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Nonintegrable dynamics of the triplet-triplet spatiotemporal interaction
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In this paper we examine the coupling of two wave triplets sharing two common modes. The analysis is
performed in the solitonic sector of the parameter space where uncoupled solutions departing from linearly
unstable homogeneous initial conditions evolve into a collection of regularly interspersed, spatiotemporally
localized spikes. The uncoupled system is integrable, but coupling destroys integrability. As coupling grows,
energy transfer to smaller spatial scales does appear and becomes faster not only in linearly unstable, but also
in linearly stable cases. Chaos in low-dimensional subsystems appears to be responsible for the transfer. We
perform a series of numerical tests to verify this idea.@S1063-651X~99!08710-3#

PACS number~s!: 05.45.Jn
ta
h

i
om

o
et

o
ra
ti

e

di
o
th
d
o

io
to
t-
er

dy

ed
n
o

en

de-

—
ot
rom
ere
ld

cer-
qui-
ld

ve
ni-

its
gu-

of
the

m
n-
es

this
time
e-
sug-

ho-
mp

he

ng
s a
me
one
cted
ill
ted
of

als
I. INTRODUCTION

Resonant nonlinear three-wave coupling has an impor
role in both space and laboratory plasma processes, suc
filamentation and anomalous absorption of laser beams@1#,
generation of auroral and solar radio emissions@2#, and
modulation of the solar wind Langmuir waves@3#. Given the
interest on the subject, the conservative resonant triplet
teraction has been fully investigated and shown to be c
pletely integrable via inverse scattering@4#. Another related
case of resonant interaction that has been attracting s
renewed attention is the one involving two coupled tripl
sharing two common modes@5–7# where, all in all, four
independent waves undergo mutual interaction. This type
kinematics, where the interacting triplets share comm
modes, has been shown to be essential in nonlinear inte
tions involving electromagnetic, Langmuir, and ion-acous
waves propagating in unmagnetized plasmas@8,9#, in mag-
netohydrodynamics interactions involving Alfve´n and ion-
acoustic waves@10#, and in plasma-beam interactions in th
presence of negative energy waves@5#.

These kinds of wave-wave couplings in continuous me
are frequently described by amplitude equations. Once
identifies a set of high frequency modes interacting in
resonant fashion, one applies multiple scale formalism to
rive equations governing the slow space-time evolution
these modes, the amplitude equations. Amplitude equat
are justified when the spectral widths of both wave vec
(K ) and frequency (V) spectral distributions of the interac
ing packets are respectively small as compared to the inv
spatial and temporal scale of the interaction@11,12#. It is the
purpose of this paper to further analyze the amplitude
namics of the coupled triplets.

Different from the temporal dynamics of the uncoupl
triplets, the coupled temporal dynamics has been show
produce amplitude equations allowing for temporal cha
@6#. To be more specific, if one removes all spatial dep
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dence from the governing equations, then the solutions
veloping on thishomogeneous manifold— sometimes we
shall refer to the homogeneous manifold simply as HM
can be chaotic if a number of conditions is fulfilled. N
much, however, has been said about solutions departing f
the homogeneous manifold. One relevant question h
would be on the stability of the homogeneous manifo
against inhomogeneous perturbations. If, for instance, a
tain homogeneous solution — not necessarily a static e
librium — is perturbed by some small inhomogeneity, wou
this inhomogeneity grow in time? If the answer is positi
we would have aneffectively unstable homogeneous ma
fold. Otherwise, the manifold would beeffectively stable.
Previous findings show that HM’s supporting chaotic orb
are always effectively unstable, while those supporting re
lar orbits may be effectively unstable against some types
perturbation and stable against others, all depending on
basic wave vector of the perturbing terms@7#. This latter
kind of behavior, in particular, is what can be expected fro
conventionallinear perturbative analysis, where by conve
tional we mean the linear stability analysis that assum
static backgrounds. Conventional stability is expected at
point because if the system is regular it spends so much
close to hyperbolic points that a static approximation b
comes reasonable. On the other hand, what has been
gested to explain the instability of chaotic cases is that in
mogeneities tend to grow as a result of a stochastic pu
provided by the chaotic orbits evolving on the HM@7#. The
action of the stochastic pump would be similar to that of t
Fermi-Pasta-Ulam problem, as analyzed recently@13#; the
pump would act like a random source diffusively feedi
energy into all the remaining modes of the system, and a
final result one would have the system moving towards so
energy equipartitioned state. From the above comments,
sees that the pump model idea is general and thus expe
to be applicable to a variety of settings. Indeed, we w
suggest here that it also works well under more complica
conditions involving not only stable, but unstable HM’s
the triplet-triplet interaction as well.

