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Thermodynamics in the vicinity of a criticai end point is studied. Phenomenologicai arguments are 
used to show the presence of further criticai nonanaiyticities beyond the leading-order singularities 
found in papers I and 11. These contributions are related to the universal correction-to-scaling features 
of the bulk thermodynamics on the criticai Á line. The predictions are checked on exactly soluble 
sphericai models with short- and long-range interactions. 

I. INTRODUCTION 

Papers I and 11 of this series of papers1•2 are concerned 
with phase boundaries in the vicinity of a criticai end 
point. The basic phase diagram (see Fig. 2 of I) arises 
in a thermodynamic space of three fields (g, T, h) where 
T is temperature, h is the ordering field, and g is the 
nonordering field. These fields can be, for example, the 
pressure, the magnetic field, or the chemical potential. In 
outline the phase diagram is as follows. For low values 
of g, only the noncritical spectator phase, a, is present. 
This phase appears whenever g is small. Increasing g, one 
finds a manifold u, given by Uu(T, h) on which various 
phases coexist. On this manifold one has the following 
picture. For h = O and low T, the phases a, p, and 1 
coexist on a triple line, r. For h 'I O, the phase a coexists 
either with and f]( h > O) or with !(h< 0), while, for high 
T, a coexists with the single disordered phase fJI· 

Increasing T along r, one finds a point, T = Te, g = Ue, 
h = O, where the triple line ends. This is the criticai end 
point, at which the phases P and 1 become mutually 
criticai. This point is also the end of a criticai À line, 
T = T" (g) in the h = O manifold. This line separates the 
P + 1 phase ( we will use this notation for the coexistence 
of the phases P and 1) from the P! phase above the 
manifold u, i.e., g > Uu(T, h). The À line also bounds the 
coexistence manifold p on which both P and 1 coexist for 
T < Tc(g). 

In I, the question addressed was: what sort of singular­
ities should be observed near the criticai end point in the 
function Yu(T, h) which specifies the phase boundary u? 
Using phenomenological and thermodynamic arguments 
it was suggested that Uu(T, h) should display character­
istic nonanalyticities at the criticai end point controlled 
by the bulk criticai properties of the P, 1, and P1 phases 
on the criticai À line.1 •3 •4 If one puts 

, T-Te 
t = ----n;- (1.1) 

45 

with To being a convenient reference temperature, it is 
found 

Uu(T,h) =ue + ud- X± I i 12-a -Y± I i 1,81 h I 
-~ Z± I i 1--y h2 + tlg(T, h) (1.2) 

when h -> O and i -> O. Here one has Y+ = O, while5 

a, f], and 1 are the (universal) criticai exponents related 
to the À-line singularities and tlg contains singular terms 
of O(h3 ) and regular ones of O(h2). It was then demon­
strated that various dimensionless ratios formed from the 
amplitudes X±, Y±, and Z± should be universal and re­
lated to the bulk À line amplitude ratios by 

X+ _A+ 
x_- A_ ' 

z+ c+ 
z_ =c_ ' 
~ _ x+z+ 
.::.1 = y-= = 
~ X+Y/ 
.::.2 = y6+l = 

(2- a)(l- a)B2 ' 

tl6 A+B: 
(2- a)Hl(l- a)B6+1 ' 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

where A±, C±, B, and Bc are the amplitudes for specific 
heat, susceptibility, spontaneous order parameter, and 
order parameter at criticality, respectively. Numerical 
values for the spherical and Ising models were presented. 

The arguments in I were not rigorous. They assume 
that no new type of criticality arises at the end point 
and they ignore the droplet fluctuations that might in­
duce such changes.4 One should note that droplet fluc­
tuations lead to singularities in the free energy as the 
phase boundary u is approached.4 •6 In view of this, there 
is a useful check on the predictions of (1.3)-(1.6) on 
specific models. With this purpose, 2 the free energy 
of a d-dimensional lattice with N sites occupied by n­
component spins S; with i = 1, ... , N was considered 
following Sarbach and Fisher,7 •8 in the thermodynamic 
N -> oo and spherical model n -> oo limits, the free 
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energy per spin is given by 

F(T, D, h)= min{ !kBT[:Fd(()- (Id(()] 
m2 

+W(m2)- hm}, (1.7) 

where the spherical fields ( is determined by the con­
straint and minimization equations [see Eqs. 11(2.8) and 
(2.9), i.e., Eqs. (2.8) and (2.9) in of 11], while 

W -lD +lU 2 Iy 3 - 2 m2 4 m2 + 6 m2, (1.8) 

where D plays the role of nonordering field. In order to 
realize tricriticaiity and criticai end points one must have 
U < O and V > O. In addition one has h =I h I, whiie 
m =< S > and m 2 =< 8 2 > are the spherical modei 
averages and the the functions of ( are defined in the 
integrais 

f d ddk ' ' 
.'Fd(() = a (21r)d In{[(+ J(k)- J(0)]/27rkBT}, 

(1.9) 

(1.10) 

