionic sector it
seems very natural to consider the extension to chiral
SU(3)&&SU(3). Several groups have already investigated
the corrections to hyperon magnetic moments arising
from kaon loops. ' However, they turned out to be rel-
atively small. We have been motivated both by the
discrepancy between the Kp atomic shift and the Kp
scattering length, " and by the controversial nature of the
A (1405) to investigate the consequences of a chiral
SU(3) XSU(3) extension of the cloudy bag model (CBM)
to the low-energy KN and Xm. systems.

Our first major finding, namely, that (as suggested by
Dalitz and co-workers for many years ) the A'(1405) is
not a simple three-quark state, has already been published
as a Letter. In this paper we shall present a detailed ex-
planation of this result, including the parameter depen-
dence, the tests to which the model has been subjected,
and the calculational technique. There is, of course, also
some discussion of the physical assumptions on which the
calculation is based.

Briefly the structure of the paper is as follows. In Sec.
II we define the model, and derive the appropriate Hamil-
tonian for low-energy XN and Xm. interactions. After

some discussion of the approximations made, and the ef-
fects of renormalization, we report on some test of the
same model for low-energy EX and vrN scattering. The
results for the coupled X%-Xm system in the region of the
A*(1405) are presented in detail in Sec. III. It will be seen
that the model provides an excellent description of the
new high-quality data of Hemingway et a/. We reserve
Sec. IV for the discussion of several theoretical aspects of
the calculation, including the behavior of the K matrices
subthreshold, and the fraction of the strength ( —14%%uo) at
the A*(1405) pole associated with a three-quark state. Fi-
nally, in Sec. V we summarize our finding and suggest
ways of eliminating some of the approximations used
here. We also point the way to some interesting new ap-
plications of the model.

II. FORMAL DEVELOPMENT OF THE MODEL

The natural generalization of the SU(2) &&SU(2) CBM
with volume coupling ' * is

I. =(iqgq B)8„——,qq5, —+ ,
' (D&P)—

qyt'y, A, .q (D„Q)e,2f (2.1)

Here q(x) and P(x) are the quark and meson-octet fields,
B is the phenomenological energy density, f is the
meson-octet decay constant, and A. are the SU(3) matrices
of Cjrell-Mann. The function e„ is 1 inside the bag
volume and 0 outside, while 5, is a surface 5 function.
For a static, spherical bag, as we assume, these functions
reduce to 8(R r) and 5(R r) The—D'.s denot—e the ap-
propriate covariant derivatives.

To make the calculations tractable, it is convenient to
do a perturbation expansion of the Lagrangian keeping
only the terms up to order P . The assumption implicit in
this approximation is that the meson fields are rather
small or, equivalently, that the bag radius is not small
()0.8 fm). To this order in P the covariant derivatives
reduce to
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Dqg=Bpg,

Pq=9q+ 2
A, .(gx d„Q)y"q,

4 2

where the SU(3) cross product is

(Axe,4).= g A~„d,f.b, ,

(2.2)

(2.3)

(2.4)

H =Ho+H;„, = g Bo(80 i
H

i Bo )Bo
Bo,Bo

(2.13)

where 80 (80) is the creation (annihilation) operator for
three quark bags of type 80 (80) and

~
80) and

~
80)

are baryonic bare wave functions. Using the MIT bag
wave functions and the Fourier transform of the meson
fields,

with f,b, being the SU(3) structure constants. Hence up
to order P the Lagrangian density is

L =(iqelq —8)8,——,
'

qq5, + —,(&qf)

g„ 8„"qyl'ysk qd„Q , —qk.y"q(PX&„$) .P 4f2 (2.5)

The Hainiltonian is obtained in the canonical way from

H= f d'x T (x),
where T is the energy-momentum tensor. From Eq.
(2.5) we therefore find

(2.6)

0=ao+a'+a (2.7)

where Ho describes free bags and mesons, and the interac-
tions are

H, = f d'x— qy"ysM at,y' (2.8)

and

H, = f d'x ",qky~q. (PXd„g) . (2.9)

The first-order term H, couples a "bare" baryon and a
meson to a "bare" baryonic state, while the second-order
term H, is a contact or four-point interaction.