Given the above perspective, we have two basic go
5375 © 1999 The American Physical Society
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5376 PRE 60S. R. LOPES AND F. B. RIZZATO
with the present paper. One of them is to further investig
the ideas behind the stochastic pump model. To do that
first focus our attention on settings displaying conventio
linear stability. We make calculations assuming a sta
background, and simply choose wave vectors located out
the instability band. This sort of system shall be analyz
under two distinct conditions: when the HM is chaotic a
when it is regular. We shall see that only when the homo
neous dynamics is chaotic, energy transfer takes place. T
we shall make tests on the stochastic pump model. We s
transform our homogeneous manifold into a real pump s
system. In other words, we remove all the influence of s
tially inhomogeneous modes onto the homogeneous m
fold, maintaining the reverse influence — that of t
homogeneous manifold on the remaining space-depen
modes. With this procedure we can actually look at the H
as a closed pump, feeding energy into all the remain
~space-dependent! modes, without loss of its own energy. A
our numerical results show, there is agreement between
pump model and results arising from fully connected sim
lations, for short intervals of time; we call fully connecte
simulations those simulations which are completely s
consistent and energy conserving. As time elapses, the
of the fully connected simulations loses appreciable ene
to the inhomogeneous modes. Given that in the pump mo
the HM is isolated and does not lose its energy, the two ki
of results should eventually diverge.

The other goal of the paper is to show that the idea of
pump model goes beyond the previous setting. We proc
as follows. The preceding analysis is extended into regim
where the uncoupled triplets display conventional linear
stability leading to the formation of localized structures. L
calization has not been appreciated before@7# because the
appropriate basic conditionvg2

,vg1
,vg3

@4# had not been

chosen; we denote byvgi
, i 51,2,3,4, the group velocities o

the four relevant waves. In the uncoupled regime, condit
vg2

,vg1
,vg3

allows for soliton propagation and the exi
tence of related localized structures. The idea here is to
what happens as coupling is turned on. There is a belief
in some settings solitons are so robust that, even in cha
regimes, localized structures should be seen as asymp
states of the dynamics@14#. We will see that this is not the
case here. With coupling turned on, organized localiz
structures are rapidly destroyed with subsequent emissio
short wavelength radiation. At this point we note that t
transition to spatiotemporal chaos again depends on the
istence of chaos in low-dimensional subsystems. Here,
HM alone is regular, otherwise one would not have solito
in the uncoupled limitr→0. Here the chaotic pump i
formed not by the HM solely, but by the larger new su
system composed by the HM along with the first spatial h
monics of the Fourier spectrum. As this new chaotic drive
connected to the rest, energy transfer takes place.

The plan of the paper goes as follows: in Sec. II we
troduce the basic formalism, governing equations, and
merical methodology; in Sec. III we investigate the dynam
when inhomogeneous modes are all stable; and in Sec. IV
investigate when localized structures are formed as a re
of linear instabilities of inhomogeneous modes. In Sec. V
conclude the work.
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II. MODEL

In order to describe the mutual interaction of two wa
triplets sharing two common modes and constituted, th
fore, by four wave modes in all, we assume that the follo
ing resonant conditions are fulfilled:

VK1
'VK3

1VK2
,

K15K21K3 ,

VK1
'VK4

2VK2
,

K15K42K2 , ~1!

whereVK j
and K j , $ j 51,2,3,4% are, respectively, the fas

frequencies and fast wave vectors of the interacting wa
note that within the present formalism, the shared modes
modes 1 and 2.

