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We study the topology and geometry of two-dimensional coarsening foam with an arbitrary liquid

fraction. To interpolate between the dry limit described by von Neumann’s law and the wet limit described

by Marqusee’s equation, the relevant bubble characteristics are the Plateau border radius and a new

variable: the effective number of sides. We propose an equation for the individual bubble growth rate as

the weighted sum of the growth through bubble-bubble interfaces and through bubble-Plateau border

interfaces. The resulting prediction is successfully tested, without an adjustable parameter, using extensive

bidimensional Potts model simulations. The simulations also show that a self-similar growth regime is

observed at any liquid fraction, and they also determine how the average size growth exponent, side

number distribution, and relative size distribution interpolate between the extreme limits. Applications

include concentrated emulsions, grains in polycrystals, and other domains with coarsening that is driven

by curvature.
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Liquid foam—namely, gas bubbles separated by a con-
tinuous liquid phase—are ubiquitous [1,2]. In floating
foam such as beer head, ocean froth, or pollutant foam,
the fraction� of their volume that is occupied by the liquid
decreases with height and varies from a dry foam at the top
to a bubbly liquid at the foam-liquid interface.

Since pressure can differ from one bubble to another, gas
slowly diffuses. Some bubbles disappear and, as no new
bubbles are created, the average size increases. Foam
coarsening is analogous to that of concentrated emulsions,
grains in polycrystals, or two-phase domains where inter-
face dynamics is driven by curvature. Its dynamics mainly
depends on �, up to a material-specific time scale deter-
mined by the foam physicochemistry [1,2].

Understanding foam coarsening requires two levels.
First, the individual bubble growth law rules a bubble’s
growth rate according to its size or shape. This is a static
geometry problem, and may be obtained analytically or by
detailed bubble shape simulation. Second, the effect of
such individual growth on the statistics of the foam, i.e.,
bubble size and topology distributions, requires statistical
theories or extensive simulations.

In the very dry limit � ! 0, bubbles are polyhedra with
thin curved faces that meet by three along thin lines called
Plateau borders. Coarsening in that limit has been inves-
tigated experimentally, numerically, and theoretically in
two dimensions (2D) [3–7] and later in three dimensions
(3D) [8–14].

In the very wet limit � ! 1, bubbles are round, dis-
persed in the liquid, and far from each other, forming a
‘‘bubbly liquid’’ rather than a foam stricto sensu. Their
coarsening follows Ostwald-Lifschitz-Slyozov-Wagner
ripening in 3D [15,16], and Ostwald-Marqusee and
Ostwald-YEGG in 2D [17,18].
In both limits, the foam eventually reaches a self-similar

growth regime: statistical distributions of face numbers and
relative sizes become invariant. The average size hRi grows
in time as a power law, hRi � t�, with � ¼ 1=2 in the dry
limit and � ¼ 1=3 in the wet one, due to the different
underlying physical processes. The number N of bubbles
thus decreases as t�2� in 2D and t�3� in 3D. Intermediary
liquid fraction regimes have been addressed in 3D experi-
ments [19] and 2D simulations [20,21] but they still lack a
unified theoretical description.
Focusing on the 2D case, we propose a growth law to

interpolate for 0<�< 1, with two parameters (diffusion
coefficients) determined in each limit. To our knowledge,
there is no experimental study where � is systematically
varied and precisely measured, or even rigorously defined.
So, comparing our predictions with experiments is not
possible. Instead, we numerically simulate with the Potts
model, which is suitable for large bubble numbers
[10,22–24]. These simulations show that for any �, the
side number and relative size distributions reach a self-
similar growth regime where hRi grows as t�. Values of �
interpolate between 1=2 and 1=3.

