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Optimally adapted multistate neural networks trained with noise
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The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural
network of Q-state neurons trained with noisy data. The network is adapted to an appropriate noisy training
overlap and training activity, which are determined self-consistently by the optimized retrieval attractor overlap
and activity. The optimized storage capacity and the corresponditnigver overlap are considerably en-
hanced by an adequate threshold in the states. Explicit results for improved optimal performance and new
retriever phase diagrams are obtained @+3 and Q=4, with coexisting phases over a wide range of
thresholds. Most of the interesting results are stable to replica-symmetry-breaking fluctuations.
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I. INTRODUCTION action space for the optimized network performance adjust-
ing the training noise to be the same as the retrieval noise in
Since the pioneering work of Hopfie[d], there has been each step of the adiabatically evolving retrieving environ-
much interest in both the training and performance of attracment. Both noises refer to the Hamming distances between
tor neural networks. Training consists in encoding an approthe actual states of the network and the encoded patterns.
priate synaptic matrix that enables the network to store a Training noises have been introduced in feedforward net-
macroscopic number of patterns, while the performance of avorks [10,11] in order to avoid overfitting to training ex-
network refers to the ability to retrieve one or a specific seamples and in attractor networks with the purpose of enlarg-
of stored patterng2]. Training and performance are usually ing their basins of attractiof8,9]. A slightly distorted set of
thought of as separate stages in the operation of a networkandom patterns is presented to the network in the process of
The retrieval performance of an attractor network can beencoding the synaptic matrix by means of a stepwise updat-
studied in two different scenarid8]. One is characterized ing procedure following the perceptron learning ri8¢ The
by afixedsynaptic prescription, as in the case of the HopfieldMSN is generated by an infinitesimal amount of training
model [1] or the maximally stable networkMSN) [4—6], noise and, except for low retrieval noi§eand low loade,
while in the other one, the entire space of synaptic interacthe performance of the optimally adapted network is clearly
tions is searched for optimal performance whenever there isuperior to that of the MSN3]. In particular, for low to
a change in the retrieval environment. The synapsis in thenoderateT and higher loady, a second optimal solution in
first scenario are determined in an ordinary learning stagteraction space appears for each value of the training noise
and the performance of the network is optimized separateljn the optimally adapted network. This solution is a weaker
in a given training environment. In the second scenario oneetriever that can be interpreted as an attractor of self-
resorts to a continuous adaptive training process in which thadaptation.
network performance is optimized in an adiabatically evolv- The point is that the second retriever constitutes a further
ing retrieving environmenf3]. For each value of the noise solution to the optimization process, with its own interaction,
parameterT (temperature of the retrieval dynamicsand in a neighborhood of interaction space where there is no
storage ratioa, the network has a unique interaction con- solution for the MSN. This second, optimal solution appears
figuration, the so-callecetriever. This is in distinction to the as a low performance solution in the absence of or for low to
retrieval performance that yields the phase diagrams for thenoderate retrieval noise, with improving performance, up to
Hopfield model or the MSN, in which the interaction con- a certain point, as the retrieval noise is raised. Thus, there has
figuration determined in the separate learning stage is th be already a certain level of retrieval noise for the weak
same for allT and« [7]. retriever to have an interesting performance. Moreover,
Adaptive training processes seem to be biologically apwhenever the solution exists it is only within a narrow range
pealing as a means to learn from the environment. The adapf «.
tive process in the second scenario requires training the net- The principle of adaptation has been worked out, so far,
work with noisy pattern§8,9] and it is a procedure that does only for a network of binary neurons and the purpose of the
not separate the training process as a distinct step from th@esent paper is to explore the merits of an extension of the
operating stage of the network. The principle of adaptation irprinciple to a multistate attractor network in which both the
a network of binary units consists of the search of the interneurons and the noisy training versions of the encoded pat-
terns can be iQ(>2) states. This adds two new dimensions
to the study of the performance of the network. First, the
*Electronic address: rubem@if.ufrgs.br randomly distributed noisy patterns presented to the network
"Electronic address: theumann@if.ufrgs.br in the training process introduce a training activéty. Sec-
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ond, the firing rate of the neurons is determined by one or [l. TRAINING WITH NOISE AND ADAPTATION
more thresholds, or a growth parameter in the dynamical
output function. Thus, in the extension considered in thi
Wo_rk_, an evolving dynamical °Ver'aP(T) and a dynamical which the unit on nodéfires. Each unit can be in any one of
activity a(7) are generated at each time stepf the neuron Q Ising states
updating procedure. The search for the optimized network
performance by means of the extended adaptation principle 2(k—1)
consists now of the adjustment of the training overtgmnd ox=—1+ Q-1 @
the training activitya; to bem,=m(7) anda;=a(7), respec-
tively, i.e., the same as the retrieval overlap and dynamicah the interval —1,+ 1], fork=1,...,Q. A macroscopic set
activity in each step of the adiabatically evolving retrieval of p binary patterng¢f==1; pu=1,...p; i=1,... N},
environment. Adaptive performance in this wider sense is avith p=«C, is encoded in the network in the learning pro-
self-consistent procedure in which the retrieval environmentess, whereC is the connectivity of a node. The patterns
continuously optimizes the attractor performance of the neteonstitute a set of independent identically distributed random
work. variables. Training consists in presenting to the network a
Networks of multistate neurons have interesting featuresioisy version{R*(7)} of the patterns, at time, and in the
and applications. Feedforward networks of such units can bgptimization of the network output after one time step. This
used to study multiclass classification problef@g], while involves a dynamical process in the space of state configu-
multistate attractor networks, which are useful for the recogrations of the network and, to keep the dynamics Simp|e, we
nition of various gray-toned patterns, are networks that haveestrict ourselves to an extremely diluted network. Each
interesting inferential properties, by means of which the storrx(7) is assumed to be in one @ states,o, and can be
age capacity and the retrieval ability can be enhanced Whefhought of as an example of the pattgfh. Assuming that

