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Self-consistent chaos and Arnold diffusion in a cyclotron-maser wave-particle system
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In this work, we search for the presence of chaos in a self-consistent model for the cyclotron-
resonance maser accelerator. Two characteristic regimes are identified. If the initial action variable
of the accelerating particles is small, rapid phase bunching occurs and the particle population is
condensed into a single macroparticle in phase space. As a result, this low-dimensional state is
predominantly regular. For larger energies, on the other hand, there is no macroparticle formation.
The system is high dimensional, and chaos is found. Arnold difFusion appears to occur in these
chaotic states.

PACS number(s): 05.45.+b, 41.75.—i

I. INTRODUCTION

A promising conGguration for laser acceleration of
charged particles is the so-called cyclotron-resonance
maser accelerator (CRMA) [1], where a coherent elec-
tromagnetic wave may transfer a large amount of energy
to a beam of electrons gyrating in a guide magnetic Geld.
This large amount of transferred energy takes place be-
cause of the autoresonance mechanism [2—5] whereby an
initial wave-particle synchronism may be self-sustained
throughout the accelerating period.

The good quality of the autoresonance mechanism and
the resulting high eKciency of the CRMA depend on
some conditions that must be observed, two of which
are currently considered of some particular relevance.
One of them demands that the maser wave be disper-
sionless. This is hard to satisfy experimentally because
the presence of waveguide and finite confining systems
always introduce some dispersion in the system. A num-
ber of recent works shows, however, how the problem can
be circumvented. Chen [6], for instance, uses tapered
magnetic Gelds to maintain the resonance that would be
otherwise destroyed by dispersion. Alternatively, Pak-
ter et al. [7] make use of a small mismatch between the
Doppler-shifted cyclotron and wave &equencies to com-
pletely compensate the dispersive effects.

Another condition to be satisfied is that, in an action-
angle representation, the initial action variables of the
electrons be very small. If this is the case, one can show
that the entire beam is rapidly bunched in phase space,
behaving as a single macroparticle [1,7]. The coherent
beam thus formed is afterwards accelerated to the maxi-
mum available electromagnetic energy. Note that in this
case the complete dynamical system would be reduced
to a few degrees of &eedom —those describing the single
macroparticle plus those describing the maser Geld. In
fact, in this case the system turns out to have only one
effective degree of &eedom and therefore is completely
integrable [8]. If, on the other hand, the control over the
injected beam is poor, the low-action condition is unlikely

to be satisGed. Then one will end up with a very inco-
herent beam whose description will require all degrees of
&eedom of the complete system. In view of the effective
multidimensionality, the associated dynamics would be
almost certainly chaotic.

Chaos in CRMA's is a possibility recently investigated
by Pakter et al. [9]. In the model analyzed, the am-
plitude of the maser Geld undergoes externally produced
slow modulations, which induces the appearance of series
of period doubling and inverse saddle-node bifurcations
leading to chaos. Amplitude variations can be easily gen-
erated if the maser wave is modulational unstable, as in
the case of various wave-particle accelerating systems like
the ones found in the magnetosphere of pulsars, for in-
stance [10]. However, it is not clear whether this kind
of process can be indeed self-consistently generated in a
CRMA.

The purpose of this paper is therefore to search for the
presence of self-consistent chaos in CRMA's. In our pro-
cedures, low-energy beams with initially homogeneous
gyrophase distributions are released under the inBuence
of a strong-amplitude maser Geld, and the appropriate
Lyapunov exponents measuring the divergence of the tra-
jectories of the entire dynamical system are examined;
the presence of exponential orbital divergence is taken as
the signature of the existence of chaotic states. It turns
out that we do find chaos in the system. Moreover, un-

like some typical cases of wave-particle systems, we Gnd
that chaotic activity is large not only near the separa-
trix of the system, but also near the elliptic Gxed points.
We finally propose a single low-dimensional model that
comprises some of the basic features observed. Our re-
sults are shown to be related to those recently obtained
by Boozer on Arnold diffusion [11].