It is useful to eliminate the spatial derivatives in H, by
rewriting it as a sum of two terms, one of which contains
the surface contribution and the other contains just a time
derivative. For this purpose, we do the integration in Eq.
(2.8) by parts. Using the Dirac equation, the linear boun-
dary condition on the surface

y(x)= f [a(k)e'""+a (k)e '""], (2.14)
d'k

[(2ir) 2@ok]'

where a and a represent annihilation and creation opera-
tors which obey the usual commutation relations, the un-
perturbed Hamiltonian at the baryon level is

Ho g(m——g, +k )'~ 808p
Bo

+ g f d k'cheka; (k')a;(k'), (2.15)

j0(co,r)
q„(r,t)= ev 4m

iver

rj i(co,r). * b 0(R r), (2.16)—

where b denotes the spin-isospin wave function of the
quark (which can be seen in detail in Ref. 29) and
ai, =2.04 /R is the energy of the quark ground state
which satisfies the linear boundary condition Eq. (2.10).
The 1p&&2 wave function is

where mB is the MIT bare bag mass. Naturally, the
specification of the interaction Hamiltonian depends on
the baryons involved in the transition. For the contact
piece it is clear that to analyze EX, KN, and wN scatter-
ing we need to consider baryon-octet members transitions
(BM~B'M'). For the first-order piece H„since we are
primarily interested in low-energy EÃ scattering, we shall
consider the transition baryon-meson octet to a baryon
(A') composed of u, d, and s quarks in an SU(3) singlet
with one quark excited to a Ip level. In this case we need
only the lsi&2 and lpi~2 MIT bag wave functions. For a
static spherical bag of radius R the ls wave function can
be written as

'n'q =q Ir=ii ~ (2.10)

where n" is the unit normal to the surface of the confin-
ing region, and the relation

q, , (r, t) =
—cr rji(cour)

e ~ b8(R r), —
ijo cour

B„Op(x)=n„5,(x),
we get for massless quarks

(2.11)

g 8„
Hs = qysZ'qy5s — ao(qy'ysZ qy) d'x .

(2.12)

The case where the strange quark is massive is considered
in Appendix A.

The interaction Hamiltonian can be projected onto the
space of colorless nonexotic baryon states. Following
Theberge and Thomas, "we write

(2.17)

with co& ——3.81 . jR being the energy of the first excited
quark state. The normalization factors in Eqs. (2.16) and
(2.17) are

2= 1 cos p&

2jo (cos&R)R to, &+1
(2.18)

The corresponding wave functions for massive quarks are
given in Appendix A.

Using the quantized meson fields and the quark wave
functions, the interaction Hamiltonian for the transition
BM~A reduces to
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H, = g f d k[V .(k)a (k)+V (k)a. (k)], (2.19)

Vpj(k) =Bpupj (k)Ap, (2.20)

J

where j labels the type of meson (including its charge
state).

The vertex function is given by

u*~(kR) 'a, '~,P

Up =A, C;,' 0''x' [(2~)'2~ (k)]'/' "'~' (2.21)

where a labels the meson-baryon pair (e.g., KN or Xm),
and the dependence of Upj on j is hidden in the Clebsch-
Gordan coefficient. The form factor for s-wave scatter-
ing is [using Eq. (2.21)]

R

u A+
(kR ) XziVp 2R Jp(CozR j)p(co&Rj)p(kR ) [ro, —ro—

& +roM(k)] f dr r [jp(ro, r)jp(roar)+j &(ro, r)J, (roar)]jp(kr)

(2.22)

and the coupling constants are given in Table I.
For S-wave scattering the spatial part of the covariant derivative of H, [Eq. (2.9)] does not contribute, and we just

present the result corresponding to the time derivative for transitions between baryon-meson-octet members:

H, = g f d k f d k' Vpj(k, k')a; (k)aj(k'), (2.23)

with the vertex function

Vpi(k, k')= g Bpu()~ (k, k')Bp
Bo,Bo

(2.24)

where, once again, (i,j) and (B,B ) label the type of meson (and baryon), including its charge state. If we restrict our-
selves to purely S-wave scattering we find the following explicit expression for Up J:

u' p(k, k', R)
'J ' +P [(2~)32 (I )]1/2[(2 )32~ ( ki)]1 2/~B~M ~B'M' (2.25)

7 3

[In Eq. (2.25) a and P are a shorthand notation for the initial or final meson-baryon pair=-e. g., EN or Xm.] The form
factor is

Ru' p(k, k', R)=N, [roM(k)+coM (k')] f dr r [j p (roar)+j i (ro, r)ljp(krj)p(k'r), (2.26)

and the coupling constants are given in Tables I and II. H ~B&=m, (B&, (2.27)

A. Vertex renorma1ization

So far the Hamiltonian which we have written down
connects bare baryons [see Eq. (2.13)]. However, we want
to describe physical baryons which in the CBM consist of
"dressed" bags. That is, the physical baryon B is part of
the time (Zz ) a bare three-quark bag, a bare bag sur-
rounded by a cloud of one meson, two mesons, and so on.
Thus the physical baryon satisfies the equation"

where

A=1 —g ~
B;)(B;

~

Bo
(2.29)

and can be expanded in terms of the bare bag states
IB,B', . . .I:

B}=Q Z~~Bp)+A IB'}, (22&)

TABLE I. The coupling constants for KN scattering with
isospin 0 and 1. In the first column are the values for 2fA. „„ah
Eq. (2.21), while the other columns contain 2f2A. a Eq. (2.25). TABLE EE. The coupling constants for S-wave EN and mN

scattering with isospin I. The values quoted are 2f A, s in the
notation of Eq. (2.25).
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Ply =Pfg +XB (2.30)

In terms of this state X, the normalization condition on

~

8 ) implies

projects out only those states which contain at least one
meson. The mass of the dressed state, mB, is then P

8 C D 8

ry
I v

8 C D 8

Zz(mB)= 1 — X (E)t) B
BE

FIG. 2. Lowest-order diagrams contributing to (a)

uoj Zt (CD) [Eq. (2.34)] and to (b) V()~ (k, k')ZtMM (C,D)
[Eq. {2.37)].

