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Rotational dynamics of magnetic particles in suspensions
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An approach for the rotational dynamics of magnetic particles and their magnetic moments, in fluid suspen-
sions, is developed. A possible application is to magnetic resonance in ferrofluids. Based on a generalized
Lagrangian formulation for the equations of motion of the particle, we introduce its interaction with the solvent
fluid via dissipative and random noise torques, as well as the interaction between the particle and its magnetic
moment, treated as an independent physical entity and characterized by three generalized coordinates: its two
polar angles and its modulus. In the appropriate limits, it reduces to the cases of superparamagnetic particles or
nonsuperparamagnetic~blocked magnetic moments! particles. It is also indicated how the dynamic complex
susceptibility may be calculated from the equations of motion, and as an example the effect of the particles
inertia on the susceptibility is numerically evaluated for some arbitrary values of the parameters.
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I. INTRODUCTION

Considerable interest has been shown, in recent year
the dynamics of the magnetization of ferrofluids in the pr
ence of applied magnetic fields, and in the correspond
complex magnetic susceptibility. Just to give a few examp
of recently published work on the field, we mention theor
ical works by Raikher and Rusakov@1#, Coffey and
Kalmykov @2#, and Shliomis and Stepanov@3#, experimental
works by Moraiset al. @4#, Fanninet al. @5#, Vincent et al.
@6#, and Upadhyay, Srinivas, and Mehta@7#, and an
experimental-theoretical paper by Fannin, Kinsella, a
Charles@8#. Certainly, this increased interest in a better u
derstanding of the behavior of these materials is relate
their renewed technological importance, with various n
applications@9#.

The usual theoretical approach to calculate the dyna
susceptibility is based on Gilber’s@10# or Landau and Lif-
shitz’ @11# equations~which are equivalent! for the dynamics
of the magnetic moment, with the addition of noise, follo
ing the pioneering work of Brown@12#. Several authors use
these equations of motion to calculate relaxation times,
the susceptibility is then borrowed from Debye’s theory@13#.

Two distinct rotational relaxation mechanisms may co
ist in ferrofluids: the Ne´el relaxation, by which the magneti
moment moves with respect to the mechanical particle;
the Brownian, or Debye relaxation, corresponding to the p
ticle’s rotation inside the fluid. In most experimental situ
tions one of these mechanisms is dominant, and this ma
the reason why up to now, as far as we know, there has b
no satisfactory theory, sufficiently general to be applied
all situations, from the pure Ne´el motion to the pure Brown-
ian relaxation, passing by all possible combinations of th
mechanisms. In this respect the model of ‘‘two spheres,’’
Fannin and Coffey@14#, should be mentioned as a first effo
The noninertial limit, i.e., when the contribution of the m
ments of inertia of the particle to the equations of motion
negligible in comparison to the other forces involved, w
treated by Shliomis and Stepanov@3#, where they introduced
the egg model. There they compared the magnetic partic
1063-651X/2000/63~1!/011504~7!/$15.00 63 0115
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with an egg, the yolk corresponding to the magnetic mome
and showed that in the noninertial limit and for weak appli
field the equations of motion decouple, thus allowing one
account simultaneously for the combined motion of the m
netic moment and the particle.

The purpose of the present paper is to present a gen
set of equations of motion for the combined system o
magnetic moment plus a mechanical particle, inside a flu
The main limitation of our approach is that we deal only w
axially symmetric particles, with easy axes of magnetizat
parallel to the symmetry axis. However, the magnetic m
ment is allowed to rotate inside the particle, as well as
have an oscillating modulus, and the particle is allowed
rotate with respect to the solvent, which is immobile wi
respect to the laboratory. The suspension is considered
ficiently dilute for the particle-particle interaction to be ne
ligible, so that we deal only with single particle dynamics

In contradistinction to most existing theories, to o
knowledge, our approach includes the particle’s momen
inertia in the equations of motion. To neglect inertia may
a good approximation for most ferrofluids, because of
smallness of the particles, but we are presenting a the
which intends to be sufficiently general to include nonsta
suspensions, for which the particles may be considera
larger. In the case of superparamagnetic particles, an as
which distinguishes our theory from the usual approache
that the rotation of the potential gradient on the magne
moment, accompanying the Brownian rotation of the p
ticle, is taken into account.

