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Dispersive effects on the main-wave modulational instability in free-electron lasers 
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The main-wave one-dimensional modulational instability due to the dispersive terms of the wave 
equation in a free-electron laser is introduced and analyzed. We derive the appropriate dispersion 
relation and compare its associated growth rate with one due to wave-particle energy exchange 
alone, as obtained by Davidson and Wurtele under the deep trapping assumption [Phys. Fluids 30, 
557 (1987)]. It is found that, depending basically on the relation between some characteristic pa­
rameters, the modulational instability may be governed by wave dispersion. We also discuss the 
effects of waveguides on these instabilities and the behavior of the unstable modes as a function of 
the mentioned characteristic parameters. 

It is known that the initial parametric instability in 
free-electron lasers (FEL) saturates when particles begin 
to be trapped in the ponderomotive wells formed by the 
beatiny of the main electromagnetic wave and the wiggler 
field. 1• As was discussed by Davidson and Wurtele,2 one 
essential point is to understand the stability of such a 
state because, in general, the space-time variation of the 
main signal may affect its monochromaticity degrading 
FEL efficiency (of course, we are not talking about a 
proper tapering of FEL's parameters, which may enhance 
its gain3- 5 ). 

In the present work, we reconsider the problem of the 
main-wave stability in the sense defined by Davidson and 
Wurtele.2 In other words, given an initial steady-state 
wave, we wish to know if slow perturbations on the phase 
and amplitude of this wave are unstable functions of 
time. 

An important difference, however, will be introduced. 
Davidson and Wurtele2 discarded ali the slow second 
derivatives in Maxwell's equations for the main wave 
based on the reasonable (but not always correct) supposi­
tion that their effect is smaller than the one due to the 
first derivatives. In their case, the modulational instabili­
ty (MI) was originated by energy exchange between wave 
and particles. In our treatment we will keep these second 
derivatives. Putting in another way, we may say that our 
interest will be the analysis of the instabilities that come 
out as a combined result of these second derivatives and 
the already mentioned wave-particle energy exchange. 
The resultant instability will be called modulational insta­
bility due to kinetic effects (MIK) when the second 
derivatives are not important. On the opposite limit, 
when they are decisive in determining the signal of the 
perturbation squared frequency, the instability will be re­
ferred as due to dispersive effects (MID). Modulational 
instability due to dispersive effects has been discussed by 
many authors in many contexts, 6• 7 and here we intend to 
show under which conditions it may dominate the insta­
bility processes. 

By definition, two electromagnetic waves A and Aw 
are present in our system. They are described by the fol­
lowing functions: 
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A=ta'(z,y,t)etlkz-,un+c.c. , 
(1) 

_ 1 , 1(-k,,z-wt) 
Aw- 2 aw(y)e +c.c. , 

with a'(z,y,t):=a'(z,y,t)e, a~(y):=a~(y)e, ande( :v'2x) 
being the vector representing the polarization. 

The field A is the one corresponding to the main signal 
and the field Aw is the one describing the (given) wiggler. 
It is seen that as the wiggler wave is moving to the left (or 
right, depending on the signal of kw ), we are not working 
in the lab frame. lt will be clear, however, that the frame 
we are using (the ponderomotive framé) offers a decisive 
number of advantages. Transformations to the lab frame 
are easily done and wili not be analyzed here. We also as­
sume that ali transverse (y) dependence of the field a on 
the coordinates is due to the presence of a waveguide 
aligned with our z axis. The precise three-dimensional 
structure of this waveguide will not be specified in this 
paper, although it may be relevant in a variety of situa­
tions;8 in our work, the waveguide will manifest itself ba­
sically through the dispersion relation between w and k, 
which will be derived by assuming the presence of two 
conducting plates at y = ±1T /( 2k 1 ) and a'= a cos( k 1y ), 
with k 1 representing the transverse scale o f our system 
(which may be equivalent to the longitudinal one).9 1t is 
stili to be noted that we will not be considering the pres­
ence of harmonics of the main signal and electrostatic po­
tentials, which may be justified if the plasma is rather 
tenuous2 ( w~ I w2 << 1 with w~ as the plasma frequency of 
our system). 

To analyze the particle orbits, we assume 
ea' /mc 2 << 1, and use the force law in the form 

md1(yv)=!!...( -a1 A101 +vXVX A 101 ), 
c 

with A101 := Aw+ A, y:=[l+(ea~/mc 2 )2 ] 112, mas the 
electron rest mass, e as the electron charge, and c as the 
velocity of light. 

To solve the above equation we take its x component, 
substituting the solution into the longitudinal one. This 
gives 
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v =--e-Atot 
1 ymc 

where (2) 

cf>P = ~ 2A 2 a~â'cos[(k +kw )z +a] , 
r me 

with A as a number of order I that represents the high­
frequency effects generated by linearly polarized waves 10 

(in circularly polarized systems with e =x + iy, A= I). 
Here, A will not be important; soon it will be absorbed by 
other physical quantities. 