=[1+XB Z2 (8')] (2.31)

The lowest-order self-energy diagram which contributes to
Z2 (8') is shown in Fig. 1.

Usually the vertex renormalization is discussed in the
context of Yukawa couplings, where the renormalized ver-
tex function is

Vtj (k,k')=(8
i Votj (k, k') iB')

Qz', v'z",
V(),~(k, k'),

laP
(2.36)

uJ (k)=(8
i VOJ(k) i

8') .

This implies that

(2 32} where

(z, p)-'=1+gz, p(y, S).
y, S

(2.37)

ZB ZB'
uJB (k)= BB, uoj. (k),

Z]

with the vertex renormalization constant given by

(2.33)

(Zt ) '=1+ g Zi (C&) . (234)
C,D

BB'
The lowest-order diagram which contributes to u q&,
namely, Z& (C,D) is shown in Fig. 2(a).

Hence to calculate the vertex renormalization for a Yu-
kawa coupling it is necessary to calculate the probabilities
Z2' ' [defined in Eqs. (2.28) and (2.31)] and the func-
tions Z&' (C,D). All of these quantities are given in
great detail by Theberge and Thomas. " We shall briefly
indicate how to use a similar procedure to calculate the
vertex renormalization of the contact interaction. Once
again there is a bare interaction:

(Zt p) '=1+ Qzi p(8'), (2.38)

where for elastic scattering

The lowest-order diagram which contributes to
VOJ (k, k'), namely, Zi p(y, 5), is shown in Fig. 2(b). In
practice, we have included only the dressing associated
with virtual pions. However, we have checked that those
graphs involving virtual kaons are small.

Basically the difference between the renormalization of
a Yukawa interaction and a contact interaction resides in
the difference between Figs. 2(a) and 2(b). As the contact
interaction is independent of spin, under certain assump-
tions it is possible to relate the two renormalizations Z&

and Z2. For example, if we retain only pion loops, and
neglect the mA~m. X contact interaction inside Fig. 2(b},
we find

VOJ. (k,k')=(80;(k)
~

Vo ~BOJ(k')), (2.35)

which is simply the matrix element of H2 between the ini-
tial and final one-meson one-bag states. The renormalized
contact interaction is then the matrix element of Hz be-
tween physical baryon states. For a given total isospin
and angular momentum (labels suppressed for clarity) we
can write and

n3 B3

g (C;B,,';B ) H;„t(iB,iitr )

lg
Zi~p(B') =Z2 (8')

Hint(tB ~iM )

(2.39)

Hint(iB, intr ) ~ IB3EM3+ & FB I'M (2.40)

In Eq. (2.40) iB (iM) is the isospin of the baryon (meson)
and YB ( FM ) the corresponding hypercharge.

I.et us consider X+p scattering as an example. Writing
the renormalization factors explicitly, we have

1+—', Z", (N)+ —,Z f(b. )

1+Z (N)+Z (6)

FIG. 1. Lowest-order self-energy diagram for a baryon B. A
sum must be made over intermediate baryons S'. (2.41}
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TABLE III. The renormalized value of f (f,tt/f) for the dif-

ferent channels. The renormalization is independent of isospin
for both the mN and ~X channels.

where

E (k")=(M +k" )' +(I 2+k" )'/2
y r y

R=0.8 fm
R=1.0 fm

and

1.04
1.03

1.11
1.07

1.01
1.01

I=O

1.02
1.01

0.98
0.99 t p(k k 'E}=g &i (k) Yl (k )t p(k k 'E}

l, m

(2.46)

so that the on-shell, diagonal amplitude is related to the
phase shift (5i ) by

is the energy of the virtual meson-baryon system in the in-
termediate state. The expansion in partial waves is made
in the usual way:

~x"+++(k "'=
T

1+—', Z", (N)+ —', Z, (b. )

I + Z", (N)+ Z2"(b, )

(2.42)

t (E)=t (k,k;E)=-
'JTp~k ~

(2.47)

In order to avoid the singularity in the denominator of
Eq. (2.45) for E =Er(k"), we do a principal-value sub-
traction. ' That is, we use the fact that

dk'

k —k'

'2

(2.43)