they are trai_ned_ with pattemns of IO_W aCtiV@g__lq' AISQ' every noisy pattern has the same oventgpwith the corre-
the catego_rlzau_on ab|I_|ty can be improved in a mUIt'Statesponding patters” , and that the activity, is the same for
network with hierarchical patterns. There has been latel)én patterns in thel t’raining set. we define

considerable interest in such netwofls—-19.

We consider an extremely diluted network and, for sim- 1
plicity, restrict ourselves to binary unbiased encoded pat- M=y > E{RM(D)R (2
terns. The main emphasis of the paper is on the storage ca- !
pacity, the quality of the performance of the strong and the, 4
second retrievers, and on the characterization of the various
phases that can appear. With that purpose we produce ex- 1 )
plicit results for a network witlQ=3 or Q=4 states. It will A=y Z ([RE(D) 1R, 3
be shown that, within a finite range of a threshold parameter,
there is considerable improvement of the storage capacithere the brackets. . . ) denote averages over the prob-
and in the high performance of the second retriever solution,jjiry gistribution ofR¥ . Thus, the noisy training inputs are
in the absence of or for low retrieval noise, when compared. |\ 4. i 4 1o satisfy the medR (r))p=m,&* and vari-
with the optimally adapted network of binary neurons. In RE())Z) o — (RE(7)V2 = a1 — m2
particular, we show that the second retriever may attain gnce{( (1) .>R (R (T)}R A~ M. -
fairly high retrieval overlap for small training noise in a re- The normallzec_i Io<_:a| field at nodedue to the activity at
gime where there is no solution for the optimally adaptedthe other nodes, is given by
network of binary neurons. These are important results in the ic
search for improvement of the behavior of attractor neural hi(7)= — E JiiS(7), (4)
networks. We restrict ourselves to fini@state networks, in \/E =
place of addressing the gene(krgeQ) case.

The outline of the paper is the following. In Sec. Il we WhereJ;; is the synaptic connection between nodesd],
extend the training with noise procedure in the space of synindependently in what state the dynamical variaBjeis,
aptic interactions to &-state Ising network by means of a While iy, ... i denote the nodes feeding nodeThe con-
quenched optimization approa¢8,20], within the replica- nections follow the spherical constraiEthizj=C, and we
symmetry ansatz, introducing a smooth cost function giverconsider the extremely diluted network in the limit of large
by an average squared Hamming distance. The equations fopnnectivity in which }.C<InN. The one time-step dy-
the adaptation process in a noisy retrieval environment argamics is exact in this limit.
formulated in that section. The explicit results for the fixed- We deal in this paper with the asymptotic, equilibrium
point behavior, the storage capacity and the correspondingonfiguration{J;;}, for the synaptic matrix elements of the
phase diagrams for self-adaptation for the three and the foutearning process that follows from a Langevin dynamics with
state models are discussed in Sec. Ill, and compared with treenoise term. This involves an annealing temperaiiyréhat
MSN. The domain of validity of the replica symmetric re- takes care that the network does not get trapped in local
sults is determined by the de Almeida—Thouless lifd§in ~ minima of the free energy. The distribution of equilibrium
terms of the retrieval noise and the threshold in the dynamistates of theJ;; can then be described by a canonical en-
cal updating procedure. A summary and concluding remarksemble with temperaturg,. Thus, there are two time scales
are presented in Sec. IV. in this approach: a short-time scale for the dynamical evolu-

Consider a network dfl nodes with a dynamical variable
S5(7), at time stepr on nodei, that indicates the extent to
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g(x) other nodes. Thus, it is sufficient to consider the cost func-
(a) tion for a single node. We choose this to be

