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Solitons, chaos, and energy transfer in the Zakharov equations

F. B. Rizzato, G. I. de Oliveira, and R. Erichsen
Instituto de Fı´sica-Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, Rio Grande do Sul

~Received 10 July 1997!

In the present paper we investigate the process of energy transfer in the Zakharov equations. Energy is
initially injected into modes with small wave vectors. When the modulational instability threshold is exceeded,
some additional modes with small wave vectors are excited and solitons are formed if one lies in a quasi-
integrable regime and if the number of excited modes is large enough. These solitons are formed as a direct
result of the modulational instability and in fact saturate the instability. However, use of a low-dimensional
formalism based on collective variables shows that if the largest length scale of the linearly excited modes is
much longer than the most unstable, these solitons may be greatly influenced as they interact with ion-acoustic
waves. In those cases, full simulation of the space-time problem indicates that energy is progressively trans-
ferred to modes with very small length scales. Since we work with one spatial dimension, collapse is absent
and energy transfer is due to the stochastic dynamics.@S1063-651X~98!02303-4#

PACS number~s!: 05.45.1b, 52.35.Ra
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I. INTRODUCTION

Langmuir turbulence has been one of the most extensi
studied problems in modern nonlinear plasma physics
recent years a great deal of effort has been directed to
analysis as well as to the analysis of related subjects of s
ton dynamics, collapse, nucleation of cavitons, electrom
netic emission, and others@1#. More recently, attempts hav
been made to understand the turbulence in terms of conc
of nonlinear dynamics and chaos@2–6#.

The conservative version of Langmuir turbulence is d
scribed by the Zakharov equations that couple the slo
varying amplitude of a high-frequency electric field, th
Langmuir field, to slow density fluctuations, the ion-acous
field. Decay processes deposit energy into fluctuations w
long wavelengths and if the energy thus accumulated
ceeds the threshold for modulational instability, transfer
modes with small wavelengths may be possible; we call
processenergy transferor redistribution of energy. How-
ever, even if the threshold is exceeded and the system
comes modulationally unstable, transfer may not occur
integrable approximations of the Zakharov equations suc
the nonlinear Schro¨dinger ~NLS! equation, modulational in-
stability may be present, but energy transfer is not; in t
case the modulational instability is saturated when the
early excited modes reorganize themselves into solitons
into some additional small-amplitude radiation. Altern
tively, even if transfer is possible, there are some situati
where the respective time scale is so large that is of li
practical significance. In general, it is believed that some
of chaotic process should be present to drive energy tran
from large to small spatial scales@7–10#. Chaotic activity
would gradually destroy Kolmogorov-Arnold-Moser~KAM !
surfaces, therefore enabling diffusion over large portions
the relevant phase space. Here we show that transfer
indeed occur in the context of the Zakharov equations
that it is faster when chaos is well developed in a subsys
that is constructed as a low-dimensional truncation of the
system. The identification of the appropriate low
dimensional subsystem depends on the range of param
571063-651X/98/57~3!/2776~11!/$15.00
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under analysis. Near the initial pitchfork bifurcation trigge
ing the modulational instability@6#, few modes are active
and the subsystem is formed by a small number of pl
waves undergoing nonlinear interaction; some of th
waves are Langmuir fluctuations and some are ion-acou
fluctuations. As one moves away from the bifurcation poi
however, more and more modes become unstable and
an active participation in the dynamics. Then we find tha
more suitable low-dimensional model should be construc
based on the nonlinear interaction of Langmuir solitons a
ion-acoustic radiation.

The low-dimensional models inform that while withi
that region relatively near the initial pitchfork bifurcatio
mentioned above, the Langmuir modes are not much affe
by the presence of the ion-acoustic waves. This is equiva
to saying that under such circumstances ion-acoustic fluc
tions are unlikely to cause any chaos. This implies the e
tence of KAM surfaces in the low-dimensional model a
the probable absence of energy transfer in the full mult
mensional system. Moving farther away from the bifurc
tion, the first step is to commute from the plane-wave mo
to the low-dimensional model describing the interaction
solitons with ion-acoustic radiation. In this region, analy
of the respective phase space reveals that chaos bec
possible if, for a given amplitude of the initial pump wav
the largest length scale of the ion-acoustic field is larger t
the soliton characteristic sizes. In this case, the soliton ph
space is gradually more affected by ion-acoustic radiat
until a mostly chaotic state sets in. The idea then is tha
solitons of the low-dimensional model are essentially un
fected by the presence of ion-acoustic radiation, one does
have reasons to suspect that integrability will be broken
the full system since it is the action of nonadiabatic io
acoustic radiation that destroys this integrability. On t
other hand, if solitons are affected, integrable features m
not be present. In fact, precisely because they are stro
affected by ion-acoustic radiation, solitons may not surv
mutual collisions and may emit continued radiation, whi
could cause energy flow from soliton length scales in
smaller length scales. Full simulations confirm the above p
2776 © 1998 The American Physical Society
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57 2777SOLITONS, CHAOS, AND ENERGY TRANSFER IN THE . . .
ture. Therefore, based on the low-dimensional model and
results of full simulations, it is suggested that, provided
basic wave vector is small enough, chaos in the lo
dimensional truncation and the associated energy transfe
present, even for small pump amplitudes.

