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Optimally adapted multistate neural networks trained with noise
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The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural
network ofQ-state neurons trained with noisy data. The network is adapted to an appropriate noisy training
overlap and training activity, which are determined self-consistently by the optimized retrieval attractor overlap
and activity. The optimized storage capacity and the correspondingretriever overlap are considerably en-
hanced by an adequate threshold in the states. Explicit results for improved optimal performance and new
retriever phase diagrams are obtained forQ53 and Q54, with coexisting phases over a wide range of
thresholds. Most of the interesting results are stable to replica-symmetry-breaking fluctuations.
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I. INTRODUCTION

Since the pioneering work of Hopfield@1#, there has been
much interest in both the training and performance of attr
tor neural networks. Training consists in encoding an app
priate synaptic matrix that enables the network to stor
macroscopic number of patterns, while the performance
network refers to the ability to retrieve one or a specific
of stored patterns@2#. Training and performance are usual
thought of as separate stages in the operation of a netw

The retrieval performance of an attractor network can
studied in two different scenarios@3#. One is characterized
by afixedsynaptic prescription, as in the case of the Hopfi
model @1# or the maximally stable network~MSN! @4–6#,
while in the other one, the entire space of synaptic inter
tions is searched for optimal performance whenever ther
a change in the retrieval environment. The synapsis in
first scenario are determined in an ordinary learning st
and the performance of the network is optimized separa
in a given training environment. In the second scenario
resorts to a continuous adaptive training process in which
network performance is optimized in an adiabatically evo
ing retrieving environment@3#. For each value of the nois
parameterT ~temperature of the retrieval dynamics!, and
storage ratioa, the network has a unique interaction co
figuration, the so-calledretriever. This is in distinction to the
retrieval performance that yields the phase diagrams for
Hopfield model or the MSN, in which the interaction co
figuration determined in the separate learning stage is
same for allT anda @7#.

Adaptive training processes seem to be biologically
pealing as a means to learn from the environment. The a
tive process in the second scenario requires training the
work with noisy patterns@8,9# and it is a procedure that doe
not separate the training process as a distinct step from
operating stage of the network. The principle of adaptation
a network of binary units consists of the search of the in
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action space for the optimized network performance adju
ing the training noise to be the same as the retrieval nois
each step of the adiabatically evolving retrieving enviro
ment. Both noises refer to the Hamming distances betw
the actual states of the network and the encoded pattern

Training noises have been introduced in feedforward n
works @10,11# in order to avoid overfitting to training ex
amples and in attractor networks with the purpose of enla
ing their basins of attraction@8,9#. A slightly distorted set of
random patterns is presented to the network in the proces
encoding the synaptic matrix by means of a stepwise up
ing procedure following the perceptron learning rule@9#. The
MSN is generated by an infinitesimal amount of traini
noise and, except for low retrieval noiseT and low loada,
the performance of the optimally adapted network is clea
superior to that of the MSN@3#. In particular, for low to
moderateT and higher loada, a second optimal solution in
interaction space appears for each value of the training n
in the optimally adapted network. This solution is a weak
retriever that can be interpreted as an attractor of s
adaptation.

The point is that the second retriever constitutes a furt
solution to the optimization process, with its own interactio
in a neighborhood of interaction space where there is
solution for the MSN. This second, optimal solution appe
as a low performance solution in the absence of or for low
moderate retrieval noise, with improving performance, up
a certain point, as the retrieval noise is raised. Thus, there
to be already a certain level of retrieval noise for the we
retriever to have an interesting performance. Moreov
whenever the solution exists it is only within a narrow ran
of a.

The principle of adaptation has been worked out, so
only for a network of binary neurons and the purpose of
present paper is to explore the merits of an extension of
principle to a multistate attractor network in which both t
neurons and the noisy training versions of the encoded
terns can be inQ(.2) states. This adds two new dimensio
to the study of the performance of the network. First, t
randomly distributed noisy patterns presented to the netw
in the training process introduce a training activityat . Sec-
947 ©1999 The American Physical Society
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948 PRE 59R. ERICHSEN, JR. AND W. K. THEUMANN
ond, the firing rate of the neurons is determined by one
more thresholds, or a growth parameter in the dynam
output function. Thus, in the extension considered in t
work, an evolving dynamical overlapm(t) and a dynamical
activity a(t) are generated at each time stept of the neuron
updating procedure. The search for the optimized netw
performance by means of the extended adaptation princ
consists now of the adjustment of the training overlapmt and
the training activityat to bemt5m(t) andat5a(t), respec-
tively, i.e., the same as the retrieval overlap and dynam
activity in each step of the adiabatically evolving retriev
environment. Adaptive performance in this wider sense
self-consistent procedure in which the retrieval environm
continuously optimizes the attractor performance of the n
work.

