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Rotational dynamics of magnetic particles in suspensions
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An approach for the rotational dynamics of magnetic particles and their magnetic moments, in fluid suspen-
sions, is developed. A possible application is to magnetic resonance in ferrofluids. Based on a generalized
Lagrangian formulation for the equations of motion of the particle, we introduce its interaction with the solvent
fluid via dissipative and random noise torques, as well as the interaction between the particle and its magnetic
moment, treated as an independent physical entity and characterized by three generalized coordinates: its two
polar angles and its modulus. In the appropriate limits, it reduces to the cases of superparamagnetic particles or
nonsuperparamagnetiblocked magnetic momentgarticles. It is also indicated how the dynamic complex
susceptibility may be calculated from the equations of motion, and as an example the effect of the particles
inertia on the susceptibility is numerically evaluated for some arbitrary values of the parameters.
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[. INTRODUCTION with an egg, the yolk corresponding to the magnetic moment,
and showed that in the noninertial limit and for weak applied
Considerable interest has been shown, in recent years, field the equations of motion decouple, thus allowing one to
the dynamics of the magnetization of ferrofluids in the pres-account simultaneously for the combined motion of the mag-
ence of applied magnetic fields, and in the correspondingetic moment and the particle.
complex magnetic susceptibility. Just to give a few examples The purpose of the present paper is to present a general
of recently published work on the field, we mention theoret-set of equations of motion for the combined system of a
ical works by Raikher and Rusakoyl], Coffey and magnetic moment plus a mechanical particle, inside a fluid.
Kalmykov [2], and Shliomis and Stepan¢8], experimental The main limitation of our approach is that we deal only with
works by Moraiset al. [4], Fanninet al. [5], Vincentet al.  axially symmetric particles, with easy axes of magnetization
[6], and Upadhyay, Srinivas, and Mehi@], and an parallel to the symmetry axis. However, the magnetic mo-
experimental-theoretical paper by Fannin, Kinsella, andnent is allowed to rotate inside the particle, as well as to
Charles[8]. Certainly, this increased interest in a better un-have an oscillating modulus, and the particle is allowed to
derstanding of the behavior of these materials is related tootate with respect to the solvent, which is immobile with
their renewed technological importance, with various newespect to the laboratory. The suspension is considered suf-

applicationd 9]. ficiently dilute for the particle-particle interaction to be neg-
The usual theoretical approach to calculate the dynamiéigible, so that we deal only with single particle dynamics.
susceptibility is based on Gilber[40] or Landau and Lif- In contradistinction to most existing theories, to our

shitz’ [11] equationgwhich are equivalentior the dynamics knowledge, our approach includes the particle’s moment of
of the magnetic moment, with the addition of noise, follow- inertia in the equations of motion. To neglect inertia may be
ing the pioneering work of Browfl2]. Several authors used a good approximation for most ferrofluids, because of the
these equations of motion to calculate relaxation times, andmaliness of the particles, but we are presenting a theory
the susceptibility is then borrowed from Debye’s the[d§]. which intends to be sufficiently general to include nonstable
Two distinct rotational relaxation mechanisms may coex-suspensions, for which the particles may be considerably
ist in ferrofluids: the Nel relaxation, by which the magnetic larger. In the case of superparamagnetic particles, an aspect
moment moves with respect to the mechanical particle; anavhich distinguishes our theory from the usual approaches is
the Brownian, or Debye relaxation, corresponding to the parthat the rotation of the potential gradient on the magnetic
ticle’s rotation inside the fluid. In most experimental situa-moment, accompanying the Brownian rotation of the par-
tions one of these mechanisms is dominant, and this may ki&le, is taken into account.
the reason why up to now, as far as we know, there has been In Sec. Il we write the equations of the rotational motion
no satisfactory theory, sufficiently general to be applied forof an axially symmetric particle inside a fluidangevin-type
all situations, from the pure ¢ motion to the pure Brown- equationy based on the generalized Euler-Lagrange equa-
ian relaxation, passing by all possible combinations of thos¢ions. In Sec. Ill we obtain, from the equations of Sec. Il, in
mechanisms. In this respect the model of “two spheres,” bya convenient limit, the equations of motion for the magnetic
Fannin and Coffey14], should be mentioned as a first effort. momentu, which reduce, in the case of constant modulus of
The noninertial limit, i.e., when the contribution of the mo- u, to the Gilbert’'s equation. In Sec. IV we arrive at a set of
ments of inertia of the particle to the equations of motion issix coupled equations, for the six degrees of freedom, the
negligible in comparison to the other forces involved, wasthree Euler angles of the particle’s rotations, and the two
treated by Shliomis and Stepani®}, where they introduced polar angles ofu and its modulus. In Sec. V we indicate,
the egg model There they compared the magnetic particlebriefly, how to calculate, by numerical simulation of the
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equations of motion, the dynamic magnetic susceptibility, a d . . o
procedure which was more carefully explained in a previous lsg; (4 + o cost) +\'(y+¢pcost)=I"y,, (50
paper[15]. Some less general situations are considered in