In Sec. II we write the equations of the rotational motio
of an axially symmetric particle inside a fluid~Langevin-type
equations!, based on the generalized Euler-Lagrange eq
tions. In Sec. III we obtain, from the equations of Sec. II,
a convenient limit, the equations of motion for the magne
momentm, which reduce, in the case of constant modulus
m, to the Gilbert’s equation. In Sec. IV we arrive at a set
six coupled equations, for the six degrees of freedom,
three Euler angles of the particle’s rotations, and the t
polar angles ofm and its modulus. In Sec. V we indicate
briefly, how to calculate, by numerical simulation of th
©2000 The American Physical Society04-1
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equations of motion, the dynamic magnetic susceptibility
procedure which was more carefully explained in a previo
paper @15#. Some less general situations are considered
Sec. VI as particular cases, and related to previous wo
made by several authors.

II. ROTATIONAL DYNAMICS OF A PARTICLE
IN A FLUID

Consider a particle of axially symmetric shape in susp
sion in a fluid. The principal moments of inertia will b
denoted byI 15I 2 andI 3 . Disregarding translational degree
of freedom, its Lagrangian may be written in terms of t
Euler anglesu, f, andc ~in the notation of Goldstein@16#!,
taken as generalized coordinates, as

L5
I 1

2
~ u̇21ḟ2 sin2 u!1

I 3

2
~ ċ1ḟ cosu!22V~u,f!,

~1!

where V(u,f) is some orientation-dependent potential.
cannot depend onc because of the axial symmetry of th
particle.

The interaction forces~torques! between the particle an
the fluid are of dissipative and noise types. Therefore, t
are not included in the Lagrangian; instead, we use ‘‘gen
alized Euler-Lagrange equations,’’ with the correspond
torques, represented byQi , at the right hand side,

d

dt

]L

]q̇i
2

]L

]qi
5Qi , ~2!

whereqi5u, f, or c.
We write the nonconservative torquesQi as sums of dis-

sipative and noise terms, in the form

Qi52
]F
]q̇i

1G i~ t !, ~3!

whereF is the following Rayleigh dissipation function@16#,

F5
1

2
l@~ u̇21ḟ2 sin2 u!#1

1

2
l8~ ċ1ḟ cosu!2, ~4!

andG i(t) are the noise torques. The dissipation constanl
and l8 may be different becausel8 is associated with the
particle rotation around the symmetry axis, whilel is asso-
ciated with the rotations perpendicular to it. Substituting E
~1!, ~3!, and~4! into Eq. ~2! we obtain the following system
of equations for the particle’s rotation:

I 1~ ü2ḟ2 sinu cosu!1I 3ḟ~ ċ1ḟ cosu!sinu1lu̇1Vu

5Gu , ~5a!

I 1~f̈ sin2 u12ḟu̇ sinu cosu!1I 3 cosu
d

dt
~ ċ1ḟ cosu!

2I 3~ ċ1ḟ cosu!u̇ sinu1lḟ sin2 u1Vf5Gf , ~5b!
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I 3

d

dt
~ ċ1ḟ cosu!1l8~ ċ1ḟ cosu!5Gc , ~5c!

where Vu5]V/]u and Vf5]V/]f. The expression (ċ
1ḟ cosu) was left unbroken wherever it appears in t
above equations because it represents the component o
angular velocity vectorv along the symmetry axis, and w
make use of this fact in the interpretation of the dissipat
torques in terms of the components ofv, as follows.

Let us define the following four unit vectors:z, along the
laboratoryz axis; c, along the particle’s symmetry axis;a,
perpendicular to the plane containingc andz (cẑ plane!; and
b, perpendicular to thecâ plane:

z5~0,0,1!, ~6a!

c5~sinu cosf,sinu sinf,cosu!, ~6b!

a5
z3c

sinu
5~2sinf,cosf,0!, ~6c!

b5c3a5~2cosu cosf,2cosu sinf,sinu!. ~6d!

As a notation to be used throughout this work, subscri
z,c,a, or b on a vector indicate its orthogonal projection o
the z, c, a, or b directions, and subscriptc̄ indicates the
vector’s projection on the plane perpendicular toc.