The paper is therefore organized as follows. In Sec.
II we introduce the model and the basic equations to be
used; in Sec. III we perform some exploratory simula-
tions; in Sec. IV we search for the presence of positive
Lyapunov exponents; in Sec. V we make use of a low-
dimensional model to explain the results obtained in Sec.
IV, and in Sec. VI we conclude the work.
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II. MODEL AND BASIC EQUATIONS

In the model, we consider an electron beam and a cir-
cularly polarized electromagnetic wave, co-propagating
along the homogeneously magnetized z axis of the cho-
sen reference kame. With the appropriate set of nor-
malizations and canonical transformations (see Pakter et
al. [7] for details), it becomes possible to write down the
complete set of equations governing the self-consistent
dynamics of particles plus maser field in the form

dgI~ = —By,. H,

dye~ = Br, H.,

dip = —O~H)

(1)

(2)

(3)

and

dgo' = OpH&

with j = 1, 2, 3, ..., N, dz = &&, 8 = &, andH
Q. H~, with

Hz = —~I& + 1 + 2&~ + (wIz) 2 + 2/2 I~ Ap cos(P~ + o /N) + Ap. (5)

The quantity N is the number of particles used in the
simulations or, more precisely, the number of macropar-
ticles used in the simulations —we typically take N =
500—and the index j labels the particles. Variables p(t)
and cr(t)/N are, respectively, the time-dependent ampli-
tude and phase of the slowly modulated high-frequency
carrier wave whose normalized vector potential is written
in complete form as

I

in order to guess the good. model. This is true, but as we
shall see, at least for some cases, there are certain basic
dynamical properties of the maser which seem to be more
or less independent of external in8uences such as initia~
conditions and fixed external parameters. We shall make
use of these basic properties in order to study the type
of chaotic dynamics we shall have at hand.

A = QAp( —cos[~(z —t) + cr/N]x

+sin[(u(z —t) + cr/N]y).

The system is dispersionless with (u, w z) standing for
the dimensionless wave &equency and wave vector. Vari-
ables Iz and P~ are, respectively, the action and gy-
rophase (actually the gyrophase as measured relatively
to the wave phase) of the jth particle. Finally, A satisfies
A &( 1 and is proportional to the tenuous particle density
of the system.

We point out that in obtaining Eqs. (1)—(5) we made
use of the assuinption P, ~ (t = 0) = 0, where P, ~ (t = 0)
is the injected (or initial) value of the z component of
the canonical momentum. Although this simplifying con-
dition is inappropriate for laboratory CRMA's, where
P, z(t = 0) is larger [12], we feel that the general re-
sults we are about to obtain here with P = 0 would not
suffer dramatic changes had we used P, g 0 instead.
In any case, cyclotron acceleration is relevant matter
in other systems, like the Earth's or pulsars' magneto-
spheres, where P, (t = 0) is arbitrary.

As can be seen &om the equations above, the dynam-
ical equations for any i particle can be obtained from a
single particle Hamiltonian which depends only on the i
coordinates and on the maser variables,

H, = H;(I, , p;, Ap, a.).

This feature tells us that the interaction among the parti-
cles is exclusively mediated by the maser Geld, i.e., there
is no direct particle-particle interaction. This is rele-
vant information, because the basic aspects of the sys-
tem could be understood if one could somehow obtain a
fairly accurate model for the field. Obtaining the accu-
rate model is, of course, no easy task. In principle one
has to solve the full problem and then look at the field

III. INITIAL SIMULATIONS ON THE PHASE
SPACE

Let us now numerically solve the set (1)—(4). To do
that, let us recall that we shall be injecting monoenergetic
beams with homogeneous gyrophase spreads. In concrete
terms this means Iz(t = 0) = I0 and Pz ——(j /N) 2vr

for j = 1, 2, ..., N. As for the wave, we consider p(t =
0) = po and cr(t = 0) = 0. Our program of study is
to examine the dynamics as a function of Io, we shall
see that the most interesting aspects of the problem do
appear when the initial action is varied. Besides we shall
consider henceforth p0 ——100 and A = 0.01 as these values
correspond to physically relevant settings [7]. Finally we

take Lt) = I/gl + App = 1/~2 it can be shown that
otherwise autoresonance is absent [9].

Before embarking in the simulations let us plot some
particle trajectories of our system on a common I, P
phase space, keeping p and 0 constants. This, of
course, does not represent an actual physical situation
because phase and wave amplitude are not varying self-
consistently. However, this kind of plot provides useful
information in what follows. The plot is shown in Fig.
1. Among other characteristics, two are of relevance:
(i) there exist two elliptic fixed points located at &j& = 0
and P = vr and (ii) particles initially located close to
I = 0, P = vr/2 tend to be lifted almost vertically, gain-
ing therefore a large amount of energy.