Sec. VI as particular cases, and related to previous works .. V,=VId¢ and V,=dVIa¢. The expression y

made by several authors. . . .

+ ¢ cosh) was left unbroken wherever it appears in the
above equations because it represents the component of the
angular velocity vectoi along the symmetry axis, and we
make use of this fact in the interpretation of the dissipative

Consider a particle of axially symmetric shape in suspenforques in terms of the components @f as follows.
sion in a fluid. The principal moments of inertia will be ~ Let us define the following four unit vectors; along the
denoted byl =1, andl ;. Disregarding translational degrees laboratoryz axis; c, along the particle’s symmetry axis;
of freedom, its Lagrangian may be written in terms of thePerpendicular to the plane containiogndz (€2 plane; and
Euler anglesy, ¢, and ¢ (in the notation of Goldsteifit6]), P, perpendicular to thea plane:
taken as generalized coordinates, as

II. ROTATIONAL DYNAMICS OF A PARTICLE
IN A FLUID

z=(0,0,1), (6a)
Iy . . I3 . .
L= 51(.92+ P2 sirf )+ 53(¢+ ¢ 0s6)°—V(0,), c=(sinf cose,sind sin¢,cosh), (6b)
@ e
_ ) _ ) a= ——=(—sin¢,c0s¢,0), (60)
where V(6,¢) is some orientation-dependent potential. It siné

cannot depend o because of the axial symmetry of the ] ]

particle. b=cXa=(—cosf cos¢,—cosbsing,sind). (6d)

The interaction forcegtorques between the particle and
the fluid are of dissipative and noise types. Therefore, the
are not included in the Lagrangian; instead, we use “gener=
alized Euler-Lagrange equations,” with the correspondin
torques, represented Iy, at the right hand side,

As a notation to be used throughout this work, subscripts
,C,a, or b on a vector indicate its orthogonal projection on
he z, c, a or b directions, and subscrigt indicates the
ector’s projection on the plane perpendicularcto

The particle’s angular velocity vectap may be decom-

d oL oL posed into a sum of two vectors, perpendicular and parallel
dt 75, a_(qi_Qi’ (2)  toc, respectively,

w=wz+ wC,
whereq;= 6, ¢, or .

We write the nonconservative torqu@s as sums of dis-  with
sipative and noise terms, in the form
wz=CXC

——+Ti(t), 3 =(— @sin¢g— ¢ sinf cosh cose, 6 cosd

whereF is the following Rayleigh dissipation functidii 6], ~$singcosfsing, b sirt 6)

and

F= E>\[('(92+ 2 sirt )]+ EA’(:;H— $cosh)?, (4
2 2 ’ W=+ ¢ cosh.

andI'i(t) are the noise torques. The dissipation constants The orthogonal projection afy; on thez axis is

and\’' may be different because’ is associated with the

particle rotation around the symmetry axis, whilés asso- o= Wg 7= ¢ Sir? 6,

ciated with the rotations perpendicular to it. Substituting Egs.