As energy moves into modes with small wavelengths, d
sipation becomes progressively more important. However
we are interested only in nonlinear transfer processes,
discard dissipation in a first approximation. In any case,
result are of physical significance to related problems suc
the Alfvenic turbulence. For this kind of turbulence whe
strong guiding magnetic fields are present, the system is
scribed by similar equations; dissipation is weak@11# and the
motion is mostly unidimensional@5# since the growth rate fo
fluctuations perpendicular to the ambient magnetic field
small. The model finds another application in pulsar rad
tion. In fact, the observed periodic radiation pulses emit
by these objects are believed to be formed when the am
tude of homogeneous trains of electromagnetic radia
crosses the instability threshold and causes the train to
come modulationally unstable: In this kind of environme
the dynamics is likely to be described by a nonlinear Sch¨-
dinger equation, which is a particular case of the equati
analyzed here@12#. It is likely that in the presence of add
tional modes, energy transfer could take place here as w
which agrees with the fact that pulsar radiation actually c
tains an irregular component. Note that a different feature
be presented here is that since we work with a o
dimensional system, energy transfer is not a result of sol
collapse. It is purely generated by the nonintegrable and c
otic aspects of the problem.

This paper is organized as follows. In Sec. II we introdu
the basic equations and discuss the numerical technique
Sec. III we perform the appropriate low-dimensional es
mates along with the full simulations. In Sec. IV we inve
tigate energy transfer. In Sec. V we draw our final conc
sions.

II. BASIC EQUATIONS AND NUMERICAL TECHNIQUES

The one-dimensional Zakharov equations governing
Langmuir turbulence can be written in the adimensio
form @6#

i ] tE1]x
2E5nE, ~1!

] t
2n2]x

2n5]x
2uEu2, ~2!

with ] t[]/]t and ]x[]/]x. E(x,t) is the slowly varying
amplitude of the high-frequency Langmuir field andn(x,t)
are slow density fluctuations associated with the ion-acou
field. The NLS equation

i ] tE1]x
2E1uEu2E50 ~3!

is obtained from the set of equations~1! and ~2! if one is
allowed to approximate Eq.~2! in order to replacen with
2uEu21const. This approximation is called subsonic b
cause it requires very slow time scales such that] t

2n(x,t)
!]x

2n(x,t).
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Our numerical approach is based on a pseudospe
method. We assume spatial periodicity with basic lengthL
and expandE(x,t) andn(x,t) into Fourier series as

E~x,t !5 (
m52N/2

1N/2

Em~ t !eimkx5 (
m52N/2

1N/2

Arm~ t !eifm~ t !eimkx,

n~x,t !5 (
m52N/2

1N/2

nm~ t !eimkx. ~4!

The basic wave vector is defined in terms of the syst
length L as k52p/L and the amplitudesrm(t) along with
phasesfm(t) are conveniently introduced. The integerN
represents the variable number of modes used in the sim
tions. To represent a continuous system one should take
limit N→`. In practice we setN5256, 512, 1024, and 2048
~this last value is used only in extreme cases! and remove
half of the modes to cure aliasing problems associated w
the fast Fourier transform routines. Accuracy is checked
varying the tolerance factor of the numerical integrator a
by monitoring the conserved energy@1#. We find that relative
fluctuations in energy are about one part in 1062108 and that
variations of the tolerance factor do not produce alterati
in the outcome of runs.

III. LOW-DIMENSIONAL MODELS
VERSUS FULL SIMULATIONS

Our system is multidimensional, but we would like to s
whether a small subgroup of modes is more active than
remaining modes. If this is the case one could try to desc
the basic features of the full dynamics by a low-dimensio
approximation. As it turns out, such an approximation a
pears to be possible. However, we shall see that the spe
details are highly dependent on the parameter range con
ered.

To see how to obtain the low-dimensional model, we p
ceed as follows. First we recall that as initial conditions w
are interested in fluctuations with very long spatial scales.
represent this sort of configuration, in the simulations
initial long scales are simply implemented by ak50 dipolar
modeE(x,t50)5Aro(t50)[Ar* andn(x,t50)50. The
stability of the dipolar state against modulational instabilit
can be examined if the state is perturbed with a small dis
bancer61!r* . A simple expression for the correspondin
growth rate can be easily obtained in the subsonic reg
where the characteristic frequency of the ion-acoustic wav
v ia5k, is much larger than the one corresponding to
modulational instability @this is equivalent to taking
] t

2n(x,t)!]x
2n(x,t) in Eq. ~2!#. We give some special rel

evance to the subsonic regime because it is the first reg
appearing immediately after the pitchfork bifurcation des
bilizing the system@6#. One finds for the subsonic growt
rateG,

G;kA2r* 2k2, ~5!

from which one sees that instability sets in only ifk,ku

[A2r* , a relation defining the bifurcation curvek5ku ; it is
along this curve that the pitchfork bifurcation mentioned e
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2778 57F. B. RIZZATO, G. I. de OLIVEIRA, AND R. ERICHSEN
lier takes place@6#. We shall not need any further details o
the bifurcation itself, so let us proceed to the study of
unstable states.

A. The plane-wave region

Below and sufficiently near the bifurcation curve su
that A2r* 2k25G/k!1, the dynamics is really subsonic i
the sense that the growth rate is much smaller thank. Below
ku/2 the regime may no longer be subsonic ifr* is relatively
large, but informal use of Eq.~5! suggests that in that regio
not only is the mode with wave vectork unstable, but also
the mode with a higher harmonic wave vector 2k. Further
reduction ofk gradually destabilizes more and more high
harmonics@13,14#. Therefore, a description in terms of a fe
active modes should be relatively accurate only ifk.ku /2.
In that region, even if not subsonic, the dynamics is s
expected to be well described only in terms of the th
linearly unstable modes for the electric field,

Etrunc~x,t !5 (
m521,0,11

Arm~ t !eifm~ t !eimkx, ~6!

and corresponding ion-acoustic fluctuations obtainable fr

] t
2n2]x

2n5]x
2uEtrunc~x,t !u2. ~7!