We allow for small frequency mismatches, a usual eff
in wave-wave interaction. We shall see that the role of m
matches in the spatiotemporal triplet-triplet interaction is
sential in determining the integrability properties of the wa
dynamics. Frequency mismatch occurs because, even
perfectly matched wave vectors, the respective frequen
obtained from the linear dispersion relations may not q
be likewise matched. In laser accelerators and, in gen
laser-plasma interactions, frequency mismatch can even
hance the linear growth rate in several situations@8,15,16#.
Therefore, mismatched modes can be stronger and of gr
importance in the dynamics. Wave vector mismatches c
also be incorporated into the theory. However, as freque
and wave vector mismatches are formally equivalent, we
cus attention on the former.

Following the model revisited in a series of recent pap
@6–8#, the dimensionless amplitude equations governing
one dimensional, spatiotemporal, slow modulational dyn
ics can be cast into the form

]A1~x,t !

]t
1vg1

]A1~x,t !

]x
5A2~x,t !A3~x,t !

2r A2* ~x,t !A4~x,t !, ~2!

]A2~x,t !

]t
1vg2

]A2~x,t !

]x
52A1~x,t !A3* ~x,t !

2r A1* ~x,t !A4~x,t !, ~3!

]A3~x,t !

]t
1vg3

]A3~x,t !

]x
5 id3A3~x,t !2A1~x,t !A2* ~x,t !,

~4!

]A4~x,t !

]t
1vg4

]A4~x,t !

]x
5 id4A4~x,t !1r A1~x,t !A2~x,t !.

~5!

Aj , $ j 51,2,3,4%, are the complex amplitudes of the fo
fields, d3,45VK1

7VK2
2VK3,4

are independent frequenc
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PRE 60 5377NONINTEGRABLE DYNAMICS OF THE TRIPLET- . . .
mismatches corresponding to fieldsA3 andA4 ~i.e., one can
always taked15d250 as we actually did!, r is a variable
strength factor measuring the intensity of the triplet-trip
coupling@6–8#, andvgj

, j 51,2,3,4, are the respective grou
velocities along the spatial modulation that we take as
dimensional~thex axis! in this work. Time and space deriva
tives are first order as a result of our multiple time and sp
scales.

The set of governing equations~2!–~5! can be derived
from a continuous Hamiltonian. Indeed, it is possible to s
that the following relations hold

]Aj~x,t !

]t
5

dH

dAj*
,

]Aj~x,t !*

]t
52

dH

dAj
, ~6!

where we introduce the functional derivative

d

dAj
[

]

]Aj
2

]

]x

]

]S ]Aj

]x D ~7!

~the same definition holds ifA is replaced withA* ), and
where the full HamiltonianĤ is to be written in terms of the
Hamiltonian densityH as

Ĥ[E dxH5E dxF2A1A2* A3* 1A1* A2A32r ~A1* A2* A4

2A1A2A4* !1 id3uA3u21 id4uA4u22(
j 51

4

vgj
Aj*

]Aj

]x G .

~8!

The Hamiltonian does not depend explicitly on time; the
fore, it is a time conserved quantity. In addition to the Ham
tonian, the following quantities are also conserved:

C15E dx@ uA2u22uA3u21uA4u2#, ~9!

C25E dx@ uA1u21uA3u21uA4u2#. ~10!