> di(r+1)=2 ([1-2&S(r+ 1)+ S+ D)),
2 I
-b (8)

whered/(7+ 1) is the average squared Hamming distance to
a stored pattern in whicfr - - ), denotes the average over the
Gaussian thermal noise. The training noise enters only
-1 through the local fields, via Eq$4) and (7). In the case of
binary patterns, the local field is a Gaussian random variable
with mean (hi(7))g=mA¥ and variance (h%(7))s
—(hy(7))3=a,—mZ, in which

9(x)
(b) ] 1 e
Af=—= 2 3¢ ©)
\/6 =11
o3 1/3 is the local field on nodé due to the patterp.

. , The optimization of the Hamming distance between the

4b/3 X one-step output of the network in the noisgining environ-
-1/3 ment and a given pattern in a network of binary neurons is

equivalent to finding the optimal output overlap after one

time step. In the case of a network of multistate neurons, the

L _q Hamming distance also depends on the activity through the

local field, and our first goal is to find the optimal output

Hamming distance(m;,a;), after one time step, for a given
FIG. 1. The nondecreasing step functipfx) for Q=3 (a) and  training overlapand a given training activity.

Q=4 (b). For that purpose, and for later use, we need the averages

tion of the synaptic matrixJ;;} and a long-time scale for the 1 0
dynamical evolution of the training and of the retrieval pa-  Sm, a(Af)=(Si(7+1))2r= 5 kZl okErf(uy, 1 ;AP
rameters. =

The dynamical variables are updated according to the rule (10
d
S(r+1)=g(hi(7), 5 "
Q
_ i i i 1
whereg(h;(7)) is the nondecreasing step function Szmt,at(Aiu)E«Slz(T_'— 1)) Jr= Egl (fﬁEff(Uka;Ai’L),
Q
11
900 =2, ol 0b(0k1+01) =X~ ObB(0ct 011) =X)]
N ©6) which follow from Eq.(7), where
shown in Fig. 1 forQ=3 andQ=4, in which 6(x) is the _ u—mgA
unitary step function,co=—x*, oq.1=%, b=0 is the Erf(u,l,A)=erf 2@+ T9)
threshold parameter ang, are the uniformly spaced Ising v
states of Eq(1). A_ccording to Eq(6)., th_ere is a zero activity —mA
state wheneveQ is odd and none if) is even. —erf] — (12
For the adapted optimization a temperatdrds intro- V2(a—mi+T9)
duced as a noise parameter, not to be confused with the
annealing temperatufg,, to characterize the noisy retrieval with
environment. We assume a Gaussian thermal noise term
added to the local field to write the one-step output as u/2b=o0,+1(Q—1), ug=w (13
S(r+1)=g(hi(n)+T2), (77 and
wherez has mean zero and unit variance. The optimization, lW/2b=0o—1(Q—1), l;=—c>. (14

in the extremely diluted limit, consists in penalizing devia-
tions from the minimal output error in one time step on any The quenched optimization approak$20] requires the
node which is independent of the optimization on all theintroduction of the partition function
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each with a fixed/, between an upper and a lower value
and\ _, respectively, ruled by a Maxwell construction

z<,3)=f H dJ; 5(; Jﬁ—c)exp[—,g% d(A#)

(15

As
dA Y(N)=Yo(As—A2), 22
to obtain first an annealed average over the space of synaptic f Ao YO =Yo(h>—hs) 22

connectionsJ;; , in which ,8=T;1 is the inverse annealing ]
temperature, and(A*) is the squared Hamming distance, whﬁre yo=_y();1<)=y(7\>). Itb tL;]mS_dOUt t?a; thf?f_ functcljon”
for a given configuratiof &/} of encoded patterns, averaged F(A.x,y) is the same on both sides of the "first-order

over thermal and training noises. Its dependence on the noiéreaq_sh'gog'timal output Hamming distance for training be-
parametersn;, a;, andT is left implicit. The quenched av- P P 9 9

erage free energy is then obtained making use of the replic%lOmes then

method to write

1 d(mtlat):f Dy d(A(y)). (23

(In2)=lim=((2"):-1), (16) . . . o
n—ol It is convenient to introduce the distribution of the local

fields due to the encoded patterns, definefi3as)

where(- - - ), denotes the average over the set of stored pat-

terns{£F}. Using the standard technique in the space of syn- 1

aptic interactions, with the assumption of replica symmetry P(A):< < 5( A= \/_E 2 JiJ§J> > > ' (24)