We call the parametric regionk.ku/2 theplane-wave region
since it involves a small number of active Fourier modes
other words, the dynamics involves a small number of int
acting plane waves. Note that although we are truncating
modal expansion, no assumption on the slowness of dyn
ics is made. Of course if one assumes] t

2n!]x
2n, then one

can only represent a subsonic dynamics. However, we in
to go further and examine how the system behaves when
subsonic validity conditions becomes progressively wea
Indeed, we shall see that even for parameters located in
low-dimensional plane-wave region, the corresponding
namics may not be trivially subsonic.

Let us then proceed to the study of the low-dimensio
system, restricting our attention to even perturbations ch
acterized byrm5r2m , fm5f2m , andnm5n2m . Our ba-
sic approximation at this point is that we truncate the mo
expansion for the electric field up to terms withumu51 since
modes withumu.1 are stable; this is the key procedure
obtain a low-dimensional description. Ion-acoustic mod
with umu52 are kept as they are, already excited in the pr
ence of theumu51 electric fields. As a result we obtain
nonlinearly coupled system for the dynamical variab
r0, r15r61, n15n61, andn25n62. Some algebraic work
shows that the nonlinear system so obtained can be der
from the truncatednonlinear Hamiltonian

Htr522n1A2r0r1cos~f02f1!1
1

2
n2r11k2r1

2
1

2
~k2p1

21n1
2!2

1

2
~4k2p2

21n2
2!, ~8!

where scales are changed according tor0/2→r0 and
2f0→f0 ~a similar Hamiltonian describingdecayinstabili-
ties has been derived recently@15#!. In the Hamiltonian~8!
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the variablesr are to be considered momenta conjugate
coordinatesf and the variablesp are to be considered mo
menta conjugate to the density fluctuationsn. The structure
of the Hamiltonian suggests a canonical transformation
introducesc[f02f1 as a new angular coordinate; the ne
amplitudes are written correspondingly in the formr0→r0
and r1→r12r0. Due to the absence off1 from the trans-
formed Hamiltonian,r1 is now a constant that we identify a
the maximum value ofr0 for a given energy, i.e.,r* . To
summarize, the Hamiltonian~8! is a low mode truncation of
the full dynamics. If one lies within the plane-wave low
dimensional region of the parameter space, it can be
pected to yield an accurate representation of the actual
namics. So let us take a brief look at its integrabili
characteristics.

If all the relevant amplitudes are small, one could initia
suspect that terms couplingn’s andr ’s are smaller than the
others. Then one could define an action-angle representa
in the formI ,u for the ion-acoustic waves and perform sta
dard calculations. However, this procedure is not conven
here as it does not indicate directly any resonance. In f
under these conditions it can be easily seen thatċ;k2 and
u̇;k; due to the disparity of frequencies fork!1, no pri-
mary resonant coupling is possible. To detect the presenc
resonances and thus chaos, one should realize from
Hamiltonian that smallr ’s evolve very slowly in time. In
fact, their time scales are much longer than those associ
with the ion-acoustic modes. This type of behavior is t
adiabatic regime so well known in plasma physics.
handle the adiabatic Hamiltonian one simply redefines
origin for the ion-acoustic oscillators so as to place both
the slowly varying minimum of the effective potential actin
on each. The new origin forn1 ~we call it n1,ad), for in-
stance, is obtained from relationṗ152A2r0(r* 2r0)cosc
1n1,ad(r0 ,c)'0 and a similar relation holds forn2. One
then introduces a canonical transformation with genera
function of the form S5@n12n1,ad(r08 ,c)#p181@n2

2n2,ad(r08 ,c)#p281cr08 ~primes on new coordinates! to shift
the origin as discussed. The rules of canonical transforma
and an appropriate expansion ofr08 in the argument ofn1,ad

andn2,ad leads to the form~primes dropped!

Htr522n1,ad~r0 ,c!A2r0~r* 2r0!cosc1@ 1
2 n2,ad~r0 ,c!

1k2#~r* 2r0!1kJ112kJ21Hc~Ji ,r0 ,c,u i !

[Had~r,c!1kJ112kJ21Hc , ~9!

