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Solitons, chaos, and energy transfer in the Zakharov equations
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In the present paper we investigate the process of energy transfer in the Zakharov equations. Energy is
initially injected into modes with small wave vectors. When the modulational instability threshold is exceeded,
some additional modes with small wave vectors are excited and solitons are formed if one lies in a quasi-
integrable regime and if the number of excited modes is large enough. These solitons are formed as a direct
result of the modulational instability and in fact saturate the instability. However, use of a low-dimensional
formalism based on collective variables shows that if the largest length scale of the linearly excited modes is
much longer than the most unstable, these solitons may be greatly influenced as they interact with ion-acoustic
waves. In those cases, full simulation of the space-time problem indicates that energy is progressively trans-
ferred to modes with very small length scales. Since we work with one spatial dimension, collapse is absent
and energy transfer is due to the stochastic dynarf&H63-651X98)02303-4

PACS numbdps): 05.45+b, 52.35.Ra

[. INTRODUCTION under analysis. Near the initial pitchfork bifurcation trigger-
ing the modulational instability6], few modes are active

Langmuir turbulence has been one of the most extensivelgnd the subsystem is formed by a small humber of plane
studied problems in modern nonlinear plasma physics. Imaves undergoing nonlinear interaction; some of these
recent years a great deal of effort has been directed to itwaves are Langmuir fluctuations and some are ion-acoustic
analysis as well as to the analysis of related subjects of solfluctuations. As one moves away from the bifurcation point,
ton dynamics, collapse, nucleation of cavitons, electromaghowever, more and more modes become unstable and have
netic emission, and othef4]. More recently, attempts have an active participation in the dynamics. Then we find that a
been made to understand the turbulence in terms of conceptsore suitable low-dimensional model should be constructed
of nonlinear dynamics and chafa-6). based on the nonlinear interaction of Langmuir solitons and

The conservative version of Langmuir turbulence is de-ion-acoustic radiation.
scribed by the Zakharov equations that couple the slowly The low-dimensional models inform that while within
varying amplitude of a high-frequency electric field, the that region relatively near the initial pitchfork bifurcation
Langmuir field, to slow density fluctuations, the ion-acousticmentioned above, the Langmuir modes are not much affected
field. Decay processes deposit energy into fluctuations witlpy the presence of the ion-acoustic waves. This is equivalent
long wavelengths and if the energy thus accumulated exto saying that under such circumstances ion-acoustic fluctua-
ceeds the threshold for modulational instability, transfer tations are unlikely to cause any chaos. This implies the exis-
modes with small wavelengths may be possible; we call thisence of KAM surfaces in the low-dimensional model and
processenergy transferor redistribution of energyHow-  the probable absence of energy transfer in the full multidi-
ever, even if the threshold is exceeded and the system beaensional system. Moving farther away from the bifurca-
comes modulationally unstable, transfer may not occur. Irtion, the first step is to commute from the plane-wave model
integrable approximations of the Zakharov equations such a® the low-dimensional model describing the interaction of
the nonlinear Schidinger (NLS) equation, modulational in- solitons with ion-acoustic radiation. In this region, analysis
stability may be present, but energy transfer is not; in thisof the respective phase space reveals that chaos becomes
case the modulational instability is saturated when the linpossible if, for a given amplitude of the initial pump wave,
early excited modes reorganize themselves into solitons artthe largest length scale of the ion-acoustic field is larger than
into some additional small-amplitude radiation. Alterna-the soliton characteristic sizes. In this case, the soliton phase
tively, even if transfer is possible, there are some situationspace is gradually more affected by ion-acoustic radiation
where the respective time scale is so large that is of littlauntil a mostly chaotic state sets in. The idea then is that if
practical significance. In general, it is believed that some sorsolitons of the low-dimensional model are essentially unaf-
of chaotic process should be present to drive energy transféected by the presence of ion-acoustic radiation, one does not
from large to small spatial scal¢g—10]. Chaotic activity have reasons to suspect that integrability will be broken in
would gradually destroy Kolmogorov-Arnold-MoséfAM)  the full system since it is the action of nonadiabatic ion-
surfaces, therefore enabling diffusion over large portions oficoustic radiation that destroys this integrability. On the
the relevant phase space. Here we show that transfer magher hand, if solitons are affected, integrable features may
indeed occur in the context of the Zakharov equations andiot be present. In fact, precisely because they are strongly
that it is faster when chaos is well developed in a subsysteraffected by ion-acoustic radiation, solitons may not survive
that is constructed as a low-dimensional truncation of the fulmutual collisions and may emit continued radiation, which
system. The identification of the appropriate low-could cause energy flow from soliton length scales into
dimensional subsystem depends on the range of parametemnaller length scales. Full simulations confirm the above pic-
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ture. Therefore, based on the low-dimensional model and the Our numerical approach is based on a pseudospectral
results of full simulations, it is suggested that, provided themethod. We assume spatial periodicity with basic lergth
basic wave vector is small enough, chaos in the low-and expandE(x,t) andn(x,t) into Fourier series as
dimensional truncation and the associated energy transfer are N2 N2

resent, even for small pump amplitudes. , ) )
i As energy moves intopmoges WFi)th small wavelengths, dis- E(x,1)= 2 En()e™*= > \p (t)elmVegimkx
sipation becomes progressively more important. However, as m=-N2 m=-N2

we are interested only in nonlinear transfer processes, we N2
discard dissipation in a first approximation. In any case, our _ 2 imkx

