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Nonlinear saturation of unstable solutions to the weakly relativistic, one-dimensional Zakharov
equations is considered in this paper. In order to perform the analysis, two quantities are introduced.
One of them, p„ is proportional to the initial energy of the high-frequency 6eld, and the other is the
basic wave vector of the low-frequency perturbing mode k = 2'/L, with L as the length scale. With
these quantities it becomes possible to identify a number of regions on a p versus k parametric
plane. For very small values of p, steady-state solutions become unstable when A: is also very small.
In this case ion-acoustic dynamics is found to be unimportant and the system is numerically shown
to be approximately integrable, even if k is below a critical value where the solutions are not simply
periodic. For larger values of p the unstable wave vectors also become larger and the ion-acoustic
Huctuations turn into active dynamical modes of the system, driving a transition to chaos, which
follows initial inverse pitchfork bifurcations. The transition includes resonant and quasiperiodic
features; separatrix crossing phenomena are also found. The in6uence of relativistic terms on the
chaotic dynamics is studied in the context of the Zakharov equations; it is shown that relativistic
terms generally enhance the instabilities of the system, therefore anticipating the transition.

PACS number(s): 52.35.Ra, 47.20.Ky

I. INTRODUCTION

Langmuir turbulence has been one of the most studied
problems in modern nonlinear plasma physics. Over the
last few years a great deal of effort has been directed to
the analysis of Langmuir turbulence and related subjects
such as soliton dynamics, collapse, nucleation of cavitons,
and electromagnetic emission [l—7]. Langmuir turbulence
is governed by the Zakharov equations which nonlinearly
couple the slowly varying amplitude of a high-frequency
electrostatic field (the Langmuir field) to low-frequency
density fiuctuations (the ion-acoustic field). High fre-
quencies are close to the plasma frequency and low fre-
quencies are about the same order of magnitude as the
normal mode frequency of the ion-acoustic field, the ion-
acoustic resonant frequency. When the shortest time
scale characterizing the motion is much larger than the
time scale associated with the ion-acoustic resonant fre-
quency, one lies in the so called subsonic regime. The
other limiting regime where the longest time scales are
sufBciently smaller than the ion-acoustic resonant time
scale is called supersonic. In modulational regimes, for
instance [7], the presence of subsonic or supersonic dy-
namics depends on whether the ratio of the Langmuir
field density over the plasma thermal density is smaller
or greater than the ratio of the electron mass over the
ion mass.

In the absence of dissipation, the governing set of equa-
tions in the subsonic regime may be approximated by a
nonlinear Schrodinger equation (NLS) which is an inte-

grable equation. What happens in this case is that the
ion-acoustic field becomes enslaved to the Langmuir field,
with the system turning out to be periodic or quasiperi-
odic. On the other hand, when the dominant frequency
of the density Buctuations is not suKciently small, ion-
acoustic degrees of freedom become active, destroying in-
tegrability and driving a transition to chaos. One aim of
the present work is to identify a variety of regions in the
appropriate parameter space where one can expect peri-
odic, quasiperiodic, or chaotic behaviors, providing new
results and some new perspectives on topics not fully ex-
plored.

In particular, we also incorporate relativistic effects in
the analysis. As far as linear stability analysis is con-
cerned, it has been shown that relativistic mass correc-
tions of the high-frequency electronic motion play a rel-
evant role in the dynamics of the system [8]. In fact, it
is shown that these corrections, besides altering the lo-
cation of instabilities on the parameter space, can also
modify the related growth rates of the unstable modes.
In the present paper we shall go further into the investi-
gation of these aspects; we shall examine the influence of
the relativistic terms on the saturation properties of the
initially unstable states. It shall be seen that relativistic
effects generally tend to enhance the instabilities of the
system. In particular it shall be seen that these relativis-
tic terms, even if perturbatively smaller than the others
present in the governing equations, may be responsible
for turning regular solutions into chaotic ones. In the
face of the possibility of this drastic transformation, it
is then concluded that relativity cannot be totally dis-
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carded as is sometimes done for this type of system. As
we shall be mostly interested in relativistic regimes where
pump amplitudes are relatively large, we do not include
dissipative processes in the present analysis.