whereJi and u i ( i 51,2) are action-angle coordinates ass
ciated with the new ion-acoustic variables and the small te
Hc , whose explicit form we do not work out here, contai
all the nonlinear couplings involving the newr ’s and n’s.
Had , on the other hand, is the integrable Hamiltonian co
trolling the (r0 ,c) dynamics in the strictly adiabatic regim
where the large differences of time scales cause the aver
Hc to vanish. The HamiltonianHtr is three degrees of free
dom. There are relatively precise techniques to extract in
mation from such a kind of system, but here we follow
simpler way and analyze the two-degrees-of-freedom vers
Htwo5Had1kJ11Hc that is obtained when one assum
that the second ion-acoustic wave is weakly excitedJ2'0.
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FIG. 1. Poincare´ plots (r0 ,c) of the plane-wave model for~a! k5ku/1.001 and~b! k5ku/1.12. In ~c!–~e! we display Poincare´ plots
obtained from the full simulation fork5ku/1.11. Several initial conditions are shown, indicating the correctness of the low-dimens
plane-wave model. Angles are given in radians andr* 50.1.
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This assumption yields good agreement with the simulatio
If Fig. 1 we compare Poincare´ plots of Htwo and of the full
system, recording the values ofr0 and c each timep150,
ṗ1.0; we chooser* 50.1; for much smaller values of th
pump amplitude we could not find resonances in this pla
wave region. Close to the bifurcation curveku , as in Fig.
1~a! where we takek5ku/1.001, the low-dimensional dy
namics is well approximated by smooth curves. It should
be surprising that those smooth curves are in fact the cu
of constantHad . The rotational frequency around the cent
elliptic point is denoted byV0; it scales likeV0;Ar* . As
we decreasek, smoothness ofHtwo breaks down; this is see
in the form of resonant islands in Fig. 1~b!, where the low-
dimensional dynamics is mapped withk5ku/1.12. For com-
parison, in Fig. 1~c! we display the corresponding plot ob
tained from full simulation withN5256, consideringk
5ku/1.11. In both cases~b! and~c!, fourth-order resonance
are seen; the HamiltonianHtwo therefore explains self
s.

-

t
es
l

consistently some of the resonance features detected in
cent simulations@4,6#. In addition, Figs. 1~d! and 1~e! show
that for initial conditions other than the one corresponding
the resonance chain, a separatrix and quasiperiodic orbits
generated, which agrees with the general topology of F
1~b!. Note that there is some finite thickness associated w
the plots produced with full simulations. This is a signatu
of the multidimensional aspect of the problem; if the syst
were genuinely two degrees of freedom, as the lo
dimensional model is, the curves would be of zero thickn
as in Figs. 1~a! and 1~b!. All in all, the final conclusion is
that the model explains the dynamics well.

The regularity of Fig. 1 suggests that within the plan
wave regionk.ku/2, strong chaotic activity is absent. Mo
of the KAM surfaces, and especially the central fixed poi
are not affected at all by the nonlinear interaction. In fa
strong chaos is absent not only for this particular value ofr*
but for any other; for larger* , in particular, all resonance
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disappear. This suggests that KAM surfaces are globally
served within the plane-wave region and that no mass
redistribution of energy occurs if one takes basic wave v
tors inside that region. This information, which will be co
firmed later, is relevant since various simulations use as
basic wave vector the one providing maximum growth r
for the initial modulational instability,k5kmax[ku /A2.
This wave vector lies inside the low-dimensional plane-wa
region and the corresponding simulations cannot reveal
full statistical and chaotic character of the Zakharov eq
tions.

Although the plane-wave dynamics does not explicitly
dicate chaotic activity, it suggests where to look for it. Fro
Fig. 1 we see that ask is lowered, integrable approximation
tend to become poorer. As a matter of fact, the presenc
resonant islands in the situation of Fig. 1~b! shows that some
small chaos is likely to be present due to the formation
separatrices. So it may be possible that as the basic w
vector is decreased further, strong chaotic activity devel
in the system. The problem is that to make any estim
whenk is too small, one could not comfortable rely on e
pansions containing only a small number of modes, as
did previously, because ifk is too small many modes becom
linearly unstable. Our attempt to produce low-dimensio
estimates should be appropriately corrected as we do in
next subsection.

B. The soliton region

When k!ku/2, many Langmuir modes are destabiliz
simultaneously. Recalling thatkmax5ku /A2 is the wave
number of the most unstable mode, the initial modulatio
instability tends to producekmax/k bumps along the spatia
axis. Most of the bumps evolve into solitons, a feature t
allows us to estimate this soliton numberNs simply asNs
;kmax/k;ku /k, which is also approximately the number
linearly unstable modes. Were the system completely in
grable as in the case of its NLS approximation, the fi
asymptotic state would be just the collection of solito
formed with these many unstable modes. Our full Zakha
system is not integrable, but a reasonable hypothesis w
be the following. The homogeneous dipolar state first dec
into the collection of solitons as it would in the integrab
approximation. However, in addition to the collection
solitons, a certain amount offree ion-acoustic radiation is
now produced, where byfree we mean that portion of the
radiation not adiabatically enslaved to the Langmuir fie
Eventually, the ion-acoustic radiation interacts with the so
tons with the following possibilities.~i! The interaction is
weak such as not to greatly influence the soliton dynam
Then one may expect that the overall system is accura
described by the integrable NLS equation.~ii ! The interac-
tion is strong enough to greatly distort soliton dynami
Then the solitons either can be directly destroyed by
ion-acoustic radiation or may not survive mutual collisio
among themselves, again because the ion-acoustic radi
is strong enough to inhibit the appearance of all the n
integrability and invariance properties known to be satisfi
in soliton-soliton collisions.

The idea of homogeneous states decaying into Langm
solitons has been used in a paper by Shen and Nicho
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@17#. Here we add ion-acoustic free radiation to see how
the integrable picture and the concept of stable solitons
accurate. If solitons become unstable by virtue of the io
acoustic waves, it is likely that the energy initially placed
the dipolar state may find its way into fluctuations wi
smaller and smaller length scales. Otherwise, if the ini
instability is effectively saturated by soliton formation, on
could expect that the energy flux triggered by the init
modulational instability is arrested when solitonic leng
scales are attained. One could also argue that even w
solitons have not been completely affected by the io
acoustic effects they might still deliver energy irreversibly
the remaining modes of the system, provided the soliton
namics is sufficiently chaotic. According to this stochas
pump model@16#, as soon as a strongly chaotic subset
degrees of freedom of a conservative dynamical system
coupled to an environment, the chaotic subset acts lik
pump delivering a neat amount of energy to its vicinity. Th
neat energy transfer is diffusive and takes place at all
cause of the very random nature of the coupling. These
issues to be discussed later. Before that, let us proceed
the construction of our low-dimensional model where no
solitons, instead of plane waves, interact with free io
acoustic radiation.