(1), (3), and(4) into Eq.(2) we obtain the following system and the orthogonal projection @ (or of wg) on the direc-

of equations for the patrticle’s rotation: tion perpendicular to théz plane is
| 1(6— 2 sin 6 cosh) + 1 3(h+ ¢ cosh)sinG+\6+V, w,=w-a= wg-a= 0.
=TIy, (58  Thus we see that the dissipative torques present in (G@s.

(5b), and(5¢) are given byw,, wg, andw,, respectively,
times the dissipation parametexsor A'.

The noise torques will be treated along these same lines.
o _ . We start by defining the noise torque vector by its orthogonal
—l3(¢p+ pcosh) fsin+\g i 6+V,=I,, (5b)  components:

.. .. d . .
I (¢ sSir? 0+2¢p0sindcosh)+1, cos¢9a(¢wL ¢ cos6)
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I=T,a+I',b+Tc. the fluctuations oSis towards a most probablequilibrium)
valueS;, and not toward 0. It may appear strange that, even
The noise becomes completely defined by stating the stahough we have derived the equations of motion$drom
tistics of its three components. The usual procedure is tthe equations of motion for a symmetric particle, in a con-
consider them as statistically independent, Gaussian whitgenient limit we now have to add a term “ad hoc’S{),
noise. This is, however, not a necessary assumption and wehich does not have an equivalent in the particle’s equa-
leave it open for future modeling. What we need now is totions. This is so because in classical physics the equilibrium
know how the three components come into E&$. Guided — magnetization is always zero. Nonzero equilibrium magnetic
by the above decomposition of the dissipative torque, we armmoments can only exist because of the quantum mechanical
led to identify nature of matter and, therefore, cannot be deduced from a
pure classical approach. The torgug was introduced be-
Fp=T%,, cause a crystal field may have an effective interaction with
) M, with origin in an orbital contribution tcS [19], with a
I'y=Ig=T¢z=Tpsind, possible torque component parallel  There is not an
equivalent term in Eq(5c) because of the assumed axial
ry=Te. symmetry of the particle.
. . It is interesting to study the behavior of Ed3) in the
Before we proceed to dedL_Jce the_ equa_tlons of mo_tlon foE\bsence of noiseZ =0, and withW,=0. Equation(7¢) has
the general case of magnetic particles in suspensions

show, in Sec. IIl, how to obtain, from Eqé), the equations "When the trivial stationary solutiol’s=S,. Assuming this

of motion for the spherical coordinates of a monodomainconStant value foBin Egs.(78) and(7b), they reduce to

magnetic moment. Sy Sind+ E9+W,=0, (8a)

Ill. EQUATIONS OF MOTION FOR A MAGNETIC —Sg¥sind+ & si? 9+ W<p:0' (8b)
MOMENT
) ) _ _ The conservative torquesW, and—W,, usually receive
The magnetic momeng of a monodomain particle is  ¢ontributions from two different origins, the interaction f
related to its internal angular momentBmy u=yS, where  yjth a crystalline, anisotropy field and/or with a magnetic
v is the gyromagnetic factor. Although the modusief Sis  fie|d, which can also be of several different origins. In the
taken as constant in most works on superparamagnetism agdse of magnetic fieltH, the potential energy isV=— u
magnetic fluids, for very small particles its oscillation may . \with a little algebraic work one can show, in this case,

be significant and we prefer to allow it to be time dependentinat the set of equatior®) is equivalent to the well known
The modern technology allows the preparation of samplegsjpert's equatior 10],

with magnetic particles whose diameters are smaller than 20

A [17], and superparamagnetic clusters containing only 12 du
magnetic atoms were also reporfed]. We can model the ar YIX
magnetic moment by a rotating charged patrticle, in the limit