If it were not for the finite amount of electromagnetic
energy which causes the electromagnetic field to vary self-
consistently, those particles would be accelerated without
limits this is the autoresonance mechanism (we mention
that the trajectory at P = vr/2 is exactly vertical, point-
ing upwards at any value of I; if tu g 1/gl + Apa no
vertical trajectory is present). As the other limiting ef-
fect on autoresonance, wave dispersion, may be compen-
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FIG. 1. Phase space for fixed wave am-
plitude and wave phase. As in all follow-
ing cases, we take A = 0.01, po ——100, and
cr(t = 0) = 0.

sated with the techniques mentioned in the Introduction,
it shall not be further considered here.

To conclude, - we quote that calculations performed
elsewhere [9] indicate that the gyrofrequency goes to zero
as the autoresonance orbit is approached. In that sense,
the autoresonance can be thus seen as somewhat equiv-
alent to a separatrix orbit as a matter of fact, it sepa-
rates orbits encircling the P = 0 fixed point from those
encircling the P = a fixed point.

A. Bunched states

chaotic, type.
We now examine a snapshot of the particle phase space

at t = 11200 in Fig. 2(a). There, one can clearly see that
despite the fact that the initial di.stribution was homoge-
neously spread along the P axis, the final state is highly
condensed —bunching does indeed occur as we have indi-
cated.

Moreover, Fig. 2(b) indicates that the time series for
the relevant quantities [we plot p(t) vs t] are periodic,
as it should be for a low-dimensional conservative regu-
lar system; wave and macroparticle just keep exchanging
energy in a regular fashion among themselves.

Let us consider Io (( 1 initially. Then use of Hamil-
tonian (5) in the dynamical equations readily shows, as
reported in Pakter et al. [7], that a large 1/~I term dom-
inates the right-hand side of Eq. (4), inducing a fast
bunching process. The bunching process is such that dur-
ing a very short period of time particles are rapidly driven
into a highly condensed state in phase space whose ac-
tions and gyrophases satisfy I~ Io and P~ vr/2. This
bunched group of particles, which can be described in
terms of a single macroparticle, is afterwards accelerated
to the maximum allowed energy provided by the elec-
tromagnetic Geld. The maximum action I attained
by the single macroparticle can be calculated with help
of the constants of motion derived from Eqs. (1)—(4); it
reads I = po, meaning that when bunching is present,
all the available electromagnetic energy can be trans-
ferred to particles. One important remark to be made
here is that the effective number of degrees of &eedom
is presently reduced to two. One degree of &eedom de-
scribes the macroparticle and one degree describes the
maser field. Then, as gyrophases and wave phase always
appear in the form P+ o /N, further reduction of degrees
of &eedom becomes possible, and the entire system ends
up being described only in terms of one degree of &ee-
dom. Thus, as one learns &om nonlinear dynamics, the
accelerating process in this case is of the regular, and not

B. Unbunched states

Let us now turn to the case where Io is comparable
to the unity. The tuning range of cyclotron accelerat-
ing systems is small, so that if one Gxes the initial wave
amplitude as in the former case, Ap(t = 0) = 1, but
considers much larger values of Io, coherent acceleration
should not be expected to occur. This kind of situa-
tion may well represent poorly controlled systems (e.g. ,
the magnetosphere of Earth and pulsars) where a pre-
cise wave-particle resonance like the previous one is very
unlikely. In this case there is no bunching mechanism
and consequently no reduction on the degrees of &ee-
dom. The dynamics is therefore expected to reveal some
complex, or perhaps chaotic characteristics. Let us Grst
plot a snapshot of the phase space, at t = 11200, of a
distribution which initially had Io ——2 (besides being ho-
mogeneous in gyrophase). Then one has a picture like
the one represented in Fig. 3(a). From the picture we
conclude that a bunched distribution is indeed no longer
formed and that; the overall dynamics appears to be ir-
regular.

As the particle distribution ends up by largely spread-
ing itself over the phase space, one expects the wave-
particle energy exchange to be much smaller than in the
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former case (if one particle is gaining energy, one is los-
ing, and so on—this is a manifestation of energy equipar-
tition). This is true, as can be seen Rom Fig. 3(b), where
the time series for p(t) is shown. After some initial tran-
sient where the maser shares its "excess" energy with
the particles, it settles down to an average level close to
p = 60 plus some small Huctuations. We believe that this
is a typical asymptotic state in the case Io O(l).

