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A Green-function formalism is presented to study a Peierls-Hubbard Hamiltonian in two dimensions. 
The 1attice consists of parallel dimerized chains with alternating nearest-neighbor hoppings t and t 11 and 
another hopping t 1 between different chains. The method treats the interdimer hopping as a perturba­
tion and yields exact results in the uncorre1ated case and for isolated dimers. The calculated spectral 
functions exhibit a number of narrow subbands with typical low-dimensional singularities. The depen­
dence of the gap at the Fermi levei on the electron-electron interaction U agrees qualitatively with the 
exact result in the known one-dimensional nondimerized limit. The paramagnetic susceptibility shows a 
maximum structure at low temperatures that is enhanced by U and by dimerization anda Curie-Weiss 
behavior at high temperatures. 

I. INTRODUCTION 

In spite of the cumulative effort directed to the study of 
the Hubbard Hamiltonian1 and its apparent simplicity, 
few exact results have been obtained so far, namely, for 
the linear chain2 and small clusters.3- 5 A renewed in­
terest in it in connection to high-Tc superconductivity6 

inspired the reexamination of standard treatments to 
higher order. An example is the many-body perturbation 
theory with respect to Coulomb repulsion U that showed 
some new features such as satellite peaks in the spectral 
functions.7 Different extensions of the Hamiltonian have 
been considered, taking into account the effect of long­
range Coulomb repulsion, next-nearest-neighbor hop­
ping, and multiple bands. 8 In the strong-coupling limit it 
gave rise to the t-J model,9 where doubly occupied states 
are projected out. 

Important information about properties of the Hub­
bard model and t-J model can be obtained by exact­
diagonalization techniques 10· 11 and Monte Carlo simula­
tions12-15 on finite clusters of increasing size. Neverthe­
less, in the low-temperature region finite-size effects be­
come important and much larger systems are required to 
extrapolate the results to the thermodynamic limit. 

The introduction of electron-phonon interaction into 
the Hubbard Hamiltonian is essential in order to under­
stand the electronic properties of the superconducting ox­
ides and also of the important class of quasi-one­
dimensional conductors. 16 A proper self-consistent treat­
ment of such a model can be achieved by using variation­
al methods. 17· 18 However, for practical calculations, 
simplified versions are preferable. The essential features 
on which we want to focus are present in the Peierls­
Hubbard Hamiltonian, 19 where a bond charge-density­
wave state is energetically favored in one dimension and 
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also in two dimensions for sufficiently large electron­
phonon coupling.20 Dimerized states have been con­
sidered in proposed mechanisms for high-Tc supercon­
ductivity. 21 

The present approximate expansion on the hopping in­
tegral is inspired by an analogous one applied by Brunet 
and co-workers to the periodic Anderson model. 22 For 
the Hubbard model, similar expansions around the atom­
ic limit have been recently developed23•24 and suggested 
to study a possible superconducting state with local pair­
ing. 23 

In the next section, we write down the model Hamil­
tonian in a form appropriate to deal with a two­
dimensional lattice with both dimerization and anisotro­
PY and present the diagrammatic approximation em­
ployed. In Sec. III we diagonalize the Hamiltonian on a 
simple two-site cluster (dimer) and obtain the correspond­
ing one-particle Green function, from which we will con­
struct the lattice Green function in the following section. 
Section V presents the calculated spectral functions, gap 
energy, and magnetic susceptibility. A discussion of the 
results is presented in the last section. 

11. MODEL HAMILTONIAN AND APPROXIMATION 

We have considered an interacting electron system on 
the two-dimensional lattice specified in Fig. 1. lt can be 
regarded as a regular square lattice that has undergone a 
static dimerization along one of the square axes. As in 
the Hubbard model, 1 only the on-site Coulomb repulsion 
U is retained. However, we introduce the possibility of 
three different nearest-neighbor hoppings t, t 11 , and t 1 . 