) S n(x,t)= Ny(t) e, 4
result are of physical significance to related problems such as m=—N/2

the Alfvenic turbulence. For this kind of turbulence where

strong guiding magnetic fields are present, the system is déhe basic wave vector is defined in terms of the system
scribed by similar equations; dissipation is w¢ak] and the  lengthL ask=2#/L and the amplitudep(t) along with
motion is mostly unidimension@b] since the growth rate for phases¢,,(t) are conveniently introduced. The integhir
fluctuations perpendicular to the ambient magnetic field igepresents the variable number of modes used in the simula-
small. The model finds another application in pulsar radiations. To represent a continuous system one should take the
tion. In fact, the observed periodic radiation pulses emittedimit N— . In practice we sel =256, 512, 1024, and 2048

by these objects are believed to be formed when the amplithis last value is used only in extreme cgsaad remove
tude of homogeneous trains of electromagnetic radiatiomalf of the modes to cure aliasing problems associated with
crosses the instability threshold and causes the train to behe fast Fourier transform routines. Accuracy is checked by
come modulationally unstable: In this kind of environmentvarying the tolerance factor of the numerical integrator and
the dynamics is likely to be described by a nonlinear Schroby monitoring the conserved energyl. We find that relative
dinger equation, which is a particular case of the equationfluctuations in energy are about one part if Q0 and that

analyzed her¢12]. It is likely that in the presence of addi- variations of the tolerance factor do not produce alterations
tional modes, energy transfer could take place here as welin the outcome of runs.

which agrees with the fact that pulsar radiation actually con-
tains an irregular component. Note that a different feature to
be presented here is that since we work with a one-
dimensional system, energy transfer is not a result of soliton
collapse. It is purely generated by the nonintegrable and cha- Our system is multidimensional, but we would like to see
otic aspects of the problem. whether a small subgroup of modes is more active than the
This paper is organized as follows. In Sec. Il we introduceremaining modes. If this is the case one could try to describe
the basic equations and discuss the numerical techniques. ihe basic features of the full dynamics by a low-dimensional
Sec. Il we perform the appropriate low-dimensional esti-approximation. As it turns out, such an approximation ap-
mates along with the full simulations. In Sec. IV we inves- pears to be possible. However, we shall see that the specific
tigate energy transfer. In Sec. V we draw our final conclu-details are highly dependent on the parameter range consid-

Ill. LOW-DIMENSIONAL MODELS
VERSUS FULL SIMULATIONS

sions. ered.
To see how to obtain the low-dimensional model, we pro-
Il. BASIC EQUATIONS AND NUMERICAL TECHNIQUES ceed as follows. First we recall that as initial conditions we

are interested in fluctuations with very long spatial scales. To
The one-dimensional Zakharov equations governing theepresent this sort of configuration, in the simulations the
Langmuir turbulence can be written in the adimensionalinitial long scales are simply implemented bka 0 dipolar
form [6] modeE(x,t=0)=p,(t=0)=p, andn(x,t=0)=0. The
stability of the dipolar state against modulational instabilities
iatE+a§E: nE, (1) can be examined if the state is perturbed with a small distur-
bancep..1<<p, . A simple expression for the corresponding
@) growth rate can be easily obtained in the subsonic regime
where the characteristic frequency of the ion-acoustic waves,
_ _ ) wiz=Kk, is much larger than the one corresponding to the
with 9;=d/dt and d,=d/ox. E(x,1) is the slowly varying  noqulational instability [this is equivalent to taking
amplitude of the h|gh-fr(_equency Langmuir field gn()k,t) n(x,t)<d2n(xt) in Eq. (2)]. We give some special rel-
are slow density quct_uatlons associated with the ion-acoustig, ance to the subsonic regime because it is the first regime
field. The NLS equation appearing immediately after the pitchfork bifurcation desta-

bilizing the system6]. One finds for the subsonic growth
i, E+02E+|E|?2E=0 (3)  rateT,

o2n—92n=92|E|?,

is obtained from the set of equatiof¥) and (2) if one is I'~ky2p, —k?, (5)
allowed to approximate Eq2) in order to replacen with

—|E|?+const. This approximation is called subsonic be-from which one sees that instability sets in onlykifk,
cause it requires very slow time scales such #fat(x,t) =2p,, a relation defining the bifurcation curke=k,, ; it is
<dEn(x.1). along this curve that the pitchfork bifurcation mentioned ear-
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lier takes placg6]. We shall not need any further details on the variablesp are to be considered momenta conjugate to
the bifurcation itself, so let us proceed to the study of thecoordinatesp and the variableg are to be considered mo-
unstable states. menta conjugate to the density fluctuationsThe structure
of the Hamiltonian suggests a canonical transformation that

A. The plane-wave region introducesy= ¢o— ¢, as a new angular coordinate; the new
amplitudes are written correspondingly in the fop— pg
and p;— p1— pg- Due to the absence @, from the trans-
formed Hamiltonianp is now a constant that we identify as
the maximum value opg for a given energy, i.ep, . TO
summarize, the Hamiltoniaf8) is a low mode truncation of
the full dynamics. If one lies within the plane-wave low-
dimensional region of the parameter space, it can be ex-
pected to yield an accurate representation of the actual dy-
namics. So let us take a brief look at its integrability
characteristics.