Networks of multistate neurons have interesting featu
and applications. Feedforward networks of such units can
used to study multiclass classification problems@12#, while
multistate attractor networks, which are useful for the rec
nition of various gray-toned patterns, are networks that h
interesting inferential properties, by means of which the s
age capacity and the retrieval ability can be enhanced w
they are trained with patterns of low activity@13–16#. Also,
the categorization ability can be improved in a multista
network with hierarchical patterns. There has been la
considerable interest in such networks@17–19#.

We consider an extremely diluted network and, for si
plicity, restrict ourselves to binary unbiased encoded p
terns. The main emphasis of the paper is on the storage
pacity, the quality of the performance of the strong and
second retrievers, and on the characterization of the var
phases that can appear. With that purpose we produce
plicit results for a network withQ53 or Q54 states. It will
be shown that, within a finite range of a threshold parame
there is considerable improvement of the storage capa
and in the high performance of the second retriever solut
in the absence of or for low retrieval noise, when compa
with the optimally adapted network of binary neurons.
particular, we show that the second retriever may attai
fairly high retrieval overlap for small training noise in a r
gime where there is no solution for the optimally adap
network of binary neurons. These are important results in
search for improvement of the behavior of attractor neu
networks. We restrict ourselves to finite-Q state networks, in
place of addressing the general~large-Q) case.

The outline of the paper is the following. In Sec. II w
extend the training with noise procedure in the space of s
aptic interactions to aQ-state Ising network by means of
quenched optimization approach@3,20#, within the replica-
symmetry ansatz, introducing a smooth cost function giv
by an average squared Hamming distance. The equation
the adaptation process in a noisy retrieval environment
formulated in that section. The explicit results for the fixe
point behavior, the storage capacity and the correspon
phase diagrams for self-adaptation for the three and the f
state models are discussed in Sec. III, and compared with
MSN. The domain of validity of the replica symmetric re
sults is determined by the de Almeida–Thouless lines@21# in
terms of the retrieval noise and the threshold in the dyna
cal updating procedure. A summary and concluding rema
are presented in Sec. IV.
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II. TRAINING WITH NOISE AND ADAPTATION

Consider a network ofN nodes with a dynamical variabl
Si(t), at time stept on nodei, that indicates the extent to
which the unit on nodei fires. Each unit can be in any one o
Q Ising states

sk5211
2~k21!

Q21
~1!

in the interval@21,11#, for k51, . . . ,Q. A macroscopic set
of p binary patterns$j i

m561; m51, . . . ,p; i 51, . . . ,N%,
with p5aC, is encoded in the network in the learning pr
cess, whereC is the connectivity of a node. The pattern
constitute a set of independent identically distributed rand
variables. Training consists in presenting to the networ
noisy version$Ri

m(t)% of the patterns, at timet, and in the
optimization of the network output after one time step. Th
involves a dynamical process in the space of state confi
rations of the network and, to keep the dynamics simple,
restrict ourselves to an extremely diluted network. Ea
Ri

m(t) is assumed to be in one ofQ states,sk , and can be
thought of as an example of the patternj i

m . Assuming that
every noisy pattern has the same overlapmt with the corre-
sponding patternj i

m , and that the activityat is the same for
all patterns in the training set, we define

mt5
1

N (
i

j i
m^Ri

m~t!&R ~2!

and

at5
1

N (
i

^@Ri
m~t!#2&R , ~3!

where the bracketŝ . . . &R denote averages over the pro
ability distribution ofRi

m . Thus, the noisy training inputs ar
constrained to satisfy the mean^Ri

m(t)&R5mtj i
m and vari-

ance^„Ri
m(t)…2&R2^Ri

m(t)&R
25at2mt

2 .
The normalized local field at nodei, due to the activity at

the other nodes, is given by

hi~t!5
1

AC
(
j 5 i 1

i c

Ji j Sj~t!, ~4!

whereJi j is the synaptic connection between nodesi and j,
independently in what state the dynamical variableSj is,
while i 1 , . . . ,i c denote the nodes feeding nodei. The con-
nections follow the spherical constraint( j Ji j

2 5C, and we
consider the extremely diluted network in the limit of larg
connectivity in which 1!C! ln N. The one time-step dy-
namics is exact in this limit.

We deal in this paper with the asymptotic, equilibriu
configuration$Ji j %, for the synaptic matrix elements of th
learning process that follows from a Langevin dynamics w
a noise term. This involves an annealing temperatureTa that
takes care that the network does not get trapped in lo
minima of the free energy. The distribution of equilibriu
states of theJi j can then be described by a canonical e
semble with temperatureTa . Thus, there are two time scale
in this approach: a short-time scale for the dynamical evo
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PRE 59 949OPTIMALLY ADAPTED MULTISTATE NEURAL . . .
tion of the synaptic matrix$Ji j % and a long-time scale for th
dynamical evolution of the training and of the retrieval p
rameters.