To perform our investigation, we first determine in
which regions of the parameter space our system is in-
tegrable. Then one can have a good initial idea of where
chaos is likely or unlikely to develop. This parameter
space depends on the particular setting we wish to inves-
tigate and the appropriate setting for the instabilities we
shall study here is defined as follows. One builds up a
single stationary mode of the Langmuir Beld containing
a certain amount of energy, and perturbs this equilib-
rium solution with a disturbance characterized by a low-
frequency wave vector k. The wave vector, in particular,
sets the length scale of the problem. These two quanti-
ties, the initial energy (actually a quantity proportional
to the initial energy) and the basic wave vector, define
two axes of a bidimensional space which is thus taken as
the sought-for parameter space.

Starting from the initial situation speciBed above and
imposing some restrictions on the initial energy of the
Langmuir Beld and on the wave vector of the perturb-
ing mode, the Fourier series of the nonlinear develop-
ing solutions can be truncated to three terms. Two are
the restrictions justifying the truncation procedure: (i)
the possibility of enslaving the low-frequency dynamics
to the high-frequency one, whereupon by disregarding
time derivatives in the equation for density fIuctuations
one obtains the NLS mentioned above; and (ii) choos-
ing the perturbing wave vector such that its harmonics
lk (I = 2, 3, 4, ...) are outside the unstable band of the
initial instabilities.

It is found that both restrictions are satisfied on a weH
deG.ned domain of the parameter space. Within this do-
rnain the dynamical system is expected to be well de-
scribed by a low-dimensional approximation of the NLS,
with correspondingly simple and analytically integrable
solutions. As one abandons the low-dimensional region,
solutions are thus likely to lose their simplicity. It shall
be seen that this is indeed the fact. With analytical es-
timates, numerical simulations, and the analysis of Lya-
punov diverging trajectories we shall see that the out-
coming irregular solutions can be of' two types: (a) for
very small values of the initial energy they are quasiperi-
odic with no associated chaos; (b) for larger values of
the initial energy, solutions become chaotic with posi-
tive Lyapunov exponents if one is below a critical wave
number or above a critical level of the relativistic pertur-
bation.

We note that in case (a) the system is still well approx-
imated by a NLS which, however, can no longer be trun-
cated to a few Fourier modes. The nonchaotic region on
the parameter space is the union of the low-dimensional
and quasiperiodic regions.

Transition to chaos is examined in the large energy
regimes as a function of the length scale. As one grad-
ually goes into chaos one Brst observes resonant states
on a 2-torus [2] along with a finite number of period
doubling bifurcations. Coing deeper into chaos, higher-
dimensional efFects seem to prevent the creation of the 2-

torus and the corresponding resonant states [9,10]. The
transition follows an initial inverse pitchfork bifurcation
which sets the system close to a heteroclinic trajectory
involving one stable fixed point and two distinct unsta-
ble fixed points. States with larger number of unstable
points are also found to exist as the low-frequency wave
vector is varied [11,12].

Finally, it is also shown that the relativistic-induced
transition to chaos follows a similar route.

The paper is therefore organized as follows. In Sec. II
we introduce the full set of equations and derive the low-
dimensional approximation identifying its validity region
on the appropriate parameter space; in Sec. III we per-
form various simulation runs in order to check the an-
alytical estimates of Sec. II; in Sec. IV we analyze the
typical transition to chaos; in Sec. V we investigate the
role of relativistic efFects; and in Sec. VI we conclude the
work.

II. GOVERNING EQUATIONS
AND LC)W-DIMENSIONAL DYNAMICS

A. Governing equations

Let us Brst write down the normalized form of the
weakly relativistic Zakharov equations which shall be
used in the following analysis. These equations are [8]

iBiE+ 0 E = n E —n~E~ E

8 n —0 n=O iEi

where Oi
—= 8/Bt, 0 =— 8/Ox; E = E(x, t) is the

slowly varying amplitude of the electric field normalized
to 8 Van omT, /( 3m, ) with no as the equilibrium den-
sity, T, as the electron temperature, and m, as the
electron (ion) mass; n = n(x, t) are the low-frequency
density Huctuations normalized to the equilibrium den-
sity, and o. is the weakly relativistic parameter given by

3k~T, /m c && 1 in the dipolar approximation,
with k~ as the Boltzmann constant and c as the veloc-
ity of light. Time and coordinate are adimensionalized
as (m, /m;)wpt + t and Qm, /m;(urp/v )x —+ 2:, respec-
tively, where ~„ is the electron plasma frequency and
v2 = k~T, /m,

We also assume the Belds to be spatially periodic, with
I = 2'/k defining the basic length scale.

