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In this paper we examine the coupling of two wave triplets sharing two common modes. The analysis is
performed in the solitonic sector of the parameter space where uncoupled solutions departing from linearly
unstable homogeneous initial conditions evolve into a collection of regularly interspersed, spatiotemporally
localized spikes. The uncoupled system is integrable, but coupling destroys integrability. As coupling grows,
energy transfer to smaller spatial scales does appear and becomes faster not only in linearly unstable, but also
in linearly stable cases. Chaos in low-dimensional subsystems appears to be responsible for the transfer. We
perform a series of numerical tests to verify this idgl1063-651X%99)08710-3

PACS numbds): 05.45.Jn

[. INTRODUCTION dence from the governing equations, then the solutions de-
veloping on thishomogeneous manifold- sometimes we
Resonant nonlinear three-wave coupling has an importarghall refer to the homogeneous manifold simply as HM —
role in both space and laboratory plasma processes, such ean be chaotic if a humber of conditions is fulfilled. Not
filamentation and anomalous absorption of laser befdms much, however, has been said about solutions departing from
generation of auroral and solar radio emissig@$ and the homogeneous manifold. One relevant question here
modulation of the solar wind Langmuir wavgd). Given the  would be on the stability of the homogeneous manifold
interest on the subject, the conservative resonant triplet inagainst inhomogeneous perturbations. If, for instance, a cer-
teraction has been fully investigated and shown to be comtain homogeneous solution — not necessarily a static equi-
pletely integrable via inverse scatterifg]. Another related librium — is perturbed by some small inhomogeneity, would
case of resonant interaction that has been attracting somhis inhomogeneity grow in time? If the answer is positive
renewed attention is the one involving two coupled tripletswe would have areffectively unstable homogeneous mani-
sharing two common modd$-7] where, all in all, four fold. Otherwise, the manifold would beffectively stable
independent waves undergo mutual interaction. This type dPrevious findings show that HM’s supporting chaotic orbits
kinematics, where the interacting triplets share commorare always effectively unstable, while those supporting regu-
modes, has been shown to be essential in nonlinear interatar orbits may be effectively unstable against some types of
tions involving electromagnetic, Langmuir, and ion-acousticperturbation and stable against others, all depending on the
waves propagating in unmagnetized plasi8], in mag-  basic wave vector of the perturbing terrfig. This latter
netohydrodynamics interactions involving Alfveand ion-  kind of behavior, in particular, is what can be expected from
acoustic wave$10], and in plasma-beam interactions in the conventionallinear perturbative analysis, where by conven-
presence of negative energy wayés tional we mean the linear stability analysis that assumes
These kinds of wave-wave couplings in continuous mediastatic backgrounds. Conventional stability is expected at this
are frequently described by amplitude equations. Once ongoint because if the system is regular it spends so much time
identifies a set of high frequency modes interacting in theclose to hyperbolic points that a static approximation be-
resonant fashion, one applies multiple scale formalism to decomes reasonable. On the other hand, what has been sug-
rive equations governing the slow space-time evolution ofyested to explain the instability of chaotic cases is that inho-
these modes, the amplitude equations. Amplitude equationgogeneities tend to grow as a result of a stochastic pump
are justified when the spectral widths of both wave vectoprovided by the chaotic orbits evolving on the HVI|. The
(K) and frequency Q) spectral distributions of the interact- action of the stochastic pump would be similar to that of the
ing packets are respectively small as compared to the inverseermi-Pasta-Ulam problem, as analyzed receftl§]; the
spatial and temporal scale of the interactidd,12. Itis the  pump would act like a random source diffusively feeding
purpose of this paper to further analyze the amplitude dyenergy into all the remaining modes of the system, and as a
namics of the coupled triplets. final result one would have the system moving towards some
Different from the temporal dynamics of the uncoupledenergy equipartitioned state. From the above comments, one
triplets, the coupled temporal dynamics has been shown teees that the pump model idea is general and thus expected
produce amplitude equations allowing for temporal chaoso be applicable to a variety of settings. Indeed, we will
[6]. To be more specific, if one removes all spatial depensuggest here that it also works well under more complicated
conditions involving not only stable, but unstable HM’'s of
the triplet-triplet interaction as well.
*Fax: 55-51-3191762. Electronic address: rizzato@if.ufrgs.br Given the above perspective, we have two basic goals
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with the present paper. One of them is to further investigate Il. MODEL
the ideas behind the stochastic pump model. To do that, we

first focus our attention on settings displaying conventionaI[riplets sharing two common modes and constituted, there-

linear stability. We make calculations assuming a staticfore, by four wave modes in all, we assume that the follow-
background, and simply choose wave vectors located outsiqp\|g| resonant conditions are fulfilled:

the instability band. This sort of system shall be analyzed

under two distinct conditions: when the HM is chaotic and O ~Qp + 0y,
when it is regular. We shall see that only when the homoge- ! 3 2
neous dynamics is chaotic, energy transfer takes place. Then