[22,23, we obtain the optimal one-step output Hamming dis- . Il ¢

tance for trainin
g where the ensemble average -); is performed with the

) 1 partition functionZ(B), Eg. (15). It turns out that this dis-
d(mg,ay)=— lim “fC (In2), tribution becomes
B—oo
1 — _
A

and the transition between the lower and upper boids,
as a function of the overlam and activitya, of the noisy — and .., respectively, implies a gap in the distribution of
input patterns, in whictDy=e"Y"?dy/ 2 is a Gaussian local fieldsp(\) wheneven (y) is a multivalued function of
measure and y.
(A —y)? The optimal one-step output Hamming distance for train-
FOuxy)=d(n) + 2Xy _ (18) ing with noise may now be written as

d(r+1)=1-2fy a(My,8) +dm a(M.a), (26
Here,d(\) is the squared Hamming distance averaged over

“ while x=8(1—q) and where
1
a=g = I (19 i a(M,8) = f dA pm a(M)Sna(A)  (27)
i

for all p# o is the spin-glass order parameter for the prob—is the optimized overlap between the encoded patterns and
lem. their noisy versions and

The optimization in the training process amounts to take
Fhe limits B— a.ndq—>1. keepingx finite. A single solution gmpat(m’a):J dA Pmt,al(A)Sﬁxa(A) (28)
in the space of interactions is thus obtained out of the full

multiplicity of solutions wheng— 1 [23]. The minimization

: . is their optimized activity. The distribution of the local fields,
with respect to\ yields

Pm, a(A), is a characteristic property of the training set and,
y(N)=N+xd" (M), (20) as such, it depends an, and a; .

The formal results presented so far assume that replica
whereh =\ (y) is the inverse function of(\). On the other symmetry holds in the space of interactions. The condition
hand, the extremum ir gives the saddle-point equation for local stability of the replica symmetric saddle point can
be writen aq 20,24

a‘1=f Dy[A(y)—YT%, (21
a’1>J Dy [N'(y)—11%, (29
which determines the storage capacityor a given training
environment. in which A’ =d\/dy, and this is to be solved together with
In cases whera(y) is a multivalued function of, which  Eq. (21). When the distribution of the local fields has a gap,
is the case foQ=2, there may be one or more transitions, A" diverges and the condition cannot be satisfied. Then, the
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network becomes unstable to replica-symmetry-breaking 2.0 . . -
fluctuations. The limiting load for which Eq29) is still
satisfied yields the de Almeida—Thoulg®sT) line, axt(T) 10
[21]. The dependence on the retrieval nolseomes fromi.
Note that the AT line must lie within the one-band region or,
at most, on the band-merging surface where the gag{in
disappear$24]. This completes the formal description of the 15 r
training process in itself. In order to become optimally 0, m.a
adapted, we consider now the retriever process.

The calculation of the one-step output Hamming distance
betweenanyinput state{S;(7)} and a given encoded pattern
in a noisy retrieval environment, with temperatdreis now
obtained as follows. First, the training parametexsand a;
in Egs.(10)—(12) are replaced by the overlap(7) and the
dynamical activitya(r) of the noisyretrieval state{S;(7)},
expressed, respectively, as E¢®). and (3) with {S;(7)} in
place of the the noisy pattefiR/“(7)}. The one-step output
Hamming distance in theetrieval environment is now given
by an expression similar to E¢26), depending on the pair
(m;,a;) through the distribution of local fieldand on the
pair (m,a) through the present state of the network as given, ‘
literally, by Eqs.(27) and (28). . SR

Now, the training overlapn, and the training activity,
which give the optimal performance for retrieval at a fixed 0.0 , , \
temperaturel, storage leveky, and threshold parametéy 0.0 0.5 1.0 1.5 20
are given by the adaptation principle. The optimal adaptation

consists of a search in the space of interactighg simul- FIG. 2. Phase diagram for the loadas a function of the thresh-
taneously with a search in the space of state conﬂguratm_r@d b for Q=3, atT=0, and the corresponding optimal overlap
{Si(7)}. The best adapted performance of the network igsolid line and activity a (dashed lingsfor b=0.5 (right), b
attained by adjusting the training noise and activity to the=0.7 (centey, andb=0.9 (left), in the inset. Unstable fixed-point
same level as the retrieval noise and activity. For the paralledolutions are shown in light lines. SR and WR are strong and weak
dynamics in the extremely diluted network we are dealingretrievers, respectively. The SR is a wide retriever at the left of the