B. Love-dimensional dynamics
and its validity conditions

The low-dimensional model can be obtained if one
Fourier expands all the dynamical variables as
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where Q is an arbitrary quantity, and makes use of the
following assumptions. First one truncates the series for
the Langmuir Beld to three modes,

E(x, t) = Eo(t) + Ei(t)e'" + E i(t)e

noticing that the dipolar approximation ko ——0, k ( 1 is
used to rule out the presence of induced higher harmonics
of density R.uctuations whose efFects could be of the same
order of magnitude as the relativistic ones.

Next one assumes that the time scale satisBes t9~ &( 0
to get

A = AyC + A2| + C.C. )

the initial conditions is the one with H = 0.0.
The validity conditions for the various formulas ob-

tained so far and the additional requirement of a non-
trivial solution generate a set of restrictions on the pa-
rameters used above. These restrictions define a region. in
the parameter space where the low-dimensional approx-
imation obtained above is expected to be accurate. We
shall refer to this region as the low-dimensional region.

To determine the restrictions and the location of the
low-dimensional region, let us fi.rst examine where some
nontrivial dynamics take place. To this end we merely
observe that saturation occurs when 1 —cos vP = 0. On
substituting the expression for cosg obtainable from (9)
and Mq ——M i ——p, into this equality one gets

with

~& ———E&Eo —E*,E, and
(1+a 4)7 (10)

In view of the fact that for a real variable n„= n*„,
these two relations are sufhcient to determine the low-
frequency field.

On substituting relations ni and n2 into Eqs. (1), writ-
ing

at saturation. If one now demands (po), i & p, to allow
for some energy exchange between pump and daughter
waves, one has to satisfy

)& ef ' ~(1&0 I'+
I
&.I'+

I
& ~ I')«

defining @ = Pi + P i —2go, and separating the low-
dimensional group of equations into real and imaginary
parts, one arrives at the following equations for the vari-
ables po and Q:

dipo: —4 (1 + cl) po(p —po) gl —cos

and

otherwise po(t) would always be equal to p, and a non-
trivial dynamics would not develop. The dependence of
k, (and the other thresholds) on n and p, shall not be
explicitly indicated unless necessary.

Use of Eqs. (7) and (8) or of Hamiltonian (9) shows
that if k, /2 & k & k, there are three fixed points located
at po & p, and none at po ) p, . These points, which
can be seen in Fig. 1(a), are labeled (j = 1, 2, 3), the
first two being unstable and the last stable. Further use
of the Hamiltonian (9) shows that these three points are
created as a A: ) A:, unstable fixed point with coordinates

k
d, q = 2 (1+n) — + (2 po —p, ) cos y1 + Qf

Po =
7 IE, + ~ + -2

1
+2(3po —P*),

with

p, = po(t =0)

and di = d/dt These equatio. ns can be derived from the
Hamiltoni. an

k~
H = (1 + n) 2po+Pi p i cos g — (Pi + P i)1+ o.'

+p& p —i + p& po + p —& po

if one takes the p~
's and P~. 's as, respectively, conjugated

canonical momenta and coordinates, noticing that po(t)+
2 pi i (t) = Mi i where the M's are constants of motion
with Mq ——M i ——p, to satisfy the initial conditions
pi, i(t = 0) —0.0. In addition, the trajectory satisfying

I'see Fig. 1(b) where we take p„= 0.2, n = 0, and
k = 0.7 ) k, ] undergoes an inverse pitchfork bifurca-
tion at k = k„po ——p„g = 0. We point out that the
po & p, fixed point might be naively seen as spurious be-
cause it could be said to be associated with nonphysical
states such as pi i & 0 as can be seen from Eqs. (9)
and the respective conserved quantities. However, this is
not true. The arguments above indicate that this point
turns out to be of relevance in the analysis of the physi-
cal steady-state fixed points Inote that the po coordinate
of the third Bxed point for A: ( A:, is also determined by
expression (ll)]. We shall refer to the region containing
trapped orbits around the third fixed point as the first
island.