The arrangement of signs inC1 andC2 indicates that we can
look at the whole process as a decay interaction withA1 as
the decaying pump; from this perspective,A2 is an idler
wave, whereasA3 is a Stokes mode andA4 an anti-Stokes
mode. In the case of nonlinear interactions in unmagneti
plasmas for instance,A1 is a transverse electromagnet
wave,A2 is an ion-acoustic wave, andA3 andA4 are, respec-
tively, Stokes and anti-Stokes Langmuir modes@8,9#.

All those quantities will be useful in checking out th
accuracy of our integration methods, which we outline no
The basic integration method is pseudospectral and the
fields Aj ,$ j 51,2,3,4%, are Fourier analyzed according to

Aj5 (
n52N/211

N/2

aj n
~ t !einkx. ~11!
t

e

e

e

-
-

d

.
ur

For further purposes, note that whilej denotes thewave type,
n denotes themode numberor harmonic number. The har-
monic or modal amplitudesaj n

are integrated in time with a

predictor-corrector algorithm. We useN564–256 modes,
removing half of them to cure aliasing. We denote the ba
slow wave vector byk and point out that, due to the structu
of the equations, variations ink can be absorbed in variation
of the group velocities or vice-versa. Fluctuations of the co
served quantities, including energy, are not larger than
part in 105, and variations of the tolerance factors of th
integrator do not alter the final outcome of the runs. O
conclusions are insensitive on the values ofN used in the
simulations.

III. STABLE HOMOGENEOUS MANIFOLDS

A. Initial settings

All full spatiotemporal simulations in this paper start o
from initial conditions representing a static backgrou
pump

A1~ t50!5a1o
~ t50![AÞ0 ~12!

and aj n
~ t50!50, $ j 52,3,4%, ;n, ~13!

perturbed by small termsAj5aj 1
eikx1aj 21

e2 ikx, aj 61

;e2 ivt, such thataj 61
!uAu; this is the convenient choice t

investigate the stability of a strongA1 pump. We take

d450 ~14!

so a dispersion relationv5v(k) can be obtained from

P3P22PR50, ~15!

where

P25 i ~2v1vg2
k!,

P35 i ~2v1vg3
k2d3!,

P45 i ~2v1vg4
k2d4!,

and

PR5uAu2S 12r 2
P3

P4
D .

We point out that the Greek characterk symbolizes the con-
tinuous wave vector of the dispersion relation, whilek de-
notes the basic wave vector to be used in the simulatio
The dispersion relation~15! can be analyzed numerically, bu
we first briefly discuss some of its relevant results. Fo
given A andk positive, there exists an instability~complex
v ’s! band extending fromk50 up to a certainkmax. The
larger the value ofA, the largerkmax. In general, maximum
growth rates occur fork50, which contrast with severa



e
r-
o
-
M

no
on
at
e

ge
e
M
t
M
fo
si
s
st

to
e
z

ot
n

th
he

atic
in-

een
s

f-
e
il-

we

ities

rn
e

l
ini-

r,
d-
lts
t

ver

port
of
ults

d,

to
rage
ive

5378 PRE 60S. R. LOPES AND F. B. RIZZATO
other cases where the growth rate vanishes atk50 @14,17#.
The instability atk50 is precisely the one giving rise to th
homogeneous dynamics@6,8#. Given that homogeneous pe
turbations are always unstable, if an inhomogeneous m
with kÞ0 falls within the instability band, one has a com
peting process involving the unstable dynamics on the H
(k50) and the unstable dynamics off the HM (k5kÞ0).
We refer to Fig. 1 where we plotv5v(k) as calculated
from Eq.~15! for A5(0,0.185),d350.01, andr 50.1. All of
the mentioned properties can be seen there; in addition,
that one has two roots that fuse into one in unstable regi
the other root is always stable. The related problem of s
ration of the instability is certainly far from trivial and w
focus our attention on some particular cases.