The dynamical variables are updated according to the

Si~t11!5g„hi~t!…, ~5!

whereg„hi(t)… is the nondecreasing step function

g~x!5 (
k51

Q

sk@u„b~sk111sk!2x…2u„b~sk1sk21!2x…#

~6!

shown in Fig. 1 forQ53 andQ54, in which u(x) is the
unitary step function,s052`, sQ115`, b>0 is the
threshold parameter andsk are the uniformly spaced Isin
states of Eq.~1!. According to Eq.~6!, there is a zero activity
state wheneverQ is odd and none ifQ is even.

For the adapted optimization a temperatureT is intro-
duced as a noise parameter, not to be confused with
annealing temperatureTa , to characterize the noisy retrieva
environment. We assume a Gaussian thermal noise
added to the local field to write the one-step output as

Si~t11!5g„hi~t!1Tz…, ~7!

wherez has mean zero and unit variance. The optimizati
in the extremely diluted limit, consists in penalizing devi
tions from the minimal output error in one time step on a
node which is independent of the optimization on all t

FIG. 1. The nondecreasing step functiong(x) for Q53 ~a! and
Q54 ~b!.
-

le

he

rm

,

other nodes. Thus, it is sufficient to consider the cost fu
tion for a single node. We choose this to be

(
m

di
m~t11!5(

m
Š^@122j i

mSi~t11!1Si
2~t11!#&z‹R ,

~8!

wheredi
m(t11) is the average squared Hamming distance

a stored pattern in whicĥ•••&z denotes the average over th
Gaussian thermal noise. The training noise enters o
through the local fields, via Eqs.~4! and ~7!. In the case of
binary patterns, the local field is a Gaussian random varia
with mean ^hi(t)&R5mtL i

m and variance ^hi
2(t)&R

2^hi(t)&R
25at2mt

2 , in which

L i
m5

1

AC
(
j 5 i 1

i c

Ji j j j
m ~9!

is the local field on nodei due to the patternm.
The optimization of the Hamming distance between

one-step output of the network in the noisytraining environ-
ment and a given pattern in a network of binary neurons
equivalent to finding the optimal output overlap after o
time step. In the case of a network of multistate neurons,
Hamming distance also depends on the activity through
local field, and our first goal is to find the optimal outp
Hamming distanced(mt ,at), after one time step, for a give
training overlapand a given training activity.

For that purpose, and for later use, we need the avera

Smt ,at
~L i

m![Š^Si~t11!&z‹R5
1

2 (
k51

Q

skErf~uk ,l k ;L i
m!

~10!

and

Smt ,at

2 ~L i
m![Š^Si

2~t11!&z‹R5
1

2(
k51

Q

sk
2Erf~uk ,l k ;L i

m!,

~11!

which follow from Eq.~7!, where

Erf~u,l ,L!5erfS u2mtL

A2~at2mt
21T2!

D
2erfS l 2mtL

A2~at2mt
21T2!

D , ~12!

with

uk/2b5sk11/~Q21!, uQ5` ~13!

and

l k/2b5sk21/~Q21!, l 152`. ~14!

The quenched optimization approach@3,20# requires the
introduction of the partition function
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950 PRE 59R. ERICHSEN, JR. AND W. K. THEUMANN
Z~b!5E )
j

dJi j dS (
j

Ji j
2 2CDexpF2b(

m
d~L i

m!G
~15!

to obtain first an annealed average over the space of syn
connectionsJi j , in which b5Ta

21 is the inverse annealing
temperature, andd(L i

m) is the squared Hamming distanc
for a given configuration$j i

m% of encoded patterns, average
over thermal and training noises. Its dependence on the n
parametersmt , at , andT is left implicit. The quenched av
erage free energy is then obtained making use of the rep
method to write

^ lnZ&j5 lim
n→0

1

n
~^Z n&j21!, ~16!

where^•••&j denotes the average over the set of stored
terns$j i

m%. Using the standard technique in the space of s
aptic interactions, with the assumption of replica symme
@22,23#, we obtain the optimal one-step output Hamming d
tance for training

d~mt ,at!52 lim
b→`

1

abC
^ lnZ&j

5extrxH E Dy min
l

F~l,x,y!2
1

2axJ ~17!

as a function of the overlapmt and activityat of the noisy
input patterns, in whichDy5e2y2/2dy/A2p is a Gaussian
measure and

F~l,x,y!5d~l!1
~l2y!2

2x
. ~18!