To construct the low-dimensional model, we make use
the techniques of averaged Lagrangians@18#. In other words,
we start with the Lagrangian of the full system and repla
the various fields with appropriate solitonic functions whe
parameters such as amplitude and phase are allowed to
in time. Euler-Lagrange equations are then used to obtain
temporal dynamics of these slowly varying parameters.
addition to the soliton fields, we also include free io
acoustic radiation. As a final result we expect to obtain
low-dimensional set of equations describing the nonlin
interaction involving the soliton parameters and those ch
acterizing the radiation.

The full Lagrangian of our system reads

L5E Ldx[E F i

2
~E* ] tE2E] tE* !2u]xEu22uEu2]xn

1
1

2
@~] tn!22~]xn!2#Gdx, ~10!

where the dynamical variablen(x,t) is introduced in the
form n(x,t)[]xn(x,t). The Euler-Lagrange equation fo
E(x,t), for instance, is written as

] t

]L
~] t E!

5
]L
]E

2]x

]L
]~]xE!

, ~11!

with similar expressions holding for the other variable
From expression~11!, in particular, one obtains Eq.~1!. As
mentioned before, what has to be done now is to substi
into Eq. ~10! a one-soliton solution plus ion-acoustic radi
tion to examine the temporal dynamics of the solitonic p
rameters. For the soliton we choose a solution of the for

Es~x,t !5A2h~ t ! sechS x

a~ t ! DeiF~ t !. ~12!
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If h51/a andF5h2t/2 one has a stationary solitary sol
tion of the Zakharov equations. Note that we consider s
tons with zero velocity. Previous works@17# and the full
simulations to be performed here indeed suggest neglig
subsonic velocities with magnitudes on the order of 0
times the sound velocity. This leads us to conclude that as
the one-soliton dynamics is concerned, the dominant
namical effect is thebreathing feature related to the time
dependence ofh anda.

As for the ion-acoustic radiation, the choice follows t
following reasoning. First we note from Eq.~2! that a con-
venient way to write the ion-acoustic field should be

n~x,t !52uEu21m~x,t !. ~13!

A global constant factor guaranteeing that the spatial ave
of n(x,t) vanishes has been absorbed intoE as a phase fac
tor. In other words, what we do here is split the field into
adiabatic response to the soliton field, the first term on
right-hand side, and an additional term,m(x,t), that takes
into account the nonadiabatic features; actually, we h
been referring to the nonadiabatic dynamics as the free
acoustic field throughout the paper. In the purely adiab
case,m→0. We then replaceE with Es in Eq. ~13! and
proceed to the second step, which is to determine a co
nient form form(x,t). In order to accomplish this, we sta
by noticing that the ion-acoustic field in principle should
written as a summation over various Fourier modes like
the case of the Langmuir field:

n~x,t !52uEsu21m~x,t !5(
m

@2~ uEsu2!m1mm~ t !#eimkx.

~14!

One then combines Eqs.~2! and ~4! to obtain

n̈m1~mk!2@nm1~ uEu2!m#50. ~15!

The idea now is to produce an estimate for the nonadiab
fluctuations of the ion-acoustic field as solitons are form
Once we have the estimate, the dynamics evolving from
initial configuration can be described in terms of the aver
Lagrangian technique. In more concrete terms, to determ
the initial conditions for the nonadiabatic ion-acoustic fie
we assume that the Langmuir field initially evolves into
intermediary metastable state formed by the solitons, be
any slow energy transfer has any chance to operate.
saturated value ofuEmu2 in this state can be approximate
evaluated asuEmu2;r* /2Ns if m is such thatk,umuk,ku
and uEmu2;0 otherwise. To derive these last relations o
simply makes use of the conserved integral

E
2L/2

L/2

uE~x,t !u2dx, ~16!

considersE(t50)5Ar* , and supposes a relatively flat spe
trum if k,umuk,ku ~see Ref.@17#!; the flat spectrum, in
particular, is appropriate to describe a field formed by a c
lection of Ns solitons. However, what we really want
(uEu2)m and notuEmu2. The connection is complicated, but
m is small and the number of modes is relatively large o
has, in terms of order of magnitude,
i-
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~ uEu2!m5(
j

EjEj 2m* ;(
j

uEj u2;2Ns~r* /2Ns!5r* ;

~17!

for larger values ofm, (uEu2)m→0. Then we notice again
that Eq.~15! is the equation of an oscillator with a movin
origin given by2(uEu2)m . Therefore, if the fastest growth
rate ofE towards the metastable state is much faster than
oscillator frequencymk, the amplitude of the oscillatory mo
tion described bymm around the displaced origin is the
nonadiabatic component of the ion-acoustic field and can
written as

mm;~ uEu2!m;r* ~18!