If all the relevant amplitudes are small, one could initially
suspect that terms couplimgs andp’s are smaller than the
Sthers. Then one could define an action-angle representation

in the forml, # for the ion-acoustic waves and perform stan-

dard calculations. However, this procedure is not convenient

Eirunc(X,t)= 210 . Vpm(t)e ¢mBgimkx (6)  here as it does not indicate directly any resonance. In fact,
m=—-1,0+

under these conditions it can be easily seen hak? and

and corresponding ion-acoustic fluctuations obtainable fromf~k; due to the disparity of frequencies f&r1, no pri-
mary resonant coupling is possible. To detect the presence of
Fen—dn= 5| Eqrync(X,t)|%. (7)  resonances and thus chaos, one should realize from the
_ ) ) Hamiltonian that smalp’s evolve very slowly in time. In
We call the parametric regida>k,/2 theplane-wave region fact, their time scales are much longer than those associated
since it involves a small number of active Fourier modes; inyith the ion-acoustic modes. This type of behavior is the
other words, the dynamics involves a small number of interygiabatic regime so well known in plasma physics. To
acting plane waves. Note that although we are truncating thgandle the adiabatic Hamiltonian one simply redefines the
modal expansion, no assumption on the slowness of dynangyigin for the ion-acoustic oscillators so as to place both at
ics is made. Of course if one assumgm<dzn, then one  the slowly varying minimum of the effective potential acting
can only represent a subsonic dynamics. However, we intengh each. The new origin fon; (we call it Ny aq), for in-

to go further and examine how the system behaves when thg, . is obtained from relatiam =22 om(p. — o) CO
subsonic validity conditions becomes progressively weaker+n1 d(,PO #)~0 and a similarqrnéllation ﬁgﬁg; fapng) Oi/:a
a ’ .

Indee'd, We'shall see that even fgr parameters Iocatgd In hEen introduces a canonical transformation with generating
low-dimensional plane-wave region, the corresponding dy’function of the form S=[n;—nyaq(ps.d)]pL+[Ns
- a 0 1

namics may not be trivially subsonic. -~ , ) R . .
Let us then proceed to the study of the low-dimensional "2ad(Po.#)1P2+ ¥po (primes on new coordinate® shift

system, restricting our attention to even perturbations chall—he ongin as dls_c ussed. The rules_of canonical transformation
acterized byp,=p_m, ébm=c_n, andn_=n_,_. Our ba- and an appropriate expansionf in the argument ofi 54

sic approximation at this point is that we truncate the modaP"dN2ad l€ads to the formiprimes dropped

expansion for the electric field up to terms wjth|=1 since _ Zosr =0 N
modes with|m|>1 are stable; this is the key procedure to Htr=~2M1ad(Po.¥)V2po(px ~P0o)COSI+[3N2ad(pPo. 1)

Below and sufficiently near the bifurcation curve such
that \2p, —k?=T/k<1, the dynamics is really subsonic in
the sense that the growth rate is much smaller thaBelow
k,/2 the regime may no longer be subsonip jfis relatively
large, but informal use of Ed5) suggests that in that region
not only is the mode with wave vectdr unstable, but also
the mode with a higher harmonic wave vectdt. Further
reduction ofk gradually destabilizes more and more higher
harmonicd13,14). Therefore, a description in terms of a few
active modes should be relatively accurate onlicifk, /2.

In that region, even if not subsonic, the dynamics is still
expected to be well described only in terms of the thre
linearly unstable modes for the electric field,

obtain a low-dimensional description. lon-acoustic modes K2 — o)+ kI 2K I+ H(J: 0
with |[m| =2 are kept as they are, already excited in the pres- 1P+ = po) Tk 2t He(Jipo.,61)
ence of thelm|=1 electric fields. As a result we obtain a =H,q(p, )+ kI +2kI,+H, 9

nonlinearly coupled system for the dynamical variables
Po» P1=pP=1, N1=N.1, andn,=n.,. Some algebraic work WhereJ; and 6; (i=1,2) are action-angle coordinates asso-
shows that the nonlinear system so obtained can be derivedated with the new ion-acoustic variables and the small term
from thetruncatednonlinear Hamiltonian He, whose explicit form we do not work out here, contains
all the nonlinear couplings involving the news andn’s.
1 ) H.q4, On the other hand, is the integrable Hamiltonian con-
Hir=—2n1V2pop1CoS o= ¢1) + 5N2p1+Kpy trolling the (pg, ) dynamics in the strictly adiabatic regime
where the large differences of time scales cause the averaged
H. to vanish. The Hamiltoniahi,, is three degrees of free-
dom. There are relatively precise techniques to extract infor-
mation from such a kind of system, but here we follow a
where scales are changed according dg2—p, and  simpler way and analyze the two-degrees-of-freedom version
2¢o— ¢ (a similar Hamiltonian describindecayinstabili-  H,,=Haq+kJ;+H. that is obtained when one assumes
ties has been derived recenfli5]). In the Hamiltonian(8)  that the second ion-acoustic wave is weakly exciles0.

1 1
— 5 (K*pi+ni)—5(4k?ps+n3), ®
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FIG. 1. Poincarelots (pg,) of the plane-wave model faia) k=k,/1.001 and(b) k=k,/1.12. In(c)—(e) we display Poincarglots
obtained from the full simulation fok=k,/1.11. Several initial conditions are shown, indicating the correctness of the low-dimensional
plane-wave model. Angles are given in radians ppa-0.1.