One assumes that this diversity may arise as the net effect 
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of the electron-phonon interaction on the electron sys­
tem. Without loss of generality we set tll't1 ~t. Geome­
trically, we call a dimer each pair of neighboring sites 
connected by a t line. W e see immediately that the posi­
tions of these dimers define another square lattice as 
drawn in Fig. 1 with which we will be concerned 
throughout this paper. It seems quite natural to look at 
the dimers as the lattice basic building blocks. Thus we 
write our model Hamiltonian in the form 

:H= l:.7f?a+ ,l: Viaa' (1) 
ia iau 

where 

.7f?a= U(n;a.z~ni'at +n;~~n/'at) 

-t l: (ai~abiaa +bi~aaiaa)-/-L l: (n/'aa +n;~a) 
a a 

is its exactly solvable unperturbed part and 

Viaa= -tll(ai~abi+ l,a+l,a +b;~aai-l,a-l,a) 

-t 1 (a;~abi+ l,au +ai~abi,a+l,a 

+ b;~aai-l,aa + b;~aai,a-l,a) 

(2) 

(3) 

is a one-particle "interaction" term. We have denoted by 
a;~a (aiaa) and b;~.,. (b;ao-) the operators that create (an­
nihilate) an electron with spin a on an a or b site of the 
ith dimer and n{a =c;~Cia (c =a or b). U is the on-site 
Coulomb repulsion, tis the intradimer hopping, tu and t 1 

where we follow the notation of Ref. 25. 
From the choice of :JiÜ it turns out that averages of 

products of operators acting on sites of different dimers 
are decoupled. Furthermore, if one was allowed to 
decouple the averages at different times on the same di­
mer then one would be able to sum up ali the remaining 
diagrams. This is true for U =O from Wick's theorem 
and will be assumed here as a first approximation to the 
correlated case-valid at least for U,tu,t1 <<t. As we are 
summing the perturbation terms to ali orders, we expect 
that it will work fairly well in all parameter space-in 
particular, for the regular chain and square lattice. 

The resulting Dyson's equation reads 

G:~;jf3( T)=ô;/>apg~(T) 

~ 1ia,mr Jpd a ( _ ) 
- ~ d'c'a Ttgcd' T Tt 

c'd'mr 0 

my,j/3( ) 
XGc'da Tt ' (6) 

where tá~·':r is equal to tu or t 1 for nearest-neighbor sites 
of different dimers according to Fig. 1 and zero other­
wise. The bare Green functions g~(T) will be evaluated 
in Sec. 111. 

a-1 

i-1 i+1 

FIG. 1. The dimerized square lattice with a redefinition of 
the square axes. 

are the hoppings between nearest-neighbor sites of 
different dimers as indicated in a of Fig. 1, and /-L is the 
chemical potential. 

The presence of a small, static, uniform magnetic field 
h can be handled by adding a term 

:H h= -h ,l: a(n;a.za +n;~.,.) (4) 
a 

to the unperturbed Hamiltonian .7f?a· 
The Green function that describes the propagation of 

an electron from a si te c (a or b) of dimer (i, a) to si te d 
of dimer (j ,{3) is written as 

(5) 

111. THE HUBBARD DIMER 

The eigenvalues En and eigenfunctions In ) of 
.7f?a+:Hh corresponding to the different electronic 
configurations are shown in Table I, where we make use 
of the definitions 

tanO=(S-U /t)/4 (7) 

and 

S=[(U/d+16]112 • (8) 

For half filling the ground state is 15), that in the limit 
U /t-+oo becomes l!'V2(b !a} -b }a 1 )jO). 

The dimer's Green functions are given by the spectral 
representation:25 

1 -{3E -{3E 
ga(w)=-~(e m+e ") 

cd Q~ 
m,n 

(n ld;~.,.lm )(m lciauin) 
x----------

w-<En-Em) 
(9) 

where c,d=a or b,{3= 1/kB T, and 
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TABLE I. Eigenvalues and eigenfunctions of :JiO+:Hh. 