B. The scattering problem

In order to solve the scattering problem we define a po-
tential and solve the Lippmann-Schwinger equation. The
effect of crossed meson lines is relatively small for pion-
nucleon scattering. ' For kaon-nucleon scattering it is
even smaller and for this reason we do not include it here.
(In Sec. III we give an estimate of its influence on the KN
scattering length. ) Thus we define the following potential:

, (B;iH, iP)E —Mp(Bp )
Bo

+(a iH, i p), (2.44)

where
i a) and

i p) stand for baryon-meson states and

i Bp ) is a baryon bag state with mass Mo(Bo } T»s po
tential is iterated in the Lippmann-Schwinger equation:

t p(k, k', E)=u p(k, k', E)
It ~

1+ I u r(k, k;E)

x t»(k",k', E)dk", (2.45)

Using the results quoted by Theberge and Thomas" for
Z2(B'}, the renormalization factors are A' i'=0.99 and

"=1.03 for the bag radius R = 1 fm. It is interesting
to note that the renormalization for K+p and K+n is dif-
ferent, this causes the isospin-zero K n interaction to be-
come nonzero with strength ap-a |/20 for R = 1 fm.

Table III contains the renormalization factors needed in
the present work. We quote the effective value for f,
which is related to % through

to subtract the quantity

2k p(k)u(k, k;E)t(k, k;E)l(k2 k' ) . —
This produces a smooth integrand for which it is no
longer necessary to calculate a principal-value integral.
Then we solve the equation in matrix form by doing the
integrations by gaussian quadrature.

1. XN S-blaue scattering

For KÃ scattering the potential Eq. (2.44) reduces to
the contact term, because for S wave there is no candidate
with strangeness + 1 for the state

i
Bp ). Hence the po-

tential for isospin-I, S-wave scattering reduces to Eqs.
(2.25) and (2.26} with the coupling constants given in
Table I. This table contains the unrenormalized coupling
constants extracted under our working hypothesis of exact
SU(3)F symmetry. If we take into account the fact that
the renormalizations for K+p and K+n are different (us-
ing the renormalization procedure explained in Sec. IIA)
there is a small I=0 coupling. For example, for a bag ra-
dius of 1 fm the renormalization factors are Wx &=0.99
and A' "=1.03 (see Table III), which leads to an I=O
coupling around 5% of that in I= 1.

By iterating this potential in a Lippmann-Schwinger
equation we get the scattering amplitude corresponding to
the series shown in Fig. 3. For XX scattering there are
only two free parameters, namely, the meson decay con-
stant f and the bag radius. The radius dependence of the
I= 1 scattering length is shown in Fig. 4 for two values of
f. Our results are consistent with the data indicated by
the dashed region in this figure. It is worth remembering
that the renormalization of the coupling constant for
K+p increases the effective value of the meson decay con-
stant by 1%. Hence, assuming a starting value of 93
MeV, the effective value is 94 MeV. Assuming an'aver-

age value between f and fit, namely, 103 MeV, the re-
normalized value is 104 MeV. Either value would give a
good description of the data. The I=O scattering length
is ap=ai /20= —0.01 fm, while the experimental values
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+ ~ ~ ~

FIG. 3. Series generated by the contact term. Baryons are
represented by solid lines and mesons by dashed ones.

vary between —0.11 fm and 0.04 fm, ao ——+0.02 fm
being the most recent one. Although our result is con-
sistent with existing data, we do not claim to give a good
description of the I=O scattering length because, as it is
very small, a slight admixture of I=1 coming through
crossed graphs can be relevant. This comparison is in-
teresting mainly to give an idea of the small effect of
higher-order terms not taken into account in the present
model.

The mass of the strange quark does not affect the re-
sults presented here because this quark is not directly in-
volved in the KX—+IIX transition.

2. S-wave pron-nucleon scattering

As an additional check on the model we have also cal-
culated the S-wave mN scattering length. Just the contact
term has been included because the lowest two possible
states which contribute to the separable term, namely, the
X(1520) and the 5(1620), are already more than 400 MeV
above threshold. The isospin —,

' and —,
' scattering lengths

produced by the Born contact term are a ~
——0.22 fm and

a3 ———0.11 fm, respectively, for R=1 fm and f=93
MeV. This is in reasonable agreement with the experi-
mental results, a

&

——0.240 fm and a3 ——0.145 fm. Unfor-
tunately this agreement seems somewhat fortuitous.
From the renormalization argument we expect f to be ef-
fectively increased by 3%%uo, which changes these values to
a~ ——0.20 fm and a3 ———0.10 fm. Another point is that
the rescattering increases the value of a

&
and decreases a3

(it becomes less negative), so that the isospin averaged
value a ~+2a3 becomes nonzero. For example, using
f= 100 MeV and R = 1 fm, a

&

———0.33 fm and
a3 ———0.08 fm.