In order to describe the mutual interaction of two wave

we shall make tests on the stochastic pump model. We shall Ki=Ka+Ks,

transform our homogeneous manifold into a real pump sub-

system. In other words, we remove all the influence of spa- QKﬁQK‘,—QKZ,

tially inhomogeneous modes onto the homogeneous mani-

fold, maintaining the reverse influence — that of the Ki=K,;—Ks,, )

homogeneous manifold on the remaining space-dependent
modes. With this procedure we can actually look at the HMyhere ), and Kj, {i=1,2,3,4 are, respectively, the fast
J

as a closed pump, feeding energy into all the remalnlngfrequencies and fast wave vectors of the interacting waves;

(space-dependenmodes, without loss of its own energy. AS qte that within the present formalism, the shared modes are
our numerical results show, there is agreement between thj§,qes 1 and 2.

pump model and results arising from fully connected simu-  \ya allow for small frequency mismatches, a usual effect

lations, for short intervals of time; we call fully connected in wave-wave interaction. We shall see that the role of mis-

simulations those simulations which are completely selfvaiches in the spatiotemporal triplet-triplet interaction is es-

consistent and energy conserving. As time elap_ses, the HNg g in determining the integrability properties of the wave
of the _fuIIy connected S|mulat|on_s loses appremable energyynamics. Frequency mismatch occurs because, even for
to the inhomogeneous modes. Given that in the pump modejaectly matched wave vectors, the respective frequencies
the HM is isolated and does not lose its energy, the two kindgpained from the linear dispersion relations may not quite
of results should eventually diverge. , be likewise matched. In laser accelerators and, in general,
The other goal of the paper is to show that the idea of thg,ser_plasma interactions, frequency mismatch can even en-
pump model goes beyond the previous setting. We procegghnce the linear growth rate in several situatip®ds,18.

as follows. The preceding analysis is extended into regimegpgrefore, mismatched modes can be stronger and of greater

where the uncoupled triplets display conventional linear inymnartance in the dynamics. Wave vector mismatches could
stability leading to the formation of localized structures. Lo-

I . also be incorporated into the theory. However, as frequency
calization has not been appreciated befpfebecause the 54 \yave vector mismatches are formally equivalent, we fo-
appropriate basic cond|t|0m92<vgl<vg3 [4] had not been 5 attention on the former.

chosen; we denote by, , i=1,2,3,4, the group velocities of  Following the model revisited in a series of recent papers
the four relevant waves. In the uncoupled regime, condition6—8], the dimensionless amplitude equations governing the
Vg,<Vg,<Vg, allows for soliton propagation and the exis- one dimensional, spatiotemporal, slow modulational dynam-

tence of related localized structures. The idea here is to sd€S ¢an be cast into the form
what happens as coupling is turned on. There is a belief that
in some settings solitons are so robust that, even in chaotic ~ 9A1(X,t) dAL(X,1)
. h . +v
regimes, localized structures should be seen as asymptotic ot 9 9x
states of the dynamidd.4]. We will see that this is not the .
case here. With coupling turned on, organized localized —TAZ (X DAY, (2
structures are rapidly destroyed with subsequent emission of
short wavelength radiation. At this point we note that the dAL(X,1) dAL(X,1) N
transition to spatiotemporal chaos again depends on the ex- g Vo, - A DA (XY
istence of chaos in low-dimensional subsystems. Here, the
HM alone is regular, otherwise one would not have solitons —r AT (XA, ()
in the uncoupled limitr—0. Here the chaotic pump is
formed not by the HM solely, but by. the Iar_ger new sub- IA5(X,1) IAs(X,1)
system composed by the HM along with the first spatial har-
monics of the Fourier spectrum. As this new chaotic drive is @
connected to the rest, energy transfer takes place.
The plan of the paper goes as follows: in Sec. Il we in-
troduce the basic formalism, governing equations, and nu-?A4(X,1) IA4(X,1)
merical methodology; in Sec. Ill we investigate the dynamics  dt 9 9x
when inhomogeneous modes are all stable; and in Sec. IV we 5)
investigate when localized structures are formed as a result
of linear instabilities of inhomogeneous modes. In Sec. V wéA;, {j=1,2,3,4, are the complex amplitudes of the four
conclude the work. fields, 53,4=QK119K2—QK3‘4 are independent frequency