The particle’s angular velocity vectorv may be decom-
posed into a sum of two vectors, perpendicular and para
to c, respectively,

v5vc̄1vcc,

with

vc̄5c3 ċ

5~2 u̇ sinf2ḟ sinu cosu cosf,u̇ cosf

2ḟ sinu cosu sinf,ḟ sin2 u!

and

vc5ċ1ḟ cosu.

The orthogonal projection ofvc̄ on thez axis is

v c̄z5vc̄•z5ḟ sin2 u,

and the orthogonal projection ofv ~or of vc̄) on the direc-
tion perpendicular to thecẑ plane is

va5v•a5vc̄•a5 u̇.

Thus we see that the dissipative torques present in Eqs.~5a!,
~5b!, and~5c! are given byva , v c̄z , andvc , respectively,
times the dissipation parametersl or l8.

The noise torques will be treated along these same lin
We start by defining the noise torque vector by its orthogo
components:
4-2
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G5Gaa1Gbb1Gcc.

The noise becomes completely defined by stating the
tistics of its three components. The usual procedure is
consider them as statistically independent, Gaussian w
noise. This is, however, not a necessary assumption and
leave it open for future modeling. What we need now is
know how the three components come into Eqs.~5!. Guided
by the above decomposition of the dissipative torque, we
led to identify

Gu5Ga ,

Gf5G c̄z5Gc̄•z5Gb sinu,

Gc5Gc .

Before we proceed to deduce the equations of motion
the general case of magnetic particles in suspensions
show, in Sec. III, how to obtain, from Eqs.~5!, the equations
of motion for the spherical coordinates of a monodom
magnetic moment.

III. EQUATIONS OF MOTION FOR A MAGNETIC
MOMENT

The magnetic momentm of a monodomain particle is
related to its internal angular momentumS by m5gS, where
g is the gyromagnetic factor. Although the modulusSof S is
taken as constant in most works on superparamagnetism
magnetic fluids, for very small particles its oscillation m
be significant and we prefer to allow it to be time depende
The modern technology allows the preparation of samp
with magnetic particles whose diameters are smaller than
Å @17#, and superparamagnetic clusters containing only
magnetic atoms were also reported@18#. We can model the
magnetic moment by a rotating charged particle, in the li
of zero moments of inertia,I 1→0, I 3→0, andċ→`, so that
I 3ċ5S. Because in Sec. IV we will work with the join
system, a particle and its fluctuating magnetic moment,
write the generalized coordinates, potential energy, diss
tive and noise torques, with a notation distinct from th
corresponding to the particle. That is, we make the follow
substitutions:u→q, f→w, I 3ċ→S, V→W, l→j, l8
→j8, andG→T. We also introduce two modifications in th
equation corresponding to Eq.~5c!, namely, we writeS
2S0 instead ofS in the dissipative term, and introduce
torque Ws , whose origin will be explained below. In th
stated limit and with this new notation, the system of eq
tions ~5! becomes

Sẇ sinq1jq̇1Wq5Tq , ~7a!

Ṡcosq2Sq̇ sinq1jq̇ sin2 q1Ww5Tw , ~7b!

Ṡ1j8~S2S0!1Ws5Ts . ~7c!

Here we have writtenS2S0 , instead ofS, in the dissipation
term of Eq.~7c! to account for the fact that the relaxation
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the fluctuations ofS is towards a most probable~equilibrium!
valueS0 , and not toward 0. It may appear strange that, ev
though we have derived the equations of motion forS from
the equations of motion for a symmetric particle, in a co
venient limit we now have to add a term ‘‘ad hoc’’ (S0),
which does not have an equivalent in the particle’s eq
tions. This is so because in classical physics the equilibr
magnetization is always zero. Nonzero equilibrium magne
moments can only exist because of the quantum mechan
nature of matter and, therefore, cannot be deduced fro
pure classical approach. The torqueWs was introduced be-
cause a crystal field may have an effective interaction w
m, with origin in an orbital contribution toS @19#, with a
possible torque component parallel toS. There is not an
equivalent term in Eq.~5c! because of the assumed axi
symmetry of the particle.