The reason for the disagreement is not obvious. One
possibility is the Z or antiparticle graphs. However, in
agreement with Brodsky we would argue that such
graphs are suppressed by the finite size of the nucleon.
Another possibility is that the multiple scattering is
suppressed by the finite size of the pion, as suggested by
Crawford and Miller. However, this effect is much too
small. A more likely possibility is that the pion interacts
with the bag itself. Certainly excluding the pion from the
bag would generate much too large a repulsion. Introduc-
ing a weak repulsion for the pion inside the bag would,
however, cure the problem. Since this leads too far from
our main concern of ICN scattering it will not be con-
sidered further here.

III. THE COUPLED EN-Xm SYSTEM
IN THE VICINITY OF THE A*(1405)

To describe KX scattering we include the KX, ~X, and
mA channels as well as a A bare three-quark state. For
the case of scattering there are several three-quark states
which can in principle contribute to the separable part of
the potential. However, for the volume coupling version
of the CBM the higher excited states give a relatively
small contribution for low-energy scattering. Therefore,
we restrict the calculation to just one excited baryon state.
As a rough guide to the structure of the lowest —,

' A*

state, we note that Isgur and Karl, in their nonrelativis-
tic quark model, find that the lowest —,

' A* state is 80%
an SU(3) singlet with the rest being octet. In our calcula-
tion we take the bare state to be a pure SU(3) singlet.
Since we find that the A'(1405) is predominantly a IYX
bound state, we do not expect the details of the bare state
to be important.

The potential for the ENS-wave scatt'ering [Eq. (2.44)]
reduces to just one separable potential given by Eqs. (2.2)
and (2.22), and a contact part given by Eqs. (2.25) and
(2.26). The coupling constants are given in Table III.
This potential is iterated in the relativistic Lippmann-
Schwinger Eq. (2.45) producing the scattering amplitude
corresponding to the graphs shown in Figs. (3) and (5).

f (Mev)

95
l

-0.5— L05

A. Scattering in S wave

In the case of 5-wave KX scattering our model has
three parameters, namely, f, R, and Mo (the mass of the
bare A* state). These parameters are adjusted in order to

+ 1 ~ ~

-0.2—

I0.9
l

I.O

R (fm)

FKx. 4. The I=1 EN scattering length plotted against the
bag radius for different values of f. The shaded region indicates
the range of experimental results, a ~

———0.33 fm being the more
recent one (Ref. 33).

FIG. 5. (a) Series generated by the separable potential and (b)
its interference with the contact term. Baryon-octet members
are represented by solid lines, mesons by dashed ones, and the
A* by wiggly lines.



31 S-WAVE MESON-NUCLEON SCATTERING IN AN SU(3). . . 1039

get a reasonable ~X mass spectrum compared to the data.
For most of the discussion we will take the strange quark
to be massless since we have checked that the mass has
much less effect than other uncertainties in the calcula-
tion. The thresholds are taken to be 1432.6, 1331.6, and
1254.6 MeV for KN, m.X, and m.A, respectively. When the
nondegeneracy of the K p and K n is included, the K n
threshold is 1437.3 MeV.

In Fig. 6 we compare our results with the mX mass
spectrum measured by Hemingway et aI. for
K p +n—+m (X m+). The theoretical curves are
k, I

T z I
. The normalization is arbitrary, since we

are interested just in the shape of the spectrum. The solid
and dashed curves correspond to (R,f) equal to (1.0 fm,
120 MeV) and (1.1 fm, 110 MeV), respectively. The
values for f are larger than those obtained with the renor-
mahzation procedure. However the mass spectrum is very
sensitive to this parameter and it is not possible to get a
reasonable mass spectrum without increasing the value of
f. The bare mass of the A' turns out to be Mo ——1630
MeV for the set (1.0 fm, 120 MeV) and Mo ——1650 MeV
for the other set. Variations in these masses around +5
MeV are acceptable (we note that in Ref. 26) the bare
masses were different because our results were compared
with older data). In this cotnparison we took just the
I=O piece. [The I= 1 Xn interaction is less attractive in
the S wave (Table I), and the effect of the X (1385) is
suppressed by an angular momentum barrier. ] In Fig. 7
we show the I=0 scattering amplitude for the two sets of
parameters. The real piece stays high very near the mX
threshold, showing that the cutoff in the mass spectrum
at low energy comes from the phase-space factor k, ~ by
which

I T~z I
is multiplied.

The KN elastic-scattering amplitude can be seen in Fig.
8 for I=O. We note a rapid variation with the energy
near the KN threshold, which may be useful in reconcil-
ing the kaonic-hydrogen energy shift with the scattering
data.