B. Conventionally stable homogeneous manifold

The first case of interest is the one where no inhomo
neous mode (kÞ0) is unstable in the conventional sens
Will the instability and the ensuing dynamics on the H
induce some new type of instability that could cause grow
of inhomogeneous perturbations? We recall that if the H
were completely stationary, there would be no chance
such a process to occur, since in this case the disper
relation ~15! would apply fully. The problem however, a
said before, is that the HM cannot be seen as a totally
tionary structure. In view of the existence of ak50 insta-
bility, some kind of dynamics, regular or chaotic, is bound
happen there. And this can alter the global stability prop
ties of the system. From this point of view we shall analy
the dynamics in two distinct cases: regular and cha
HM’s. Again, as mentioned earlier, results from conve
tional linear stability calculations are expected to apply in
regular case. The fact is that if the orbits are regular, t

FIG. 1. Plot of the dispersion relation, Eq.~15! of the textA
5(0;0.185),d350.01, r 50.1, vg1

50, vg2
51, andvg3

520.5.
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spend so much time close to hyperbolic points that st
approximations are reasonable. But the matter is more
volved when chaos sets in as we shall examine next.

That the HM can be either regular or chaotic can be s
from the following initial reasoning and simulations. It ha
been shown@6# that the HM by itself is a two-degrees-o
freedom~2DOF! conservative dynamical system. After som
analytical work one can actually derive a governing Ham
tonian. To do so, from Eq.~11! we write the corresponding
homogeneous fields in the form

Aj~x,t ![aj o
~ t !, ~16!

which does not depend on the spatial coordinate. Then
introduce real amplitudes and phases through

aj o
5Ar je

if j , $ j 51,2,3,4% ~17!

to obtain canonical conjugate equations for these quant
in the forms ṙ52]h/]f and ḟ5]h/]r, with a reduced
governing Hamiltonianh given in the form

h52Ar1r2r3sin~f12f22f3!

22rAr1r2r4sin~f11f22f4!2d3r32d4r4 . ~18!

We now introduce new canonical variablesf12f22f3
→f1 , f422f22f3→f4 , r2→r22r122r4 , r3→r3
2r12r4, with the remaining variables unchanged, to tu
Hamiltonian ~18! into an explicit 2DOF one. Then, on
makes Poincare´ plots, recording the pairro ,fo each time
dr4 /dt50, with d2r4 /dt2,0. One launches about 20 initia
conditions whose energy is compatible with our standard
tial condition given in Eq.~13!, with A5(0,0.185). The re-
sults can be appreciated in Fig. 2. In panel~a! we user
51.0 andd350.0001. The system is predominantly regula
with large dominance of uncorrupted Kolmogorov-Arnol
Moser~KAM! @18# curves. This can be expected from resu
derived in a previous paper@19#, where the author shows tha
the homogeneous dynamics atd350 is exactly integrable,
irrespective ofr. Now one moves to panel~b! where d3
50.1 is used. For this larger mismatch, chaos is spread o
most of the phase space. For a fixedd3Þ0, increasing values
of r also enhance chaotic activity.

In general, one thus sees that the HM can indeed sup
a nontrivial dynamics, either chaotic or regular. If the state
the homogeneous manifold were a static background, res
of the dispersion relation~15! would apply. However, given
the highly nontrivial dynamics developing on the manifol
the space time dynamics should be examined with care.

In order to monitor instabilities and energy transfer
inhomogeneous modes, we make use of a spectral ave
@20,21#, which enables one to estimate the number of act
modes in the system. We denote this quantity byA^N2& and
define it as
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FIG. 2. Poincare´ plots on the HM. A series of
isoenergetic trajectories are plotted for the con
tions discussed in the text:~a! d350.0001 and~b!
d350.1. In both cases,A5(0,0.185) andr 51.
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A^N2&5!(
n51

N

(
j 51

4

n2uaj n
u2

(
n51

N

(
j 51

4

uaj n
u2

. ~19!