Here,d(l) is the squared Hamming distance averaged o
j i

m , while x5b(12q) and

q5
1

C (
j

Ji j
r Ji j

s ~19!

for all rÞs is the spin-glass order parameter for the pro
lem.

The optimization in the training process amounts to ta
the limitsb→` andq→1 keepingx finite. A single solution
in the space of interactions is thus obtained out of the
multiplicity of solutions whenq→1 @23#. The minimization
with respect tol yields

y~l!5l1xd8~l!, ~20!

wherel5l(y) is the inverse function ofy(l). On the other
hand, the extremum inx gives the saddle-point equation

a215E Dy@l~y!2y#2, ~21!

which determines the storage capacitya for a given training
environment.

In cases wherel(y) is a multivalued function ofy, which
is the case forQ>2, there may be one or more transition
tic

ise

ca

t-
-

y
-

r

-

e

ll

,

each with a fixedy0 between an upper and a lower valuel.

andl, , respectively, ruled by a Maxwell construction

E
l,

l.

dl y~l!5y0~l.2l,!, ~22!

where y05y(l,)5y(l.). It turns out that the function
F(L,x,y) is the same on both sides of the ‘‘first-order
transition.

The optimal output Hamming distance for training b
comes then

d~mt ,at!5E Dy d„l~y!…. ~23!

It is convenient to introduce the distribution of the loc
fields due to the encoded patterns, defined as@3–5#

r~L!5K K dS L2
1

AC
(

j
Ji j j j D L

J
L

j

, ~24!

where the ensemble average^•••&J is performed with the
partition functionZ(b), Eq. ~15!. It turns out that this dis-
tribution becomes

r~L!5E Dy d„L2l~y!…, ~25!

and the transition between the lower and upper bonds,l,

and l. , respectively, implies a gap in the distribution
local fieldsr(l) wheneverl(y) is a multivalued function of
y.

The optimal one-step output Hamming distance for tra
ing with noise may now be written as

d~t11!5122 f mt ,at
~mt ,at!1gmt ,at

~mt ,at!, ~26!

where

f mt ,at
~m,a!5E dL rmt ,at

~L!Sm,a~L! ~27!

is the optimized overlap between the encoded patterns
their noisy versions and

gmt ,at
~m,a!5E dL rmt ,at

~L!Sm,a
2 ~L! ~28!

is their optimized activity. The distribution of the local field
rmt ,at

(L), is a characteristic property of the training set an

as such, it depends onmt andat .
The formal results presented so far assume that rep

symmetry holds in the space of interactions. The condit
for local stability of the replica symmetric saddle point c
be writen as@20,24#

a21.E Dy @l8~y!21#2, ~29!

in which l85dl/dy, and this is to be solved together wit
Eq. ~21!. When the distribution of the local fields has a ga
l8 diverges and the condition cannot be satisfied. Then,
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network becomes unstable to replica-symmetry-break
fluctuations. The limiting load for which Eq.~29! is still
satisfied yields the de Almeida–Thouless~AT! line, aAT(T)
@21#. The dependence on the retrieval noiseT comes froml.
Note that the AT line must lie within the one-band region
at most, on the band-merging surface where the gap inr(l)
disappears@24#. This completes the formal description of th
training process in itself. In order to become optima
adapted, we consider now the retriever process.

The calculation of the one-step output Hamming dista
betweenany input state$Si(t)% and a given encoded patter
in a noisy retrieval environment, with temperatureT, is now
obtained as follows. First, the training parametersmt andat
in Eqs.~10!–~12! are replaced by the overlapm(t) and the
dynamical activitya(t) of the noisyretrieval state$Si(t)%,
expressed, respectively, as Eqs.~2! and ~3! with $Si(t)% in
place of the the noisy pattern$Ri

m(t)%. The one-step outpu
Hamming distance in theretrieval environment is now given
by an expression similar to Eq.~26!, depending on the pai
(mt ,at) through the distribution of local fieldsand on the
pair (m,a) through the present state of the network as giv
literally, by Eqs.~27! and ~28!.

Now, the training overlapmt and the training activityat,
which give the optimal performance for retrieval at a fix
temperatureT, storage levela, and threshold parameterb,
are given by the adaptation principle. The optimal adapta
consists of a search in the space of interactions$Ji j % simul-
taneously with a search in the space of state configurat
$Si(t)%. The best adapted performance of the network
attained by adjusting the training noise and activity to
same level as the retrieval noise and activity. For the para
dynamics in the extremely diluted network we are deal
with, the stable fixed point of the set of equations

f m,a~m,a!5m ~30!

and

gm,a~m,a!5a ~31!

gives at the same time the optimal training condition and
optimized performance. The stable fixed point for each va
of the synaptic noise parameterT, the storage ratioa, and
the threshold parameterb is a retriever, for which the net-
work has a unique interaction configuration. In other wor
in distinction to the usual phase diagrams for retrieval, ev
point of the phase diagrams that will be discussed next
resents a different network.