The effective value for f in the I= 1 piece is kept inside
limits compatible with the renormalization procedure, us-
ing fr &

smaller than fI *,. This gives for

I.O

0.0

Im T~z
? =0

0.5

I

I 550
I

I400
I

le50 I500

(R,f~z~j„fg&) the values (1.0, 110, 100) and (1.1, 105,
95). The KN scattering amplitudes for these two sets of
parameters are shown in Fig. 8.

To summarize, our two sets of parameters are as fol-
lows.

Set A:

R =1.0 fm, Mo ——1630 MeV,
fr= =120 MeV, f~z'~ ——110 MeV,

f~~' ——100 MeV .

c.m. ENERGY (MeV)
FIG. 7. The mX elastic-scattering amplitude corresponding to

parameter set A (solid curve) and B (dashed curve).
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FIG. 6. The mX mass distribution. The histogram is data
from Hemingway et al. (Ref. 27). The theoretical curves are
k,"

I T„x I
. The solid curve corresponds to parameter set A

and the dashed curve to parameter set B.

FIG. 8. The EN elastic-scattering amplitude for I=O (a) and
(b) and I=1, (c) and (d), with the parameter set A (solid curve)
and 8 (dashed curve).
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Set B:

R = 1.1 fm, - Mo ——1650 MeV,

f = =110MeV, f„x„'~——105 MeV,

fx~' ——95 MeV .

The comparison between the theoretical and experimen-
tal cross sections ' is made in Fig. 9. In these cross sec-
tions we include the Coulomb correction and the effect of
the nondegenerate masses of the X p and K n as derived
by Dalitz and Tuan. ' We note that Evans et al. claim
a contribution from p waves for the charge-exchange pro-
cess at an incident monientum around 230 MeV/c, and
for o production at a momentum as low as 150 MeV/c.

B. The scattering lengths

Table IV contains the EN scattering lengths for the two
sets of parameters, taking massless u and d quarks, and
including the mass of the strange quark (300 MeV). (The
mass of the strange quark is introduced in the manner
shown in Appendix A.) The u and d quarks are kept
massless because even the large mass of the s quark has a
small effect. (Its effect on the cross sections presented is
smaller than 3%%uo.) In the mX mass spectrum, the s-quark
mass tends to decrease the bare mass of the A by 5 or 6
MeV.

TABLE IV. The KX scattering length for the two sets of pa-
rameters taking all the quarks massless and the s quark with
mass (M, ).

Parameter set M, (MeV)

0

300
300

ap (fm)

—1.14+ 1.76i
—1.36+ 2.07i

1.02+ 1.97i
—1.22 + 2.30i

a~ (fm)

0.53 + 0.39i
0.54 + 0.40i
0.55 + 0.42i
0.56+ 0.44i

To compare these scattering lengths with those extract-
ed from the kaonic-hydrogen energy shift [az ——(0.10
+0.15)+(0+0.28)i fm] it is necessary to include the
splitting of the Ep and IC n masses and a Coulomb
correction. The mass splitting changes the real piece of
the average scattering length a = —,

' (ao+a, ), e.g., for set
A, from —0.31 to —0.26 fm. Including the Coulomb
correction just outside the range of the nuclear interac-
tion, ' this value is shifted to —0.38 fm. It is possible to
improve the Coulomb correction, however it is not likely
that it can have so large an effect as to reconcile our re-
sults with the kaonic-hydrogen data.

For EX elastic scattering the Born term involving
crossed meson lines vanishes by strangeness conservation.
Hence its effect comes only in higher order, and as a
consequence has a small effect on the scattering length.
For example, including this kind of graph the scattering
length for parameter set A is ao ———1.02+1 74i fm a.nd
a ~

———0.54+0.38i fm.
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FIG. 9. Comparison of the X p cross sections at low energy
with data from Refs. 39 and 40. The solid line corresponds to
parameter set A and the dashed one to parameter set B.

IV. DISCUSSION OF THE RESULTS

The S-wave ICN scattering. is the cleanest process stud-
ied in this paper. As soon as there is no baryon with
S= + 1 to be included there is only the "freedom" to
vary f and R. Happily it seems that the values of f and
R which describe the data are quite consistent with the re-
normalization and radius expected in the CBM.

The agreement between experiment and theory for m.X
scattering is not as good. The contact term gives a contri-
bution quantitatively similar to the p exchange included in
more conventional models. ' (As pointed out many
years ago by Weinberg this is not entirely accidental. )
To get better agreement with the data we clearly need
some more physics. One might consider some of the stan-
dard phenomenological suggestions such as a hard core,
or Z graphs. These contributions are outside the scope of
the present paper, and we only note that at this stage, the
CBM does not seem to cast a new light on the problem.

The S-wave KX system has the additional complication
of an intermediate state, the A"(1405). This state raises
problems in both the nonrelativistic quark mode1 and in
the MIT bag model. In the nonrelativistic quark model
it comes too high in energy and is degenerate with the —,

A state which experimentally is at 1520 MeV. In the bag
model the —, state occurs higher than the —, due to the
spin-orbit force.