This assumption yields good agreement with the simulationsconsistently some of the resonance features detected in re-
If Fig. 1 we compare Poincarnglots of H,, and of the full  cent simulationg4,6]. In addition, Figs. {d) and 1e) show
system, recording the values p§ and s each timep;=0, that for initial conditions other than the one corresponding to
p,>0; we choosep, =0.1; for much smaller values of the the resonance chain, a separatrix and quasiperiodic orbits are
pump amplitude we could not find resonances in this planegenerated, which agrees with the general topology of Fig.
wave region. Close to the bifurcation curkg, as in Fig.  1(b). Note that there is some finite thickness associated with
1(a) where we takek=k,/1.001, the low-dimensional dy- the plots produced with full simulations. This is a signature
namics is well approximated by smooth curves. It should nobf the multidimensional aspect of the problem; if the system
be surprising that those smooth curves are in fact the curvegere genuinely two degrees of freedom, as the low-
of constantH,4. The rotational frequency around the central dimensional model is, the curves would be of zero thickness
elliptic point is denoted by); it scales likeQy~\p,. As  as in Figs. 18) and 1b). All in all, the final conclusion is

we decreask, smoothness dfl,,, breaks down; this is seen that the model explains the dynamics well.

in the form of resonant islands in Fig(k), where the low- The regularity of Fig. 1 suggests that within the plane-
dimensional dynamics is mapped witk-k, /1.12. For com- wave regionk>Kk,/2, strong chaotic activity is absent. Most
parison, in Fig. {c) we display the corresponding plot ob- of the KAM surfaces, and especially the central fixed point,
tained from full simulation withN=256, consideringk  are not affected at all by the nonlinear interaction. In fact,
=k,/1.11. In both case&) and(c), fourth-order resonances strong chaos is absent not only for this particular valup,of

are seen; the Hamiltoniam,,, therefore explains self- but for any other; for large, , in particular, all resonances
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disappear. This suggests that KAM surfaces are globally prg-17]. Here we add ion-acoustic free radiation to see how far
served within the plane-wave region and that no massivéhe integrable picture and the concept of stable solitons are
redistribution of energy occurs if one takes basic wave vecaccurate. If solitons become unstable by virtue of the ion-
tors inside that region. This information, which will be con- acoustic waves, it is likely that the energy initially placed in
firmed later, is relevant since various simulations use as ththe dipolar state may find its way into fluctuations with
basic wave vector the one providing maximum growth ratesmaller and smaller length scales. Otherwise, if the initial
for the initial modulational instability,k=kna=k,/\2. instability is effectively saturated by soliton formation, one
This wave vector lies inside the low-dimensional plane-wavecould expect that the energy flux triggered by the initial
region and the corresponding simulations cannot reveal thenodulational instability is arrested when solitonic length
full statistical and chaotic character of the Zakharov equascales are attained. One could also argue that even when
tions. solitons have not been completely affected by the ion-
Although the plane-wave dynamics does not explicitly in-acoustic effects they might still deliver energy irreversibly to
dicate chaotic activity, it suggests where to look for it. Fromthe remaining modes of the system, provided the soliton dy-
Fig. 1 we see that dsis lowered, integrable approximations namics is sufficiently chaotic. According to this stochastic
tend to become poorer. As a matter of fact, the presence ¢gfump model[16], as soon as a strongly chaotic subset of
resonant islands in the situation of Figbllshows that some degrees of freedom of a conservative dynamical system is
small chaos is likely to be present due to the formation ofcoupled to an environment, the chaotic subset acts like a
separatrices. So it may be possible that as the basic wawmp delivering a neat amount of energy to its vicinity. This
vector is decreased further, strong chaotic activity developgeat energy transfer is diffusive and takes place at all be-
in the system. The problem is that to make any estimat€ause of the very random nature of the coupling. These are
whenk is too small, one could not comfortable rely on ex- issues to be discussed later. Before that, let us proceed with
pansions containing only a small number of modes, as wéhe construction of our low-dimensional model where now
did previously, because kfis too small many modes become solitons, instead of plane waves, interact with free ion-
linearly unstable. Our attempt to produce low-dimensionalcoustic radiation.
estimates should be appropriately corrected as we do in the To construct the low-dimensional model, we make use of
next subsection. the techniques of averaged Lagrangigt®]. In other words,
we start with the Lagrangian of the full system and replace
the various fields with appropriate solitonic functions where
B. The soliton region parameters such as amplitude and phase are allowed to vary

When k<k,/2, many Langmuir modes are destabilized N time. EuIer-Lagrange equations are the.n used to obtain the
simultaneously. Recalling thak,,.=k,/y2 is the wave temporal dynamics of these slowly varying parameters. In
number of the most unstable mode, the initial modulationafddition to the soliton fields, we also include free ion-
instability tends to produck,,,,/k bumps along the spatial acoustic raQ|atlon. As a final .result we expect to obtgm a
axis. Most of the bumps evolve into solitons, a feature tha{ow-d|mens_|onal _set of equ_at|ons describing the nonlinear
allows us to estimate this soliton numbit simply asN, interaction mvoIvmg.the soliton parameters and those char-
~Kmax/ K~k /k, which is also approximately the number of acterizing the rad|a't|on.
linearly unstable modes. Were the system completely inte- The full Lagrangian of our system reads
grable as in the case of its NLS approximation, the final
asymptotic state would be just the collection of solitons L=f dezf
formed with these many unstable modes. Our full Zakharov
system is not integrable, but a reasonable hypothesis would
be the following. The homogeneous dipolar state first decays + 5[((7tv)2—(r9xv)2]
into the collection of solitons as it would in the integrable
approximation. However, in addition to the collection of ] ) o .
solitons, a certain amount dfee ion-acoustic radiation is Where the dynamical variable(x,t) is introduced in the
now produced, where bfree we mean that portion of the form n(x,t)=d»(x,t). The Euler-Lagrange equation for
radiation not adiabatically enslaved to the Langmuir field.E(X,t), for instance, is written as
Eventually, the ion-acoustic radiation interacts with the soli-
tons with the following possibilities(i) The interaction is aL oL aL
weak such as not to greatly influence the soliton dynamics. N 5E) " aaE) (1D
Then one may expect that the overall system is accurately

described by the integrable NLS equatigit) The interac- with similar expressions holding for the other variables.