of zero moments of inertid;—0, 1 ;—0, andy—o, sothat for u=yS and S=S;. This equation was used by Brown
l,y=S. Because in Sec. IV we will work with the joint [12] asastarting point for his stochastic theqry pf superpara-
system, a particle and its fluctuating magnetic moment, wénagnetism, where he assumed the magnetic field con-
write the generalized coordinates, potential energy, dissipd@in @ noise term. A more general theory for superparamag-
tive and noise torques, with a notation distinct from thatNetism, which also allows for oscillations on the modulus
corresponding to the particle. That is, we make the followingw= ¥S of the magnetic moment, was worked out by Ricci
substitutions: 6— 9, ¢— g I3¢HS VoW, A& N/ and Schere[r20,21,15, base(_j on the set of equatiaf™. For
¢, andl—T. Wé also in’troduce t\,NO modi’fication’s in the this reason we will not continue to e_xplore the consequences
equation corresponding to EG5¢), namely, we writeS of Egs.(7) in the present paper, turning, instead, to th.e more
s, instead ofS in the dissipative term, and introduce a general approach, where the rotation of the mechanical par-

Lo . ticle is taken into account, in addition to the motion $f
torque W, whose origin will be explained below. In the . :
'S . . . relative to the particle.
stated limit and with this new notation, the system of equa-

tions (5) becomes

©)

& dp
H—Fa

IV. EQUATIONS OF MOTION FOR A SMALL MAGNETIC

Sesin g+ £9+Wy=T, (72 PARTICLE IN SUSPENSION
. . . In recent years several researcHdrg,14,22 drew atten-
Scosd— S sind+ £9 sif §+W, =T, (7b)  tion to the importance of the motion of the magnetic particle,

_ its inertia and viscous interaction with the fluid, to the dy-

S+E(S—Sy) +W="T5. (7o  namic magnetic susceptibility of ferrofluids. A theoretical

treatment of this problem, which is both more fundamental
Here we have writtets— S, instead ofS, in the dissipation and more general than those previously published, follows
term of Eq.(7¢) to account for the fact that the relaxation of naturally from the context described above.
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Taken together, the systems of equati@Bsand(7) con-  Of course, all these scalar products, as well as those which
tain all the degrees of freedom relevant to the problem. Tdollow in the next equations, may be easily written as func-
the potential energy term¥, in Egs.(5) andW in Egs.(7),  tions of the four angle$, ¢, J, ande, and their time deriva-
the interaction energy between the magnetic moment and theves, by using Eqs(6) and (10). However, because scalar
particle, which we will denote biJ, has to be added. Due to products are very easily handled in numerical procedures, we
the particle’s symmetry, this term can only dependand  prefer to leave them in this form.
on the angle betwees and the symmetry axis. It is con- Clearly, the torque on the magnetic moment, due to the
venient to define another orthogonal set of unit vectors, rerelative motion, is the “reaction” to the torque on the par-
lated to the direction of the magneticAmoment, namslyn ticle, i.e., it is equal to— e, and, in place oféd and
the S direction, u, perpendicular to théz plane, andv, per- ¢4 sir? 9 in Egs. (7) we shall use(remembering thato,s

pendicular to thé&u plane: =w,)
S = -u,
s= g =(sin® cosg,sind sing, cosd), (10a fon= g
§w =8 2.
u= ﬁ = (—sing,cose,0), (1op  No term coming from the relative angular velocity has to
sind be added to Eq7¢c), becauseaw, is perpendicular t&. How-

. _ ever, there is a ternd’ (S— ;) already present in that equa-
V=sXu=(—cosd cosp,—cosd sing,sind). (100  tion, with its origin in the(quantum fluctuations ofS, and
this term will be kept. Since angular momentum has to be

The interaction energyl can then be written ad(S,s-c). In conserved, its reaction counterpart on the particle has to be
principle, the particle can interact also with other fields, be-added to Eqs(5). Calling

sidesH, as is the case if it has an electric dipole and an
electric field is present. For this reason we also keep the R=(S—)s,
potential energy (6, ¢) in the new set of equations. )