III. RESULTS AND DISCUSSION

We present next the results for the optimally adapted
trievers. The rich structure of locally stable states and
corresponding phase diagrams for self-adaptation that a
as the threshold parameterb is increased will be discusse
now, separately forQ53 andQ54.

A. Three-state network

To illustrate the role of the threshold parameterb, we
discuss first the fixed-point solutions form and a and the
corresponding phase diagram fora versusb, in the absence
g

,
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of retrieval noise shown in Fig. 2. For fixedb within the
range 0<b<0.57 and 0<a<a1(b), there is a perfect re-
triever with m515a, which is the only stable fixed point
and a solution withm50 and eitheraÞ0 or a50, which is
an unstable fixed point. This suggests that one can conc
a network capable of perfect retrieval operating with a li
ited threshold, as long as the training is with infinitesim
noise mt512 and almost full activityat512. The corre-
sponding retriever is that of the MSN.

The linea1(b) deserves further attention. It is the upp
bound of the region where the perfect retriever is the o
attractor in the retriever dynamics with a wide basin of
traction for self-adaptation. Beyond that line, the basin
attraction of this retriever is greatly reduced in the three-s
network, as will be seen next. Thus, for increasingb, in the
small b regime, there is an enhancement of the associati
of the network, as long asa1 is an increasing function ofb.

A new pair of stable and unstable fixed points appe
discontinuously ata1(b). The stable fixed point represents
new retriever of weaker attractor overlap and reduced ac
ity. Note, however, that for low to moderateb ~illustrated in
the inset byb50.5), there is a considerably enhanced
trieval overlap when compared with the overlap for the o

FIG. 2. Phase diagram for the loada as a function of the thresh
old b for Q53, at T50, and the corresponding optimal overlapm
~solid lines! and activity a ~dashed lines! for b50.5 ~right!, b
50.7 ~center!, andb50.9 ~left!, in the inset. Unstable fixed-poin
solutions are shown in light lines. SR and WR are strong and w
retrievers, respectively. The SR is a wide retriever at the left of
light dotted line and belowa1(b). Solid lines in the phase diagram
indicate discontinuous transitions and a dashed line a continu
transition. The dash-dotted line is the de Almeida-Thouless line~cf.
the text!. The WR is unstable to replica-symmetry-breaking in t
shaded area.
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952 PRE 59R. ERICHSEN, JR. AND W. K. THEUMANN
timally adapted network of binary units@3#. The second re-
triever has a rather wide basin of attraction for this larg
retriever overlap. This higher performance can be attai
through training with low-noise patterns with moderate
high activity. For the thresholdb.0.3 that maximizes
a1(b), the improvement in storage capacity with thesame
retrieval overlap as that of the network of binary neurons
about 20%. However, as one would expect, the performa
deteriorates with a further increase in the thresholdb.

The second stable fixed point means that there exis
second training condition, with higher noise, which results
a network with lower, but still optimal performance whe
compared with other three-state networks in its vicinity
the space of interactions, for this training condition. The u
stable fixed points are repelors of the self-adaptation dyn
ics @3#.

The overlap of this second retriever vanishes continuou
as a increases approachinga2(b). For a2(b)<a<ac(b),
the perfect retriever and a nonretriever withm50, and either
finite or no activity, are the only stable fixed-point solution
The nonretriever state withaÞ0 appears as a self-sustain
activity phase, which has been discussed first for a dilu
network with a Hebbian learning rule@14#. When the activity
is zero the network stops operating.

The presence of a nonretriever with finite activity follow
from the fixed-point solution for (m,a) when m50 is a
stable fixed point. The expression forSm,a

2 (L) becomes then
independent of the local fieldL and, hence, ofx anda. The
fixed-point values fora are then given by the solutions of th
equation a512erf@b/A2(a1T2)#. The solution a50 is
stable for allb, when T50. There is a second stable fixe
point that decreases monotonically froma51, at b50, and
disappears discontinuously atb.0.57 when the valuea
.0.23 is reached. This is the origin of the ‘‘tricritical’’ poin
in the phase diagram fora versusb, where the line of con-
tinuous transitions for the overlap becomes discontinuo
We come back to this point below. It is important to poi
out that the term ‘‘transition’’ here only means that the n
work changes from one retriever state to another one.
remind the reader that it is not meant as an usual thermo
namic phase transition, since each point of the phase diag
corresponds to a different network.