tion is strong enough to greatly distort soliton dynamics. ; : ) )
Then the solitons either can be directly destroyed by theFrorn expressiol1), in particular, one obtains Eq1). As

ion-acoustic radiation or may not survive mutual collisionsmentioned before, what has to be done now is to substitute
_may . ; ._~into Eg. (10) a one-soliton solution plus ion-acoustic radia-

among themselves, again because the ion-acoustic radiatign ; ; L
) o . 1ion to examine the temporal dynamics of the solitonic pa-
is strong enough to inhibit the appearance of all the nice . .
) 2 . : ! . . trameters. For the soliton we choose a solution of the form
integrability and invariance properties known to be satisfied
in soliton-soliton collisions.

The idea of homogeneous states decaying into Langmuir
solitons has been used in a paper by Shen and Nicholson

i
E(E*atE—EﬁtE*)—|&XE|2—|E|2<9XV

dx, (10

el?®, (12

X
Es(x,1)=27(1) secrém
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If »=1/a and® = %?t/2 one has a stationary solitary solu-
tion of the Zakharov equations. Note that we consider soli-
tons with zero velocity. Previous workd7] and the full
simulations to be performed here indeed suggest negligible I
subsonic velocities with magnitudes on the order of 0.01 0.03 [ %7
times the sound velocity. This leads us to conclude that as far LA
the one-soliton dynamics is concerned, the dominant dy-
namical effect is theébreathingfeature related to the time
dependence ofy and a.

As for the ion-acoustic radiation, the choice follows the
following reasoning. First we note from E¢R) that a con- i
venient way to write the ion-acoustic field should be -0.10 b——

0.10 —

do/dt

-0.03 1 % N

n(x,t)=—|E|?+ u(x,t). (13

A global constant factor guaranteeing that the spatial average
of n(x,t) vanishes has been absorbed iBt@as a phase fac-
tor. In other words, what we do here is split the field into its
adiabatic response to the soliton field, the first term on the
right-hand side, and an additional term(x,t), that takes
into account the nonadiabatic features; actually, we have 0.050
been referring to the nonadiabatic dynamics as the free ion-
acoustic field throughout the paper. In the purely adiabatic
case,u—0. We then replac& with Eg in Eq. (13) and
proceed to the second step, which is to determine a conve-
nient form for w(x,t). In order to accomplish this, we start
by noticing that the ion-acoustic field in principle should be
written as a summation over various Fourier modes like in 0450 Lo o
the case of the Langmuir field: 0 20 40 60 30 100

0.150 ———

doy/dt

-0.050

n(X,t)=—|Eg 2+ u(X,1)= > [ (|Eo)m+ mm(t)]€™KX FIG. 2. Comparison of spectral distributions ferand|E|? for
m 14 (a) k=k,/4 and(b) k=k,/20. p, =0.01.
14

One then combines Eq&2) and(4) to obtain (IEIZ)m=E EjEik—mNE |Ej|2~2Ns(p* 12Ng)=p,
. ] i
N+ (MK)?[ N+ (JE[*) ] =0. (19 17

The idea now is to produce an estimate for the nonadiabatifor larger values oim, (|[E|?),—0. Then we notice again
fluctuations of the ion-acoustic field as solitons are formedthat Eq.(15) is the equation of an oscillator with a moving
Once we have the estimate, the dynamics evolving from thisrigin given by — (|[E|?),. Therefore, if the fastest growth
initial configuration can be described in terms of the averageate of E towards the metastable state is much faster than the
Lagrangian technique. In more concrete terms, to determinescillator frequencynk, the amplitude of the oscillatory mo-
the initial conditions for the nonadiabatic ion-acoustic field,tion described byu,, around the displaced origin is the
we assume that the Langmuir field initially evolves into annonadiabatic component of the ion-acoustic field and can be
intermediary metastable state formed by the solitons, beforgritten as

any slow energy transfer has any chance to operate. The

saturated value ofE,|? in this state can be approximately o~ (EI?) m~ ps (18
evaluated a$E|?~p, /2N, if m is such thatk<|m|k<k,

and |E,|>~0 otherwise. To derive these last relations oneif m is small. In practice the adiabatic approximation breaks

simply makes use of the conserved integral down when the slowest ion-acoustic frequencigs~|m|k
(Im| small) become comparable to the fastest growth rate of
f L2 IE(x.0)|2dx (16 the modulational instabiliyl"max~p, ; for p,=0.01 this
L2 ’ ’ yields k~0.01~k,/14. Figure 2 shows the spectral distribu-