=A2(X,I)A3(X,t)

VgsT = | 53A3(X,t) _Al(xvt)A; (X,t),

=16,A4(X 1) +1 AL(X,1)Ax(X,1).
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mismatches corresponding to fieldg andA, (i.e., one can  Eor further purposes, note that whjleenotes thevave type
always takes; = 5,=0 as we actually did r is a variable n denotes thenode numbepr harmonic numberThe har-

strength factor measuring the intensity of the triplet-tripletmonic or modal amplitudes; are integrated in time with a
coupling[6-8], andvgj, 1=1,2,3,4, are the respective group predictor-corrector algorithm. We udd=64-256 modes,

velocities along the spatial modulation that we take as ongemoving half of them to cure aliasing. We denote the basic
dimensionalthex axis) in this work. Time and space deriva- sjow wave vector bk and point out that, due to the structure
tives are first order as a result of our multiple time and spacgf the equations, variations kcan be absorbed in variations
scales. . _ _ of the group velocities or vice-versa. Fluctuations of the con-
The set of governing equatior®)—(5) can be derived geryed quantities, including energy, are not larger than one
from a continuous Hamiltonian. Indeed, it is possible to segyart in 1@, and variations of the tolerance factors of the

that the following relations hold integrator do not alter the final outcome of the runs. Our
conclusions are insensitive on the valuesNbiised in the
IA(XD) _H - aAx DT SH (g Simulations.
at SAF’ at oA’
where we introduce the functional derivative Ill. STABLE HOMOGENEOUS MANIFOLDS
s g 3 3 A. Initial settings
SA T IA ax TaAL % All full spatiotemporal simulations in this paper start out
! ! —1 from initial conditions representing a static background
IX pump
(the same definition hold§ iA is replaced withA*), and Ai(t=0)=a; (t=0)=A#0 (12)
where the full HamiltoniarH is to be written in terms of the
Hamiltonian densityH as and a (t=0)=0, {j=234, Vn, (13)
HEJ dxH=f dx| — AJALA% + A* AA—T(AXASA, perturbed by small termsAj=a; e*+a; e™", a;
~e ' such that;  <|A[; this is the convenient choice to
4 IA investigate the stability of a strordy; pump. We take
— ALALAL ) +i 85| Agl2+i 84 Ag2— D vg A a_xJ .
=1 6,=0 (14)

tS)
so a dispersion relatiod= w(«) can be obtained from
The Hamiltonian does not depend explicitly on time; there-
fore, it is a time conserved quantity. In addition to the Hamil- P3P,—Pr=0, (15
tonian, the following quantities are also conserved:
where

Ci= [ il lagiz+ a2 © Po=i(— 0+ vgyr),

P3=i(—w+vg K_53),
Com [ i+ |agi?+ 121 10 :
P4:i(_a)+Vg4K_54),
The arrangement of signs @, andC, indicates that we can
look at the whole process as a decay interaction Wittas  gn(g
the decaying pump; from this perspectiv; is an idler
wave, wherea#\; is a Stokes mode an#l, an anti-Stokes
mode. In the case of nonlinear interactions in unmagnetized Pr= |A|2( 1- rZP—S).
plasmas for instancef\; is a transverse electromagnetic 4
wave,A, is an ion-acoustic wave, amgy andA, are, respec-
tively, Stokes and anti-Stokes Langmuir modgg®].