In the set (2), we have defined, without loss of generali­
ty, a~ as being purely real, and a :::=â'eia with â' 
and a as (real) slow functions of their argument 
[(úJ,k)(a',a) << (a2 ,a1 )(a',a )]. We suppress motions 
along the y axis by assuming the fields to produce trans­
verse ponderomotive focusing forces. This can be 
achieved by using wigglers of the forma~ =awcosh( kw.JY) 
(Ref. 9), for example. In that case ali the particles are at­
tracted toward the plane y =O where ali the fields are lo­
cally homogeneous. It is precisely this local homogeneity 
that allows us to consider the y component of the trans­
verse momentum as a conserved quantity which, besides 
enabling us to produce Eqs. (2) with vy =O, justifies the 
approximate discarding of the transverse spread due to 
beam emittance and wiggler and main-signal inhomo­
geneities (see Ref. 9). 

With these comments in mind we can write an expres­
sion for the density of particles n ': 

n'=n(z,t)ô(y). 

As it is known, we see from the set (2) that the longitu­
dinal motion of the particle is driven by an "effective po­
tential," the longitudinal ponderomotive potential. To 
simplify the model as much as possible (without affecting 
its physical content) and to compare it with previous 
ones, 2 eventually we will assume deep trapping of parti­
eles in the ponderomotive wells. This situation may not 
be the real one, but may provide very useful information 
in what follows. 

We need now an adequate evolution equation for the 
variable a. To deduce it, we begin with the wave equa­
tion for the field A 

(3) 

where J is the transverse current, 

J=n'v1 . 

Writing A in the form (1), we obtain from Eq. (3) and 
from the assumed forms of a', n', anda~ (upon an in­
tegration along the y axis), 

{- [úl2 -c 2g (k 2 )]-2i (úlar +c 2kaz l+a~-c 2a; Ja 
kl 

=41Tce2(nv1 ),,k , (4) 

where ( nv 1 l,,k represents the ( úJ, k) Fourier component 
of the physical quantity nv 1 (computed at y =0). The 
function g ( k 2 ) incorporates ali the transverse effects of 
this waveguide. It has the form 

(5) 

The next step is to calculate the density n in term of 
the field A (and Aw ), following the above rule to select 
only the components of the product nv 1 which are in 
phase with the main signal. Taking advantage of the 
periodicity of our system, let us represent n in the form 

s = + oc 

n= ~ 
i<lk +k )z 

nse w (6) 
s =- 00 

Each n5 is to be obtained by assuming its dependence 
on space to be weak 

27T -Jz+21T/Ik+kwl -is(k+kw)z 
lk +kwl ns- z ne dz. (7) 

The point z is one around which we wish to know the 
v alue of n5 • Of course, were n a strictly periodic func­
tion, n5 would be z independent; here we are only assum­
ing azns <<(k +kw )ns. 

Equation (7) tells us that 

(8) 

where z, a function of the point z, is the location of the 
deeply trapped particles inside the integration region of 
Eq. (7) and N 0 is the linear density (constant) of particles 
along the x axis inside each ponderomotive well [N0 has 
a dimension o f Oength)- 1 ] • 

By inserting Eq. (6) in the right-hand side of Eq. (4), 
and by taking its components in phase with A, we get 

[ -tl.-2i [a +_fa ] +a2-a2 [a t c z t z 

where we are adopting, from now on, the following nor­
malization conditions and definitions: t--últ, z--(úJ/c)z, 
(a,aw)--(e/mc 2 )(a,aw), &~:::=(41TN0e 2 /ym) (ik +kwll 
21Túl2 )( k 1 /2 ), tl. = [úl2 - g (k 2 )c 2 ]/úl2-&;, V :::=c 2k /úJ, 
and z0 as the equilibrium position of the particles inside 
the ponderomotive wells, it being z* just the departure 
from this equilibrium (z=z0 +z*). We notice that 

i[(k +k )/w]czo 1 (' f ) . . I' h e w = - mdependent o z . Thts tmp tes t at 
z * must be a slow function of z which, as we shali see, is 
true. 

As it was said, the amplitude a depends weakly on z 
and t. Let us rewrite this condition 

(úJ,k)a »ar za »a;,a;a . 
In this case, we see that the dispersive term of Eq. (9) be­
gins to play a role only in the situations for which 

(10) 

Later on we will see when condition (10) may be valid. 
Right now, let us perform the transformation 
(t,z)--Cr,s) with t =r and s=z -(V /c)t. Using the new 
variables and the slow modulation assumptions together 
with the condition (10), we may rewrite Eq. (9) in the 
form 
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with 

D=V21c 2-1 

(11) 

A special equilibrium for the field a ( =ae'a) will be an­
alyzed. This state is the one for which a is constant 
( =aeq) with a and z* equal to zero. The condition for 
its existence is 

2 aw 
-t::.={;jp-( >0). 

a.q 
(12) 

A similar condition as the above was obtained by 
Davidson and Wurtele,Z who considered the factor !::. as 
equal to zero, using in its place a deriva tive of an inhomo­
geneous equilibrium phase 2V lc(aa.qlaz), to provide 
the steady-state balance represented in our case by Eq. 
(12). Actually, in the Appendix we show that the 
relevant physical quantity that characterizes either the 
equilibrium or the dynamical state is not !::. or the deriva­
tive alone but the sum !::. + ( 2 V I c)aa eq 1az [i f we consider 
laa.qlazl=const<<l(k +kwla.ql, as in Ref. 2]. That is 
precisely the quantity to be used to arder to establish 
contact between both papers, which is a natural conse­
quence of the complete similarity between the small fast 
wave-vector mismatch implicitly contained in !::. and the 
small equilibrium wave vector represented by aa eq 1az. 