The dissipative interaction associated with the rotation ofhe terms to be added to the left-hand sides of Egjsare
Srelative to the particle will be written in terms of the rela- e s
tive angular velocity vector. Since only rotations perpendicu- §'Ra ¢'R-a=—¢(S-S)s 3,

lar to S can lead to a meaningful interaction torque with , ,
- . . . X - o=—&[R—-(R-0)c]-z
origin on the relative motion, we define the relative angular ¢ Rez ¢l ( el
velocity @, as =—¢'(S—Sy)[s—(s-c)c]-z,
=m0, —§'Re=—£'R-c=—¢£(S-SysC.
where The noise torques of interaction between the particle and
the magnetic moment can be written down along the same
w=SXS§ lines of procedure as used for the noise torques of the fluid

on the particle at the end of Sec. Il. We assume three or-
is the angular velocity of rotation of the magnetic momentthogonal, independent, noise torque vectors, along the unit
with respect to the laboratory, and vectors defined with respect to the direction of the magnetic

moment:

W= SX WX S=mw— (S w)s
T=T1s+Tu+T\v. (11

is the orthogonal projection of the particle’s angular velocity
o on the plane perpendicular @ The dissipative interac- Z being the torque on the magnetic moment, then the torque
tion torque on the partic|e is theft o, . The p|us Sign is on the particle is—7. Following the same line of reasoning
because of the way we definesl, where the particle’s an- as above, we identify the torques in E¢8):
gular velocity appears with a minus sign. Guided by the in-
terpretation of the dissipative torque terms of E¢S. in 7y="1y,
terms of angular velocity components, as explained below .
the aforementioned equations, we immediately write the dis- T,=Ts=1,sind,
sipative torque terms to be added to the left-hand sides

(therefore, with a minus sigrof Egs. (5), namely, L=T.

Correspondingly, the following terms have to be added to the

~Ewrp= o a, right-hand sides of Eq$5):
—&wiz= — €l — (- 0)c]- 2= — {(w;— wc COSH, Ty=—T,=—T a,
—éwc=— ;- C. T¢>:_T&:_[T_(TC)C]'Z,

011504-4



ROTATIONAL DYNAMICS OF MAGNETIC PARTICLES. .. PHYSICAL REVIEW E 63 011504

T,=—-T.=-Tc We use also th&Viener processes Mt), which are re-
lated to the white noise componeiits[or whatever appears
Therefore, the state of the composed system, the particlat the right-hand side of Eqé12)] by
and its magnetic moment, is described by the six generalized
coordinatesd, ¢, #, ¥, ¢, andS whose dynamical behavior Wi(t) = f !
is governed by the following set of coupled differential equa- ! 0
tions:

T(t)dt,

and make the usual substitutiohg(t)dt—dW,(t) to write
1 ,(6— @2 sin 6 cosd) + 13+ ¢ cosh)sind+\d—éw,,  the set of stochastic differential equations in the form

“¢RatVotUp=Tam T, (123 dX () =A[X(1),t]dt+ > By[X()]dWi(1), (14
J

. L d . .
(¢ sin’ 0+2¢0$In90080)+|3COSH&(1//+¢COS(9) whereX;(t) are the dependent variables v, p, 6, ¢, ¢, 9,

i ] . ¢, andS andA[ X(t),t] andB;;[ X(t)] are obtained by com-
—I3(ih+ ¢ €0SO) SN0+ NP SIIF O— £z~ &' Rey parison between E@14) and those from the set of first order
equations mentioned above, after the expression¥fdd,

TVt Uy=Tpsind—Tc, (12b andW are introduced. In the typical case of magnetic reso-
d nance, with a strong constant magnetic fielg parallel to
la=— (h+ b cOSO) + N/ (h+ ¢ COSO) — Ew,o— &' Re the z axis and a periodic weak fiel(t) perpendicular to it,
dt A[[X(t),t] turn out to be written in the form
=I'c— 7T, (129
ALX(1),1]= 2 7 XOF; () +AY(X). (15
Sesind+ éw,y+Wy+Uy=+7,, (120 ]

. . Following the procedure of Ref15], the response functions
Scosd—SIsind+ fwret Wt Uy=+T5, (128 gre then given by

S+E'(S=8) +Us=T7s. (129) q)ij(t):Ek (Vi () A XKi(EX))0)eq- (16)