Finally, when a reaches the critical storage capac
ac(b), given by

ac
21~b!5E

2`

b

Dy~b2y!2, ~32!

the perfect retriever is destabilized.
Consider next the case where 0.57,b<0.82. For 0<a

,a1(b), there is again a perfect retriever that is a sta
fixed-point solution. In addition, a pair of stable and unsta
fixed points appears. The stable fixed point is a nonretrie
with m50 and eitheraÞ0 or a50. A new pair of stable and
unstable fixed points appears discontinuously ata1(b). The
stable fixed point is, again, a retriever of weaker attrac
overlap and reduced activity. However, asa approaches
a2(b), this second retriever vanishesdiscontinuouslyand,
thus, there is a changeover from the line of continuous tr
sitionsa2(b) whenb increases and reaches a tricritical po
at b.0.57. Whena increases beyonda2(b), the perfect
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retriever and the nonretriever are, again, stable fixed-p
solutions, and the perfect retriever, which has a narrow ba
of attraction, is destabilized when the criticalac(b) is
reached. Whenb is increased, the retriever of weaker attra
tor overlap disappears atb.0.82, and beyond this point th
perfect retriever is the only stable fixed point with fini
overlap for 0<a<ac(b).

Now we discuss the stability of the replica symmet
solution. First, the strong retriever state is always stable
replica-symmetry-breaking fluctuations belowac . Thus, at
most the weak retriever can become unstable. In view of t
we mapped out the region of the phase diagram where
stability condition, Eq.~29!, is not satisfied for the weak
retriever state, and this is shown as the shaded area in Fi
the dash-dotted line being the AT line. Furthermore,
found that this line corresponds to the appearance of a ga
the distribution of local fields.

The phase diagram also yields the optimal basin bound
of the self-adaptation dynamics for a givena. Thus, asa
increases forb<0.82 the strong retriever is a ‘‘wide’’ re-
triever for a,a1(b), since it is the only attractor in the
self-adaptation dynamics. Fora.a1(b), the strong retriever
becomes a ‘‘narrow’’ retriever that coexists with the we
retriever. Finally, forb.0.82, the strong retriever is a na
row retriever that coexists with the nonretriever state for
a<ac(b).

We consider next the results in the presence of retrie
noiseT. In the case of a small to moderate threshold wh
the strong and weak retriever coexist, say, forb50.5, the
phase diagram forT versusa is not very different from the
phase diagram for the network of binary units. The stro
and the weak retriever coexist now over a wider range oa
but the strong retriever disappears, as one would expect
a lower T. More interesting are the results for the pha
diagram and the underlying fixed-point solutions for t
overlap and the activity whenb51, shown in Fig. 3. This
threshold is typical of an optimally adapted network that h
a perfect retriever as the only stable fixed point with nonz
overlap atT50. For fixed and lowT<0.4, there is a strong
retriever with rapidly decreasingm and a when a comes
close to the lineac(T), where both parameters vanish di
continuously. There is a second stable fixed point withm
50 anda;0, for all a>0, and this nonretriever is the onl
stable solution fora.ac(T). There is also an unstable fixe
point for m and a throughout the range 0<a<ac(T) that
separates the basin of attraction for self-adaptation of the
stable fixed points, and indicates that the strong retriever
narrow retriever in this interval.

An increase in retrieval noise can be of use for the
hancement of the performance of the single, strong retrie
with a moderately large threshold, as in the present cas
b51. Indeed, for 0.4<T<0.8, the nonretriever becomes a
unstable fixed point fora below the linea1(T), leaving the
strong retriever as a wide retriever. The overlap and the
tivity change discontinuously asa goes througha1(T). For
T>0.8, the overlap of the wide retriever vanishes contin
ously asa approachesac(T). The results shown here con
firm the general expectation that one cannot attain the
retriever overlap~as we have here for the narrow retrieve!
together with the best associativity, as for the wide retriev
in the same network except at the phase boundary.
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The AT line coinciding with the locus where the ga
closes down is also shown in Fig. 3, and the region to
right of the line up to theac line is stable to replica-
symmetry-breaking fluctuations. Thus, it seems that the
of the discontinuous transition lineac(T) that is close to the
tricritical point where the changeover to the line of contin
ous transitions takes place, is marginally stable. We also
gue that for lowT the line ac(T) may be almost correct
sinceac(0) is the critical capacity of the MSN, which cor
responds to a stable point. Note that the lineac(T) of dis-
continuous transitions has an upper part of infinite slo
which should also be correct since one would not expe
reentrant behavior forac(T). Finally, for comparison, we
also show the phase boundaries for the MSN and conc
that the optimally adapted network with three-state neur
has an improved performance in the presence of retrie
noise.