From the figure one can see that the time scales of
the small Buctuations are roughly distributed between a
longest, T~, and a shortest, T„scale. Moreover, one has
approximately T~ 5000 and T, /T~ 0.1.

Both scales have been compared with &equencies of
typical orbits and we have arrived at the following con-
clusions. The longest scale is dictated by the remaining
wave-particle energy exchange involving particles which
move with very small &equencies on the phase space.
Those particles are the ones describing the outermost or-
bits of Fig. 3(a). The frequencies are small because these

outermost orbits are very close to autoresonance. From
Fig. 1 it is indeed possible to see that the closer an orbit
is to autoresonance, the larger is its range.

The shortest scale, on the other hand, comes &om the
wave-particle interaction involving the bulk of the parti-
cle distribution. Particles in the bulk are closer to the
elliptic fixed points and describe higher-&equency orbits.

The Huctuational effect is real and not a mere conse-
quence of the graininess introduced by the finite number
of macroparticles used in the simulations. Runs were
performed with N = 1000 and N = 1500 and the results
obtained were identical to the ones presented here.

IV. CHAOTIC AND REGULAR STATES

A. Global chaotic and nonchaotic states

To search for the presence of chaotic states, we adopt
the following procedure. Along with the original par-
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FIG. 2. Self-consistent bunched particle

distribution obtained for Is ——0.001 in (a).
The corresponding p(t) time series in (b).
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ticle distribution which self-consistently interacts with
the maser field, we launch a second distribution with the
same number of particles as the original. This second dis-
tribution is acted upon by the maser Geld exactly as the
original, but does not react back upon the field. In other
words, this second distribution is a test distribution. Par-
ticles of the second distribution (which we denote hence-
forth as the primed distribution) have their initial actions
and gyrophases located very close to those of the origi-
nal distribution according to the rule I' = I~(1+ h) and
P' = Pz(1+ 8), j = 1, 2, ..., N, where b is a small number,
typically h 10 ie. Then, we introduce function L(t)
defined by

L(t) = ln

Whenever function I behaves as straight line, this is con-
sidered as signaling the presence of exponentially diverg-
ing trajectories and, consequently, of chaos [8]. Indeed,
the linear coefBcient of the straight line is formally con-
sidered to be the Lyapunov coefficient (pL, ) of the origi-
nal, or unprimed, orbit.

In Fig. 4 we simultaneously plot three L [normalized
to L (t = 0)] curves for the three cases so far studied: (a)
the self-consistent unbunched case, Ie ——2 O(1); (b)
the self-consistent bunched case, Ie ——0.001 (( 1; (c) and
the case where wave amplitude and phase are artificially
kept constant, the one represented in Fig. 1. Function
L(t) behaves as a straight line with positive slope only
in the first case. In the second case only a very weak
orbital divergence, if any, takes place, and in the last
case the behavior is definitely logarithmiclike. Following
Lichtenberg and Lieberman [8], we point out that this
logarithmic behavior is quite typical of multidimensional
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FIG. 4. Normalized orbital divergence
L(t). Self-consistent, unbunched case
(Ip = 2) in (a); self-consistent, bunched
case (Ip ——0.001) in (b); fixed (non-self-
consistent) wave witll Ip = 2 in (c).
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integrable systems. One can also observe the formation
of a plateau, in curve (a), refiecting the size scale of the
phase space.

Only the first case can be safely said to develop chaos.
We have also performed the numerical computation of
the I.yapunov coefBcient for this chaotic case, according
to a known renormalization technique [8,13]. The value
thus obtained is pL, 7.0 x 10,which agrees with curve
(a) of Fig. (4).

The maser wave is also a dynamical entity of the sys-
tem and its corresponding dynamical variables, ampli-
tude and phase, should have also been included in the
summation defining function L(t). We did that and
found no significant difference in the results as compared
to the ones obtained with the procedures adopted here.
This does not disagree with the fact that the maser is
not really an independent entity; explicit maser dynam-
ics can be actually removed from the set (1)—(4) through
a canonical transformation. To conclude, function L, de-
fined as it was, seems to be a satisfactory quantity to
measure the presence of chaotic activity.