tion of the adiabatic and nonadiabatic densitjgs, and
consider€E(t=0)= Vp, , and supposes a relatively flat spec- (|E|?),, respectively, fork=k/4 [Fig. 2a)] and k=k_,/20
trum if k<|m|k<k, (see Ref[17]); the flat spectrum, in [Fig. 2(b)]. The time elapsed in both cases is twice the
particular, is appropriate to describe a field formed by a colgrowth period of the fundamental harmonicl’{k), with
lection of Ng solitons. However, what we really want is I'(k) given in Eq.(5). It is seen that while in Fig. (@) the
(IEI®)m and not|E,,|?. The connection is complicated, but if nonadiabatic density is very small, it really grows in magni-
m is small and the number of modes is relatively large ongude ask is lowered as depicted in Fig.(1®; in terms of
has, in terms of order of magnitude, order of magnitude, the numbers agree with the estimates.
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The ion-acoustic fluctuations around the moving origin are 0.004 (a)
the nonadiabatically enslaved fluctuations we want. Now that L T T tTTT]
we have the initial condition for the nonadiabatic component
of the ion-acoustic field, let us consider a number of options 0.003 |
in regard to the interaction in our soliton model. One of them i
would be to consider a model in which the soliton interacts L
self-consistently with the entire spectrum of ion-acoustic 0.002
modes, but in this case our model would lose its low- i
dimensional simplicity. Another option would be to consider
the ion-acoustic field as externally given and fixed by the
initial conditions and examine the soliton dynamics under
this external drive, but in this case we would not have a g9 [ e ‘ A
self-consistent treatment. Yet another option would be to 1 10 100
model the ion-acoustic field only with one Fourier compo- mode number "m"
nent. This one component would be the basic one since it is
the first for which the adiabatic approximation fails. In this
case it would not be hard to construct a self-consistent  0.0030 e .(Ib)
model, although we would not be providing a very accurate |
description of the ion-acoustic spectral distribution and its
total energetic content. At any rate, we prefer to follow this
last alternative because when the system becomes chaotic, a
strong energy exchange between Langmuir and ion-acoustic
fields takes place, a feature in principle requiring self-
consistency. As it turns out, both the self-consistent model
and the model with external driving furnish very similar re- 0.0008
sults about the transition to chaos, which leads us to think
that however crude, these models are robust.

We therefore write the complete ion-acoustic field in the ~ 0.0000
form

0.001

0.0023

0.0015

1 10 100
mode number "m"

n=—|E4%+A(t) cogkx), (19 o . .
FIG. 3. Poincareplots (a,a) of the soliton model for(a) k

whereA(t), to be evaluated later, is the time-dependent am=ku/4 and(b) k=k,/20. p, =0.01.
plitude of the nonadiabatic contribution.
On substituting relation§l2) and (19) into the Lagrang-  regarded, i.e.g,»— 0, chirp factors are introduced, creating
ian (10) one finally obtains the appropriate time dependences.
We now examine what happens when we lower the wave

: AW 2w W2a? e vectork. Under this circumstances, and just to recall what
L~=2Wo+Ns 3a  3a2 10429 — —3.290aaA we said earlier, it is expected that solitons are progressively

. more affected until they are completely destroyedkase-
A2 A2 comes smaller. In Fig. 3 we make Poincgiets on the
+——, (20 . . :
(a,a) plane for decreasing values kf points are recorded
each timeA=0 with A>0. The amplitude of one isolated
with W= 5a. The presence of the factor measuring thesoliton is calculated on basis of the conserved inte(ié)
number of solitons\ is an attempt to incorporate the idea when one again assumes that an initial dipolar state of am-
that the ion radiation is in fact interacting with this group of p||tude EO: \/Z decays intd\]s identical solitons. As men-
N; solitons. The various numerical factors appear in®@  tioned before, the effective initial amplitud&(t=0) is
as a result of the integrals involving trigonometric and hy-eyaluated af\(t=0)=p, and is associated with the outer-
perbolic functions. most orbit of the figures, which is the last trapped and most
The Euler-Lagrange equation with respect to the variablgjipratory one. This orbit is presumably the one into which
@ indicates thatW is a constant of motion. As a matter of the homogeneous state first decays. The amplitudes associ-
fact, this feature has been used already to simplify the formyted with the other orbits are obtained under the condition
of the Lagrangiani20) by dropping terms proportional &/  that the energy of all orbits be the same. The estimates are
up to some positive power. Euler-Lagrange equations areough, but their qualitative and even quantitative results are
then applied to variables andA to produce a two-degrees- in agreement with the full simulations. Let us then discuss
of-freedom conservative dynamical system. Interestingly, ithe behavior depicted in Fig. 3, where we plot the phase
we setA— 0 we may still have oscillatory solutions without spaces corresponding to=k/4 [Fig. 3@] and k=k,/20
the necessity of introducing chirp factdrs9]. This residual [Fig. 3(b)]. For simplicity we use the nonadiabatic estimate
time dependence is a result of the ion-acoustig’)? term  A~p, even in the cask=k,/4, which is not quite true, but
retained in the full Lagrangian. In other approximationseven then chaos is absent.
where the ion-acoustic adiabatic dynamics is completely dis- What is seen is that the dynamics undergoes a gradual
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transition to chaos ds decreases. For relatively small values equation as an integrable reference to the more complicated
of k like in Fig. 3(b), where we takek=Kk,/20, separatrix ~case of the Zakharov equations. What we see is that, as op-
chaos is already substantial; the term “separatrix chaos’posed to the previous Zakharov cases, here NLS solitons are
may no longer even be precise in this case since chaotértually indestructible, as they should be. Comparisons be-

orbits are already spreading over the entire phase spac&een Zakharov and NLS equations are useful and should be
Here, although the central fixed point keeps its integrity, ondised further in the next section.