It is interesting to study the behavior of Eqs.~7! in the
absence of noise,Ti50, and withWs50. Equation~7c! has
then the trivial stationary solutionS5S0 . Assuming this
constant value forS in Eqs.~7a! and ~7b!, they reduce to

S0ẇ sinq1jq̇1Wq50, ~8a!

2S0q sinq1jẇ sin2 q1Ww50. ~8b!

The conservative torques2Wq and2Ww usually receive
contributions from two different origins, the interaction ofS
with a crystalline, anisotropy field and/or with a magne
field, which can also be of several different origins. In t
case of magnetic fieldH, the potential energy isW52m
•H. With a little algebraic work one can show, in this cas
that the set of equations~8! is equivalent to the well known
Gilbert’s equation@10#,

dm

dt
5gm3FH2

j

m2

dm

dt G ~9!

for m5gS and S5S0 . This equation was used by Brow
@12# as a starting point for his stochastic theory of superpa
magnetism, where he assumed the magnetic fieldH to con-
tain a noise term. A more general theory for superparam
netism, which also allows for oscillations on the modul
m5gS of the magnetic moment, was worked out by Ric
and Scherer@20,21,15#, based on the set of equations~7!. For
this reason we will not continue to explore the consequen
of Eqs.~7! in the present paper, turning, instead, to the m
general approach, where the rotation of the mechanical
ticle is taken into account, in addition to the motion ofS
relative to the particle.

IV. EQUATIONS OF MOTION FOR A SMALL MAGNETIC
PARTICLE IN SUSPENSION

In recent years several researchers@1,4,14,22# drew atten-
tion to the importance of the motion of the magnetic partic
its inertia and viscous interaction with the fluid, to the d
namic magnetic susceptibility of ferrofluids. A theoretic
treatment of this problem, which is both more fundamen
and more general than those previously published, follo
naturally from the context described above.
4-3
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Taken together, the systems of equations~5! and~7! con-
tain all the degrees of freedom relevant to the problem.
the potential energy terms,V in Eqs.~5! andW in Eqs.~7!,
the interaction energy between the magnetic moment and
particle, which we will denote byU, has to be added. Due t
the particle’s symmetry, this term can only depend onS, and
on the angle betweenS and the symmetry axisc. It is con-
venient to define another orthogonal set of unit vectors,
lated to the direction of the magnetic moment, namely,s, in
the S direction,u, perpendicular to thesẑ plane, andv, per-
pendicular to thesû plane:

s5
S

S
5~sinq cosw,sinq sinw,cosq!, ~10a!

u5
z3s

sinq
5~2sinw,cosw,0!, ~10b!

v5s3u5~2cosq cosw,2cosq sinw,sinq!. ~10c!

The interaction energyU can then be written asU(S,s•c). In
principle, the particle can interact also with other fields, b
sidesH, as is the case if it has an electric dipole and
electric field is present. For this reason we also keep
potential energyV(u,f) in the new set of equations.

The dissipative interaction associated with the rotation
S relative to the particle will be written in terms of the rel
tive angular velocity vector. Since only rotations perpendi
lar to S can lead to a meaningful interaction torque w
origin on the relative motion, we define the relative angu
velocity vr as

vr5Ã2vs̄ ,

where

Ã5s3 ṡ

is the angular velocity of rotation of the magnetic mome
with respect to the laboratory, and

vs̄5s3v3s5v2~s•v!s

is the orthogonal projection of the particle’s angular veloc
v on the plane perpendicular toS. The dissipative interac
tion torque on the particle is then1jvr . The plus sign is
because of the way we definedvr , where the particle’s an
gular velocity appears with a minus sign. Guided by the
terpretation of the dissipative torque terms of Eqs.~5! in
terms of angular velocity components, as explained be
the aforementioned equations, we immediately write the
sipative torque terms to be added to the left-hand si
~therefore, with a minus sign! of Eqs.~5!, namely,

2jv ra52jvr•a,

2jv rc̄z52j@vr2~vr•c!c#•z52j~v rz2v rc cosu,

2jv rc52jvr•c.
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Of course, all these scalar products, as well as those w
follow in the next equations, may be easily written as fun
tions of the four anglesu, f, q, andw, and their time deriva-
tives, by using Eqs.~6! and ~10!. However, because scala
products are very easily handled in numerical procedures
prefer to leave them in this form.