B. Localizing chaos

Given that chaos is present in the system, we now
wish to determine in which regions of phase space it is
stronger. The interest behind this question is the fol-
lowing. If we were considering a typical wave-particle
system, chaos would be stronger near the regions where
the particles gyrate with the smallest kequencies. Spe-
cializing to our case, chaotic activity would be intimately
attached to the outermost orbits of Fig. 3—once more we
recall that those are close orbits to autoresonance, mov-
ing therefore with the smallest gyroh. equencies. Also,
if the picture were valid, chaos would gradually reduce
as the elliptic points were approached. The question is
then: Is this typical distribution of chaotic orbits the one
present in our system? We shall see that the answer is
negative.

To perform the investigation, we introduce a quantity
L~(t) that shall be seen as measuring a local Lyapunov
coefficient. It is defined similarly as L(t) in the form

N'

(8)

where I~,+, ——I~+, (1 + b) initially, with P' defined like-
wise. What this kind of function really does is just to
measure an averaged exponential divergence around the
orbit described by the "real" particle label j. We choose
N' small with respect to N but large with respect to
unity. We typically take 2N'/N 0.1.

Recalling that N = 500, let us then plot, in Fig. 5,
function L~ for four representative cases: j = 1, j = 65,
j = 125, and j = 150. The first case corresponds to
initial gyrophases near (t) = 0, the second to P = vr/4, the
third to P = vr/2, and the last to P = Sir/5. Chaos is
larger for j = 150 and j = 65, and smaller in the other

I

two cases.
Particles in the neighborhood of j = 150 are those

occupying the outermost orbits shown in Fig. 3. They
would not follow these very open orbits undergoing the
associated large acceleration if the wave were kept con-
stant. What happens, however, is that the complicated
nonlinear wave-particle interaction and the associated
self-consistent variation of amplitude and phase of the
maser displace the particles towards that special loca-
tion during the very initial stages of the dynamics. This
is what we have observed individually accompanying the
orbit of the j = 150 particle. The same complicated non-
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gence L~(t) for Io ——2.
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linear wave-particle interaction removes the j = 125 par-
ticle &om its originally autoresonant position, pushing it
into the bulk of the particle distribution —we point out
that the resulting action excursion of the j = 125 par-
ticle, when the wave self-consistently varies, is smaller
than the action excursion of the j = 150 particle, for
instance. In any case, the orbital period T „b of parti-
cles presenting those large-action excursions is very large
compared with the shortest period of the wave Quctua-
tions, T, ; one has T „b )) T, . This kind of dynamics thus
contains all the aspects of separatrix chaos. In particu-
lar, as known &om theories describing separatrix chaos
[8], the great disparity of time scales represented by the
inequality above reduces the distance between neighbor-
ing resonances, guaranteeing the presence of resonance
overlap and chaos even for the very small amplitude of
the Quctuations we observe in the simulations.

Some words are necessary before continuing the inves-
tigation. Note that resonance overlap can be obtained
for arbitrarily small amplitude Quctuations not only if
T b is much larger than some typical time scale of the
Quctuations. If T b is much smaller than typical time
scales and if the Quctuations are nonharmonic enough,
resonance overlap conditions are again met. The reason-
ing leading to this conclusion has been developed in Ref.
[11] and is just about the same used to explain separa-
trix chaos. This issue shall be further analyzed in the
next section. Here we state the basic results: if T „b is
much larger than typical time scales of the Quctuations,
harmonics of the orbital frequency are temporally in res-
onance with the basic wave frequency (this is separatrix
chaos), while if T b is much smaller than the typical
scales, harmonics of the wave frequency (if the wave is
sufficiently nonharmonic) are in resonance with the ba-
sic orbital &equency. Thus, in the present case one can
expect some relatively intense chaotic activity not only
when T b )) T„as in the previous case, but also when
T b ((Tj.

Given these facts, let us then carry on our study. As

one penetrates into the bulk with smaller values of j (j =
125), chaos diminishes. This happens because for this
region of the bulk, T „b appears to be neither sufficiently
larger than T, nor sufficiently smaller than T~, such that
resonance overlap could be as intense as in the former
case. Note that chaos is not completely absent; it is only
noticeably smaller than previously.

Proceeding further to smaller values of j (j = 65) la-

beling particles which are nearer the elliptic points, one
arrives at a situation for which chaos is stronger, again.
In that case, one has T „b (& T~ and chaos is indeed ex-
pected to become relatively strong again. Chaotic activ-
ity is not typically present at positions close to elliptic
fixed points, but here it is as strong as at those positions
closer to the separatrix. We emphasize again that its oc-
currence can be explained in terms of the great disparity
between the scales of the relevant &equencies; resonance
overlap conditions are again met and chaotic activity is
observable once more.