Here ais the lattice spacing and i(k) is the Fourier trans­
form of the interaction J(R) that can be short ranged 
(u = 2) or Iong ranged with J(R)....., 1/Rd+u(u < 2) as 
R --+ oo. Specifically it was assumed that J(k) has an 
expansion about a unique maximum at k = O given by 
Eq. 11(2.5). 

lt was shown that this model, studied in the tricrit­
icai regime by Sarbach and Fisher,7•9 dispiays, for ali 
dimensionaiities, a criticalline that ends at a criticai end 
point for an appropriate choice of the parameters in the 
Hamiltonian. In particular it was shown, in the nonclas­
sicai regime specified by d_ < d < d+ where d_ = u, 
d+ = 2u, that the end point is present for do > d > d_, 
where do = ~u, for any value of the parameters and for 
d+ > d > d0 when U is not too small. In these cases, 
the f3 + 1 to /31 criticai behavior specified by the criticai 
exponents o:,/,/3, and 6 and amplitudes C±, A±, B, and 
Bc were computed and the phase boundary u given by 
(1.1) and (1.2) was obtained. lt was expiicitiy proved to 
h ave universal amplitude ratios as in (1.3)-(1.6). 

For the borderline d = d+ case the spherical model 
free energy contains confluent logarithms that diverge on 
the criticai À line. We analyze this special case fully in 
Appendix A. 

For d > d+ the spherical model exhibits classicai crit­
icai behavior in Ieading order .8 But, nonclassical correc­
tions to scaling also appear. In view of this, one may ask 
if such corrections will generate singuiarities on the phase 
boundary near the end point. The aim of this paper is 
to investigate this question using the following strategy. 
First, we will note, as usual,10 correction-to-scaling am­
plitudes related to the susceptibility, the specific heat, 
and the magnetization near the criticai À line, as well as, 
the magnetization at T = Tc(g). Then, using pure ther­
modynamic arguments, 1 we will suggest that, besides the 
leading-order singuiarities shown in Eq. (1.2), the phase 

TABLE I. Comparison between theoretical values for the 
exponent 8 and amplitude ratios for n (number of compo­
nents) = 1, 2, 3. These values were extracted from Refs. 
14-18. 

n 8 a da~ ac/a~ 

1 0.496 ± 0.005 0.64 8.6 ± 0.2 
0.492 ± 0.02 0.64 ± 0.05 8.5 ± 0.9 

0.7 ± 0.03 

2 0.524 ± 0.004 0.615 ± 0.005 5.95 ± 0.15 
0.522 ± 0.018 0.6 ± 0.04 5.9 ± 0.5 

0.6 ± 0.1 

3 0.5501± 0.0003 0.6 ± 0.01 4.6 
0.550 ± 0.016 0.59 ± 0.06 4.6 ± 0.05 

boundary exhibits further ones involving higher powers 
of i which are related to the criticai singularities by uni­
versal amplitude ratios. Such behavior will be especially 
relevant as soon as o:, f3, o r 'Y approach integer values o r, if 
the leading amplitudes become too small or vanish. This 
is the case, for example, for the classical regime of the 
spherical model where the only singularities arise from 
the correction-to-scaling terms. In this case we explicitly 
check our predictions. 

In outline the remainder of this paper is as follows. In 
Sec. 11 we analyze correction-to-scaling confluent singu­
larities for thermodynamic functions, obtaining universal 
amplitude ratios. An appropriate extension of our early 
classical arguments11 for determining phase boundaries 
by matching free energies of distinct phases is assessed 
in Sec. III. A complete study for the classical regime of 
the spherical model is performed in Sec. IV where we 
also obtain the singular behavior ofthe phase boundaries, 
closely following 11.2 Section V summarizes the conclu­
sions briefly. 

11. CORRECTIONS TO SCALING 
AND CRITICALITY 

Some years ago, it was realized both theoretically10 

and experimentally12 that, in order to analyze data not 
very close to the criticai point, corrections to scaling 
should be included. It is generally accepted that a phys­
ical quantity /; should be written as13 

TABLE li. Comparison between theoretical calculations 
for correction amplitude ratios. The calculations were per­
formed with a renormalization-group approach in d = 3 di­
mensions (BBMN, Ref. 19), and in d = 4- f (assumed f= 1) 
expansion by Chang and Houghton (CH, Ref. 21) and Nicoll 
and Albright (NA, Refs. 20 and 22). 

a~fa-; a~/a; am/at 
(BBMN) 0.96 ± 0.25 0.315 ± 0.013 0.90 ± 0.21 

(CH) 1.0 0.23 1.16 
(NA) 2.54 0.32 0.5 
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TABLE III. Comparison between theoretical (Refs. 19-22) and experimental estimates of some 
universal correction-to-scaling amplitude ratios. 

n 

Theoretical 1 
3 

Experimental 
SF6 (Ref. 23) 1 
Ar (Ref. 24) 1 

1.12 ± 0.29 
1 

1.10 ± 0.25 
0.333 

0.90 ± 0.21 
0.6 

0.7 
0.15 ± 0.04 

0.29 ± 0.08 
0.35 

C02 (Refs. 25 and 26) 1 1.4 0.58 
He3 (Refs. 26 and 27 ) 1 
Xe (Refs. 23, 26, and 28) 1 
He4 (Ref. 26) 1 
Ni (Ref. 29) 3 
EuO (Ref. 30) 3 
Pd3Fe (Ref. 31) 3 

(2.1) 

where l = (T-T>.)/T>. is the reduced criticai temperature 
T>., Ài is the criticai exponent, while ai and e describe 
the leading nonanalytic correction to scaling. 