If k & k, /2, Eqs. (7)—(9) indicate that a similar in-
verse pitchfork bifurcation creates a new triplet of fixed
points whose elliptic point is located at @ = m and the
hyperbolic points at p, = 0; we shall refer to the trap-
ping region around the third elliptic Bxed point as the
second island. This is what can be seen in Fig. 1(c). The
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FIG. 2. Boundaries of the
nonrelativistic n = 0.0 low-
dimensional region. Small
values of p, implying k, (( k, p,

in (a) and larger values of p
implying A:, k, ,z in (b).
Felled circles and&cate points
at which simulations are per-
formed.

sonic and supersonic ion-acoustic fluctuations. These
ion-acoustic modes become dynamically and indepen-
dently active if one is close to k;. Their eÃects are thus
electively noticed only when p, is not excessively smaller
than unity, a situation for which k; is not exceedingly
small, as well. This is the case well represented by the
scale adopted in Fig. 2(b).

Let us next proceed to check all the above assertions
against numerical simulations based on the full set (1)
and (2).

III. INITIAL NUMERICAL SIMULATIONS

A. Numerical scheme

In this section we shall perform a number of simula-
tions to check the estimates obtained previously. As is
somewhat usual for this kind of system, our simulation
scheme consists of writing all the dynamical variables and
the di8'erential equations as Fourier series in the spatial
variable. A number of modes N ranging from N = 32 to
N = 128 for each dynamical variable is used, nonlinear
products in the differential equations are evaluated with
a fast Fourier transform (FFT) subroutine, and the set of
temporal equations is advanced in time with a predictor-
corrector algorithm. Both the FFT and the predictor-
corrector algorithm are subroutines of a Cray Y-MP2E
computer. Numerical precision is tested by requiring sta-
bility against variation of tolerance factors and by mon-
itoring the time evolution of the conserved quantity

with Bqn = —0 v. In terms of 'R, relative errors were
found to be about one part in 10 both in the nonrela-
tivistic case and in the relativistic one to be studied later.

B. Periodic, quasiperiodic, and chaotic regions

Let us initiate the investigation by examining the be-
havior of temporal series for po(t), considering very small
values of p„p, = 10 . We present the results of the
simulations in Fig. 3 for k = 1.8x10 and k = 1.0x10
[Fig. 3(a)] and k = 5.0 x 10 4 [Fig. 3(b)]. Simulated
points of the parameter space are indicated by filled cir-
cles in Fig. 2.

In the first case, whose representative point lies in the
stable region of Fig. 2(a), above k„one has indeed a
trivially stable solution. The second case corresponds to
a point between k, and kh in agreement with the es-
timates, one has a simply periodic solution. As already
mentioned, the transition from k ( k, to k ) k, is ac-
companied by an inverse pitchfork bifurcation. In the
third case one is below kh and the solution appears to be
nonperiodic or irregular.

We now introduce a Lyapunov-like coeKcient o I„
defined as the average slope of the function D(t)
1n[d(t)/d(t = 0)] in a D(t) versus t plot, for relatively
small values of t. The quantity d(t) is the Euclidean
distance between two initially close trajectories, calcu-
lated according to Doolen, Dubois, Rose, and Hafizi [2].
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trajectory develops close to a 2-torus whose axes are la-
beled by fq and f2 (a similar phenomenon has been seen
to occur with the NLS, as reported in Ref. [4]).

Then one continues to lower the wave vector k, as
in Fig. 8(d) where one considers k = 0.605, to show a
slightly chaotic state spreading along the horizontal axis.
With the wave vector further diminished, one returns to
what seems to be a predominantly nonchaotic state. This
can be seen in Fig. 8(e) with k = 0.603 where the power
spectrum, at least momentarily, turns back into a dis-
crete set of frequencies. For smaller values of A:, A: = 0.600
[Fig. 8(f)], chaos sets in again.