0.5

10 SR

NR

with, the stable fixed point of the set of equations light dotted line and belowy,(b). Solid lines in the phase diagram
indicate discontinuous transitions and a dashed line a continuous
fma(m,a)=m (300  transition. The dash-dotted line is the de Almeida-Thouless(tihe
the tex}. The WR is unstable to replica-symmetry-breaking in the
and shaded area.
gm,a(mva) =a (31)

of retrieval noise shown in Fig. 2. For fixed within the

gives at the same time the optimal training condition and th‘%ﬁg&; Gvfi?hsn?ff :a:dweﬁigf iCsYlt(ht:a) ,omsr:tz;zlg E)?erge(goirr?t-

optimized performance. The stable fixed point for each value

of the synaptic noise paramet€r the storage ratia, and and a solution wittm=0 and eithem0 ora=0, which is
the threshold parametéris a retriever, for which the net- an unstable fixed point. This suggests that one can conceive

work has a unique interaction configuration. In other words2 network capable of perfect retrieval operating with a lim-

in distinction to the usual phase diagrams for retrieval, evermad threshold, as long as the training is with infinitesimal

point of the phase diagrams that will be discussed next rep-o'se m,= 1 'and glmost full activitya,=1". The corre-
. sponding retriever is that of the MSN.
resents a different network.

The line a4(b) deserves further attention. It is the upper
bound of the region where the perfect retriever is the only
IIl. RESULTS AND DISCUSSION attractor in the retriever dynamics with a wide basin of at-

We present next the results for the optimally adapted re'graction for se_lf-ada_ptatio_n. Beyond that Iine, the basin of
trievers. The rich structure of locally stable states and th@ttraction of this retriever is greatly reduced in the three-state

corresponding phase diagrams for self-adaptation that aridtWwork, as will be seen next. Thus, for increasingn the
as the threshold parameteris increased will be discussed Smallb regime, there is an enhancement of the associativity
now, separately fo=3 andQ=4. of the network, as long as; is an increasing function di.

A new pair of stable and unstable fixed points appears
discontinuously atv,(b). The stable fixed point represents a
new retriever of weaker attractor overlap and reduced activ-

To illustrate the role of the threshold paramelgrwe ity. Note, however, that for low to moderabe(illustrated in
discuss first the fixed-point solutions fon and a and the the inset byb=0.5), there is a considerably enhanced re-
corresponding phase diagram f@rversusb, in the absence trieval overlap when compared with the overlap for the op-

A. Three-state network
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timally adapted network of binary unif8]. The second re- retriever and the nonretriever are, again, stable fixed-point
triever has a rather wide basin of attraction for this largersolutions, and the perfect retriever, which has a narrow basin
retriever overlap. This higher performance can be attainedf attraction, is destabilized when the critical.(b) is
through training with low-noise patterns with moderately reached. Whem is increased, the retriever of weaker attrac-
high activity. For the thresholdb=0.3 that maximizes tor overlap disappears at=0.82, and beyond this point the
a1(b), the improvement in storage capacity with ts@me  perfect retriever is the only stable fixed point with finite
retrieval overlap as that of the network of binary neurons isoverlap for 0< a< a(b).
about 20%. However, as one would expect, the performance Now we discuss the stability of the replica symmetric
deteriorates with a further increase in the threshmld solution. First, the strong retriever state is always stable to
The second stable fixed point means that there exists @plica-symmetry-breaking fluctuations belaw . Thus, at
second training condition, with higher noise, which results inmost the weak retriever can become unstable. In view of this,
a network with lower, but still optimal performance when we mapped out the region of the phase diagram where the
compared with other three-state networks in its vicinity ofstability condition, Eq.(29), is not satisfied for the weak
the space of interactions, for this training condition. The unretriever state, and this is shown as the shaded area in Fig. 2,
stable fixed points are repelors of the self-adaptation dynamthe dash-dotted line being the AT line. Furthermore, we

ics [3]. found that this line corresponds to the appearance of a gap in
The overlap of this second retriever vanishes continuouslyhe distribution of local fields.
as a increases approaching,(b). For ay(b)<a=<a.(b), The phase diagram also yields the optimal basin boundary

the perfect retriever and a nonretriever witl+=0, and either  of the self-adaptation dynamics for a given Thus, asa
finite or no activity, are the only stable fixed-point solutions. increases fobh<0.82 the strong retriever is a “wide” re-
The nonretriever state with#0 appears as a self-sustained triever for a<a;(b), since it is the only attractor in the
activity phase, which has been discussed first for a dilutedelf-adaptation dynamics. Far> a,(b), the strong retriever
network with a Hebbian learning rul@4]. When the activity becomes a “narrow” retriever that coexists with the weak
is zero the network stops operating. retriever. Finally, forb>0.82, the strong retriever is a nar-
The presence of a nonretriever with finite activity follows row retriever that coexists with the nonretriever state for all
from the fixed-point solution forrf,a) whenm=0 is a a<a.(b).
stable fixed point. The expression @ﬁ],a(/\) becomes then We consider next the results in the presence of retrieval
independent of the local field and, hence, ok anda. The  noiseT. In the case of a small to moderate threshold where
fixed-point values for are then given by the solutions of the the strong and weak retriever coexist, say, liet0.5, the
equationa=1—erf{b/\2(a+T?)]. The solutiona=0 is  phase diagram fof versuse is not very different from the
stable for allb, whenT=0. There is a second stable fixed phase diagram for the network of binary units. The strong
point that decreases monotonically fraw 1, atb=0, and and the weak retriever coexist now over a wider range of
disappears discontinuously &t=0.57 when the valuea but the strong retriever disappears, as one would expect, for
=0.23 is reached. This is the origin of the “tricritical” point a lower T. More interesting are the results for the phase
in the phase diagram far versusb, where the line of con- diagram and the underlying fixed-point solutions for the
tinuous transitions for the overlap becomes discontinuousoverlap and the activity wheh=1, shown in Fig. 3. This
We come back to this point below. It is important to point threshold is typical of an optimally adapted network that has
out that the term “transition” here only means that the net-a perfect retriever as the only stable fixed point with nonzero
work changes from one retriever state to another one. Weverlap atT=0. For fixed and lowl'<0.4, there is a strong
remind the reader that it is not meant as an usual thermodyetriever with rapidly decreasingn and a when o comes
namic phase transition, since each point of the phase diagraphose to the linex(T), where both parameters vanish dis-