E o 

Et=-t-J-t-h 

E 2=-t-J-t+h 

EJ=t-J-t-h 

E 4 =t-J-t+h 

E 5 = U /2-tS /2-2J-L 

E6= -2J-t-2h 

E 1 =-2J-t 

E 8 =-2J-t+2h 

E 9 =U-2J-t 

E 10 = U 12+tS/2-2J-t 

E 11 =-t +U-3J-t-h 

E12=-t +U-3J-t+h 

E 13 =t + U -3J-t-h 

E14~t + U-3J-t+h 

Ets=2U-4J-t 

Q= ~e -{3Em 

m 

is the grand partition function. 
Equation (9) yields 

g~a(w,h )=g+ +g~ 

and 

g%t,(w,h )=g+ -g~ , 

lo> 

li)= 1/'VÍ(a t +b t li O) 

12) = 1/v'Z(a 1 +b 1 liO) 

13) = 1/v'2(a t -b t li O) 

14) = 1/v'Í(a 1-b 1 liO) 

15) = 1/v'Z{sinO(a la t +b lb i )-cosO(b \a 1-b la t )j lO) 

l6)=b\a\lo) 

l7)=1/v'2(bta1 +b\a\ liO) 

IB)=blallo> 

19) = 1!v'2(a la i -b lb\ li O) 

I to)= 1/v'Í{ cosO( a la i +b 1dt )+sinO(b \a 1-b la t )j lO) 

111)=1/v'Íatbt(al+blliO) 

112)=1/Vzblal(a\ +b\ liO) 

113)=1/v'Íatbt(al-bl liO) 

114)=1/Vzblal(a\ -b\ liO) 

(10) where we introduce for convenience 

u - 1 4 At(h) 
g+(w,h)- Q(h) -~ - u(h) 

z=l (J) Pi 

(11) 
and 

u _ 1 8 At(h) 

(12) g_(w,h)- Q(h) .~ _ ~ 
z=S (J) Pz (h) 

(13) 

(14) 

TABLE 11. Poles and residues ofthe dimer's Green functions. 

p/(h) 

t -11-+ U /2 + tS /2- h 

2 -t-J-t-h 

3 t -11-+ U !2-tS/2-h 

4 -t-J-t+U-h 

5 -t -11-+ U /2-tS/2-h 

6 t-J-t+U-h 

7 -t -11-+ U 12+tS/2-h 

8 t-J-t-h 

A/(h) 

[i+t ](e -PEn+e -PEs+e -PEw+e -PE2) 

.l(e -PEo+e -pE!+e -pE3+e -PE6)+l(e -PE4+e -PE1 +e -PE9+e -flEll) 

11-+t ](e -PE2+e -flEs+e -PElO+: -PEn) 

1( -PE8 + -PE12 + -PE14 + -PE15 )+l( -PE4+ -PE1+ -PE9+ -PE 11 ) 
2 e e e e 4 e e e e 

[1--t ](e -PE4+e -PEs+e -PEw+e -flEu) 

l(e -PEg+e -PE12+e -PE14+e -flEts)+t(e -PE2+e -PE'+e -PE9+e -flEt3) 

11-+t ](e -PE11 +e -PEs+e -PEw+e -PE4) 

l( -pE0+ -pE1+ -pE3+ -flE6 )+ l( -pE2+ -pE1+ -pE9+ -pE13 ) 
2 e e e e 4 e e e e 
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From the symmetry of the dimer, it follows that 
gbt, =g~a and gb, =g~. The same will be valid for the lat­
tice Green functions Gt't'}13 =G~~jf3 and G/,';j13 =G~'t'}13. 

The poles P; of these Green functions correspond to 
the one-electron energy leveis of an isolated dimer. They 
are shown in Table 11 together with their corresponding 
residues, defined through the matrix elements appearing 
in Eq. (9). For down spin we have p/(h)=p/( -h) and 
A/(h)= A/( -h). 