if m is small. In practice the adiabatic approximation brea
down when the slowest ion-acoustic frequenciesv ia;umuk
(umu small! become comparable to the fastest growth rate
the modulational instabilityGmax;r* ; for r* 50.01 this
yields k;0.01;ku/14. Figure 2 shows the spectral distrib
tion of the adiabatic and nonadiabatic densitiesmm and
(uEu2)m respectively, fork5ku/4 @Fig. 2~a!# and k5ku/20
@Fig. 2~b!#. The time elapsed in both cases is twice t
growth period of the fundamental harmonic 1/G(k), with
G(k) given in Eq.~5!. It is seen that while in Fig. 2~a! the
nonadiabatic density is very small, it really grows in mag
tude ask is lowered as depicted in Fig. 2~b!; in terms of
order of magnitude, the numbers agree with the estima

FIG. 2. Comparison of spectral distributions form and uEu2 for
~a! k5ku/4 and~b! k5ku/20. r* 50.01.
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The ion-acoustic fluctuations around the moving origin
the nonadiabatically enslaved fluctuations we want. Now t
we have the initial condition for the nonadiabatic compon
of the ion-acoustic field, let us consider a number of optio
in regard to the interaction in our soliton model. One of the
would be to consider a model in which the soliton intera
self-consistently with the entire spectrum of ion-acous
modes, but in this case our model would lose its lo
dimensional simplicity. Another option would be to consid
the ion-acoustic field as externally given and fixed by
initial conditions and examine the soliton dynamics und
this external drive, but in this case we would not have
self-consistent treatment. Yet another option would be
model the ion-acoustic field only with one Fourier comp
nent. This one component would be the basic one since
the first for which the adiabatic approximation fails. In th
case it would not be hard to construct a self-consist
model, although we would not be providing a very accur
description of the ion-acoustic spectral distribution and
total energetic content. At any rate, we prefer to follow th
last alternative because when the system becomes chao
strong energy exchange between Langmuir and ion-acou
fields takes place, a feature in principle requiring se
consistency. As it turns out, both the self-consistent mo
and the model with external driving furnish very similar r
sults about the transition to chaos, which leads us to th
that however crude, these models are robust.

We therefore write the complete ion-acoustic field in t
form

n52uEsu21A~ t ! cos~kx!, ~19!

whereA(t), to be evaluated later, is the time-dependent a
plitude of the nonadiabatic contribution.

On substituting relations~12! and ~19! into the Lagrang-
ian ~10! one finally obtains

L'22WḞ1NsF4W2

3a
2

2W

3a2 10.429
W2ȧ2

a
23.290WȧaȦG

1
pȦ2

k3
2

pA2

k
, ~20!

with W5h2a. The presence of the factor measuring t
number of solitonsNs is an attempt to incorporate the ide
that the ion radiation is in fact interacting with this group
Ns solitons. The various numerical factors appear in Eq.~20!
as a result of the integrals involving trigonometric and h
perbolic functions.

The Euler-Lagrange equation with respect to the varia
F indicates thatW is a constant of motion. As a matter o
fact, this feature has been used already to simplify the fo
of the Lagrangian~20! by dropping terms proportional toẆ
up to some positive power. Euler-Lagrange equations
then applied to variablesa andA to produce a two-degrees
of-freedom conservative dynamical system. Interestingly
we setA→0 we may still have oscillatory solutions withou
the necessity of introducing chirp factors@19#. This residual
time dependence is a result of the ion-acoustic (] tn)2 term
retained in the full Lagrangian. In other approximatio
where the ion-acoustic adiabatic dynamics is completely
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regarded, i.e.,] tn→0, chirp factors are introduced, creatin
the appropriate time dependences.

We now examine what happens when we lower the w
vector k. Under this circumstances, and just to recall wh
we said earlier, it is expected that solitons are progressiv
more affected until they are completely destroyed ask be-
comes smaller. In Fig. 3 we make Poincare´ plots on the
(a,ȧ) plane for decreasing values ofk; points are recorded
each timeȦ50 with Ä.0. The amplitude of one isolate
soliton is calculated on basis of the conserved integral~16!
when one again assumes that an initial dipolar state of
plitude E05Ar* decays intoNs identical solitons. As men-
tioned before, the effective initial amplitudeA(t50) is
evaluated asA(t50)5r* and is associated with the oute
most orbit of the figures, which is the last trapped and m
vibratory one. This orbit is presumably the one into whi
the homogeneous state first decays. The amplitudes as
ated with the other orbits are obtained under the condit
that the energy of all orbits be the same. The estimates
rough, but their qualitative and even quantitative results
in agreement with the full simulations. Let us then discu
the behavior depicted in Fig. 3, where we plot the pha
spaces corresponding tok5ku/4 @Fig. 3~a!# and k5ku/20
@Fig. 3~b!#. For simplicity we use the nonadiabatic estima
A;r* even in the casek5ku/4, which is not quite true, bu
even then chaos is absent.

What is seen is that the dynamics undergoes a gra

FIG. 3. Poincare´ plots (ȧ,a) of the soliton model for~a! k
5ku/4 and~b! k5ku/20. r* 50.01.
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transition to chaos ask decreases. For relatively small valu
of k like in Fig. 3~b!, where we takek5ku/20, separatrix
chaos is already substantial; the term ‘‘separatrix cha
may no longer even be precise in this case since cha
orbits are already spreading over the entire phase sp
Here, although the central fixed point keeps its integrity, o
may expect that the irregular orbits developing close to
separatrix act as the stochastic pump mentioned earlier@16#.
What one would be likely to see in the full system und
stochastic pump conditions is a gradual and slow transfe
energy from modes with relatively large length scales~the
ones used in the formation of solitonic structures! to modes
with smaller and smaller length scales~the scale where wave
energy would be transferred to particles had dissipation b
included in the model!. This slow energy transfer is als
called Arnold diffusion. Of course, as solitons deliver th
energy they would tend to gradually disappear after so
amount of time, a feature that also should be present in
simulations.