Clearly, the torque on the magnetic moment, due to
relative motion, is the ‘‘reaction’’ to the torque on the pa
ticle, i.e., it is equal to2jvr, and, in place ofjq̇ and
jẇ sin2 q in Eqs. ~7! we shall use~remembering thatvrs̄
5vr)

jv ru5jvr•u,

jv rz5jvr•z.

No term coming from the relative angular velocityvr has to
be added to Eq.~7c!, becausevr is perpendicular toS. How-
ever, there is a termj8(S2S0) already present in that equa
tion, with its origin in the~quantum! fluctuations ofS, and
this term will be kept. Since angular momentum has to
conserved, its reaction counterpart on the particle has to
added to Eqs.~5!. Calling

R5~S2S0!s,

the terms to be added to the left-hand sides of Eqs.~5! are

2j8Ra52j8R•a52j8~S2S0!s•a,

2j8Rc̄z52j8@R2~R•c!c#•z

52j8~S2S0!@s2~s•c!c#•z,

2j8Rc52j8R•c52j8~S2S0!s•c.

The noise torques of interaction between the particle
the magnetic moment can be written down along the sa
lines of procedure as used for the noise torques of the fl
on the particle at the end of Sec. II. We assume three
thogonal, independent, noise torque vectors, along the
vectors defined with respect to the direction of the magn
moment:

T5Tss1Tuu1Tvv. ~11!

T being the torque on the magnetic moment, then the tor
on the particle is2T. Following the same line of reasonin
as above, we identify the torques in Eqs.~7!:

Tq5Tu ,

Tw5Ts̄z5Tv sinq,

Ts5Ts .

Correspondingly, the following terms have to be added to
right-hand sides of Eqs.~5!:

Tu52Ta52T•a,

Tf52Tc̄z52@T2~T•c!c#•z,
4-4
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Tc52Tc52T•c.

Therefore, the state of the composed system, the par
and its magnetic moment, is described by the six general
coordinatesu, f, c, q, w, andS, whose dynamical behavio
is governed by the following set of coupled differential equ
tions:

I 1~ ü2ḟ2 sinu cosu!1I 3ḟ~ ċ1f cosu!sinu1lu̇2jv ra

2j8Ra1Vu1Uu5Ga2Ta , ~12a!

I 1~f̈ sin2 u12ḟu̇ sinu cosu!1I 3 cosu
d

dt
~ ċ1ḟ cosu!

2I 3~ ċ1f cosu!u̇ sinu1lḟ sin2 u2jv rc̄z2j8Rc̄z

1Vf1Uf5Gb sinu2Tc̄z , ~12b!

I 3

d

dt
~ ċ1ḟ cosu!1l8~ ċ1ḟ cosu!2jv rc2j8Rc

5Gc2Tc , ~12c!

Sẇ sinq1jv ru1Wq1Uq51Tu , ~12d!

Ṡcosq2Sq̇ sinq1jv rc̄z1Ww1Uw51Ts̄z , ~12e!

Ṡ1j8~S2S0!1US5Ts . ~12f!

This set of six equations is of very general applicability
magnetic suspensions. It allows for a large variety of m
eling: There are three independent conservative interac
potentialsV, U andW, four dissipative parametersl, l8, j,
andj8, and also the noise torquesG andT, whose statistical
properties are open for modeling. Particle-particle interact
was not explicitly taken into account.

V. DYNAMIC SUSCEPTIBILITY

To calculate, from the set of equations~12!, the dynamic
magnetic susceptibility, and therefore the absorption line
magnetic resonance, it is better to transform them into
typical form of first order differential Langevin equation
@23#. Noting that the first three equations are second or
we introduce new variables

u̇5h,

ḟ5n, ~13!