B. Four-state network

To see now the effects of the threshold in the optima
adapted four-state network, we present first the results for
fixed-point solutions for the overlap and the activity in Fi
4. Depending on the value ofb there may be a domain in th
values ofa in which there are up to three stable fixed-po
solutions with nonzerom, one for a perfect retriever and th
other ones for weaker retrievers. The perfect retriever ex
up to a criticalac(b), given by

FIG. 3. Phase diagram, forT vs a, for Q53 andb51. In the
inset are shown the optimal overlap~solid lines! and activity
~dashed lines! for T50, T50.5, andT51; the unstable solutions
for m and a are in light lines. InR1(2) the strong retriever is a
narrow ~wide! retriever. NR is the nonretriever phase. The da
dotted line is the de Almeida–Thouless line.
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ac
21~b!5E

2`

4b/3

DyS 4b

3
2yD 2

. ~33!

It turns out that there is a loada1(b) for all b, where a
weak retriever, which may or may not be the only one, a
pears discontinuously asa attains that point. Forb<0.65, it
is the only weak retriever, as can be seen in the phase
gram fora versusb shown in Fig. 5. Note that, also for th
four-state network,a1 increases withb in the smallb regime
with a considerable enhancement of the strong retriever
wide retriever. The perfect and the weak retriever coex
with increasinga until either the weak retriever disappea
continuously ata2(b), which is the case forb<0.44, or the
strong retriever ends atac(b) for 0.44<b<0.65. In the latter
case, the weak retriever of nonzero overlap remains as
only attractor of self-adaptation up toa2(b).ac(b).

On the other hand, forb well above 0.65, a second wea
retriever (WR2) appears discontinuously asa attains the line
a4(b) while the first weak retriever (WR1) extends up to a
quite higher loada3(b), where the state of the networ
changes discontinuously to the non-retriever state. The o
lap of the WR2 vanishes continuously asa approaches
a2(b). The two weak retrievers coexist fora4(b)<a
<a2(b). Note that both the line where the first weak r
triever disappears and the domain ofa where the second
weak retriever exists may lie well above the critical capac
ac(b) for the existence of the perfect retriever.

The situation can become more involved for intermedi
values ofb, shown by the inset in Fig. 5. Around the en

-

FIG. 4. Optimal overlap~solid lines! and activity~dashed lines!
for Q54, at T50, for b50.6, andb50.8. The variousa indicate
the loads for which the optimal solutions appear or disappear,
b50.8, and WR, WR1 , and WR2 are weak retrievers.
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point C of the wedge of discontinuous transitions lines, t
second weak retriever can be reached continuously from
first one.

It is interesting to note that, for largeb, the WR1 state has
an asymptotic overlap and activitym;1/3 anda;1/9, re-
spectively. These correspond to the storage of binary patt
in a network with only the microscopic statesSi561/3 be-
ing activated. These are, practically, the only states favo
in the high-b regime, since the statesSi561 can only be-
come active by means of high local fields which are e
tremely unlikely in the absence of retrieval noise. Indeed,
found that the linea3(b) goes to the critical valueac52 for
the optimal network of binary units with increasingly largeb.
Thus, as expected, the behavior of the network in the largb
limit should become that of the MSN with reduced overl
and activity.

The phase diagram in Fig. 5 also provides the optim
basin boundary of attraction, for a givena and b. For b
51, say, the strong retriever is a wide retriever fora
,a1(b), and a narrow retriever whena1(b)<a<ac(b).
On the other hand, in the intervalac(b)<a<a4(b), the
weak attractor with higher overlap is a wide retriever, sinc
is the only attractor for the self-adapting dynamics in t
interval. In distinction, in the intervala4(b)<a<a3(b) that
weak retriever is a narrow retriever, that coexists with W2
if a<a2(b) and with the nonretriever state otherwise.

To discuss the validity of the replica symmetric resu
note that, whenever two weak retrievers coexist in the ph

FIG. 5. Phase diagram fora as a function ofb, for Q54 at T
50, described in the text. The amplified central part is shown se
rately. The retrievers and the nature~continuous or discontinuous!
of the phase boundaries are as in previous figures. The SR, W1 ,
and WR2 coexist in the shaded area of the inset. The de Almei
Thouless line is the dash-dotted line.
he

ns

d

-
e

-
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se

diagram, each one has to be analyzed separately since
refer to different levels of training noise, such that one m
correspond to a gapless local field distribution and the ot
may not. The AT line is the dash-dotted line shown in Fig.
that starts on the boundarya1(b) where the single weak
retriever appears for smallb and it merges witha4(b)
aroundb50.8. That retriever is stable to replica-symmetr
breaking fluctuations above the AT line. The WR2 is un-
stable aroundC and is stable in the stripa4(b)<a
<a2(b), whereas the WR1 is unstable everywhere below
and at the boundarya3(b). The left part of the boundary
a1(b) is marginally stable, as well as the boundaryac(b) for
the perfect retriever.