In practice analytic terms varying as l, i2, ... , must also 
be included in the correction factor. 

lt is well known that the criticai exponents Ài and the 
dimensionless ratios involving leading amplitudes Ai are 
universal quantities. It has been suggested some time 
ago that ratios among the correction amplitudes ai are 
universa1. 10 Since then, many studies have been made to 
test this theory. A complete review in this sense can be 
found in Ref. 14 and summarized in Tables I, 11, and 111. 

111. THERMODYNAMICS AND UNIVERSALITY 

A. Corrections to scaling near the criticalline 

To characterize the behavior near the criticai À line in 
the space (T, g, h), using general scaling arguments, we 
postulate, following I, that the Gibbs free energy can be 
decomposed as 

G±(g,T,h) = Go(g,T,h) 

I -~2-a ( Uh I - (J -Q t W± lila ,U4 tl .. .) ' 
(3.1) 

where + (-) means disordered ( ordered) phase and where 
the ellipsis means higher-order corrections to scaling with 
exponents 8s ,(Js, · · · . The first term, G0 (g, T, h), repre­
sents an analytic background, and, the second, a singular 
term given in terms of two scaling fields 

(3.2) 

where T = T>.(g) locates the criticai À line while, Te the 
end-point temperature, serves as a reference tempera­
ture, and the "~" symbol entails T-+ T>.(g), and h-+ O. 
The functions l and h are presumed to be smooth func­
tions of T, g, and h. In (3.1) a is the specific heat ex­
ponent, ~ is the gap exponent, and e is leading-order 

0.42 ± 0.02 0.46 
1.4 1.5 

0.59 
0.29 
0.03 
0.37 

correction-to-scaling exponent, Q, U, U4, and Us are 
smooth functions of g, T, and h, and the scaling func­
tion 

W~(y, z):: W±(Y, z, O, O, ... ) (3.3) 

is well defined. For simplicity, it will be normalized by 
W +(O, O) :: 1. The two branches of this function must 
satisfy matching conditions as y -+ ±oo and z -+ O which 
ensures the analyticity and consequently we should have 

W~(y, z) ~I y 1(2-a)/a W±( Woohllfa' .. . ) 

~I y 1(2-a)fa Woo(1 + Woohllfa + .. ·), (3.4) 

where the ellipsis includes higher-order contributions in 
i and h, while 

u4 dWI / Woo = uatll dx o Woo. (3.5) 

In a standard way we can define various thermody­
namic functions, namely, the specific heat at a constant 
field above and below T>.(g), 

c_(g, T) ~ T; 1 A±(u) I i l-a (1 +a± I i 19 + .. ·), 
(3.6) 

the spontaneous order parameter 

Mo(g, T) ~ B(g) liiP (1 + b I i 19 + · · -), 

{3 = 2- O'-~ ' (3.7) 

the criticai isotherm at T = Tc(g) 

~M = M(g, Te, h)- Mc(g) 

~ ±Bc(g) I h 1116 (1 + bch9 fa + · · ·), (3.8) 

and the susceptibility above and below Tc(U) 

x(u, T) ~ C±(u) I fi-r (1 +c± lll9 + · · ·) (3.9) 

From (3.1) and (3.4), the leading-order amplitudes 
A±,C±,B, and Bc are given in terms of W±(y,···) by 
Eqs. 1(3.8) and (3.9) while the correction-to-scaling am­
plitudes are found from 
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(2- a+ 0)(1- a+ O) dW± / 
a±= U4 (2 _ a)(1 _a) ~ (0, O) W±(O, 0), 

(3.10) 

Then we can introduce various dimensionless ratios of correction-to-scaling amplitudes. The following are convenient 
as seen in Sec. 11: 

a+_ dW+ I dW_ c+ d3 W+ d2W_ I d3 W_ d2W+ 
-;;::-~ ~' Z = dy2dz dij2 dy2dz d;i2' 

a± (2- a+ 0)(1- a+ O) dW± d2W± I d3 W± 
C± = (2- a)(1- a) ~ (0, O) dij2 (0, O) W±(O, O) dy2dz' (3.11) 

b d2W± d2W± I dW d3 W± - = -d d (0, O) -d 2 (0, O) -d (0, O) -d 2d (0, 0). 
C± y z y y y z 

Note that, since they only depend on W± and its 
derivatives, they are universal quantities. This is in 
agreement with Aharony and Ahlers19 who pointed out 
that such ratios should be universal. One can also note 
that the mixed amplitude ratio 

E>5 = (A+)9//36 ~ 
c+ a+c+ (3.12) 

should equally be universal. Of course, one could 
build additional amplitude ratios, involving higher-order 
derivatives, as well as other combinations of criticai am­
plitudes and correction-to-scaling amplitudes, but since 
we want to apply these to the spherical model, we will 
focus on (3.10)-(3.12). 