PRL 108, 248301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
15 JUNE 2012

0031-9007=12=108(24)=248301(5) 248301-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.248301


In the 2D dry limit, gas diffuses through neighbor bubble
walls due to the pressure difference between the bubbles
related to wall curvature. The walls are curved because
they meet at threefold vertices, forming equal angles of
2�=3. Each vertex is responsible for a turn of �=3 in the
vector tangent to the bubble perimeter. Consequently, bub-
bles with five sides or fewer are convex, while bubbles with
seven sides or more are concave, so that the walls’ curva-
ture plus a turn of �=3 at each vertex sums to 2� [1]. The
resulting growth dynamics is von Neumann’s law [4]

dai

dt
¼ �Dd

�
2�� ni

�

3

�
¼ �Dd

3
ðni � 6Þ; (1)

where ai and ni are the area and the number of sides of the
ith bubble, respectively; t is time and Dd depends on the
foam composition and is expressed inm2 s�1 as a diffusion
coefficient. Remarkably, the rhs of Eq. (1) involves only
the bubble’s number of sides and not its size or shape. At
any time, bubbles with ni < 6 shrink, while bubbles with
ni > 6 grow. Since for topological reasons the average
number of bubble sides is six [1,25], Eq. (1) is compatible
with the gas volume conservation in the whole foam.

In the 2D wet limit, gas bubbles are dispersed in a liquid
matrix. Dynamics is ruled by the pressure difference in the
gas contained in a bubble and dissolved in the liquid, which
is proportional to the inverse of the wall curvature radius,
Ri. Marqusee’s [17] growth law is as follows:

dai

dt
¼ 2�Ri dR

i

dt
¼ 2�DwfðRiÞ; (2)

with Dw also a diffusion coefficient-like constant, and

fðRiÞ ¼ Ri

�

K1ðRi

� Þ
K0ðRi

� Þ
�
1

Rc

� 1

Ri

�
; (3)

where Kjs are jth order modified Bessel functions of the

second kind; � is the screening length (roughly, the typical
distance beyond which bubbles do not feel the influence of
each other); and Rc is the critical radius for which there is
no growth, calculated by imposing total gas volume con-
servation, i.e., d

dt

P
ia

i ¼ 0. At any given time, bubbles with

radius smaller than Rc lose gas, while those with radius
larger than Rc gain gas.

Interpolating between Eqs. (1) and (2) seems difficult
because they use very different variables: the number of
sides ni and the radius Ri. However, both equations involve
the product of curvature times length (i.e., angle, Fig. 1)
of the interfaces through which the gas diffuses. We pro-
pose that for any � the bubble growth rate is simply the
superposition of growth through the interfaces shared ei-
ther directly with other bubbles or with Plateau borders. It
can thus be calculated as the weighted average of
Eqs. (1) and (2). The weights are fractions of 2� angle
carried by dry or wet parts of the ith bubble perimeter,
�i

d or �i
w, which are sums of angles �d or �w carried,

respectively, by each dry or wet interfaces of the bubble
(Fig. 1), such that �i

d þ�i
w ¼ 2�. We now detail how to

perform this linear superposition, which turns out to be
unexpectedly successful for all values of �.
In dry foam, at each vertex �d ¼ �=3, so that �i

d ¼
ni�=3. In wet foam, �w ¼ 2�. To interpolate, we charac-
terize the bubble i by its effective number of sides defined
for any � as follows:

nieff ¼
3

�
�i

w ¼ 6� 3

�
�i

d: (4)

Although nieff conveys no more information than�d or�w,

its value is intuitive: nieff ¼ ni for a polygonal dry bubble,

nieff ¼ 6 for a circular wet bubble, and nieff=6 is exactly the
fraction of 2� carried by the wet interfaces. Similarly, we
characterize the bubble i by the curvature radius Ri

w of its
Plateau borders, Ri

w ¼ 0 for a dry bubble, and Ri
w ¼ Ri for

a wet bubble. Using nieff and R
i
w we can weight Eqs. (1) and

(2) to interpolate for any �,

dai

dt
¼ �

3
½Ddðnieff � 6Þ þDwn

i
efffðRi

wÞ�: (5)