corresponds to a different network. continuously. There is a second stable fixed point with
Finally, when a reaches the critical storage capacity =0 anda~0, for all =0, and this nonretriever is the only
ac(b), given by stable solution for> a(T). There is also an unstable fixed
point for m and a throughout the range Qa<«a(T) that
a: Y (b)= J'b Dy(b—y)? 32) separates the basin of a.ttra_ction for self-adaptation o_f the two
¢ —w ' stable fixed points, and indicates that the strong retriever is a

narrow retriever in this interval.

the perfect retriever is destabilized. An increase in retrieval noise can be of use for the en-

Consider next the case where 0583<0.82. For G=« hancement of the performance of the single, strong retriever,
<a,(b), there is again a perfect retriever that is a stablewith a moderately large threshold, as in the present case of
fixed-point solution. In addition, a pair of stable and unstableb=1. Indeed, for 0.4 T<0.8, the nonretriever becomes an
fixed points appears. The stable fixed point is a nonretrievennstable fixed point fox below the linea;(T), leaving the
with m=0 and eithea+#0 ora=0. A new pair of stable and strong retriever as a wide retriever. The overlap and the ac-
unstable fixed points appears discontinuously:gtb). The tivity change discontinuously ag goes throughy,(T). For
stable fixed point is, again, a retriever of weaker attractoiT=0.8, the overlap of the wide retriever vanishes continu-
overlap and reduced activity. However, as approaches ously asa approachesy (T). The results shown here con-
a,(b), this second retriever vanisheiscontinuouslyand,  firm the general expectation that one cannot attain the best
thus, there is a changeover from the line of continuous tranretriever overlapias we have here for the narrow retriever
sitions a,(b) whenb increases and reaches a tricritical pointtogether with the best associativity, as for the wide retriever,
at b=0.57. Whena increases beyonad,(b), the perfect in the same network except at the phase boundary.
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FIG. 4. Optimal overlagsolid lineg and activity(dashed lines
FIG. 3. Phase diagram, farvs «, for Q=3 andb=1. Inthe  for Q=4, atT=0, forb=0.6, andb=0.8. The variousy indicate
inset are shown the optimal overlgsolid lineg and activity  the loads for which the optimal solutions appear or disappear, for
(dashed lingsfor T=0, T=0.5, andT=1; the unstable solutions b=0.8, and WR, WR, and WR, are weak retrievers.
for m and a are in light lines. InRy(,) the strong retriever is a
narrow (wide) retriever. NR is the nonretriever phase. The dash- 2
dotted line is the de Almeida—Thouless line “1lh)= 53 4b _
- ac (b)=] Dy|z-y|. (33
The AT line coinciding with the locus where the gap
closes down is also shown in Fig. 3, and the region to the
right of the line up to thea, line is stable to replica-
symmetry-breaking fluctuations. Thus, it seems that the pa
OT ”?? dlsco_ntlnuous transition line(T) that |s_close to th_e is the only weak retriever, as can be seen in the phase dia-
tricritical point where the changeover to the line of continu-

ous transitions takes place, is marginally stable. We also a ram for a versusb shown in Fig. 5. Note that, also for the
place, ginaty i our-state networke, increases witlp in the smallb regime
gue that for lowT the line a¢(T) may be almost correct,

. . o ; X with a considerable enhancement of the strong retriever as a
since a¢(0) is the critical capacity of the MSN, which cor- 9

) ) . wide retriever. The perfect and the weak retriever coexist
responds to a stable point. Note that the lingT) of dis- b

continuous transitions has an er part of infinite slo ewith increasinga until either the weak retriever disappears
rinuou " _UPper p infinite: slop continuously atw,(b), which is the case fob<0.44, or the
which should also be correct since one would not expect

reentrant behavior forr (T). Finally, for comparison, we %trong retriever ends af.(b) for 0.44<b=<0.65. In the latter