This set of six equations is of very general applicability in

magnetic suspensions. It allows for a large variety of mod-The symbolX;(t|x) refers to the stochastic variabk at
eling: There are three independent conservative interactiofime t, given that the “vector” of stochastic variablés had
potentialsV, U andW, four dissipative parameteis A', &, a valuex at an initial timet=0; (X;(t|x)), is an average
and¢’, and also the noise torquésand7, whose statistical over many realizations of;, from 0 tot, in the absence of
properties are open for modeling. Particle-particle interactionhe perturbing field=(t), starting from the poink, J, means

was not explicitly taken into account. derivative with respect to thé& component of the initial
“point” x; and(---)¢q iS an average over the equilibrium
V. DYNAMIC SUSCEPTIBILITY distribution of initial points. This equilibrium average may

include an average over the distribution of the particle’s
haracteristics, if polydispersity is to be considered. For ex-
mple, if the particles are all made of the same material and
ave the same shape, varying only in size, assuming some
rgiven distribution of a linear dimension then the other
particle’s parameters shall be scaled accordingly. For ex-

To calculate, from the set of equatio(i), the dynamic
magnetic susceptibility, and therefore the absorption lines o
magnetic resonance, it is better to transform them into th:f,1
typical form of first order differential Langevin equations
[23]. Noting that the first three equations are second orde
we introduce new variables

ample,
o=, Soxr3,  leer®, heer®, 17)
b=, (13 As shown in Ref[15], Eq. (16) may be evaluated from
numerical simulations of Eq14). From the results obtained
W+ b cosf=p for @;;(t), we can then calculate the susceptibility(w) by

numerical Fourier-Laplace transform.

and transform Eqg12), so that, together with Eq$13), we
have a set of nine first order equations. For example, Eq. VI. SOME LIMIT CASES

(123 becomes Several interesting limit situations are readily obtained

I.(— 12 sin 6 cosd) + | Sing+ N\ n— R4V from Egs.(12). The “superparamagnetic” limit, for which
=y )*lavp 7w & RatVy the particle’s coordinateg ¢, andy, are taken as constants,
+U,=T',—7,, so that the system reduces to the last three equafmms
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equivalently, to Eqs(7)], was treated in three previous pa-
pers by Ricci and Scher¢R0,21,19. A further simplifica-
tion, in this limit, which is appropriate for most cases of
practical interest, follows by assumii8y Sy=const. In this
case the only relevant equations are Edd and (12e,

and, moreover, the term B also vanishes. The noise torques
7, and 75, may then be written in terms of a stochastic mag-
netic field, rendering our set of equations in a form equiva-
lent to Brown’s generalizatiofil2] of Gilbert's equatioEq.

(9)]. This case was treated by several authors, and a very
interesting account was given in a recent paper by Garcia-
Palacios and Lzaro[24], where much numerical work was frequency w
presented.

Im{Y (@)}

The “blocked” limit (also called the “Brownian” limit FIG. 1. Imagln_ary part of the Sl.JC(i‘-pthlllty f(?rdlﬁerent \_/aIL.Jes of
the moment of inercial;. Full line: 1,=1.0; dashed line:l,

[25] or melrtlal limit .[2]), corresponds to the_ ca§e when —0.25; dot-dashed lind;—0.10; dotted linel,—0.05.
the magnetic moment is blocked along the particle’s symme-
try direction, i.e.;9= 0 andg= ¢. This may happen because
the sample is kept below the “blocking temperaturéy

[26], or because the material is so highly anisotropic that th

where H=H,z is a constant field. The interaction energy
getween the magnetic moment and the field is then

magnetic moments only exists parallel to the easy Eb&$. W= — p-H=—SyyH, cosé.
The particle is still immersed in a fluid carrier, being able to
rotate, together with its magnetic moment. With these simplifications, the system of equati¢h8) be-