To test Eq. (5) we have implemented extensive Potts
model simulations in the spirit of Ref. [10]. Like in experi-
mental pictures, a simulation represents gas bubbles and
liquid phase as connected regions on a square lattice of
pixels. To ensure that liquid is evenly distributed between
Plateau borders (Fig. 1) and that � is conserved, we
represent the liquid phase as a fixed number of tiny ‘‘liquid
drops’’ of fixed area, and each Plateau border contains
several of these drops. Each interface between the gas
bubbles represents a thin film made of two gas-liquid
interfaces that mildly repel each other. We then assign to
the interfacial energy between the gas bubbles a value
(2� ") times the interfacial energy between the gas bubble
and the liquid drop. Experimentally, in soap foam, " is
typically of order 10�3. Its precise value is not crucial in
what follows, as long as " � 1 (and " > 0 to avoid nu-
merical instabilities). Here we choose " ¼ 0:01 as a com-
promise between realism and computing speed. Since
drops are free to cluster together, we assign to drop-drop

FIG. 1 (color online). Angles �d or �w measure the change in
direction carried by a dry or wet interface. Here neff is slightly
larger than 5, the bubble is rather dry, �d >�w, Rw < R. Each
white region represents a Plateau border and is simulated as
several liquid drops (not drawn here).
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interfaces an energy 103-times smaller. The liquid is
sucked in the Plateau borders (for reviews see Refs. [1,26]).

There are N ¼ 89442 sites; each site s is assigned a
label, SðsÞ. There areN bubbles (S ¼ 1 toN) andNw drops
(S ¼ N þ 1 to N þ Nw), assigned with a type � ¼ 1 or 0,
respectively. A configuration has an energy

E ¼ XN
s¼1

X36
s0¼1

Jð�; �0Þ½1� �S;S0 � þ �
XNþNw

S¼Nþ1

½aðSÞ � at�2;

(6)

where s0 stands for the sum over the first 36 neighbors of
the site s, to avoid pinning to the grid [27] and to extend the
range of the disjoining pressure up to three pixels; S and S0
are the labels of sites s and s0, respectively; � is the
Kronecker symbol; � and �0 are the types of S and S0,
respectively; Jð1; 1Þ ¼ 1:99Jð1; 0Þ, Jð1;0Þ¼Jð0;1Þ¼0:7,
and Jð0; 0Þ ¼ 0:001 are the interfacial energies; aðSÞ is
the drop current area S; at ¼ 8 pixels is the drop target
area; and � ¼ 9 penalizes any deviation from at.

Simulations begin with N0 ¼ 2� 105 gas bubbles ran-
domly dispersed over the grid, with smooth interfaces and

a normal distribution of areas around the average N
N0

. For

�> 0, initially each vertex contains at least one drop. The
total number of drops and the initial average area of gas
bubbles are set according to the desired �. The simulation
dynamics follows the Monte Carlo method. We randomly
choose a site, temporarily change its label to the value of
one of its neighbors, and calculate the change in energy
�E. If �E � 0, this relabeling is accepted. If �E> 0, the
change is accepted with probability expð��E=TÞ, where T
is the fluctuation allowance, here taken as T ¼ 3 to escape
possible metastable states.

We measure the diffusion coefficients as follows. We
first perform a simulation in the dry limit � ¼ 0. Plotting
the rhs and lhs of Eq. (1) determines by linear regression
Dd ¼ 1:68. We then perform a simulation in the wet limit
� ¼ 0:9. Plotting the rhs and lhs of Eq. (2) determines by
linear regression Dw ¼ 0:78. With these parameters, to-
gether with area and wet and dry perimeters for each
bubble from the simulations, Eq. (5) predicts without any
adjustable parameter each bubble’s growth for any inter-
mediary �.