IV. THE DIMERS' LATTICE 

A Fourier transformation with respect to time is ap­
plied to Eq. (6). The equations obtained for the Green 
functions a::;jf3(i(J)v) can be conveniently grouped in ma­
trix form: 

G ia,jf3(· )= (' )" <: -u l(J)v !I_a l(J)v uijua{3 

-g (i(J) ) ~ Tia,mramr,jf3(i(J) ) 
_a v ~- -u v ' 

my 

where 

(15) 

(16) 

(17) 

and 

Tia,i+l,a+l=T = [O til] 
- -11 o o 

Iia,i+l,a=Iia,i,a+l=I1 = [~ ~] 
Iia,i-l,a-l=fll , 

every other Iia,mr being zero. 

(18) 

(19) 

(20) 

(21) 

Equation (15) can be solved by a Fourier transforma­
tion on the dimers' lattice of b of Fig. 1, which yields 

· ·13 1 -ik·(R. -R.) a•a,, (i(J) )=- ~ G (k i(J) )e w 1a (22) 
-a v N k -a ' v ' 

with 

{la(k, i(J)v) = [ 1 + ga(i(J)v)E(k) ]- 1!I_a(i(J)) ' 

where 

[ o E(-k)] 
E(k)= E(k) o ' 

with 

(k) - i(kx+ky)a+ ( ikxa+ ikYa) 
E -t 11 e t 1 e e . 

We obtain 

(23) 

(24) 

[ 
g'+ +g~ g'+ -g~ -4g'+g~ E( -k)] 

{la(k,i(J)v)= 1-A(k:a,kya) g'+ -g~ -4g'+g~E(k) g'+ +g~ ' (25) 

where 

A(x,y)=4(tfl +2d )g'+g~ +2t1 (4t 11g'+g~ -g'+ +g~) 

X(cosx +cosy) 

+2<4fig'+g~ -t 11 g'+ +t 11g~ )cosx cosy 

(26) 

The elements of this matrix are related to the usual 
one-particle Green function in k space, which can be ex­
pressed as 

g a(k,i(J)v)= 1 /2{ G~a(k,i(J)v)+ Gbt, (k,i(J)v) 

+ -ik·R"bGa (k . )j e ba ,l(J)v ' (27) 

where R ab= R/a- R~a· 
It is straightforward to get the known results at U =O 

for the chain and the square lattice: 

(28) 

and 

§'~(k,i(J)v)= l , (29) 
i(J)v +2t(cosk~a0 +cosk;a0 ) 

where a..!l=a/VZ, k:=<kx-ky)IVZ, and k;=<kx 
+ky)IV2. 

We are particularly interested in the local Green func­
tion 

(30) 

that can be reduced to 

G ia,ia( · )= ~ g'+ +g~ K(Q) 
aau l (J)v ~ r;::- , 

1r v R 
(31) 

where K (z) is the complete elliptic integral of the first 
kind, 
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and 

with 

- _ 4( a a 4t a a )2 a,- g + -g-- Ug +g- ' 

a2 =4(g+ -g':_ +4tug+g':_ )( 1 +2tug+) 

xo-2tug':_ >, 
a 3 =4(ti +tfl )(g+ -g':._ )2 +8(tij +2d )g+g':_ 

-16t~(g+g':._ )2 -1 . 

V. RESULTS 

The spectral function is given by 

pj(w,h )=- _!_ lim ImG~%(w+i;,h) . 
1T~~o 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

In the absence of the perturbation, it is just a sum of õ 
functions 1ocated on the poles of the dimer's Green func­
tion: 

pj(w)= ~ i~l Atõ(w-pt) . (38) 

As the hopping between dimers is turned on, each of 
these õ functions is replaced by a distribution determined 
from Eq. (15). 