; case, the weak retriever of nonzero overlap remains as the
also show the phase boundaries for the MSN and concludgnIy attractor of self-adaptation up te,(b)> a,(b).

that the optimally adapted network with three-state neurons On the other hand. fdb well above 0.65, a second weak

Egissean improved performance in the presence of remev‘fjlrletriever (WR) appears discontinuously asattains the line

a4(b) while the first weak retriever (WR extends up to a
quite higher loadas(b), where the state of the network
changes discontinuously to the non-retriever state. The over-
To see now the effects of the threshold in the optimallylap of the WR vanishes continuously a& approaches
adapted four-state network, we present first the results for tha,(b). The two weak retrievers coexist fot,(b)<a
fixed-point solutions for the overlap and the activity in Fig. <a,(b). Note that both the line where the first weak re-
4. Depending on the value bfthere may be a domain in the triever disappears and the domain ®fwhere the second
values ofa in which there are up to three stable fixed-point weak retriever exists may lie well above the critical capacity
solutions with nonzeran, one for a perfect retriever and the a(b) for the existence of the perfect retriever.
other ones for weaker retrievers. The perfect retriever exists The situation can become more involved for intermediate
up to a criticala¢(b), given by values ofb, shown by the inset in Fig. 5. Around the end-

It turns out that there is a load,(b) for all b, where a
yveak retriever, which may or may not be the only one, ap-
[Sears discontinuously as attains that point. Fob<0.65, it

B. Four-state network
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diagram, each one has to be analyzed separately since they
refer to different levels of training noise, such that one may
correspond to a gapless local field distribution and the other
may not. The AT line is the dash-dotted line shown in Fig. 5,
that starts on the boundary,(b) where the single weak
retriever appears for smalbh and it merges witha,(b)
aroundb=0.8. That retriever is stable to replica-symmetry-
breaking fluctuations above the AT line. The WK un-
stable aroundC and is stable in the stripas(b)<«
<a,(b), whereas the WRis unstable everywhere below
and at the boundarws(b). The left part of the boundary
a4(b) is marginally stable, as well as the boundagyb) for

the perfect retriever.

IV. SUMMARY AND CONCLUDING REMARKS

The principle of adaptation, formulated earlier for a net-
work of binary neurons, has been extended in this work to
study the training and performance of optimally adapted at-
tractor neural networks of multistate neurons trained with
noisy inputs in the presence of a noisy retrieval environment.
Explicit results where obtained for the optimal attractor over-
lap and the optimal dynamical activity as functions of the
0.0 . . retrieval noiseT, the loada, and the threshold, for a net-

0.0 05 1.0 15 work with dilute connectivity. The maximum storage capac-
ity was also obtained as a function bfand T and explicit

FIG. 5. Phase diagram far as a function ob, for Q=4 atT  retriever phase diagrams of performance and associativity of
=0, described in the text. The amplified central part is shown sepathe retrievers are exhibited for a network of three- or four-
rately. The retrievers and the natui@ntinuous or discontinuoys ~ State neurons. These are phase diagramsdifradaptation
of the phase boundaries are as in previous figures. The SR, WRin distinction to phase diagrams for attraction, as pointed out
and WR, coexist in the shaded area of the inset. The de Almeidain Ref. [3]. We remind the reader that, as pointed out by
Thouless line is the dash-dotted line. Wong and Sherrington, coexisting retrievers are solutions for

different networks, which should correspond to distinct syn-
point C of the wedge of discontinuous transitions lines, theaptic interactions.
second weak retriever can be reached continuously from the An important issue of this work concerns the improve-
first one. ment in the associativity of multistate networks, when the

It is interesting to note that, for larde the WR, state has  width b of the intermediate states increases, in the simall
an asymptotic overlap and activitp~1/3 anda~1/9, re-  regime. The enhanced performance of the second retrievers
spectively. These correspond to the storage of binary patternias also been emphasized. This is important because they are
in a network with only the microscopic stat€s=*1/3 be-  optimal retriever solutions on their own, rather than weaker
ing activated. These are, practically, the only states favoregktrieval solutions for the optimal network configuration, if
in the highb regime, since the staté$= =1 can only be- such solutions exisf3]. We have shown that an improve-
come active by means of high local fields which are ex-ment of the performance of the second retriever in the opti-
tremely unlikely in the absence of retrieval noise. Indeed, wemnally adapted network with multistate units can be attained
found that the linexz(b) goes to the critical value,=2 for  with relatively small training noise and large-activity input
the optimal network of binary units with increasingly laige patterns. In practical terms, this may be a more accessible
Thus, as expected, the behavior of the network in the large-situation than training with an infinitesimal amount of noise
limit should become that of the MSN with reduced overlapand almost full activity. Furthermore, we have shown that
and activity. the storage capacity of the second retriever is a nhonmono-