ċ1ḟ cosu5r,

and transform Eqs.~12!, so that, together with Eqs.~13!, we
have a set of nine first order equations. For example,
~12a! becomes

I 1~ ḣ2n2 sinu cosu!1I 3nr sinu1lh2jv ra2j8Ra1Vu

1Uu5Ga2Ta ,
01150
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We use also theWiener processes Wj (t), which are re-
lated to the white noise componentsG j @or whatever appears
at the right-hand side of Eqs.~12!# by

Wj~ t !5E
0

t

G j~ t8!dt8,

and make the usual substitutionsG j (t)dt→dWj (t) to write
the set of stochastic differential equations in the form

dXi~ t !5Ai@X~ t !,t#dt1(
j

Bi j @X~ t !#dWj~ t !, ~14!

whereXi(t) are the dependent variablesh, n, r, u, f, c, q,
w, andS, andAi@X(t),t# andBi j @X(t)# are obtained by com-
parison between Eq.~14! and those from the set of first orde
equations mentioned above, after the expressions forV, U,
andW are introduced. In the typical case of magnetic re
nance, with a strong constant magnetic fieldH0 parallel to
the z axis and a periodic weak fieldF(t) perpendicular to it,
Ai@X(t),t# turn out to be written in the form

Ai@X~ t !,t#5(
j

g i j ~X!F j~ t !1Ai
0~X!. ~15!

Following the procedure of Ref.@15#, the response function
are then given by

F i j ~ t !5(
k

^gk j~x!]k^Xi~ tux!&0&eq. ~16!

The symbolXi(tux) refers to the stochastic variableXi at
time t, given that the ‘‘vector’’ of stochastic variablesX had
a valuex at an initial time t50; ^Xi(tux)&0 is an average
over many realizations ofXi , from 0 to t, in the absence of
the perturbing fieldF(t), starting from the pointx, ]k means
derivative with respect to thek component of the initial
‘‘point’’ x; and ^¯&eq is an average over the equilibrium
distribution of initial points. This equilibrium average ma
include an average over the distribution of the particl
characteristics, if polydispersity is to be considered. For
ample, if the particles are all made of the same material
have the same shape, varying only in size, assuming s
given distribution of a linear dimensionr, then the other
particle’s parameters shall be scaled accordingly. For
ample,

S0}r 3, I}r 5, l}r 3. ~17!

As shown in Ref.@15#, Eq. ~16! may be evaluated from
numerical simulations of Eq.~14!. From the results obtained
for F i j (t), we can then calculate the susceptibilityx i j (v) by
numerical Fourier-Laplace transform.

VI. SOME LIMIT CASES

Several interesting limit situations are readily obtain
from Eqs.~12!. The ‘‘superparamagnetic’’ limit, for which
the particle’s coordinatesu, f, andc, are taken as constant
so that the system reduces to the last three equations@or,
4-5
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equivalently, to Eqs.~7!#, was treated in three previous p
pers by Ricci and Scherer@20,21,15#. A further simplifica-
tion, in this limit, which is appropriate for most cases
practical interest, follows by assumingS5S05const. In this
case the only relevant equations are Eqs.~12d! and ~12e!,
and, moreover, the term inṠ also vanishes. The noise torqu
Tu andTs̄z may then be written in terms of a stochastic ma
netic field, rendering our set of equations in a form equi
lent to Brown’s generalization@12# of Gilbert’s equation@Eq.
~9!#. This case was treated by several authors, and a
interesting account was given in a recent paper by Gar
Palacios and La´zaro @24#, where much numerical work wa
presented.

The ‘‘blocked’’ limit ~also called the ‘‘Brownian’’ limit
@25# or ‘‘inertial limit’’ @2#!, corresponds to the case whe
the magnetic moment is blocked along the particle’s symm
try direction, i.e.,q5u andw5f. This may happen becaus
the sample is kept below the ‘‘blocking temperature’’TB
@26#, or because the material is so highly anisotropic that
magnetic moments only exists parallel to the easy axis@18#.
The particle is still immersed in a fluid carrier, being able
rotate, together with its magnetic moment.

In terms of the set of equations~12!, the blocked limit is
obtained by assuming an interaction potentialU of the form
2U0d(s2c), with U0→`, so that the only states energe
cally possible are those withs5c, i.e., q5u andw5f. By
summing Eq.~12a! with Eq. ~12d! and Eq.~12b! with Eq.
~12e! the interaction termsUu andUq as well asUf andUw

cancel out. The terms containingv ra , v rc̄z , Ra , Rc̄z , Ta ,
and Tc̄z become identically zero, andRc becomes (S
2S0). Choosing u and f to denote the common pola
angles, the system of equations, in the notation of the pr
ous section, becomes

I 1~ ḣ2n2 sinu cosu!1I 3nr sinu1lh1Vu1Sn sinu1Wu

5Ga , ~18a!