When U =O, our results are exact and reproduce, in 
particular, the nondimerized case of Ref. 26. The spec­
tral functions obtained when dimerization is included are 
shown in Fig. 2, where we have chosen tu =0. 8t. They 
have been plotted only for w >O, beca use p'[(w) is an even 
function in the half-filled band case. The energy w is 
measured with respect to the chemical potential J.L and 
the energy scale is defined by t = 1. These curves differ 
from those of Ref. 26 basically by the presence of a 
Peierls gap at the Fermi levei. In one dimension (t1 =O), 

0.8 .---.------.---.---..-,!-.-----r------, 
jl 

0.6 

p 0.4 

0.2 

----------. : 0.0 L....ll'------l------l._.l.. ___ ...__~...-_ _.____J 
0.0 1.0 2.0 3.0 4.0 

(I) 

FIG. 2. Spectral functions for U=O and tu =0.8t, with t 1 =O 
(dot-dashed), O. St (solid), and O. 9t (dashed). 

0.8 rr-.-----,-,----.---,------,----,------, 

0.6 

p 0.4 

(() 

FIG. 3. Spectral functions of the linear chain for U=2t 
(dashed) and of the squar~ lattice for- U=4t (solid) and U= 12t 
(dot-dashed). 

there are singularities exactly at the boundaries of the 
zones where pj(w)=O. When t 1 =FO this is no longer true, 
and one can even find a vanishing gap width when 
t 1 ~ ( t +tU ) /2. In this case the spectral function is equal 
to zero at the Fermi levei, but increases with infinite 
deriva tive as soon as we move away from that energy. 

In Fig. 3 we plot the spectral functions of the regular 
chain and square lattice for the same values of U /t con­
sidered in other calculations. 10• 13• 7 Exact diagonalization 
of a VS X v'S cluster10 and Monte Carlo (MC) simula­
tions on an 8 X 8 cluster13 yield densities of states with 
satellite peaks (or bumps) at the same energies where we 
found the satellite subbands (in the curve U =4t). Al­
though the second-order perturbation treatment on U of 
Ref. 7 cannot reproduce the Hubbard gap, it also gives 
satellite peaks nearly at the same positions (see curves 
U=2t and 12t). 

Still in the simple uncorrelated case, we obtain for an 
isolated dimerized chain (as in Ref. 27) 

~(w) = 1 w (39) 
p, 1T { [w2- (t- tu )2][ (t +tu )z-w2]}1tz 

6.0 r---.---.----.---,---r---,--.,-----, 

FIG. 4. Peierls-Hubbard gap as a function of U for tu =O. 8t 
with t 1 =O (dashed), O.St (dot-dashed), 0.8t (solid), and 0.9t 
(long-dashed). 
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if (t-t 11 l:Siwi:S(t+t 11 ), and Pa(w)=O otherwise. The 
one-dimensional Peierls gap is à= 2( t - t 11 ). For U ~O, 
Eq. (31) gives 

à= -(2t+t 11 H[ U2 +(4t-t 11 ) 2 ] 112 . (40) 

The two-dimensional Peierls-Hubbard gap à as a func­
tion of U is shown in Fig. 4 for t 11 =O. 8t and some choices 
of t 1 ( = O, O. 5t, O. 8t, and O. 9t ). When the perpendicular 
hopping is turned on, we see that the gap width decreases 
in the whole range of U, the difference between the curves 
being practically constant for U > 2t. The different cur­
vatures in the small U region are associated with the 
abrupt disappearance ofthe gap for t1 ~(t+t 11 )/2 (when 
t li < t ). When t li = t, the corresponding curves are simi­
lar, but ali of them converge at the origin. 

The magnetization on si te a (or b) of dimer i is 

m(T,h)=(nfr )h-(nft >h, 

with 

( a) J+oo a n;a h= dwf(w)p; (w,h), 
-00 

where 

/(w)= {exp(/3wH 1) -t . 

The paramagnetic susceptibility is 

X(T)=m'(T,O), 

with 

(41) 

(42) 

(43) 

(44) 

m'(T,h)==c aah m(T,h). (45) 

For iso1ated dimers (t 11 ,t1 =O), one has 

X(T)= 2/3fcosh(/3tHexp(/3U/2)} (46) 
3 cosh(/3U 12H4cosh(/3t )+cosh(/3tS/2) 

This equation expresses the magnetic susceptibility of a 
two-atom cluster (calculated in Ref. 4). 