Energy transfer shall be analyzed later, but appropr
figures obtained with full simulations already give support
this idea of slowly modifying solitons. It is hard to measu
numerically parameters of individual solitons in the nume
cal runs, when there is a large number of such entities al
the spatial axis. Nevertheless, the simulations analyze
Fig. 4 suggest that the present low-dimensional point of v
is reasonable. In the figures we display three-dimensio
plots @in Fig. 4~a!# and contour plots~in the other figures! for
uE(x,t)u2, considering a homogeneous initial condition wi
r* 50.01 perturbed by small fieldsr615r* 30.01; in Figs.
4~a! and 4~b! we takek5ku/4 and in Fig. 4~c!, k5ku/20. In
all cases the simulation time corresponds to 20 times
growth periods of the basic modek; the spatial dependenc
is represented on the simulation grid according to the s
shown in the figures and the coordinatex50 corresponds to
the grid position 512.N51024 modes have been used in th
particular set of simulations. While fork5ku/4 solitary
structures are always seen moving along the spatial axis
k5ku/20 solitons are strong and can be identified only d
ing the initial period of time. The central stationary solito
in particular, disappears right after a collision that sets it i
a few oscillations. In general, as times progresses, soli
lose their strength and some time after 10–15 growth per
the space-time sharp and regular structures can hardl
seen. As solitons gradually vanish, irregular radiation
creases, which agrees with the stochastic pump mentio
earlier. In Fig. 4~d! we show the contour plot correspondin
to k5ku/40. It is seen that indeed the lifetime of soliton
becomes shorter ask is lowered further.

The central stationary soliton has zero velocity, but ev
moving solitons are slow: Their typical velocity is 0.01. Th
reinforces the idea that velocity effects are negligible sin
during their lifetime solitons move only once or twice alon
the system length. On the other hand, after 50–100 free
acoustic periods, the low-dimensional soliton model forr*
50.01 has revealed intense chaotic activity due to breath
This amounts to a time interval ranging from 10 to 20 grow
periods, the range within which solitons are actually seen
disappear in the simulations. Finally, in Fig. 4~e! we display
the contour plot obtained from the simulation of the NL
equation withk5ku /20. The idea here is to use the NL
’’
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equation as an integrable reference to the more complic
case of the Zakharov equations. What we see is that, as
posed to the previous Zakharov cases, here NLS solitons
virtually indestructible, as they should be. Comparisons
tween Zakharov and NLS equations are useful and shoul
used further in the next section.

IV. ENERGY TRANSFER

It is now of interest to measure energy transfer and
number of modes participating actively in the nonlinear
teraction. Considering the features represented in Fig. 4
all the previous discussions, one would expect that the n
ber of active modes of Figs. 4~a! and 4~b! remains small
while the number of active modes of Fig. 4~c!, for instance,
displays a substantial growth as time evolves. Speaking m
precisely, due to the slight aperiodicity of Figs. 4~a! and 4~b!,
and according to our discussion on Arnold diffusion, a slo
growth could be expected there, but nothing as sharp as w
is expected to happen in Fig. 4~c!.

We numerically measure the number of active modes w
basis on the spectral average defined by@14#

^N2&[
( mm2rm

( mrm

. ~21!

A^N2& yields an estimate of the active Langmuir modes a
is evaluated for both the NLS (A^N2&NLS) and Zakharov
(A^N2&Z) equations. We know that in the NLS case, t
number of modes does not grow beyond that predicted
linear theories@13,14#; the NLS solitons are precisely con
structed with these linearly unstable modes. In the case o
Zakharov equations, on the other hand, we expect the be
ior outlined in the preceding paragraph: Ifk is relatively
large, A^N2&Z and A^N2&NLS are expected to behave sim
larly, except perhaps for a slow upward drift ofA^N2&Z , a
feature connected to the slow Arnold diffusion; ifk dimin-
ishesA^N2&Z is expected to develop a substantial growth
time.

In Fig. 5~a! we examine the spectral average whenk
5ku/4. After a fast initial growth commanded by the line
instability, the number of active modes of both NLS a
Zakharov equations reaches saturation, except for the
slow, almost imperceptible, residual increase ofA^N2&Z .
This agrees with the regularity displayed in Figs. 3~a!, 4~a!,
and 4~b!. If k is lowered down tok5ku/20, the fast initial
growth connected to the linear instability is again presen
both the NLS and Zakharov cases. Now, however, after
initial linear growth,A^N2&Z continues to increase as tim
evolves:A^N2&NLS remains small and saturated as it shou
be. This continued growth ofA^N2&Z is not as fast as the
linear growth, but is surely much faster than the one cor
sponding to the previous case where we tookk5ku/4. Note
that in this case ofk5ku/20, both Figs. 3~b! and 4~c! indicate
that an appreciable degree of aperiodicity is already pres
Figure 3~b!, in particular, shows an already very extend
separatrix chaos. In addition, the figures suggest that the
no sharp transition between the NLS regime and a genu
Zakharov regime. As it appears, a temporal growth
A^N2&Z is always present, satisfying the rule that the high
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FIG. 4. Spatiotemporal simulations obtained with the full system. The figures display surface and contour plots ofuE(x,t)u2 and indicate
how far solitons survive.~a! and ~b! k5ku/4, ~c! k5ku/20, ~d! k5ku/40, and~e! the NLS spatiotemporal dynamics withk5ku/20 is
displayed for the sake of comparison.r* 50.01.
i-
a