I 1~ ṅ sin2 u12nh sinu cosu!1I 3 cosuṙ2I 3rh sinu

1ln sin2 u1Vf1Scosu2Sh sinu1Wf5Gb sinu,

~18b!

I 3ṙ1l8r2j8~S2S0!5Gc2Tc , ~18c!

Ṡ1j8~S2S0!51Tc . ~18d!

This is still a rather general set of equations. A first ob
ous simplification occurs, in most cases of interest, wheS

5S0 . Then alsoṠ50 andTc50, and the system is reduce
to three equations. Much work has been done in this c
mainly in the context of electric dipolar molecules, for whic
S5S050. For example, McConnell@27#, Coffey, Kalmikov
Waldron @28#, and Gaiduk and McConnell@29# described-
dielectric relaxation and dynamics of polar molecules
great detail.

As a simple illustration we will assume a constant mod
lus for the magnetic moment, i.e.,S5S0 , and for the inter-
action potential we consider onlyW52m•H52gS0s•H,
01150
-
-

ry
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-

e

i-

-

e,

-

where H5H0z is a constant field. The interaction energ
between the magnetic moment and the field is then

W52m•H52S0gH0 cosu.

With these simplifications, the system of equations~18! be-
comes

I 1~ ḣ2n2 sinu cosu!1I 3nr sinu1lh1S0n sinu

1S0gH0 sinu5Ga , ~19a!

I 1~ ṅ sin2 u12nh cosu!1I 3 cosuṙ2I 3rh sinu1ln sin2u

2S0h sinu5Gb sinu ~19b!

I 3ṙ1l8r5Gc . ~19c!

We will consider in this simple illustration only the limi
of very weak noise,G.0. Then Eq.~19c! has the approxi-
mate stationary solutionr.0. Therefore, we neglectr in
Eqs.~19a! and ~19b!, which become

I 1~ ḣ2n2 sinu!1lh1S0n sinu1S0gH0 sinu5Ga ,
~20a!

I 1~ ṅ sinu12nh cosu!1ln sinu2S0h5Gb , ~20b!

which, together with the definition ofh andn in Eqs. ~13!,
form a set of four first order Langevin equations. It requir
simple algebra to show that, in the appropriate limit, i.e.r

5ċ1n cosu.0 andmutatis mutandisfrom our notation to
the notation of Ref.@28#, Eqs. ~20! are the same as Eqs
~10.3.2-a! and~10.3.2b! of the latter paper. We note that fo
the case of Ref.@28#, for a particle with an electric dipole
the terms inS0 are zero~there is no angular momentum
associated with the electric dipole! and in the interaction
term with the external fieldS0gH0→mF.

Following the procedure outlined in Sec. V, with arb
trarily chosen values for the parametersS0 , l, andgH0 , and
for four distinct values of the moment of inertiaI 150.05,
0.10, 0.25, and 1.0, we calculated the dynamic susceptibi
The imaginary partxxx9 (v) is shown, in arbitrary units, in
Fig. 1. We do not claim that the values we used for t

FIG. 1. Imaginary part of the suceptibility for different values
the moment of inerciaI 1 . Full line: I 151.0; dashed line:I 1

50.25; dot-dashed line:I 150.10; dotted line:I 150.05.
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parameters are realistic for ferrofluids; this simple exam
only qualitatively shows the effect of the particle’s inertia
the magnetic resonance lines.

Another interesting limit is the noninertial limit,I 50. If
we further simplify our system of equations~12! by assum-
ing S5S05const, and thereforeUS5Ts50, the system be-
comes a system of five first order equations for the variab
u, f, c, q, andw, the first three of these being simply equ
librium equations between all torques on the mechanical
ticle ~dissipative and Brownian interaction with the liqu
and with the magnetic moment!, and the last two becoming
r.

in
s

i,

gn
.

s.
J

n

n.

er

,

01150
e

s

r-

equivalent to Brown’s generalization of Gilber’s equatio
@12#. This case was extensively studied by Shliomis a
Stepanov@3#, in the context of their ‘‘egg’’ model.
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