The numerical integration of the spectral functions is 
lengthy because of their singularities, but can be per-

1.6 

1.2 

X 0.8 

0.0 ...._ __ _,_ ___ '-----L------'-----1 

0.0 1.0 2.0 3.0 4.0 5.0 
T 

FIG. 5. Paramagnetic susceptibility of the regular square lat­
tice for U =O Oong-dashed), 2t (dot-dashed), 4t (solid), and 8t 
(dashed). 

0.8 

X 
0.4 

0.0 L.._ __ __l__--'-----'----'-'-----'---~ 

0.0 1.0 2.0 3.0 4.0 5.0 
T 

FIG. 6. Paramagnetic susceptibility of the dimerized square 
lattice for t 11 =0.8t, t 1 =0.5t, and U=O (dot-dashed), t (solid), 
and 4t (dashed). 

formed to double prectston (using extended precision). 
Instead of Eq. (44), it is more practica1 to evaluate the 
susceptibility from the magnetization produced by a 
finite, sufficiently small h. 

Figure 5 shows the magnetic susceptibility of the 
square lattice (with • L= t 11 = t ) for the same values o f UI t 
considered by Hirsch in his Monte Carlo simulations on a 
finite cluster of 6 X 6 sitesY In Ref. 15 the magnetic sus­
ceptibility is also derived in the random-phase approxi­
mation (RPA) for U=2t and 4t. We see that our corre­
sponding curves in Fig. 5 lie always between the RP A 
and MC ones. Thus we improve the RP A results, at least 
in the high-temperature region where finite-size effects 
are not important. For 1ower temperatures, we obtain a 
maximum structure related to the magnetic correlations 
present in our unperturbed Green function, though the 
phase transition is absent. Simulations on a 1arger 8 X 8 
cluster also show a maximum but at a lower tempera­
ture.13 

In Fig. 6 we plot the magnetic susceptibility of a 
dimerized lattice with tu =0. 8t, t1 =(t +tu )/2, and some 
values of U. Comparing to the previous figure, we see 
that the divergency at T=O for U =O (exact limit) disap­
pears as the Peierls gap develops. With increasing U, the 
maximum moves to higher temperatures. For U=4t, we 
observe a small enhancement of X produced by dimeriza­
tion, while the maximum remains at the same position. 

VI. DISCUSSION 

The satellite subbands found in our calculated spectra1 
functions correspond to the satellite peaks reported in 
different approaches. 10•13• 7 In the present model, they 
origina te from po1es p 1 and p 5 o f the dimer's Green func­
tion, which corresponds to transitions between the 
ground state 15 ) (of two particles) and the states with 
higher energy o f one and three parti eles ( 14 ) and 113 ) ) . 

The results for the Hubbard chain (tu =t, t1 =O) can be 
compared with those given by means of the Bethe ansatz. 
The Hubbard gap à was calculated by Lieb and Wu2 and 
rewritten in a more convenient form by Ovchinnikov.29 

lt behaves like 
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à~ u ~7) l
u -4t + 8t 2 1n2 for large u, 

8 -
1T v'tUexp(-2TTt/U) for small U. 

Here we obtain [from Eq. (40)] 

4 5t 2 
U-3t+-·- for U>>3t, u 
uz 
-for U<<3t. 
6t 

(48) 

The results agree qualitatively, though in our case the 
gap is somewhat greater than the exact one in the whole 
range of U, the difference going to zero as U --+0. It must 
be noted that our result is constrained to the paramagnet­
ic phase. 

The magnetic susceptibílíty has been computed by 
Kawakami, Usuki, and Okiji28 for U=8t. A direct com­
parison shows that the peak is too high, but its position is 
correctly reproduced. Such enhancement comes from the 
intrinsic dimerization assumed in the treatment whose 
effect remains even when we set t 11 =t. MC simulations 
for U = 8t (Ref. 15) show that also in two dimensions our 
calculated susceptibilitíes present higher values. This in­
dicates that the correlations neglected in our Dyson equa­
tion are relevant for the nondimerized lattice with large 
u. 
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