We point out that this chaotic burst of Fig. 8(d) occurs
just after a point where one can distinguish the following
resonance condition involving f2 and fq

with j = 13 as seen from Fig. 8(g). Some small chaotic
activity is naturally expected as the dynamical trajec-
tory is driven into a resonant state involving fq and f2
by varying some control parameters. Further variation
of the control parameters can drive the system off res-
onance, which explains the return to periodicity. One
should not be surprised by this apparent coexistence of
regular and chaotic regions; while this does not generi-
cally occur in dissipative systems, it is usual for conser-
vative or Hamiltonian ones like ours.

We have also pursued period doubling bifurcations
leading to chaos of frequency f2, as would be likely to
happen were resonant mechanisms really operative. We
have indeed observed that f2 undergoes period doubling
while 13f2 ——fq, as can be seen in Figs. 8(h) and 8(g);
the peak located at f2/2 is formed as fs and f2 —fs of
Fig. 8(c) collapse against each other.

There is nothing extraordinary with the appearance
of a half harmonic of a frequency f in a power spec-
trum. What is important to be noted here is that just
after the period doubling, frequency f2 vanishes and the
predominantly discrete spectrum is replaced by a noisy
continuum. This is expected if a resonance takes place;
as mentioned above, the period doubling route to chaos
is a typical way to break resonant states. We did not
detect higher-order period doubling of f2 on its way to
chaos. A more careful simulation may be able to observe
this unless the period doubling cascade gets blurred due

-9
-20 -10 10 20

FIG. 7. Fourier spectrum for the density, Re(n„), obtained
at t = 250. Few modes are involved in the dynamics.

to higher-dimensional effects, as in the case studied by
Ghosh and Papadopoulos [16]. In fact, the failure of our
search for higher-order period doublings along with the
fact that no period doubling of fq has also been detected
may be an indication that resonant processes have indeed
a finite operational range. Before going into this subject,
note that the rate fq/ f2 ——13 is exactly the one found in
Ref. [2].

Bifurcations have not been seen for smaller values of j,
such as, for example, for j = 2 [see Eq. (16)] which would
characterize the final period doubling cascade typical of
low-dimensional resonant systems [15]. What happens is
that too large values of f2 do occur when ~k —k, ~/k, is too
large, as well. Then the mutual interaction of frequencies

fq and f2 with the set of ion-acoustic resonant frequencies
seems to prevent the creation of a single 2-torus.

The low-dimensional point of view we have been us-

ing above is meaningful only when the trajectories of the
system remain close to the erst and second Axed points
seen in Fig. 1(a) and their associated manifolds; the sys-
tem would describe a close trajectory to a heteroclinic
one determined by the low-dimensional set of variables.
This is what happens for the parameters of Fig. 9(a), for
instance. In this situation, in particular, the second is-
land is far f'rom being created because k k, (recall the
conditions for the creation of the second island).

The same sort of simulation can be performed for
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smaller values of k as in Fig. 9(b) with k = 0.5. In this
regime the low-dimensional system could be viewed as
losing an appreciable amount of energy to other degrees
of freedom, especially to the degrees of freedom of the
ion-acoustic field, dissipatively spiraling towards the sta-
ble fixed point (No. 3) which would be acting as a sink.
Low-dimensional approximations would be inaccurate to

represent this situation.
Both situations above refer to the case where the sec-

ond. island has not been created yet. Let us quickly ex-
amine what happens when the second island is created.

One possible situation is the one where the ion-acoustic
wave is not strong enough to push the orbit away from
the separatrix. In this case separatrix crossing turns out

15
(a) (b)

K = 0.62 K = 0.605065

10

C)

O 5

2

CO

I

I

Ol
0.00 0.01 0,02 0.03 0.04 0.05

0
0.01 0.02 0.03 0.04 0.0

10

10
-7

20
!

K = 0.605

10'—
CL

10

12-

C&

8-
C)

10" I
0.0000 0.0002 0.0004 0.0006 0.0008

f

K = 0.603

0.0010 0.0012
, i Al&iibi&il~it ~ I z

f
(f)

10

K=0.6

8

C)

4-
CO

4-
CO

.000 0.002 0.004

10

, K = 0.605060
10 ~f2
10

0.006
f

(g)