may expect that the irregular orbits developing close to the

separatrix act as the stochastic pump mentioned egtlér IV. ENERGY TRANSFER

What one would be likely to see in the full system under . .

stochastic pump conditions is a gradual and slow transfer of !t IS now of interest to measure energy transfer and the

energy from modes with relatively large length scalt® number of modes participating actively in the nonlinear in-
ones used in the formation of solitonic structyres modes ~ teraction. Considering the features represented in Fig. 4 and

with smaller and smaller length scake scale where wave &ll the previous discussions, one would expect that the num-
energy would be transferred to particles had dissipation beepe" Of active modes of Figs.(@ and 4b) remains small
included in the model This slow energy transfer is also While the number of active modes of Figich for instance,
called Amold diffusion. Of course, as solitons deliver their iSPIays a substantial growth as time evolves. Speaking more
energy they would tend to gradually disappear after som@'€Cisely, due to the slight aperiodicity of Figsadand 4b),
amount of time, a feature that also should be present in thé"d according to our discussion on Amnold diffusion, a slow
simulations. growth could be expected there, but nothing as sharp as what
Energy transfer shall be analyzed later, but appropriatés €xpected to happen in Fig(c}. _ _
figures obtained with full simulations already give support to. /& numerically measure the number of active modes with
this idea of slowly modifying solitons. It is hard to measure P2Sis on the spectral average defined b4}
numerically parameters of individual solitons in the numeri-
cal runs, when there is a large number of such entities along o 2 Mo
the spatial axis. Nevertheless, the simulations analyzed in (N9)= z '
Fig. 4 suggest that the present low-dimensional point of view mPm
is reasonable. In the figures we display three-dimension
plots[in Fig. 4a)] and contour plot$in the other figuresfor
|[E(x,t)|2, considering a homogeneous initial condition with
p4 =0.01 perturbed by small fields. ;= p, X0.01; in Figs.
4(a) and 4b) we takek=k,/4 and in Fig. 4c), k=k,/20. In

(21)

aJ/(NZ) yields an estimate of the active Langmuir modes and
is evaluated for both the NLS\(N?)y 9 and Zakharov
(V(N?),) equations. We know that in the NLS case, the
number of modes does not grow beyond that predicted by
gnear theoried13,14]; the NLS solitons are precisely con-

all cases the simulation time corresponds to 20 times thstructed with these linearly unstable modes. In the case of the
growth periods of the basic mode the spatial dependence Zakharov equations, on the other hand, we expect the behav-

is represented on the simulation grid according to the scalg

shown in the figures and the coordinate O corresponds to lor outlined in the preceding paragraph: Kfis relatively .
the grid position 512N = 1024 modes have been used in this 29" V(N?)z and V(N“)y.s are expected to behave simi-

particular set of simulations. While fok=k,/4 solitary larly, except perhaps for a slow upward_ d”ﬁ u(l_\l )z, @
structures are always seen moving along the spatial axis, fdfature connected to the slow Arnold diffusion;kifdimin-
k=k,/20 solitons are strong and can be identified only duriSh€sV(N?)z is expected to develop a substantial growth in
ing the initial period of time. The central stationary soliton, iMme. i
in particular, disappears right after a collision that sets it into N Fig. 5@ we examine the spectral average when
a few oscillations. In general, as times progresses, solitons /4. After a fast initial growth commanded by the linear
lose their strength and some time after 10—15 growth perioddStability, the number of active modes of both NLS and
the space-time sharp and regular structures can hardly weakharov equations reaches saturation, except for the very
seen. As solitons gradually vanish, irregular radiation in-SIow, almost imperceptible, residual increase \iiN?); .
creases, which agrees with the stochastic pump mentionethis agrees with the regularity displayed in Figéa)34(a),
earlier. In Fig. 4d) we show the contour plot corresponding @nd 4b). If k is lowered down tk=k,/20, the fast initial
to k=k,/40. It is seen that indeed the lifetime of solitons growth connected to the linear instability is again present in
becomes shorter dsis lowered further. both the NLS and Zakharov cases. Now, however, after the
The central stationary soliton has zero velocity, but everinitial linear growth, J(N); continues to increase as time
moving solitons are slow: Their typical velocity is 0.01. This evolves:y{N®)y s remains small and saturated as it should
reinforces the idea that velocity effects are negligible sincébe. This continued growth of{N?), is not as fast as the
during their lifetime solitons move only once or twice along linear growth, but is surely much faster than the one corre-
the system length. On the other hand, after 50—100 free iorsponding to the previous case where we t&ekk /4. Note
acoustic periods, the low-dimensional soliton model gor  that in this case dk=k_,/20, both Figs. &) and 4c) indicate
=0.01 has revealed intense chaotic activity due to breathindghat an appreciable degree of aperiodicity is already present.
This amounts to a time interval ranging from 10 to 20 growthFigure 3b), in particular, shows an already very extended
periods, the range within which solitons are actually seen t@eparatrix chaos. In addition, the figures suggest that there is
disappear in the simulations. Finally, in Figewe display  no sharp transition between the NLS regime and a genuine
the contour plot obtained from the simulation of the NLS Zakharov regime. As it appears, a temporal growth of
equation withk=k,/20. The idea here is to use the NLS \/<N2)z is always present, satisfying the rule that the higher
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FIG. 4. Spatiotemporal simulations obtained with the full system. The figures display surface and contour|fptstif and indicate
how far solitons survive(a) and (b) k=k/4, (¢) k=k,/20, (d) k=k, /40, and(e) the NLS spatiotemporal dynamics with=k /20 is
displayed for the sake of comparisqn, =0.01.