B. Phase Boundary 

Following earlier assumptions in I and before, 1•3 we will 
assume that the noncritical a phase can be described by 
an analytical free energy G2(T, g, h) throughout the space 
of parameters except, perhaps, on the phase boundary u 
given by Yu(T, h), and, more particularly, near the end 
point T = Te and h = O. Following thermodynamic 
arguments of Gibbs3 we can derive the phase boundary 
simply by equating Ga = Gp-y. Although the droplet pic­
ture does not enable us to assume analytical continuation 
of the free energies Ga and Gp-y beyond the boundary u, 
as pointed out in I, the equality holds for continuity.6 

Near the end point one can expand Go: as we did in 
Eq. 1(4.1), obtaining 

Ga(g,T,h) = Ge + G'{t!.g + G2i + G3h + ... , 
(3.13) 

on and below Yu(T,h) where 

t!.g = g - Ye and i= (T- Te)/Te (3.14) 

Now simply equating (3.13) and (3.1), the phase 
boundary without neglecting the leading correction to 
scaling yields the phase boundary in the form 

Yu(T, h)= Yo(T, h) 

( 1 -,2-o: ( Uh -9 ) -R r, h) t w± 1 n~ ,u4t . 

(3.15) 

Here we are not including higher-order correction-to­
scaling terms that should come with exponents Õ5 , Õ6 , ... 

[ not the same of Eq. (3.1)]. We also have 

R(T,h) = Q[g";T, h]j(D1 + D~i + v;h + · · ·) 
(3.16) 

in which D~, D~, D~, R1 , R2 , etc., are given by expansions 
of Go, Q, U, h, and i in powers of h, t!.g, and i [see Eqs. 
I( 4.4)-( 4.8)]. 

C. Coexistence line 

Let us now examine g11 (T, h), in some particular cases. 
First, consider the h= O surface. Then, when i-> O, Eq. 
(3.15) gives 

Yu(T)- Yo(T) ~ Ye + g1i +···-X± I i 12-a 

X [1 + X±i9 +o I i 11-o:]' (3.17) 

where the ellipsis denotes higher-order analytic terms, a 
is the specific heat exponent, and O is the correction-to­
scaling exponent given by Eq. (3.1) if we assume O < 1 
and (} < 1- a. Even though these assumptions are not 
always truc, they cover the cases for which the correction 
to scaling is relevant. 

In this case, the leading-order amplitudes X± are given 
by Eqs. (5.3)-(5.5) in I, namely, 

X± = R. I eo 12-o: W±(O, O) (3.18) 

with Re = R(T = T., h= O) and the geometric factor 

e 1=1-v -( dgu) 
v- - dT e 

( dTA) 
dg e 

(3.19) 

while 
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:Z:± = u4 I eo 18 d'::i (0, O) I W±(O, 0). (3.20) 

One may note that Eq. (3.17) confirms, as we stressed in 
I, that the singularity on the phase boundary is mainly 
due to the critical-line singularity. 

It is clear that besides the universal relation (1.3) we 
now also have 

:z:+ = a+ 
:z;_ a_ 

(3.21) 

which is determined purely by the bulk behavior on the 
criticalline. Note that the factor e0 in Eq. (3.20) drops 
out ofthe ratio :z:+f:z:_. In Tables I and 11 we listed some 
values for these ratios for the d = 3 Ising model. 

D. Small flelds 

For a small field above Te the phase boundary is given 
by 

Ua(T, h)- Yo(T, h) 

~ Y± I h 11 i lfj (1 + Y± I i 18 + .. ·) 
-!Z±h2i- 7 (1 + Z± I i 18 + .. ·) + O(h4 ), (3.22) 

where Y+ = Y+ = O, by analyticity of G+ in h through 
h = O, while f3 and -y are the magnetization and suscepti­
bility exponents, y_ = Y and Z± are given in Eqs. I(5.8) 

where we have supposed 9 < -y, which, since -y ~ 1, is 
certainly satisfied if 8 < 1. Here Yc is given by [Eq. 
1(5.14)) and 

(3.27) 

where Ü4e = Ü4(T =Te, g = Ue, h= 0). 
In addition to the previous expression for 82 in (1.6) 

we have that 

Bs :: (X+) 9ffj6 -.!!L_ 
z+ :z:+z+ 

= ( A )9/{U 
(2- a)(t- a)C+ 

(1- a+ 9)6.2 _B_~_ 
(2- (}' + 9) 

is universal. 
As mentioned such corrections will be relevant when 

a±i8 is not small. Furthermore, in the classical regime 
(a= O, f3 = !, and -y = 1) , the correction :z:±i8 will give 
the leading singularity in the expression for Ua(T). This 
is the case for the classical regime of the spherical model 
in its d ~ 2u that is studied in Sec. IV. 