From its definition one sees thatA^N2& is the square root o
the averagedn2, with the average weighted by the square
the mode number and type amplitudes. One could also
ther average over several similar initial conditions, but o
results on energy transfer remain the same as long as
initial conditions are all simultaneously stable or all simul
neously unstable.A^N2& is expected to grow in time in dif-
fusive cases where more and more modes become invo
in the dynamics. In the absence of energy transfer,A^N2&
remains limited by the number of linearly unstable modes
the case of stable modes only,A^N2&→0.

Given the definition of the spectral average to be u
here, we proceed to the case of a regular HM perturbed
conventionally stable wave vectors.
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1. Usual simulations

In Fig. 3 we start to examine the spatiotemporal dynam
of homogeneous initial conditions perturbed by small inh
mogeneous terms that are linearly stable in the conventio
sense discussed in the Introduction. Usual simulations
performed where mode coupling is fully dictated by o
original set of governing equations@Eqs. ~2!–~5!#; we shall
refer to these usual type of simulations as fully connec
here. In addition to the initial conditions defined by relatio
~13!, again withA5(0,0.185), we impose a small inhomo
geneous perturbation on modeA2 whose strength is much
smaller thanuAu, a21

(t50)50.001A. The curves forr 51
in Fig. 3~a! are made for the same parameters and respec
varying values ofd3 that correspond to the outer orbits o
Figs. 2~a! and 2~b!. As for curver 50.8, we used350.1. We
take k50.5 so as to guarantee that we are well outside
linear instability band. The lower curve (r 51,d350.0001)
reveals that, in terms of energy transfer, nothing is rea
happening. Energy stays confined within the region of mo
with large wave vectors. Figure 3~b! shows what happens in
space and time; in that figure we plot the quantity

C52uA1~x,t !u21uA2~x,t !u21uA3~x,t !u2, ~20!
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5380 PRE 60S. R. LOPES AND F. B. RIZZATO
which is a conserved quantity in the purely homogeneo
uncoupled system, as can be seen from Eqs.~2!–~4!. We use
C to be free of the fast temporal oscillations generated by
cyclic dynamics on the HM. Figure 3~b! then reveals that, for
the small valued350.0001, the dynamics is mostly regul
with no energy transfer observed in the full simulations.

As we examine the caser 51, d350.1, where the HM
supports chaotic orbits, a striking difference can be appr
ated. Here transfer does take place. Energy initially injec
at small wave vectors keeps spreading towards fluctuat
with progressively smaller length scales. Transfer is arres
or saturated, only when all modes in the system beco
involved in the dynamics. This is what is revealed by t

FIG. 3. Conventionally stable HM’s:~a! A^N2& vs time,~b! the
C(x,t) space-time mesh ford350.0001 andr 51, and ~c! the
C(x,t) space-time mesh ford350.1 and r 51. In all cases,A
5(0,0.185), a21

51023A, k50.5, vg1
50, vg2

51, and vg3

520.5. All of the remaining initial conditions are zeroed an
C(x,t) is defined in the text.
s,

e

i-
d
ns
d,
e

upper curve of Fig. 3~a! and by Fig. 3~c!, both cases with
d350.1, which is the same value used in Fig. 2~b!.

Now, if we keepd350.1 and reducer to r 50.8, the in-
termediate curve of Fig. 3 allows one to see that ene
transfer is inhibited. This is compatible with the fact that t
HM is less chaotic for smaller values ofr. In the limit r
50, in particular, the wave triplets become uncoupled a
the dynamics becomes completely integrable with ene
transfer no longer occurring.

As mentioned earlier, chaotic low-dimensional su
systems immersed into systems with larger dimensionali
may act much like a thermal source, delivering energy i
all the remaining DOF’s@18#. This is the basic pattern tha
we see here.