t

ce
the value ofk, the slower the growth. Accordingly, the sim
larity of the NLS and Zakharov systems is very much a m
ter of time, pump amplituder* , and basic wave vectork
for, sinceA^N2&Z is always growing, there will be a time
t-
when A^N2&Z and A^N2&Z become substantially differen
even if k is not too small. Figure 5~c! really shows that the
smallerk is, the faster the diffusion. A question of relevan
is to determine how the average growth ofA^N2&Z scales
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FIG. 5. Comparison of the spectral averagesA^N2&Z andA^N2&NLS versus time for~a! k5ku/4 and~b! k5ku/20. In ~c! we compare
various curves representingA^N2&Z versus time.r* 50.01.
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with amplitude and wave vector. Issues like that require s
cific focus on computational statistics and are left for futu
works. In regard to this last point, we mention that to co
struct Fig. 5~and Fig. 4 as well!, our simulations attain con
vergence only withN51024~so we have to make runs wit
2048 modes!, which takes a couple of hours of CPU time o
a Cray II. In any case, Fig. 5~c! shows that if onerestricts
attention to early times of the nonlinear interaction, for r*
50.01 no big discrepancy between the Zakharov and N
equations occurs at higher values ofk than k'ku/12. This
agrees with the results of previous simulations that used
the smallest valuek;ku/10 @17#. In this particular case the
A^N2&Z curve is quite similar to what would be obtaine
with the integrable NLS equation untilt;5000 when the
number of modes really starts to pile up. To see the fa
effects of the chaotic interaction one must really move
radically smaller values ofk, which implies longer CPU
times due to an increase in the number of modes neede
the simulations.

V. FINAL REMARKS

In this paper we have discussed energy transfer in
one-dimensional conservative Zakharov equations.
model is suitable to describe the time evolution of init
modulational instabilities in strongly magnetized system
Radiation from pulsars also can be described by equat
similar to the ones analyzed here.

Analysis was focused on small-amplitude fields, but ev
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for small values ofr* , a transition to chaos is possible ifk
is also chosen to be small enough~we have verified that for
values ofr* smaller thanr* 50.01 the transition is possible
for appropriately smaller values ofk). In this case soliton
formation is eventually precluded and energy may fre
flow into modes with smaller and smaller length scales. T
way solitons respond to the ion-acoustic field is actua
gradual, as seen here. In the typical conditions of our sim
lations where we considered wave vectors moderately sm
so as not to totally prohibit soliton formation, solitons a
first formed as a result of the initial modulational instabilit
Only then, over longer time scales, are solitons affected
the free ion-acoustic radiation. They are affected accord
to the following rule: The smaller the value ofk the faster
the energy flow seen in the full simulations and shorter
period of time where solitons can be really pinpointed on o
space-time grids.

Under these conditions, the initial solitons can be seen
metastable structures exhibiting irregular fluctuations.
solitons undergo oscillatory motion they emit radiation. He
the oscillations are irregular and are maintained by the in
action with the ion-acoustic field. Solitons then emit ove
broad spectral band, which causes a growing numbe
modes to be involved in the dynamics. This is in contrast
what happens in regular settings~the NLS equation, for in-
stance! where solitons oscillate regularly until they sett
down in a genuine solitary state@19#. As a matter of fact,
solitons of nonintegrable system may never settle down s
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ply because the appropriate fixed point in the phase sp
could have been affected as a result of the associated ch
dynamics. We point out that modes with small length sca
appear in our system not because our solitary structures
collapsing. Quite on the contrary, because we have a o
dimensional system and as can be seen from the effec
solitonic potential of Eq.~20! with ion-acoustic terms dis
carded, collapse is absent. Therefore, small-scale modes
only appear when the dynamics goes deep into its noni
grable regime and saturation via soliton formation is inh
ited. In higher dimensionsregular collapse leading to smal
scales is a possibility; in our case, however, soliton and s
ton turbulence may not be very accurate models whenk is
sufficiently small. These issues are under current invest
tion.

In recent years, a number of papers have shown that
final asymptotic state for the kind of interaction studied h
can be, under certain conditions, a small number of solit
containing most of the energy of the system plus small fl
tuations@20–23#. This small number of solitons would be i
fact much smaller than the original number produced in
earlier stages of the interaction. What happens is that
various solitons generated initially may tend to keep fus
together until their number is drastically reduced. At th
point the initial energy that was initially distributed over
relatively large number of structures becomes confin
tt
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within this smaller number. It has been shown that the ba
condition enabling fusion is that the soliton amplitudes a
large enough@20#. Indeed, whenr;1 or larger, fusion takes
place easily. In contrast, whenr!1 the time scale for fusion
is presumably very long and the spatial scales smaller.
work with small energies that causer!1, which makes us
believe that in terms of nonintegrable effects, the domin
feature here is the interaction of soliton oscillatory mod
with ion-acoustic radiation. It is likely that after longer per
ods of time than those used in our simulations, sm
amplitude solitons can also fuse together, although we h
not yet explored this range of time. We emphasize that so
the effect of soliton breathing has not been considered in
context of nonintegrable features. As it appears, the bea
of ion-acoustic and breathing oscillations leads to ene
transfer in the case of small amplitudes.
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