IV. SPHERICAL-MODEL CLASSICAL REGIME 

A. The model 

Let us now consider the spherical model introduced 
in Sec. I. The criticai behavior of the model can be de-

and (5.9), and 

I 18 d2W_ ( ) I dW_ ( ) y = U4e eo dydz O, O dy2 0,0 , 

(3.23) 

Here Ue = U(T = Te,g = Ue) and U4e = U4(T = Te,g = 
Ye)· 

Now we can easily see that, besides the universal ratios 
(1.4) and (1.5) we also have that 

z+ = c+ ..J!.... = _!!._ (3.24) 
z_ c_ Z± c± 

should be universal. Some theoretical and experimental 
ratios are given in Tables 11 and III. 

E. Field at criticality 

Let us now consider the general locus 

T-Te =v (dTc) ' 
U- Ye dg e 

(3.25) 

where v= O gives the T =Te isotherm plane while v= 1 
specifies the criticalline, T = Tc(U) asymptotically. Now, 
we find 

(3.26) 

termined knowing Jd(() with ( given by the constraint, 
since ( = h/m =O specifies the criticai temperature, and 
so, we have Tc(D) given by Eq. II(2.18). Since ( -> O, 
in the disordered phase, as h _. O with m(h _.O) = O, 
the inverse of susceptibility x- 1 = ( will give the behav­
ior in the criticai vicinity. In 11 we obtained a complete 
phase diagram where we stressed that the criticai or .À line 
ends in two possible ways: either at a tricritical point at 
the vertex of the parabola Eq. I1(2.19) at D = D1 and 
T = Tt; or ata criticai end point when the .À line is cut by 
a first-order line separating the disordered and ordered 
phases from the noncritical a phase at D = De < D1 and 
T> Tt. 

It is then clear that the presence of the end point de­
pends on the existence of the a phase at the tricritical 
locus. To analyze this location we will introduce, as in 11 

T-Tt t=---, 
Tt 

_ D- Dt 
g:: v 

m2 = m + w(1 + t), 

(4.1) 

where w =I UI /2V. Now the free energy can be written 
as a sum of an analytical piece [see Eq. II(3.9)] and a 
singular part, namely, 
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ó.F =i m3 V + t [wtm2 + (g + w 2t2)m] V- hm 

+ ~kBT [Fd(()- (Id(()- .1"d(O)] , (4.2) 

that vanishes identically on the À line. Also the con­
straint and minirnization relations are given by 

( 4.3) 

( 4.4) 

Using (4.3) and (4.4) one can obtain the criticai behavior 
for d < d+ as given in li. Also the behavior for d = d+ 
can be checked through explicit and exact expressions 
given in Appendix A. In the remainder of this section 
we will explore the case d > d+, extracting the free­
energy correction to scaling and its influence on the phase 
boundaries. 

B. The phase diagram 

For d > d+ the singular behavior of the integral (1.9) 
appears only in higher orders than in 11. If one assumes 
J+ > d > d+ with (4 = min(3u, 6) 

Id(() =I~ [1- q( + p(1+8 + 0((2 )], (4.5) 

where the crucial parameters p and q are defined via 

in which 

8 = (d- 2u)fu (4.8) 

Note that 8 is positive but less than unity for d < d+. For 
convenience a spherical Brillouin zone of r a tio I k I= 1i' /a 
with 1i' ~ rr has been assumed. 

The singular part of the free energy ( 1. 7) will now come 
from ( 4.3) with 

t!..F = fi(2 (.!.- (1 + 8) (6) /sv1/28(1+8) (!!.)38/2 
2 (2 + 8) q ' 

(4.9) 

and from the constraint ( 4.4), namely, 

u- 2 (() = fi2 ( 2(1- ( 9)/16V82(1 + 8)2 ( ~) 119
, 

( 4.10) 

where ( := (pfq) 119 (. In addition a basic dimensionless 
parameter has been introduced, namely, 

( u2)1/2 ( )1/6 
fi= 28(1 + 8) v q ! (4.11) 

that is equivalent to Eq. 11(3.2) and also coincides with 

(A4) in the limit (}-+O. 

At the tricritical point where t = g = O, the mini­
mization and constraint relations ( 4.4) can be used to 
eliminate m and yield 

(4.12) 

Besides the trivial ( = O or tricritical solution, there is 
a second or a-phase solution ( = (0 . The free energy of 
the tricritical point, namely, 

ó.Ft = fi(2 ( 1 - 2(~ ~ ~8) (8) I 248(1 + 8) ( ~) 38/2 

( 4.13) 

vanishes when ( = O and, consequently the a phase and 
the end point will be present whenever 6.F1 :::; O or fi 2: fio 
with 

fio(d) =i e3/ 4 (1 +i~ 8). (4.14) 

One should notice that fio( d) is continuous and analytical 
in the d 2: d+ region (see fio(d < d+) in li and Appendix 
A here]. 