IV. SUMMARY AND CONCLUDING REMARKS

The principle of adaptation, formulated earlier for a ne
work of binary neurons, has been extended in this work
study the training and performance of optimally adapted
tractor neural networks of multistate neurons trained w
noisy inputs in the presence of a noisy retrieval environme
Explicit results where obtained for the optimal attractor ov
lap and the optimal dynamical activity as functions of t
retrieval noiseT, the loada, and the thresholdb, for a net-
work with dilute connectivity. The maximum storage capa
ity was also obtained as a function ofb and T and explicit
retriever phase diagrams of performance and associativit
the retrievers are exhibited for a network of three- or fo
state neurons. These are phase diagrams forself-adaptation,
in distinction to phase diagrams for attraction, as pointed
in Ref. @3#. We remind the reader that, as pointed out
Wong and Sherrington, coexisting retrievers are solutions
different networks, which should correspond to distinct sy
aptic interactions.

An important issue of this work concerns the improv
ment in the associativity of multistate networks, when t
width b of the intermediate states increases, in the smab
regime. The enhanced performance of the second retrie
has also been emphasized. This is important because the
optimal retriever solutions on their own, rather than weak
retrieval solutions for the optimal network configuration,
such solutions exist@3#. We have shown that an improve
ment of the performance of the second retriever in the o
mally adapted network with multistate units can be attain
with relatively small training noise and large-activity inp
patterns. In practical terms, this may be a more access
situation than training with an infinitesimal amount of noi
and almost full activity. Furthermore, we have shown th
the storage capacity of the second retriever is a nonmo
tonic function of the thresholdb with an increasing capacity
for smallb. With a moderately large threshold, as in the ca
of b51 for the three-state network, an increase in retrie
noise T may help to enlarge the basin of attraction of t
single, strong retriever. This can be understood noting
the increase in the noise should aid in overcoming the la
gap in the local field in firing the units when the network h
been trained with a moderate training noise. These are
portant results in the search for improvement of the beha
of attractor neural networks.

The work presented here is restricted, for simplicity,
binary encoded patterns. On the basis of results we obta
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for three- or four-state patterns, we argue that this should
be a serious restriction. What is important is that the state
the noisy training set$Ri

m(t)% have the same degrees of fre
dom as the arbitrary input set$Si(t)% for retrieval. This re-
quires the introduction of a training activityat in the noisy
inputs, in order to optimize both the training and the adap
tion process in theQ-state network.

We have found, in accordance with earlier works, th
networks are specialized@3,7#. Indeed, one cannot attain th
best storage capacity for allT and b in a single network.
Even if b is fixed the storage capacity of the strong retriev
will be that of the MSN only at very lowT and it will
become that of the Hopfield model at highT.

All the results were obtained with the assumption of re
lica symmetry in the space of synaptic interactions and
limit of validity of this assumption has been established fin
ing the de Almeida–Thouless linesaAT(b) at T50 and
aAT(T) for a givenb. These lines coincide with the band
merging lines for the distribution of the local field. Due
the presence of optimal solutions for small-to-moder
training noise, there are gaps in the distribution of the lo
fields over sizeable domains of the phase diagram that
not stable to replica-symmetry-breaking fluctuations. Nev
theless, interesting phase boundaries and domains of
phase diagrams are stable or, at worst, marginally sta
confirming the validity of our results. Indeed, the enhan
ment of the linea1(b), where the second retriever appea
for small training noise and large activity, both forQ53 and
Q54, lies on the replica-symmetric side of the AT line. Fu
thermore, the interesting weak retriever lies completely
this side. That is also the case for the tricritical point and
first-order transition line,a2(b), for the three-state network
which at worst becomes marginally stable. Furthermore,
phase diagram forT5T(a) reveals that the linea2 of con-
tinuous transitions is stable to replica-symmetry-break
s.
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fluctuations, for bothQ53 andQ54 and allb. In view of
these results, it does not seem worthwhile to pursue a ca
lation beyond the replica-symmetry ansatz.

A closer look at our results reveals that although the cr
cal capacityac , where the strong retriever terminates, d
creases faster with increasingb for the four-state than for the
three-state network, the trend is opposite for the lower a
upper critical storage ratioa1 and a2 , respectively, for the
presence of a second retriever in the low-b regime. This
suggests that the role of the threshold could become e
more important in optimally adapted higherQ-state net-
works. The extended principle of adaptation of the pres
work assumes that both the training overlap and the train
activity become continuously adapted to the noisy retrie
environment. In particular, the training activity follows th
changes in the dynamical activity characteristic of theQ
states of the units, and this makes difficult the study of
optimally adapted network for generalQ. It may be possible
to study a weaker version of the extended adaptation p
ciple for the graded response network in which the train
activity remains fixed. This, and other questions, will be co
sidered in future work.
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