0.008 0.010

10
K=0.605060

10
-5

10

0.030 0,040

KM.605059

10

10

10
0.000 0.002 0.004 0.006

f
0.008 0.010

10
0.0000

KM.605061
0.0002 0.0004 0.0006 0.0008 0,0010

f
FIG. 8. Power spectra!po(f)! as a function of decreasing values of A,', with p,

trajectory is analyzed in (a), quasiperiodic in (b) and (c), slightly chaotic in
Nonlinear resonance is displayed in (g) and period doubling of fz leading to the

= 0.2 and n = 0.0. A predominantly periodic
(d), quasiperiodic in (e), and chaotic in (f).
slightly chaotic state of (d) in (h).
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to be an important ingredient in the chaotic dynamics.
This can only happen for smaller values of p, than the
one we have used here, p, = 0.2. Only then do the ion-
acoustic waves not drain a substantial amount of energy
from the low-dimensional system, preventing the trajec-
tory &om remaining near the separatrix orbit and from
executing the jumpings between the islands. In Fig. 9(c)
we show the phase plane for k ) k, /2, before the cre-
ation of the second island, and in Fig. 9(d) for k & k, /2,
after the creation. Note that as the second island is cre-
ated, the latter case, the orbit keeps jumping &om one
island to the other, thus filling the entire phase plane;
before the creation, the orbit is noticeably constrained
along the g axis. For completeness we display the case
p, = 0.2 in Fig. 9(e) with k & k, /2. Note that not even
in this situation, where the second island is present, can
separatrix crossings be observed. We emphasize that this

occurs in view of the dissipative orbital spiraling towards
elliptic fixed points (No. 3 in the present case) that does
occur when the ion-acoustic wave is too strong, a feature
associated with larger values of p, . In all cases we have
prepared initial conditions with @ = 0 and p p, .

In short, it seems that only if k k, [Fig. 9(a)] or if
k, /2 & k & k, with p, « 1, can the dynamics be well
described by a possible low-dimensional approximation.

One can have chaos even in the absence of separatrix
crossings, as in the situation depicted in Figs. 9(b) and
9(c). But if the second island is created and crossings
become possible, as in Fig. 9(d), we expect some contri-
bution to the chaotic dynamics due to resulting irregular
separatrix crossings as analyzed by I11,12].

We conclude this section with a final word on the two
types of quasiperiodic behaviors occurring in the sys-
tem. Quasiperiodicity may be present in both regimes
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k, « k, h, [Fig. 2(a)] and k; k, h, [Fig. 2(b)]. In the
first case one has a broadband quasiperiodicity along the
k axis of the parameter space, generated by the desta-
bilization of additional modes of the Langmuir field be-
sides modes Ep ] 1. In the second case quasiperiodicity
is either due to low-dimensional orbits lying on a 2-torus
(when k is within a narrow band around k, ) or due to
the mutual interaction of the low-dimensional frequencies
and the ion-acoustic one (when k is substantially smaller
than k, ). We remark that only in the two last cases is
quasiperiodicity involved with nonintegrable dynamics.

V. RELATIVISTIC EFFECTS

We finally analyze the weakly relativistic effects orig-
inated by the inclusion of mass variation in the high-
frequency electronic dynamics. We start with the analyt-
ical estimate of Fig. 10 where we compare the positioning
of curves k„kh, and k; on the parameter space for the
nonrelativistic and weakly relativistic cases, o. = 0.0 and
o. = 0.3, respectively. It is immediately seen that rela-
tivistic terms tend to lower the instability thresholds of
the system by displacing curve k, upwards. This has the
important consequence that a regular low-dimensional
state can be converted into a chaotic one by the inclusion
of small relativistic effects.

Within the low-dimensional region of the parameter
space, Eq. (7) shows that a weakly relativistic system
with n g 0 is equivalent to a nonrelativistic system with
time and wave vector, respectively, rescaled as

k
teeuled —t (I + ~) and kecaled gl+ n

The relations above, in particular, allow one to compare
the maximum initial growth rates in nonrelativistic and
relativistic cases. The result is

which was derived earlier. Relations (17) and (18) and

the general aspect of Fig. 10 indicate that the basic role
of relativistic effects on the regular dynamics is to en-
hance instabilities of the system. They also indicate that
the increase of the relativistic factor o. is equivalent to a
decrease of the value of the wave vector k.