Precisely when fi = fio the tricritical point and the crit­
icai end point coincide (see Fig. 4 in 11). Owing to the 
presence of the a phase we must also locate the phase 
boundary separating the a phase from the f31 phase. 
Such a first-order line ends, as usual, at a criticai point, 
located by imposing the usual phenomenological condi­
tion that the three solutions of ( 4.4), namely, ( 0 , (+, and 
(_ assume the same value. ( As in 11 the criticai point 
at the end of the a- a(3 boundary is completely classical 
in character.) 

Now, from the conditions 

u(m) = v(m), 

u'(m) = v'(m) =2m+ 2t , ( 4.15) 

"(-) "(-) 2 um=vm=, 

we obtain the equation 

fi2(1- Z) 3 = I<8Z 1- 116 , (4.16) 

where 1\9 := [2(1 + 8)8312 /(1 + tW and ( 8 := Z/(1 + 8). 
This has a solution provided K 8 ffi2 is small enough and 
B < 1. In this case, the criticai point locus is found from 
( 4.14) to be described by 

-Te 
t=te=--, 

1- Te 

Te := + [ ( \: ~) Z 2 - (2 + B)Z + 1] 

( ) 
1/8 z1/8-1 

X ~ (}[1 + B)l/8 . 

( 4.17) 

Note that the condition te = O (Te T1 ) yields the 
parameter-space locus p = p1(d) where 
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fi1 R:: 5.0882(1 + 2.0738), (4.18) 

that is illustrated in Fig. 5 of 11. Below 1t the criticai 
point can also arise with De = Dt at Üc = O for p = P2 < 
p1 . For lower D values, the criticai point reaches the 
a- (/3 + 1) phase boundary at a special quadruple point 
at p-p3 < p2 • One can then learn from this analysis that 
the d > d+ phase diagrama for different p values have the 
same qualitative behavior as those for d < d+ ones. 

Now that we can ensure the existence of an end point 
we may focus on the À line neighborhood near the end 
point. 

C. Free energy near the À line 

In order to obtain the phase boundary we will have to 
compute the free energy of the /31, /3 + 1, anda phases 
near the À line. To that end we introduce 

( 4.19) 

which measures the deviation from the criticalline. From 
Eqs. (4.3) and (4.4)-(4.8), the singular piece of the free 
energy is given by 

D..F = ~p(1 + t)(2 + 8)-1( 2+11 
2 

(1 + t)qwf2 _ hm 
4(1 + 2q(1 + t)w2t] · 

(4.20) 

Now, assuming that h -+ O so that ( = x- 1 and using 
Eq. ( 4.4), we find that the susceptibility diverges as 

1 - 1 , X+ R:: C R:: C+r (1 + c+t ), (4.21) 

so 1 = 1 as expected, with amplitudes 

c+= 1 + 2qt(1 + t)w2 , 

c+= -2pt(1 + t)w2 /C i +li, 

(4.22) 

(4.23) 

and consequently the singular part of the /31 free energy 
is 

(4.24) 

with 

(4.25) 

and 

(4.26) 

if a small field is allowed. We might point out here that 
one has a = O for d > d+ and, consequently, the leading 
order "singular part" of the free energy varies as fJ; thus 
the separation from the analytic part is not obvious. A 
proper choice is, however, fundamental in order À to pre­
serve the universal leading-order amplitude ratios given 
by (1.3)-(1.6). 

In zero field the ordered phase presents ( = O and, 

consequently, D..Fp_ is analytic with A_ = a_ = O. As 
one allows h f:. O, the ordered phase-free energy exhibits 
a singular part given by 

D..FP+-r = -mh- !C_[-1 h2 , (4.27) 

where c_ = C+/2 (classical behavior) while, since m = 
m 2 is nonzero, from Eq. (4.4), a spontaneous magneti­
zation, namely, 

(4.28) 

arises with, as we obtained in II, {3 = ~ and B = 
1/(2wt)112 , note, however, there is no correction-to­
scaling terms O(t11 ), in other words, b =c_ =a_ =O. 

Now, on the criticai isotherm we find 

and 

ÃFc R::-~ I h 14 / 3 ( 1 + 2 : 8 bc I h 1211 / 3 ) 

with amplitudes 

Bc = (C+f2wt) 113 

and 

bc = -(2wtfC+)1+1113 (1 + t)wp/3 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

One might well note that the universal leading-order 
amplitude ratios given by (see also Eq. 11(2.19)] 

(4.33) 

(4.34) 

(4.35) 

are classical. Besides, correction-to-scaling amplitudes 

~ =~=_.!!__=...!!._=O, a+ = -1, 
a+ c+ a+ c+ c+ 

(4.36) 

and 

es = (~:rll/3 a:~+ = ~ (4.37) 

are, as expected, universal. Note that they are indepen­
dent of(d, u). 