Finally, when one is extremely close to the elliptic fixed
point chaos diminishes again. This feature is explainable
on basis of the prevailing stability of the elliptic Qxed
point [11,14]. In what follows, by "near" the elliptic
points we actually mean not so near that the particles
would be captured within its very short stability range.

Note that although chaos is inhomogeneously dis-
tributed over the phase space, it is never really absent.
We have identified some predominant time scales in the
simulations and have used these time scales to explain
why chaos is stronger in some regions than in others.
The actual maser wave is, however, completely aperiodic
and contains larger and smaller scales than the ones we

pointed out. In other words, one can say that each par-
ticle is actually submitted to the action of an aperiodic
drive. Accepting this fact, one can then make use of fur-
ther results obtained in Ref. [11],which state that if a sin-

gle action-angle pair of variables interacts with an aperi-
odic perturbation, no Kolmogorov-Arnold-Moser (KAM)
surfaces are formed and chaos, along with &ee unbounded
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stochastic diffusion, develops everywhere. Rigorously
speaking, although the d.istribution of chaotic orbits is
not homogeneous, this ubiquity of chaos is what we have
observed.

process. The point is that if the driving force acting
on the particles contains a suKcient amount of nonhar-
monicity, chaos, and presumably chaotic diffusion, may
be present near elliptic points (i.e. , for relatively small
values of T s), even for the very small perturbing ampli-
tudes like the ones obtained. in the present simulations.
Rigorously speaking, Boozer shows that the threshold
for resonance overlap vanishes if the perturbing signal
is aperiodic. In the calculations Boozer represents the
aperiodic signal as a periodic one whose period tends to
infinity. Using continuity, one is then lead to conclude
that if the period is Rnite but large, as TI in our case,
the threshold for resonance overlap is still very small for
orbits satisfying T „b « T~ and chaos with small perturb-
ing amplitudes can easily occur. As discussed before we
emphasize that inspection of Fig. 3(b) reveals that larger
periods than T~ may be present in our wave spectrum-
&om this perspective one can say that one has in fact

V. ARNOLD DIFFUSION
AND LOW-DIMENSIONAL MODEL
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Let us recall some points analyzed so far. Chaos is
present on the entire phase space. In particular, one ob-
serves relatively strong chaos in regions such that T
T, « T~. This is not typical of wave-particle systems
where strong chaos is mostly concentrated at the separa-
trix, with the orbital periods satisfying T „p TI )) T, .
As mentioned, in our particular case this last condition
would constrain chaos to the vicinity of the autoresonant
orbits.

Now, as mentioned earlier, Boozer [11] recognizes
chaotic activity for T b « TI as an Arnold diffusion
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an aperiodic signal. However, for periods longer than
T~ the spectral amplitude is small. This is the circum-
stance that made us focus on orbital periods satisfying
T p (( Tl, where strongest chaotic activity is expected.

We shall not explicitly calculate the diffusion coeFi-
cients of the system, but Fig. 6 clearly indicates that
diffusion is indeed present. Figure 6(a) is a periodic plot
of 30 selected particles (out of the 500 particles used in
the simulations) on phase space up to t = 3.5 x 104 and
Fig. 6(b) is the same kind of plot up to t = 5 x 10s.
These plots, constructed on basis of the exact govern-
ing Eqs. (1)—(4), can be compared with similar pictures
obtainable &om a model encompassing the basic charac-
teristics detected.

To build up the model we recall that both phase and
amplitude of the wave consist of an average component
plus a small Huctuation whose longest time scale re-
sults &om the interaction with autoresonant particles and

ponadel (t) = const

and

if nT & t & (n+ ,')T—
if (n+ 2)T ( t ( (n+ 1)T, (10)

where n = 1, 2, 3, ... and e && 1. Period T is chosen to
re6ect the actual numerical results. In his analytical cal-
culations, Boozer takes the limit T ~ oo to represent an
aperiodic signal as the limit of a periodic one. In the
simulations, we model the aperiodicity taking T to be

whose shortest time scale comes &om the interaction with
the bulk of the particles distribution. Besides, several
numerical simulations have revealed that the wave phase
dynamics seems to be more important than amplitude
dynamics if one is speaking about chaos. Therefore we
choose the following form for our varying maser 6eld:
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very large, comparable to the longest period —in prac-
tice this means T 5000. This should sufBce to study
chaos near the elliptic points where the periods satisfy
T P+ T~)fzgpg j~ 10. The sharp edges of o ~odist as a func-
tion of time provide the shortest time scales which in
turn result in the nonharmonic character for the variable.
As remarkably found out by Boozer [11], it is precisely
the presence of the nonharmonicity in the wave spectrum
that is responsible for the profusion of resonance overlaps
near elliptic points. In more informal words, for such long
periods and high degrees of nonharmonicity, the elliptic
points efFectively see the signal as an aperiodic one and
we can have hope to detect Arnold difFusion developing.