If one is considering large enough values of p, that
chaos may be present in the system (depending on the
choice of the wave vector), one could conjecture, in view
of the above, that relativistic effects might induce chaos
merely by bringing a stable or quasiperiodic point of the
type (n = 0, k k, ) into the unstable region (a
0, k ( k, , ) - (n = 0, k., (,d ( k, , =P).

To check this hypothesis, in Fig. II we compare D(t)
for the nonrelativistic and weakly relativistic cases o. = 0
and o. = 0.3. We chose p, = 0.2 and a value for k so close
to k, (i.e., within the narrow band around k, ), k = 0.62,
that one can expect an integrable orbit developing for
o. = 0; the point where simulation was performed is rep-
resented by the filled circle of Fig. 10. Figure 11 indeed
confirms the estimate, revealing a D(t) behaving as a
D(t) ln(t). Now, as the weakly relativistic case n = 0.3
is considered, one can clearly see that the integrable or-
bit is converted into a chaotic one with a positive oL, .
Note that the weakly relativistic Zakharov equations are
formally correct only under the assumption of very small
values of o.. In practice, however, larger values can be
used. We chose this slightly larger (but still small) value
in Pig. 11 in order to provide a clear illustration of the
effect. Much smaller values do appear in the analysis of
transition to chaos, next.

On the whole, one concludes that under certain cir-
cumstances small relativistic corrections can really cause
profound distortions of the physics of the relevant satu-
rating solutions. Because of the equivalence between k
and o, one would also infer that if o. were used as a bi-
furcation control parameter, the route to chaos would be
similar to the one associated with variations of k. All of
this proves to be true. In fact, the sequenced power spec-
tra displayed in Fig. 12 as function of increasing o. reveal
similar behavior to the one of Fig. 8. Note that a reso-
nant regime again appears to coincide with the chaotic
activity of Fig. 12(b).
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FIG. 11. The function D(t) for the nonrelativistic (dashed
line) and relativistic (full line) cases of Fig. 11; p = 0.2 and
k = 0.62.
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VI. FINAL REMARKS

In this paper we have considered the analysis of reg-
ular and chaotic dynamics associated with the weakly
relativistic Zakharov equations.

A certain amount of energy was deposited on a steady-
state mode which was rendered unstable through an in-
verse pitchfork bifurcation, and the nonlinear saturation
of the initial instability was studied.

To begin with, we have located a certain region in the
appropriate parameter space where the dynamics was
expected to be low dimensional and regular. The reg-
ular dynamics within this region, the irregular dynam-
ics (quasiperiodic and chaotic) outside the region, and
the route to chaos were the subject of various simulation
runs.

Transition to chaos as a function of the length scale

of the system was found to involve resonant states with
some of the corresponding period doubling bifurcations,
and quasiperiodicity. The resonant and period doubled
states appear to couple the principal frequencies of a 2-
torus and the last quasiperiodic stage couples these fre-
quencies to the resonant ion-acoustic ones. During the
initial phase of the transition, the trajectory remains
close to a heteroclinic trajectory created by the inverse
pitchfork bifurcation. Then, as one goes deeper into
chaos, one observes two types of behaviors. (i) If p, is
not too large, ion-acoustic waves are weakly nonlinear
and cannot absorb a large quantity of the energy ini-
tially contained in the low-dimensional system. In this
case, the trajectories remain close to the separatrix and
the possibility of separatrix crossings does exist. In this
case the chaotic character of the system may depend on
the length scale because as k is lowered past A:.,/2 chaotic
contributions due to the separatrix crossings become rel-
evant [11,12]. (ii) For larger values of p„ ion-acoustic
waves are fully nonlinear and can absorb a substantial
amount of energy from the low-dimensional system. In
this case the trajectories dissipatively spiral towards the
central elliptic fixed points, diminishing the possibility of
separatrix crossings even when the second island is cre-
ated. In this situation the chaotic character of the system
is independent of the length scale because of the absence
of separatrix crossings as k is lowered.

We have finally studied the inhuence of relativistic
mass correction terms on the high-frequency electronic
dynamics. With the help of plots, scaling rules, and nu-
merical runs, it has been shown that relativistic terms
enhance the unstable and chaotic features of the system.
In particular we have shown that the inclusion of rela-
tivistic mass correction terms can convert regular orbits
into chaotic ones through a quasiperiodic type of transi-
tion.
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