the value ofk, the slower the growth. Accordingly, the simi- when (N?), and \(N?), become substantially different
larity of the NLS and Zakharov systems is very much a mateven ifk is not too small. Figure (8) really shows that the
ter of time, pump amplitude, , and basic wave vectdt  smallerk is, the faster the diffusion. A question of relevance
for, since \/<N2>z is always growing, there will be a time is to determine how the average growth (zﬁNz)Z scales
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FIG. 5. Comparison of the spectral averagé?), and V(N?), s versus time for(a) k=k/4 and(b) k=k,/20. In (c) we compare
various curves representin N%), versus timep, =0.01.

with amplitude and wave vector. Issues like that require spefor small values of, , a transition to chaos is possiblekif
cific focus on computational statistics and are left for futureis also chosen to be small enoug@ire have verified that for
works. In regard to this last point, we mention that to con-values ofp, smaller tharp, =0.01 the transition is possible
struct Fig. 5(and Fig. 4 as wel| our simulations attain con- for appropriately smaller values &). In this case soliton
vergence only wittN=1024(so we have to make runs with formation is eventually precluded and energy may freely
2048 modek which takes a couple of hours of CPU time on fiow into modes with smaller and smaller length scales. The
a Cray Il. In any case, Fig.(6) shows that if ongestricts  \yay solitons respond to the ion-acoustic field is actually
attention to early times of the nonlinear interactjdor p, radual, as seen here. In the typical conditions of our simu-

=0.01 no big discrepancy between the Zakharov and NL34iions where we considered wave vectors moderately small
equations occurs at higher valueslothank~k,/12. This s, 49 not to totally prohibit soliton formation, solitons are

agrees with the results of previous simulations that used st formed as a result of the initial modulational instability.

t\r/]e_Ng_ma”eSt Valww_ kull_O Llﬂ]' In tT]'S partliglir caze fched Only then, over longer time scales, are solitons affected by
(N%)z curve is quite similar to what wou e obtained o tree jon-acoustic radiation. They are affected according

with the integrable NLS equation unti-5000 when the to the following rule: The smaller the value &fthe faster

number of modes really starts to pile up. To see the faster . , .
S . the energy flow seen in the full simulations and shorter the
effects of the chaotic interaction one must really move to

radically smaller values ok, which implies longer CPU period of time where solitons can be really pinpointed on our

times due to an increase in the number of modes needed ﬁpace—tme grids. . L .
the simulations. Under these conditions, the initial solitons can be seen as

metastable structures exhibiting irregular fluctuations. As

V. FINAL REMARKS solitong un_dergo os_ciIIatory motion they 'emi't radiation. I_—lere

the oscillations are irregular and are maintained by the inter-

In this paper we have discussed energy transfer in thaction with the ion-acoustic field. Solitons then emit over a

one-dimensional conservative Zakharov equations. Théroad spectral band, which causes a growing number of

model is suitable to describe the time evolution of initial modes to be involved in the dynamics. This is in contrast to
modulational instabilities in strongly magnetized systemswhat happens in regular settingbe NLS equation, for in-

Radiation from pulsars also can be described by equatiorstancg where solitons oscillate regularly until they settle

similar to the ones analyzed here. down in a genuine solitary stafd9]. As a matter of fact,

Analysis was focused on small-amplitude fields, but eversolitons of nonintegrable system may never settle down sim-
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ply because the appropriate fixed point in the phase spaaeithin this smaller number. It has been shown that the basic
could have been affected as a result of the associated chaotiondition enabling fusion is that the soliton amplitudes are
dynamics. We point out that modes with small length scalesarge enougth20]. Indeed, whem~1 or larger, fusion takes
appear in our system not because our solitary structures apgace easily. In contrast, when<1 the time scale for fusion
collapsing. Quite on the contrary, because we have a onés presumably very long and the spatial scales smaller. We
dimensional system and as can be seen from the effectivgork with small energies that cauge<l, which makes us
solitonic potential of Eq(20) with ion-acoustic terms dis- believe that in terms of nonintegrable effects, the dominant
carded, collapse is absent. Therefore, small-scale modes c&ature here is the interaction of soliton oscillatory modes
only appear when the dynamics goes deep into its nonintewith ion-acoustic radiation. It is likely that after longer peri-
grable regime and saturation via soliton formation is inhib-ods of time than those used in our simulations, small-
ited. In higher dimensioneegular collapse leading to small amplitude solitons can also fuse together, although we have
scales is a possibility; in our case, however, soliton and solinot yet explored this range of time. We emphasize that so far
ton turbulence may not be very accurate models wkésn  the effect of soliton breathing has not been considered in this
sufficiently small. These issues are under current investigacontext of nonintegrable features. As it appears, the beating
tion. of ion-acoustic and breathing oscillations leads to energy
In recent years, a number of papers have shown that theansfer in the case of small amplitudes.
final asymptotic state for the kind of interaction studied here
can b_e,. under certain conditions, a small number of solitons ACKNOWLEDGMENTS
containing most of the energy of the system plus small fluc-
tuations[20—23. This small number of solitons would be in ~ We are deeply thankful for stimulating discussions with
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earlier stages of the interaction. What happens is that thEinanciadora de Estudos e Projetos and Conselho Nacional
various solitons generated initially may tend to keep fusingde Desenvolvimento Cieffico e Tecnolgico, Brazil. Nu-
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