Our model of the A*(1405) is very similar to that of
Dalitz, %'ong, and Rajasekaran. In that calculation the
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potential was taken from vector-meson exchange with the
relative coupling constants taken from SU(3) symmetry.
The range of potential was determined by the masses of
the vector mesons. In the present calculation the contact
interaction has the same spin-flavor structure as the vec-
tor mesons, namely, the quark part of the coupling is

qy"I, 'qO, ,

the meson part is

f.b.4 b d~0.

2.0

0.0:

-z.o- (a)
I

l550
l

l450 l500

and the coupling constants given in Table I for the con-
tact interaction are in fact the same as those given by Dal-
itz and co-workers (apart from the phase convention).
In the present case the range of the potential is given by
the bag radius R rather than the vector-meson masses.
The net result will be somewhat similar. The main differ-
ence is that in our model elementary states (i.e., three-
quark states) appear in a rather natural way and it is the
model that decides to what extent the A*(1405) is a EN
bound state or a normal quark state. We find that the
A*(1405) is predominantly a KN bound state with only
14%%uo of the strength in the m.X cross section around 1405
MeV coming from the bare quark state —see Appendix B.
%'e also have a higher state which presumably corre-
sponds to the A'(1670). In agreement with previous
analysis we find that the A (1405) is not well described
by a Breit-%'igner resonance shape.

The D-wave scattering will be less strongly affected by
the potential because of the centrifugal barrier and we do
not expect a KN bound state in that channel, although the

state may be shifted down somewhat from its unper-
turbed value. Thus we would claim that the lowest excit-
ed three-quark state seen is the —,

' A*(1520), in agree-
ment with the order suggested by the MIT bag model.

Kumar and Nogami have proposed that a Castillejo-
Dalitz-Dyson (CDD) zero in the scattering amplitude
would reconcile the scattering and kaonic-hydrogen data.
Their model has a pole term and a separable contact po-
tential. The main weakness of this model so far, is that it
has not been adjusted to reproduce any experimental data.
In our model we also have a CDD zero, however it comes
out at much too high an energy to explain the discrepan-
cies at threshold. In Fig. 10 we show the inverse K ma-
trix elements and the determinant of the inverse X matrix.
The pole in the determinant at about 1700 MeV is the
CDD pole. The inverse K matrix elements, shown over a
more restricted energy interval, indicate that these ele-
ments do indeed have a linear dependence over a consider-
able energy range.

The KX scattering amplitude given by the CBM shows
a strong energy dependence near threshold. It is worth
noting that as a consequence of the coupled channel na-
ture of the problem the resonance structure in the nX.
elastic-scattering amplitude appears in a different position
than the change in sign in the XX scattering amplitude.
In particular, the former occurs at ground 1410 MeV (Fig.
7), while the latter occurs near 1428 MeV (Fig. 8). To ex-
plain the disagreement between scattering and kaonic-
hydrogen data it would be necessary to move the zero in
the LX case something like 5 MeV above threshold

det K

25.0—
I

E
0.0—

-25.0—

t

l400 l 600 l800

without spoiling the mX mass spectrum. However, we
were not able to do this with reasonable sets of parame-
ters.

Our results for the XX scattering length differ in mag-
nitude from values quoted in the literature (e.g.,
ao ——1.70+0.68i fm and a~ 0 37——+0.60i fm. ), but with
respect to the sign favor the scattering data.

V. CONCLUSIONS

The CBM has been extended to chiral SU(3)XSU(3)
and applied to the problem of kaon-nucleon scattering.
First some comments must be made on the limitations of
the model. We use a static, spherical bag with a sharp
surface, so that the deformation of the A*(1405) is
neglected. We also ignore any center-of-mass correction
and use the same radius for all baryons. Some of these
limitations can in principle be improved but only at the
cost of greatly complicating the calculation. Beyond that,
it is not clear how to include the center-of-mass correc-
tion. Although interesting, these effects can hardly
change the conclusions of the present work.

Crawford and Miller have shown that by using the
finite size of the pion, the contribution of excited quark
states to the self-energy is finite and small. This explains
why the self-energies do not diverge and leads to the can-
clusion that it is safer when using pointlike mesons to not
include a complete set of excited quark states which may
yield unphysical results. Additionally, the extended
meson decreases the multiple scattering.