All those quantities will be useful in checking out the
accuracy of our integration methods, which we outline now
The basic integration method is pseudospectral and the fo
fields A;,{j=1,2,3,4, are Fourier analyzed according to

We point out that the Greek charactesymbolizes the con-
tinuous wave vector of the dispersion relation, whilele-
notes the basic wave vector to be used in the simulations.
J}he dispersion relatioflL5) can be analyzed numerically, but
we first briefly discuss some of its relevant results. For a
given A and « positive, there exists an instabilitgomplex

N/2 w’'s) band extending fromk=0 up to a certairk,,x. The
A = a (t)elnkx (11) larger the value of4, the largerk,ax. 1N general, maximum
U on= 2+ o growth rates occur fo=0, which contrast with several
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0.2 spend so much time close to hyperbolic points that static
approximations are reasonable. But the matter is more in-
0.1 volved when chaos sets in as we shall examine next.
_ That the HM can be either regular or chaotic can be seen
%0.0 ke from the following initial reasoning and simulations. It has
= /. been showr{6] that the HM by itself is a two-degrees-of-
01 freedom(2DOF conservative dynamical system. After some
) analytical work one can actually derive a governing Hamil-
) tonian. To do so, from Eq.11) we write the corresponding
'0'0.0 01 0.2 homogeneous fields in the form
K
Aj(x,t)=a (1), (16)
0.1 °
which does not depend on the spatial coordinate. Then we
2 introduce real amplitudes and phases through
z 00 1
' 3 =vpe’, {j=1234 (17)
0.1
0.0 0.1 0.2 _ ) ) ) N
K to obtain canonical conjugate equations for these quantities
FIG. 1. Plot of the dispersion relation, E(L5) of the text.4  in the formsp=—dh/d¢ and ¢=dh/dp, with a reduced
=(0;0.185),5;=0.01,r=0.1,v4 =0, vg,=1, andvg = —0.5. governing Hamiltoniarh given in the form

other cases where the growth rate vanishes=a0 [14,17).
The instability atc=0 is precisely the one giving rise to the ~ h=2\p1p2p3Sin( 1~ 2~ ¢p3)
homogeneous dynami¢6,8]. Given that homogeneous per- .
turbations are always unstable, if an inhomogeneous mode 2" VP1P2PaSIN(b1F o ba) = S3p3— dapa- (18)
with k#0 falls within the instability band, one has a com-
peting process involving the unstable dynamics on the HM ) ) .
(k=0) and the unstable dynamics off the HM#k#0). ~ We now introduce new canonical variablgs — ¢,— ¢3
We refer to Fig. 1 where we plob=w(«x) as calculated — %1, $a=2d2—bs—ba, pa—p2=p1=2ps, p3—p3
from Eq.(15) for A=(0,0.185),8;=0.01, and =0.1. Allof ~ —P1 P4 with the_ remaining \_/a_rlables unchanged, to turn
the mentioned properties can be seen there; in addition, noté@miltonian (18) into an explicit 2DOF one. Then, one
that one has two roots that fuse into one in unstable regiongnakes Poincarglots, recording the paip,,¢, each time
the other root is always stable. The related problem of satudpa/dt=0, withd?p,/dt*<0. One launches about 20 initial
ration of the instability is certainly far from trivial and we conditions whose energy is compatible with our standard ini-
focus our attention on some particular cases. tial condition given in Eq(13), with .A=(0,0.185). The re-
sults can be appreciated in Fig. 2. In pait@ we user
=1.0 ands3=0.0001. The system is predominantly regular,
_ _ with large dominance of uncorrupted Kolmogorov-Arnold-
B. Conventionally stable homogeneous manifold Moser(KAM) [18] curves. This can be expected from results
The first case of interest is the one where no inhomogederived in a previous papgt9], where the author shows that
neous mode K#0) is unstable in the conventional sense.the homogeneous dynamics &=0 is exactly integrable,
Will the instability and the ensuing dynamics on the HM irrespective ofr. Now one moves to pandb) where J;
induce some new type of instability that could cause growtt=0.1 is used. For this larger mismatch, chaos is spread over
of inhomogeneous perturbations? We recall that if the HMmost of the phase space. For a fixgd: 0, increasing values
were completely stationary, there would be no chance fopf r also enhance chaotic activity.
such a process to occur, since in this case the dispersion In general, one thus sees that the HM can indeed support
relation (15) would apply fully. The problem however, as a nontrivial dynamics, either chaotic or regular. If the state of
said before, is that the HM cannot be seen as a totally stdhe homogeneous manifold were a static background, results
tionary structure. In view of the existence ofka=0 insta-  of the dispersion relatiofil5) would apply. However, given
bility, some kind of dynamics, regular or chaotic, is bound tothe highly nontrivial dynamics developing on the manifold,
happen there. And this can alter the global stability properthe space time dynamics should be examined with care.
ties of the system. From this point of view we shall analyze In order to monitor instabilities and energy transfer to
the dynamics in two distinct cases: regular and chaotitnhomogeneous modes, we make use of a spectral average
HM’s. Again, as mentioned earlier, results from conven-[20,21], which enables one to estimate the number of active
tional linear stability calculations are expected to apply in themodes in the system. We denote this quantityyid}?) and
regular case. The fact is that if the orbits are regular, theylefine it as
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(‘) (rad) FIG. 2. Poincarelots on the HM. A series of
° isoenergetic trajectories are plotted for the condi-
(b) tions discussed in the tex@) §;=0.0001 andb)
0.035 83=0.1. In both cases4=(0,0.185) and =1.
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1. Usual simulations