We measure the angles on a square grid as follows. The
simulation is halted. We add over all of the dry interfacial
pixels of bubble i the probability that it will grow (or
shrink) over (yielding to) other bubbles, calculated by the
Monte Carlo method. This determines the growth rate of
bubble i through its dry interfaces, Gi

d, and thus Gi
d ¼

�Dd�
i
d. We then obtain �i

w ¼ 2���i
d and Ri

w ¼ Pi
w

�i
w

where Pi
w is the wet interface length. During this measure,

no change is performed. The simulation then resumes.
We run simulations with � ¼ 0, 0.02, 0.06, 0.18, 0.36,

0.54, 0.72, and 0.90. For any �, the evolution of the
gas bubble number has a power law behavior [Fig. 2(a)],

which is compatible with self-similar growth regimes.
Figures 2(b) and 2(c) show that the power law exponent
� varies as �ð�Þ � 1=2��0:2=6. Thus, �ð�Þ decreases
continuously from 1=2 to 1=3, the expected limit values,
with d�=d� diverging at� ! 0. It would be interesting to
explain theoretically this variation of � with �.
Figure 3 shows snapshots for different � after 20 000

Monte Carlo steps (MCS). The liquid accumulates at
the vertices for small �, and as it increases, liquid also
goes between the bubbles. The ratio d=�, where d is the

typical distance between the bubbles, estimated as d ¼
2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N =ðN�Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffihai=�p Þ, and �, the screening length
[Eq. (3)], increases with � (Fig. 1 of Ref. [28]). At
� ¼ 0:54, d=� > 1, and at � ¼ 0:90, the bubbles are not
touching each other.
Figure 4 presents the average area growth rate of gas

bubbles versus Rw, and in the insets the distribution func-
tion of Rw=hRwi. The superposition of plots taken at differ-
ent times indicates a self-similar growth regime. The
agreement with the theoretical prediction [Eq. (5)] is ex-
cellent. For � ¼ 0, all bubbles have Rw ¼ 0 and this plot
does not convey any information. For � ¼ 0:02 and 0.06
the noise arises from measuring the curvature radius of the
Plateau borders. For different values of Rw, distributions

FIG. 2 (color online). (a) Evolution of the number of gas
bubbles for different values of �, in log-log plot. (b,c) Power
law exponent � versus�, in (b) linear and (c) log-log scales. The
red line is � ¼ 1=2��0:207=6.

FIG. 3 (color online). Snapshots after 20 000 MCS for � ¼ 0,
0.02, 0.06, 0.18, 0.54, and 0.90.
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of the bubble growth rates are presented in Fig. 2 of
Ref. [28].

Figure 5 presents the average area growth rate of gas
bubbles versus the effective number of sides, neff . Again,
the agreement with the theoretical prediction [Eq. (5)] is
excellent. For� ¼ 0:90, all bubbles have neff ¼ 6 and this
plot does not convey any information. For different values
of neff , the distribution functions of the bubble growth rates
are plotted in Fig. 3 of Ref. [28]. The plots of growth rates
versus neff=hneffi (Fig. 4 of Ref. [28]) and versus Rw=hRwi
(Fig. 5 of Ref. [28]) discriminate the relative contributions
of dry or wet interfaces to the growth.

In conclusion, we propose an equation for the average
growth rate of bubbles in foam of arbitrary liquid fraction
as the weighted sum of the growth through bubble-bubble
interfaces (von Neumann’s law), and growth through
bubble-Plateau border interfaces (Marqusee’s equation).

The equation agrees very well with extensive 2D Potts
model simulations. It would be interesting to check
whether 2D foam experiments also follow these growth
equations. Extending these simulations to 3D should
not be a problem; as in 2D, Laplace’s law, which depends
on the curvatures of bubble walls, may be checked by
measuring growth probabilities on the 3D Potts model.
Applications include concentrated emulsions, grains in
polycrystals, and other domains with coarsening driven
by curvature.
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