In the present model we use pointlike mesons, but do
not allow quark excitations beyond the ip&&2 level. Thus
we do not include those contributions which would any-
way be cutoff by smearing the field in space and time. As

c.m. ENERGY (MeV)

FIG. 10. {a}Matrix elements of the inverse E matrix and {b)
the determinant of the inverse K matrix {I=O).
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a first step we have considered only s-wave scattering,
which restricts our comparison with the data to very low
energy. Clearly the next step is to extend the calculation
to other partial waves. The comparison of our results
with data for low-energy EX and KX scattering is quite
good. Thus, in spite of the large mass of the strange
quark, and the badly broken SU(3) symmetry in nature,
the SU(3) CBM seems to make sense as soon as the physi-
cal masses are taken into account. The EX scattering
length which we find disagrees with that extracted from
Xp atom data, as do all the scattering lengths extracted
from scattering data. The remaining point to be checked
is whether by using the strong-interaction potential pro-
duced by the CBM directly in the kaonic-hydrogen calcu-
lations it is possible to get the energy shift measured in
the kaonic-hydrogen experiments. Work is in progress on
this problem.

The results obtained for low-energy mN scattering are
not as good. However, the contact term gives a contribu-
tion similar to the p meson in meson-exchange descrip-
tions of ~X scattering. It is worth commenting at this
point that the contact term has many features in common
with the exchange of an octet of vector mesons. As point-
ed out many years ago by Weinberg, the vector mesons
can be introduced explicitly in the covariant derivatives
that appear in the volume coupling. While that is prob-
ably inconsistent with the present model, it does indicate
that many effects which are traditionally ascribed to vec-
tor mesons may be equally well described by the contact
term.

In the controversy over the nature of the A*(1405), the
present model comes down firmly on the side of the
A*(1405) being primarily a KN bound state. This indi-
cates that the A*(1405) should not be included as one of
the states fit in simple quark-model descriptions of baryon
resonances.

In summary, the CBM provides a useful description of
kaon-nucleon scattering at low energy in spite of the fact
that SU(3) symmetry is so badly broken in nature.
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APPENDIX A

a+jo(w,
' r)I

~ /

q„(r,t) = — . , e * b8(R r—)
4m. ia, cr rji w,'r (Al)

and

q&~ (r t) =
4~

az+o" rji (wz r)
e ~ b8(R r),—i' jp(wz r

(A2)

where

+
Gs,p

ns p+m
1 /2

Cts,p
(A3)

The corresponding normalization constants are given by

where

a~ p (ag p +mR )

jo2(w,
' R )R 3 2a~ p(a~ p

—1)+mR
(A4)

agq [(w,'pR) +——(mR) ]'~ (A5)

H, =H, + —J d x 8„qygA, q P . (A6)

Furthermore, the mass affects the normalization and ener-

gy of the quark state as well as the relative weight be-
tween upper and lower components of the quark wave
function. These effects only modify transitions which in-
volve a strange quark directly, namely, the EÃ~A* tran-
sition. (There is no effect on the m.X~A' transition. )

The forin factor for ICN~A* is given by [instead of Eq.
(2.22)]:

u~x„,(k,R) =N, N,
' (2R az J'p(w, R)jp(w&R)jp(kR)

R—[w, —w~ +wg(k)) J dx E~ (kx)
R

+m J dxF (kx)j, (A7)

where

F+(k,x) =x [az jo(wsx)jo(wax)

The energies are w,
' =2.51 /R and wz

——3.96 jR
for mR=300 MeV.

The strange-quark mass affects the matrix elements of
H, and H, in different ways. We consider the case corre-
sponding to H, first. The massive quark invalidates Eq.
(2.12) because that equation was derived using the Dirac
equation for massless quarks. When the mass of the
strange quark is taken into account the first-order interac-
tion Hamiltonian changes to

In this appendix we present the modifications to the
formalism required by the massive strange quark. The u
and d quarks are kept massless. It would not be hard to
include their masses but since even the large mass of the
strange quark has little effect there is no reason to. The
is~~2 and 1p~~2 massive-quark wave functions are given,
respectively, by [instead of Eq (2.16) and .(2.17)]

+a~ j,(w,x)j,(w~x)]jp(kx) . (A8)

The quantities with primes refer to the massive strange
quark and those without primes to the massless quarks.

With respect to H, the mass of the strange quark af-
fects the ECN —++X and the EÃ~mA transitions, without
any effect on the elastic transitions. Thus the form factor
changes to
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u' p(k, k', R) =N, N,
'
[w (k)+wp(k')]

Z J dxx [a,+jo(w, x)jo(w,'x)

+a,j t(w, x)j t(ws x))

Xjc(kx)jo(k'x), (A9)

mX t matrix. Rather than actually doing the calculation
at the complex energy where the pole occurs we actually
stay on the real axis at 1410 MeV. Using the fact that the
pole is associated with the last term in the Lippman-
Schwinger equation,

t =v +uoot,
where a stands for KN and f3 for srX or n A.

APPENDIX 8
We would like to estimate the relative importance of

the bare A and the contact interaction at the pole of the

we estimate the relative contribution by comparing

u~],Got with u„„Got, where u~], and u„„are, respective-
ly, the first and second terms on the right-hand side of
Eq. (2.44). As noted in the text the pole term gives about
14% of the total width.
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