In Fig. 3 we start to examine the spatiotemporal dynamics

(19) of homogeneous initial conditions perturbed by small inho-

mogeneous terms that are linearly stable in the conventional

sense discussed in the Introduction. Usual simulations are

performed where mode coupling is fully dictated by our

original set of governing equation&gs. (2)—(5)]; we shall

refer to these usual type of simulations as fully connected
From its definition one sees tha{N?) is the square root of here. In addition to the initial conditions defined by relations
the averagea?, with the average weighted by the square of(13), again with.A=(0,0.185), we impose a small inhomo-
the mode number and type amplitudes. One could also furgeneous perturbation on mode whose strength is much
ther average over several similar initial conditions, but oursmaller than A, a, (t=0)=0.001A. The curves for =1
results on energy transfer remain the same as long as the Fig. 3@ are made for the same parameters and respective
initial conditions are all simultaneously stable or all simulta-Vvarying values ofs; that correspond to the outer orbits of
neously unstabley(N?) is expected to grow in time in dif- Fi9S- 48 and 2b). As for curver =0.8, we usej;=0.1. We
fusive cases where more and more modes become involvel;_ak‘Ek?O'5 S0 as to guarantee that we are well outside the
in the dynamics. In the absence of energy transm linear instability band. The lower curve € 1,6;=0.0001)

R . .. reveals that, in terms of energy transfer, nothing is really
remains limited by the number of linearly unstable modes; i . . L .
appening. Energy stays confined within the region of modes
the case of stable modes only({N%)—0.

. ith large wave v rs. Figur hows what h ns in
Given the definition of the spectral average to be use th large wave vectors, Figurely shows what happens

time; in that fi lot th tit
here, we proceed to the case of a regular HM perturbed bypace and time; in that figure we plot the quantity
conventionally stable wave vectors. C=2|A1(x, )2+ ]A5(x,1) |2+ |Az(x,1) |2, (20)
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Fully Connected
Simulation

10 ——————

Homogeneous Inhogeneous

g [ =10, §=0.1)
L 3 Manifold Modes

V<NZ>
'

=03, 5.=0.1)]

(r=1.0, 83=0.0001)

Inhogeneous
Modes

Homogeneous
Manifold

Pump Model
Simulation

0 3000 10000 13000 20000 FIG. 4. General schematics of the pump model simulation.

upper curve of Fig. @ and by Fig. &), both cases with
83=0.1, which is the same value used in Figh)2

Now, if we keepd3=0.1 and reduce to r=0.8, the in-
termediate curve of Fig. 3 allows one to see that energy
transfer is inhibited. This is compatible with the fact that the
HM is less chaotic for smaller values of In the limit r
=0, in particular, the wave triplets become uncoupled and
the dynamics becomes completely integrable with energy
transfer no longer occurring.

As mentioned earlier, chaotic low-dimensional sub-
systems immersed into systems with larger dimensionalities
may act much like a thermal source, delivering energy into
all the remaining DOF’'§18]. This is the basic pattern that
we see here.

2. Pump model simulations

It is then apparent that we are working with convention-
ally stable inhomogeneous modes whose dynamics is excited
¥ only when the HM supports chaotic orbits. Let us effectively
°7 5000 test this idea of a thermal source, or stochastic pump model,

S
s
P -
'z v

Py

a0 X "‘q\\‘\\”‘i’%w;ﬁ"\JA«\‘»"‘ as is more usually known. To do that we propose the follow-
~-\i'.\‘ﬁ§”/\\\\\)‘\ ¥, : ing numerical procedure. In the simulations we remove all
"":'z&‘,‘f"g)\it‘ia 2000 the influence of inhomogeneous modes on the HM, but keep

grid point M the action of the HM on the inhomogeneous modes. In this
Py way we actually convert the HM into a closed source to

which the remaininginhomogeneoysmodes are attached.