The phase diagram in Fig. 5 also provides the optimatonic function of the threshold with an increasing capacity
basin boundary of attraction, for a givem andb. For b for smallb. With a moderately large threshold, as in the case
=1, say, the strong retriever is a wide retriever fer of b=1 for the three-state network, an increase in retrieval
<aq(b), and a narrow retriever whea(b)<a<a.(b). noise T may help to enlarge the basin of attraction of the
On the other hand, in the interval.(b)<a=<a,(b), the single, strong retriever. This can be understood noting that
weak attractor with higher overlap is a wide retriever, since itthe increase in the noise should aid in overcoming the large
is the only attractor for the self-adapting dynamics in thisgap in the local field in firing the units when the network has
interval. In distinction, in the intervak,(b) <a=<a3(b) that  been trained with a moderate training noise. These are im-
weak retriever is a narrow retriever, that coexists with JWR portant results in the search for improvement of the behavior
if a<a,(b) and with the nonretriever state otherwise. of attractor neural networks.

To discuss the validity of the replica symmetric results The work presented here is restricted, for simplicity, to
note that, whenever two weak retrievers coexist in the phaskinary encoded patterns. On the basis of results we obtained
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for three- or four-state patterns, we argue that this should ngtuctuations, for botlQ=3 andQ=4 and allb. In view of
be a serious restriction. What is important is that the states ghese results, it does not seem worthwhile to pursue a calcu-
the noisy training sefR{*(7)} have the same degrees of free- |ation beyond the replica-symmetry ansatz.
dom as the arbitrary input s¢§(7)} for retrieval. This re- A closer look at our results reveals that although the criti-
quires the introduction of a training activig in the noisy  cal capacitya,, where the strong retriever terminates, de-
inputs, in order to optimize both the training and the adaptacreases faster with increasibdor the four-state than for the
tion process in th&-state network. three-state network, the trend is opposite for the lower and
We have found, in accordance with earlier works, thatupper critical storage rati@l and as, respective|y’ for the
networks are SpeCialiZq:G,?]. Indeed, one cannot attain the presence of a second retriever in the |bw.eg|me This
best storage capacity for &ll and b in a single network. suggests that the role of the threshold could become even
Even ifb is fixed the storage capacity of the strong retrievermore important in optimally adapted high€-state net-
will be that of the MSN only at very lowTl and it will  works. The extended principle of adaptation of the present
become that of the Hopfield model at high work assumes that both the training overlap and the training
All the results were obtained with the assumption of rep-activity become continuously adapted to the noisy retrieval
lica symmetry in the space of synaptic interactions and thenvironment. In particular, the training activity follows the
limit of vaIidity of this assumption has been established ﬁnd-changes in the dynamical activity characteristic of e
ing the de Almeida—Thouless lines,t(b) at T=0 and states of the units, and this makes difficult the study of the
apt(T) for a givenb. These lines coincide with the band- optimally adapted network for gener@l It may be possible
merging lines for the distribution of the local field. Due to to study a weaker version of the extended adaptation prin-
the presence of optimal solutions for small-to-moderatesiple for the graded response network in which the training
training noise, there are gaps in the distribution of the locahctivity remains fixed. This, and other questions, will be con-
fields over sizeable domains of the phase diagram that ar§dered in future work.
not stable to replica-symmetry-breaking fluctuations. Never-
theless, interesting phase boundaries and domains of the
phase diagrams are stable or, at worst, marginally stable,
confirming the validity of our results. Indeed, the enhance- We thank J. F. Fontanari and D. Bolfer critical com-
ment of the linea(b), where the second retriever appearsments, and one of udV.K.T.) thanks the Institute for The-
for small training noise and large activity, both Q=3 and  oretical Physics of the Catholic University of Leuven, Bel-
Q=4, lies on the replica-symmetric side of the AT line. Fur- gium, where part of the work was written, for their kind
thermore, the interesting weak retriever lies completely orhospitality and financial support. The research of one of us
this side. That is also the case for the tricritical point and thW.K.T.) was supported by CNP{Conselho Nacional de
first-order transition lineg,(b), for the three-state network, Desenvolvimento Cierfico e Tecnolgico, Brazi), and the
which at worst becomes marginally stable. Furthermore, th&ork was supported in part by FINEFinanciadora de Estu-
phase diagram fof =T(«) reveals that the liner, of con-  dos e Projetos, Brazil A grant from CNPqg on a neural net-
tinuous transitions is stable to replica-symmetry-breakingvork project is gratefully acknowledged.
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