2. Pump model simulations

It is then apparent that we are working with conventio
ally stable inhomogeneous modes whose dynamics is exc
only when the HM supports chaotic orbits. Let us effective
test this idea of a thermal source, or stochastic pump mo
as is more usually known. To do that we propose the follo
ing numerical procedure. In the simulations we remove
the influence of inhomogeneous modes on the HM, but k
the action of the HM on the inhomogeneous modes. In t
way we actually convert the HM into a closed source
which the remaining~inhomogeneous! modes are attached
The general schematics can be found in Fig. 4. If the s
chastic pump idea is correct, at least for earlier stages of
dynamics, there must be some agreement between our
connected simulations and simulations based on the pr
dure related above. Beyond the point where the fully co
nected HM loses an appreciable part of its initial energy,
agreement is expected to cease.

We begin with the case of a regular dynamics develop
on the HM. Initial conditions are the same as in Fig. 3~b! and
the results of our comparisons are shown in Fig. 5~a!. One
sees that the number of modes remains the same all the
along the simulation both in the fully connected and t
pump model approaches. The growth in the number of
volved modes is not significant within the time scales used
the computations. On the other hand, as we move to cha
cases, the dynamics undergoes drastic changes. We se
from Fig. 5~b! where the initial conditions correspond t
those of Fig. 3~c!. Both in the fully connected and pum
simulations, the number of modes grows until saturati
Simulation using the pump model agrees with the fully co

FIG. 4. General schematics of the pump model simulation
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FIG. 5. Comparison of the pump model an
fully connected simulations.~a! When diffusion
is absent,d350.0001; ~b! when diffusion is
present,d350.1. In all cases,A5(0,0.185),a21

51023A, k50.5, r 51, vg1
50, vg2

51, and
vg3

521. The remaining initial conditions are
zeroed.
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nected one during earlier stages, as anticipated. While
HM energy is much larger than that contained by the res
the system, we can actually see the HM as a pump delive
energy to all other modes. However, when the HM ene
depletion becomes too large, the simulations begin to m
apart from each other. The pump simulations tend to at
saturation earlier because the unceasing energy delive
much faster there.

IV. UNSTABLE HOMOGENEOUS MANIFOLDS
AND SOLITONS

Our next goal is to complement the previous ideas a
look at those situations where the HM is linearly unstable
the conventional sense. In other words, we work with a se
wave vectors that would cause inhomogeneous perturba
to grow, if the HM were static —k50.05. And more than
that, we will be working with a set of parameters for whic
solitons are possible solutions in the uncoupled case,r 50;
he
f
g

y
e

in
is

d
n
f
ns

this can lead to localization in our full simulations. We poi
out that the conditionr 50 is not sufficient for soliton for-
mation. To allow for solitons in the uncoupled system, o
must satisfy the following conditions involving the grou
velocities,vg2

,vg1
,vg3

, as shown in the literature@4#; we

take d350 in addition. This is convenient because, und
this restriction, the pure HM is completely regular, as s
before. So we can focus only on nonintegrable features a
ing from the existence of inhomogeneous modes in the s
tem. Let us start with the analysis by takingr 50. In this
limit the triplets are uncoupled and completely integrab
and asymptotic solutions should form regular patterns. T
this is so can be observed with the help of Fig. 6. Withr
50 in Figs. 6~a! and 6~b! one sees a regular pattern
equally interspersed spikes distributed over the space-
plane @Fig. 6~b!#. The regular structure continues to repe
itself indefinitely and no energy transfer takes place@Fig.
6~a!#.
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On the other hand, as we turn the coupling factorr on,
regularity is destroyed. Forr 50.5 Fig. 6~c! reveals that
spikes can no longer be seen, and Fig. 6~a! that energy trans-
fer now does occur.