In terms of the set of equatiori$2), the blocked limitis  comes
obtained by assuming an interaction potentiabf the form
—Uyd(s—c), with Uy— o, so that the only states energeti- I (77— v?sin@cosh) +l3vp sinf+\ p+Syrsing
cally possible are those witk=c, i.e., 9= 60 and o= ¢. By Lo
summing Eq.(129 with Eq. (12d) and Eq.(12b with Eq. +SoyHosing=T4, (199
(12¢ the interaction terméJ , andU 4 as well asJ , andU ,

cancel out. The terms containing. , oz, Ry, Rey, T, I (vsir? 6+ 2v7cosh)+ 13 c0s0p—l3pnsinf+\vsirfd

and 75 become identically zero, an®R, becomes $ —Sypsind=T,sing (19b)
—8y). Choosing ¢ and ¢ to denote the common polar
angles, the system of equations, in the notation of the previ- lsp+ N p=T,. (190

ous section, becomes
We will consider in this simple illustration only the limit
I1(7—v?sinfcosh) +1zvpsinf+Nn+Vy+Svsind+W,  of very weak noisel'=0. Then Eq.(190 has the approxi-
-T (183 mate stationary solutiopzo. Therefore, we neglegi in
a Egs. (199 and(19b), which become

| (v Sir? 4 2v 7 sinf cosd) + 15 cosbp—13p7 sinb |,(77— 125in6) + \ 9+ Sov Sin 6+ SyyHo sin =T,
+A\vSin? 6+V ,+ Scosd—Sysind+W,=Iysiné, (203
(18b) I (vsin@+2vycoshd)+Avsind—Syp=T}, (20b
l3p+ N p—E(S—S)=1—7¢, (180  which, together with the definition of and » in Egs. (13),
form a set of four first order Langevin equations. It requires
S+HE(S-S)=+T. (18d) simple algebra to show that, in the appropriate limit, ice.,

=+ v cosé=0 andmutatis mutandigrom our notation to
This is still a rather general set of equations. A first obvi-the notation of Ref[28], Egs. (20) are the same as Egs.
ous simplification occurs, in most cases of interest, wden (10.3.2-a and(10.3.2b of the latter paper. We note that for
=S,. Then alsoS=0 and7.=0, and the system is reduced the case of Ref[28], for a particle with an electric dipole,
to three equations. Much work has been done in this cas¢he terms inS, are zero(there is no angular momentum
mainly in the context of electric dipolar molecules, for which associated with the electric dipgland in the interaction
S=S,=0. For example, McConne|R7], Coffey, Kalmikov ~ term with the external fiel®,yHo— uF.

Waldron [28], and Gaiduk and McConnelP9] described- Following the procedure outlined in Sec. V, with arbi-
dielectric relaxation and dynamics of polar molecules intrarily chosen values for the paramet&s A, andyH,, and
great detail. for four distinct values of the moment of inertla=0.05,

As a simple illustration we will assume a constant modu-0.10, 0.25, and 1.0, we calculated the dynamic susceptibility.
lus for the magnetic moment, i.65=S,, and for the inter- The imaginary partyy,(w) is shown, in arbitrary units, in
action potential we consider onpW=—u-H=—ySys-H, Fig. 1. We do not claim that the values we used for the
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parameters are realistic for ferrofluids; this simple exampleequivalent to Brown’s generalization of Gilber's equation
only qualitatively shows the effect of the particle’s inertia on[12]. This case was extensively studied by Shliomis and
the magnetic resonance lines. StepanoV[3], in the context of their “egg” model.

Another interesting limit is the noninertial limit,=0. If
we further simplify our system of equatio$2) by assum-
ing S=Sy=const, and therefort)g=7,=0, the system be- ACKNOWLEDGMENTS
comes a system of five first order equations for the variables
6, ¢, ¢, 9, and o, the first three of these being simply equi-  We thank Professor Hans Herrmann, director of ICA1, for
librium equations between all torques on the mechanical paithe hospitality of his institute. This work was supported in
ticle (dissipative and Brownian interaction with the liquid part by CNPq(Brazil) and by Alexander von Humboldt
and with the magnetic momentand the last two becoming Foundation(Germany.
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