On the other hand, if one had a perturbation with few
relevant harmonics only, chaotic activity near the elliptic
points would be much smaller, or even absent for the
low values of e we made use of (we have observed that
the actual wave phase fluctuations are well represented

by e = 0.01). We illustrate this feature, before starting
with the study of the kicked model (10), in Fig. 7. In this
figure we compare an expanded version of Fig. 6(b) along
the I axis, so that one can see the separatrix orbits more
clearly [Fig. 7(a)], with the phase space obtained when
the maser phase is modeled by a simply harmonically
varying cr, o = e sin[2m(t/5000)] [Fig. 7(b)]. Separatrix
chaos is seen in both cases, but only in the 6rst does
chaos extend to innermost regions of phase space; in the
second case the phase space becomes essentially regular
as one moves towards the elliptic points, which does not
agree with the results of the self-consistent simulations.

Then, we finally make use of the nonharmonic model
(10) to study diffusion in Fig. 8, where the time limits
used are the saine as the ones of Fig. 6, i.e. , in Fig. 8(a)
the computer run is performed until t = 3.5 x 104 and in
Fig. 8(b) until t = 5 x 10s.

By comparing Figs. 8(a) and 8(b), one notices that

20.0

3 5.0

i o.o—

5.0

0.0
-m/2

20.0

15.0

I 100—

5.0

0.0
-x/2

~ P~e~
I A

\ ~ ~I

Yjp

1

I

0

I 7
C

~ $ ~ Qe ~ '

~ 's&

4 I
'~l ', ~ A

v I)1

. ~ '
~ ~ ~ .

,'4

r. , ', .~

t.,+p, ~ @,s

rA

0

I

vt/2

I

n/2

't

~ 4

4

~ ~

i ~

~ ~

t
i ~ '. ,' 1

t ' ~

I

3z/2

3n/2

FIG. 8. The same as in Fig. 6, now ob-
tained with the nonharmonic model. The pe-
riod is T = 5000.



52 SELF-CONSISTENT CHAOS AND ARNOLD DIFFUSION IN A. . . 4803

diffusion is indeed present. Moreover, the sudden orbital
regularization, as ones gets very close to the elliptic point,
can be also appreciated. Note that the modeled wave,
although completely regular, appears to well reproduce
the simulation results; the nonharmonic character of the
model sufEces to generate the type of chaos observed.

A question could be raised concerning the accuracy of
the use of a driver model with discontinuous derivatives
in a set of continuous differential equations. We point
out, however, that there is no such problem because the
derivatives of the driver are never calculated —only the
derivatives of particle variables are necessary. An ad-
ditional test to check out the validity of the numerical
procedures is to represent the periodic step in terms of
its analytical trigonometric Fourier series. We did that,
gradually increasing the number N of terms in the series
to see that while for N 1 chaos is far &om the ellip-
tic point [this would be similar to the result presented in
Fig. 7(b), for N » 1 (we took N = 1000) chaos extends
to the innermost regions of the phase space, just as in
the case of the step driver whose related phase space is
represented in Fig. 8.

VI. FINAL REMARKS

In this paper we have studied the nonlinear dynam-
ics of a cyclotron-maser accelerator as a function of the

initial beam action Ip. It is found that while for Ip Q( 1
bunching mechanisms regularize the overall dynamics, for
Ip 1 the dynamics is essentially chaotic.

In the latter case, we have localized the strongest
chaotic regions on the appropriate phase space. Chaos
is found to be located not only close to the autoreso-
nance corresponding to the separatrix motion, but also
near the elliptic Gxed points, which are not typical lo-
cations for chaotic activity. This latter feature can be
understood on basis of the great disparity between the
orbital period and the longest time scale of the maser
Geld Buctuations; as in the separatrix case, it is possi-
ble to show that this disparity dramatically reduces the
threshold for resonance overlap [11].
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