In the case of conventional stability one already found
that the drive to spatiotemporal chaos is provided by a p
sible chaotic dynamics on the HM. Does something sim
happen in the present case? To answer the question we
note that the HM by itself is not chaotic here, since we ta
d350 @19#. Therefore, it cannot provide the drive to sp
tiotemporal chaos by itself. However, since we now hav
second set of active modes, the conventionally unsta
modes at the first harmonic, one can wonder if the exten

FIG. 6. Conventionally unstable HM’s:~a! A^N2& vs time, ~b!
theC(x,t) space-time mesh forr 50, and~c! theC(x,t) space-time
mesh forr 50.5. In all cases,A5(0,0.1), a21

51023A, k50.05,
and d350. vg1

50, vg2
51, andvg3

521. The remaining initial
conditions are zeroed.
t
s-
r
rst
e

a
le
d

subsystem formed by the HMplus the first harmonics would
not be chaotic. To go into this point we simply disconne
the subsystem formed by homogeneous plus first harm
modes from the rest of the system, and analyze the redu
dynamics. What we find out is pictured in Fig. 7. In th
figure we display Poincare´ plots where the pair
Re(a1o

),d Re(a1o
)/dt is recorded each time Re(a11

) attains

a maximum. From panel~a! it is clear that, ford35r 50, the
dynamics is periodic and thus integrable. But as we go
larger values ofr, keepingd350 so as to maintain integra
bility on the pure HM, what we see is the dynamics of F
7~b!. The reduced dynamics is clearly nonperiodic. It c
therefore also act like a stochastic source feeding energy
modes withn>2. Further progress on this topic shall b
reported.

V. CONCLUSIONS

To begin with, let us recall that we have studied wa
systems that, in addition to offering the usual linear stabi
properties, can also develop a nontrivial dynamics on its
mogeneous manifold where all the fields are space indep
dent. Due to this very fact, the effective stability of th
purely homogeneous dynamics differs from conventional
ear studies that take the homogeneous background as a
entity.

The first conclusion regarding this point comes from t
analysis of conventionally stable HM’s, where the term co
ventional actually indicates usual linear calculations cons
ering the HM as a stationary background. Now, a conv
tionally stable HM can be effectively stable or unstab
depending on the type of dynamics it supports. In the cas
a regular dynamics, the HM is effectively stable, but if o
goes to the case of a chaotic orbit, effective stability is lo
In this case the HM starts to work like a random or stocha
source, diffusively delivering energy into spatially depende
modes. We conducted a numerical test to verify the relia
ity of the idea. The test suppresses the influence of inho
geneous modes on the HM and therefore converts the m
fold into a genuine source.

With this stochastic model at hand we conclude that if
HM is regular, it is not capable of delivering energy in
inhomogeneous modes. On the other hand, when cha
energy delivery does take place. Full simulations agree w
the results of the model.

The other case studied here is that of regular HM
coupled to conventionally unstable inhomogeneous mod
We have focused our study on the range of parameters w
the uncoupled triplets may support localized solutions. St
ing from homogeneous initial conditions slightly perturb
by inhomogeneities, the uncoupled system evolves towar
regular distribution of space-time spikes. As a result of co
pling, energy transfer does occur. In this case, it is also
parent that transfer is at least initially driven by chaos in
subsystem. The subsystem here is not the HM, since
work with a set of parameters for which the HM by itself
totally integrable. In the present case the chaotic subsys
is formed by the HM plus the unstable modes of the fi
harmonic components. Except for this difference, the s
chastic pump model works along similar lines, as previou
mentioned.
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FIG. 7. Poincare´ plots of the subsystem formed by the HM plus then51 modes:~a! r 50 and~b! 0.5. The remaining parameters are
in the previous figure.
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To summarize our findings, once again we mention t
we start the work with the analysis of a chaotic homog
neous manifold displaying conventional linearstability. We
indicate that this chaotic subsystem induce energy transfe
modes with progressively smaller wavelengths. We then p
ceed to a linearlyunstablehomogeneous manifold that b
itself is completely regular. The idea is to show that trans
occurs again and that its drive can be seen again as a ch
subset of the entire dynamical system.
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