D. The a-phase free energy 

As observed in the analysis of the phase diagram, the 
a phase is basically characterized by the nonvanishing 
of the spherical field ( even when the criticai À line is 
approached. This phase should exhibit an analytic free 
energy as expected since it is a spectator phase as regards 
ofthe vicinity ofthe À line. In order to ensure the absence 
of singularities, the free energy in the neighborhood of the 
end point should have a Taylor expansion in powers of 
i= t- te and [/ = g- Ue where (te, Ue) are the end-point 
values. Thus, we rewrite the free energy, as in Eq. 11(5.1), 
but now with the parameters Ki and Li given by 



5206 MARCIA C. BARBOSA 45 

Ko = -1-Vrw'q, 
1 1 

/{1 = 2 2 + 8 - vrw'wqt, 

K 2 = -!rwt(i + 1 + 2Vw'wqt)K3 

1 (1 + 28) 1 1 - _6 (2 + 8) - 2 Vrqtww, 

/{4 =-i vrw'q, 

where r= 8 /(2 + 8) and w' = w(1 + t) and 

1 (1 + 8) - L _ wt(1 + 8) 
Lo= 2 (2 + 8) t, 1 - (2 + 8) ' 

(4.38) 

(4.39) 

Now, following 11, the end-point location is obtained 
by taking i= O as well as ilFa = O that reproduces Eq. 
11(5.9) from 11 but with 

b = -2 (28 + 1)/38Vw'q- 2wt, 

c= +2tfVq(1 + t) + 4w2t 2 • 

( 4.40) 
( 4.41) 

Now we can compute the end-point location. For small 
p- p0 , (a,e will also be small and consequently the end 
point is given by 

ma,e ~ -2 (28 + 1)/38Vwq , 

(a,e ~4 (2/J + 1)2 /9Vw2 q2 

(4.42) 

( 4.43) 

Then, we can develop the expansion for the spectator 
a phase about the end point as in Eq. 11(5.17). The 
coefficients Qii and Rii will be well-behaved functions of 
V, w, p, and q that, for brevity, are not given here. It is 
not hard to see that to compute the leading singularities 
as well as the first correction in the phase boundary one 
does not actually need these coefficients provided 8 < 1. 
(It is clear that the cases with IJ > 1 can be analyzed 
in the same way but with greater complexity and less 
interest.) 

Now that we have all the needed free energy functions, 
we can compute the phase boundaries and check for sin­
gularities. 

E. A further amplitude ratio 

The explicitly computed free energies for the f3"'f, f3 + 
/, and the a phases can now b~ used to compute ~he 
phase boundary D0 (T,h) or 9o(t,~) near the end pon~t 
simply by equating the free energtes. The procedure 1s 
explained in detail in I and II. In the presence of a small 
externai field, the phase boundary is given by Eq. (3.22) 
with the amplitude ratios z:_f:r:+ = z_J:r:+ = yf:r:+ = 
O, since :r;_ = y = z_ = O. We can similarly check 
the behavior on the T = Te loci (3.25) following (3.26)­
(3.28). Explicity we find 

Bs :=::: (X+) 28/3 .....!!l_ = 1 (1 + IJ) 
z+ :r:+z+ 22(1+9/3) (2 + 8)' 

( 4.44) 

w hich verifies the predicted universality and relation to 
the bulk criticai amplitudes on the ~ line. 

V. CONCL USION 

We have studied the bulk thermodynamics near a crit­
icai end point in order to examine the existence and na­
ture of higher-order nonanalyticities. Using purely phe­
nomenological arguments, first introduced in I, we pre­
dict in Sec. III that such behavior should be controlled 
by the correction-to-scaling universal bulk criticai expo­
nent, and amplitudes on the criticai ~ line. In order 
to demonstrate the relevance of such correction terms, 
we also summarize in Sec. li some universal features in 
correction to scaling, noting that the values of the uni­
versal amplitude ratio are even now not well-established 
numerically. Apart from this we must say that these cor­
rections become more interesting when the leading-order 
singularities are "weak" (small amplitude and exponent) 
or absent. 

Relevant bulk critical-point correction-to-scaling am­
plitude ratios are present in (3.11) and (3.12) and related 
to the phase-boundary-singularities amplitudes in (3.21), 
(3.24), and (3.28). 

Then, in order to check these predictions against a spe­
cific model, we study in Sec. IV, as we did in li, the 
spherical model with short- and long-range interactions 
but now for dimensions exceeding to the upper criticai 
dimension d+ = 2u. In this case the leading-order sin­
gularities are classical and the nonclassical correction to 
scaling play an important role. 

Following the procedure introduced in 11 we find that 
the phase boundary between the spectator or a phase 
and the criticai phase exhibits singularities as the end 
point is approached. The amplitude of these singularities 
combine to give universal ratios. 

These ratios are directly related to universal bulk am­
plitude ratios evaluated on the ~ line. The form of these 
relations are just those predicted in Sec. III, so confirm­
ing the phenomenological theory. One may remark that 
the spherical model is somewhat artificial; we cannot thus 
assert that a more realistic model might not contradict 
our heuristic predictions. 