FIG. 3. Conventionally stable HM'¥a) V(N?) vs time, (b) the  The general schematics can be found in Fig. 4. If the sto-
C(x,t) space-time mesh fob;=0.0001 andr=1, and(c) the  chastic pump idea is correct, at least for earlier stages of the
C(x,t) space-ime mesh fop;=0.1 andr=1. In all cases,A  dynamics, there must be some agreement between our fully
=(00.185), 8, =10 *A, k=05, vq,=0, vg,=1, and vo,  connected simulations and simulations based on the proce-
=—0.5. All of the remaining initial conditions are zeroed and dyre related above. Beyond the point where the fully con-
C(xt) is defined in the text. nected HM loses an appreciable part of its initial energy, the

agreement is expected to cease.

which is a conserved quantity in the purely homogeneous, We begin with the case of a regular dynamics developing
uncoupled system, as can be seen from E2)s:(4). We use  on the HM. Initial conditions are the same as in Fig)3and
C to be free of the fast temporal oscillations generated by théhe results of our comparisons are shown in Fig).50ne
cyclic dynamics on the HM. Figure(B) then reveals that, for sees that the number of modes remains the same all the way
the small values;=0.0001, the dynamics is mostly regular along the simulation both in the fully connected and the
with no energy transfer observed in the full simulations.  pump model approaches. The growth in the number of in-

As we examine the case=1, §;=0.1, where the HM volved modes is not significant within the time scales used in
supports chaotic orbits, a striking difference can be apprecithe computations. On the other hand, as we move to chaotic
ated. Here transfer does take place. Energy initially injecte@ases, the dynamics undergoes drastic changes. We see this
at small wave vectors keeps spreading towards fluctuationsom Fig. 5b) where the initial conditions correspond to
with progressively smaller length scales. Transfer is arrestedhose of Fig. &). Both in the fully connected and pump
or saturated, only when all modes in the system becomsimulations, the number of modes grows until saturation.
involved in the dynamics. This is what is revealed by theSimulation using the pump model agrees with the fully con-
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10 f ‘ ' (a)

—— fully connected model
pump model

N
Z
A\
-4 | | 1
1o 0 2500 5000 7500 10000 FIG. 5. Compgrison. of the pump modgl and
. fully connected simulationsia) When diffusion
time is absent, 5,=0.0001: (b) when diffusion is
present,6;=0.1. In all casesA=(0,0.185),a21
=10"3%4, k=05, r=1, v, =0, v, =1, and
102 . . . . . 91 92
(b) Vg,=—1. The remaining initial conditions are
—— fully connected model zeroed.
pump model
10°
N
Z
\"
107
|0-4 . ! . ! ! .
0 2500 5000 7500 10000

fime

nected one during earlier stages, as anticipated. While thilis can lead to localization in our full simulations. We point
HM energy is much larger than that contained by the rest obut that the conditiom =0 is not sufficient for soliton for-
the system, we can actually see the HM as a pump deliveringhation. To allow for solitons in the uncoupled system, one
energy to all other modes. However, when the HM energymnust satisfy the following conditions involving the group
depletion becomes too large, the simulations begin to MOVgelocities, vy <Vq <Vg., @ shown in the literaturt]; we
apart frpm eaqh other. The pump simqlations tend to. attairt1ake 63=0 ir21 ad(;ition3 This is convenient because, under
saturation earlier because the unceasing energy delivery i . : . ’ )
is restriction, the pure HM is completely regular, as said

much faster there. ; )
before. So we can focus only on nonintegrable features aris-
ing from the existence of inhomogeneous modes in the sys-
IV. UNSTABLE HOMOGENEOUS MANIFOLDS tem. Let us start with the analysis by takimgr0. In this
AND SOLITONS limit the triplets are uncoupled and completely integrable,