ACKNOWLEDGMENTS 

We are particularly grateful to Professor Michael E. 
Fisher for suggesting and discussing the problem, as well 
as for his criticai reading of the manuscript. His wise 
orientation and hospitality during our stay at the ln­
stitute for Physical Science and Technology at the Uni­
versity of Maryland, where this work was partially per­
formed, are much appreciated too. Fruitful interactions 
with Dr. Paul J. U pton and Professor Vladimir Priv­
man have also been helpful. We want to specially thank 
Professor Walter K.Theumann for his criticai reading of 
the manuscript. This work was supported by Conselho 
N acionai de Desenvolvimento Científico e Tecnológico 
(CNPq) and ancillary support through the National Sci­
ence Foundation (under Grant No. DMR 90-7811). 



45 PHASE BOUNDARIES NEAR CRITICAL END POINTS. III. . .. 5207 

APPENDIX A 

It is well known8 that at the borderline d = d+, the 
spherical model exhibits logarithmic factors. In this ap­
pendix we will check this explicitly. Besides one can ask 
if the d = d+ case yields the same d < d+ behavior given 
qualitatively in Figs. 4 and 6 in 11. In order to answer 
this question we have to compute j5o, Pl> and f52 which 
we do next. 

For d = d+, the integral Jd(() can be computed, follow­
ing the Appendix in 11. From this the constraint condition 
( 4.4) becomes 

m = -w(l + t) ~ (In ( ( + :.,.11'") + 0((), (Al) 

where O(() comes from higher-order terms in Eq. 11(2.5), 
while 

( )

2o+l 

}312 I~p = ~ 1r" u f(u). (A2) 

The free energy term in ( 4.3) becomes 

where ( = (/}0 11'". lf }(k) =}(O)- J.,. I ka I", (Al) and 
(A2) should be exact. 

At t = g =O, on the tricritical point, we may eliminate 
m from ( 4.15) and (Al). A nonzero solution ( = (0 ofthis 
equation will be allowed if tl.:Ft(( = (0 ) :$ O or, following 
procedure similar to that in Sec. IV, p(d = d+) ~ j50 

where we have the definition 

j5:: wJ ioi"V p (A4) 

we obtain, numerically 

Po :::= 5.11 . (A5) 

Further information about the phase diagram is ob­
tained from the critical-point analysis. Following 11, we 
find that the phase boundary between the criticai and 
noncritical phases is terminated by a criticai point solu­
tion of 

(1 + t) 2p2 = 8C(()/((1 + (), (A6) 

where 

C(() = (1 + () ln ( 1 + Z) -1. (A7) 

The new criticai point is located at 

where b ~ 1 depends on J(k) =}(O)- io I ka I" +E(k) 
and the equality would hold if one assumes E = O [in 
that case (Al) should be exact]. 

At te = O, one has ji = Pt where 

Pt :::= 4.7183 , (A9) 

and at Uc = O, one has ji = P2 where 

P2 :::= 4.503 . (AlO) 

Now, on the basis of (A5), (A9), and (AlO) we are al­
lowed to claim that the d = d+ case follows qualitatively 
the same d < d+ phase diagrams. 

It must be pointed out that the j5 values computed 
in this appendix differ from the 9 -+ O limit of those 
obtained in Sec. IV ones. This difference depends on 
O( ( 3 ) approximation used there. 

Finally we can answer our prior question regarding 
the presence of logarithms in the free energy and con­
sequently in the thermodynamics functions. 

Following the standard procedure,2 we find that the 
singular terms in the free energy should be given by 

tl.Fp., = - A2+ :P lln i I [1 +O( r)] 

and 

+!C+i- 1 llnil h2[1+(0(lni)- 1 ),h2 /t3 ] 

(A11) 

(A12) 

where f31 (and f3 + ;) means T > T).. (and T < T)..). At 
T=T).. 

(A13) 

where A+, C+, B, and Bc are simply the 1-+ 1 limits 
ofEqs. 11(4.4), (4.6), (4.8), and (4.11) and, since no log­
arithmic factor is present in Fp.,, A_ = O and we cannot 
define a susceptibility (note that this is no longer true for 
d > d+ ). From these amplitudes we can obtain universal 
amplitude ratios, for example, 

A_ -o 
A+- ' 

e _ A+C+ 1 1=--w-- = 2 , 

e _ A+B~ 1 
2 = B6+t = -2 

(A14) 

Related phase boundary ratios as given by Eqs. (1.3)­
(1.6) can now be obtained. First, we rewrite Eq. (1.2) 
as 

Uo = Ue + uti- X±Pln I i I -Y± I i 11121 h I 
- !Z± I i r 1 ln I i I h2 + tl.g(T,h), (A15) 

where we assumed the existence of logarithmic singular­
ities. Next, by equating (3.13) to (All), (A12), and 
(A13), one obtains that, even in this borderline case, 
the model exhibits phase-boundary ratios given by Eqs. 
(1.3)-(1.6). Note that the universality of such ratios are 
not obvious due to the presence of logarithmic terms. 
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