Our next goal is to complement the previous ideas andnd asymptotic solutions should form regular patterns. That
look at those situations where the HM is linearly unstable inthis is so can be observed with the help of Fig. 6. With
the conventional sense. In other words, we work with a set o0 in Figs. Ga) and &b) one sees a regular pattern of
wave vectors that would cause inhomogeneous perturbatiorejually interspersed spikes distributed over the space-time
to grow, if the HM were static —k=0.05. And more than plane[Fig. 6(b)]. The regular structure continues to repeat
that, we will be working with a set of parameters for which itself indefinitely and no energy transfer takes pld€eg.
solitons are possible solutions in the uncoupled case); 6(a)].
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FIG. 6. Conventionally unstable HM'$a) (N?) vs time, (b)
the C(x,t) space-time mesh far=0, and(c) the C(x,t) space-time
mesh forr=0.5. In all cases,A=(0,0.1), a21=10*3A, k=0.05,
and 63=0. v =0, vg,=1, andvy =—1. The remaining initial
conditions are zeroed.

On the other hand, as we turn the coupling factamn,
regularity is destroyed. For=0.5 Fig. Gc) reveals that
spikes can no longer be seen, and Figy &hat energy trans-
fer now does occur.
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subsystem formed by the Hlglusthe first harmonics would

not be chaotic. To go into this point we simply disconnect
the subsystem formed by homogeneous plus first harmonic
modes from the rest of the system, and analyze the reduced
dynamics. What we find out is pictured in Fig. 7. In the
figure we display Poincareplots where the pair
Re(alo),d Re(alo)/dt is recorded each time R&{l) attains

a maximum. From pangb) it is clear that, fors;=r =0, the
dynamics is periodic and thus integrable. But as we go to
larger values of, keepingd;=0 so as to maintain integra-
bility on the pure HM, what we see is the dynamics of Fig.
7(b). The reduced dynamics is clearly nonperiodic. It can
therefore also act like a stochastic source feeding energy into
modes withn=2. Further progress on this topic shall be
reported.

V. CONCLUSIONS

To begin with, let us recall that we have studied wave
systems that, in addition to offering the usual linear stability
properties, can also develop a nontrivial dynamics on its ho-
mogeneous manifold where all the fields are space indepen-
dent. Due to this very fact, the effective stability of the
purely homogeneous dynamics differs from conventional lin-
ear studies that take the homogeneous background as a static
entity.

The first conclusion regarding this point comes from the
analysis of conventionally stable HM'’s, where the term con-
ventional actually indicates usual linear calculations consid-
ering the HM as a stationary background. Now, a conven-
tionally stable HM can be effectively stable or unstable,
depending on the type of dynamics it supports. In the case of
a regular dynamics, the HM is effectively stable, but if one
goes to the case of a chaotic orbit, effective stability is lost.
In this case the HM starts to work like a random or stochastic
source, diffusively delivering energy into spatially dependent
modes. We conducted a numerical test to verify the reliabil-
ity of the idea. The test suppresses the influence of inhomo-
geneous modes on the HM and therefore converts the mani-
fold into a genuine source.

With this stochastic model at hand we conclude that if the
HM is regular, it is not capable of delivering energy into
inhomogeneous modes. On the other hand, when chaotic,
energy delivery does take place. Full simulations agree with
the results of the model.

The other case studied here is that of regular HM's
coupled to conventionally unstable inhomogeneous modes.
We have focused our study on the range of parameters where
the uncoupled triplets may support localized solutions. Start-
ing from homogeneous initial conditions slightly perturbed
by inhomogeneities, the uncoupled system evolves towards a
regular distribution of space-time spikes. As a result of cou-

In the case of conventional stability one already found oupling, energy transfer does occur. In this case, it is also ap-
that the drive to spatiotemporal chaos is provided by a posparent that transfer is at least initially driven by chaos in a
sible chaotic dynamics on the HM. Does something similarsubsystem. The subsystem here is not the HM, since we
happen in the present case? To answer the question we finsbrk with a set of parameters for which the HM by itself is
note that the HM by itself is not chaotic here, since we takdotally integrable. In the present case the chaotic subsystem

=0 [19]. Therefore, it cannot provide the drive to spa-is formed by the HM plus the unstable modes of the first
tiotemporal chaos by itself. However, since we now have @&armonic components. Except for this difference, the sto-
second set of active modes, the conventionally unstablehastic pump model works along similar lines, as previously
modes at the first harmonic, one can wonder if the extendethentioned.
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FIG. 7. Poincarelots of the subsystem formed by the HM plus tire 1 modesi(a) r =0 and(b) 0.5. The remaining parameters are as
in the previous figure.
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