In other words, there will be no problem in defining 
correspondence between the present work and Davidson 
and Wurtele's; it is just necessary to keep in mind that 
systems with -t::.=&;awlaeq and aa.qlaz=O or !::.=0 
and -2 V lc(aa eqlaz) =&;aw 1aeq are equivalent. 

Now, let us perturb the equilibrium (12) by functions of 
the form (a 1,a 1)=éãpu 1 le"K5-!1rl (E<<1). In this 
case the linearization of the complex equation (11) (which 
produces two real equations involving a, a, and z *) about 
the equilibrium state represented by Eq. (12), together 
with a "deep trapping" version of Eq. (2) 

with 

and 

[ar-~ as r8l+w~(8l+al)=0, 

[ k +kw ] cz* , 
(i) 

gives the following linear dispersion relation between the 
frequency O and the wave vector K: 

(13) 

with 

- [v ]2 
2 Õ= ---;;K -w8 , O«( V lc)K . 

Notice that to arrive at the first equation for 8, we be­
gin by departing from our set (2). Then we expand the 
argument of the cosine using the deep trapping hy­
pothesis ( k + kw )z *+a << 1. The next step to observe is 
that the particles (z *) basically vibra te within the range 
of one potential well, to convert the total time derivative 
into a derivative that does not operate on the slow spatia1 
dependence of the relevant functions. Then we use the 
transformation (t,z)---..(-r,5) and proceed. 

To satisfy requirement (10) we would have to show that 
0 2 IK 2 (adimensional quantities) is much smaller than 1. 
From Eq. (11), we see that the term DK 2 already gives 
contributions to the frequency O in the correct scale be­
cause IDI ~O ( l) and K << l. So, in practical terms, 
what we still must require upon Eq. (13) is that the con­
tribution to the frequency produced by the nondispersive 
terms be such that I!::. 2( 1 +alI K 2 1 << 1. By using the 
definition of a and the condition 0 2 <<K 2, we obtain 

\a:~ \ « 1 . 
(14) 

If a is very small, condition (14) may be satisfied even 
for large values o f I!::. I w 8 1. However, we will see that 
this situation does not correspond to any type of instabili­
ty. So, our next step will be to find out under which con­
ditions even large values o f a [ I a I ~ O ( 1 ) ] still render re­
lation (14) as a true one. From this relation, it is already 
possible to see that I!::. I w 8 I must be small ( I!::. I w 8 I « 1); 
let us show that it is also a sufficient condition. 

Without the terms proportional to DK 2, Eq. (13) isjust 
the dispersion relation derived in Ref. 2, under condition 
(14) (with the corresponding frequency being represented 
by Oial, 

n2 - !::.2 2 
4uKI -a-2 K . (15) 

Wn 

With this relation and the definition of a [Eq. (13)] one 
can find a restriction on its maximum permissible value 

lal<lamaxl=lwnl!::.l 213 , 

if we consider (from now on) V I c z O ( 1 ). 
By replacing a by amax in relation (14), we find the 

sought sufficient (and necessary) validity condition of our 
theory 

lt::.lw8 I« I , 

which defines a particular regime in the FEL sideband in­
stability, the strong pump regime as introduced by 
Davidson and Wurtele.2 

Now let us analyze relation (13) for a wide range of K 
variation. 

(i) When K 2 <<w~, we write 1 +azK2 lw~ to con­
clude that we may have an instability of the MID type 
(the sign of the complex frequency 0 2 depends on that of 
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DK2 ) if I <H <(úJ8 /K)2, with H:= IDúJ~/~1. lf H< I, 
the instability is a MIK one and if H> (úJ8 /K)2, no insta­
bility is present. 

(ii) When K2-úJ~, one may approximate the disper­
sion relation by 

[õ+2( V /c)úJ8 0][ 402 -(~+ DúJ~ )DúJ~] 

=~úJ~(~+DúJ~). (16) 

Introducing the frequency 0 0 as 

200 =IL:l+DúJ~)DúJ~I 112 , 

from Eq. (16), two important unstable regimes may be an­
alyzed. 

(a) 0 2::::::06. Here, writing 0:= -sgn(~/D)00+v 
(I vi <<00 ), we obtain the max1mum growth rate 
(vmax=ir, r>O) in the form 

which is valid when (consider the smallness of v) 

H» lúJB/~1 112 ( > 1) . 

(17) 

(b) lül >> lü0 l. Here, in order to have MID, we see 
from (16) that H should be greater than 1 (one more 
time). The maximum growth rate may be estimated as 
(considering H>> 1 ) 

I 
113 IDúJB 1

213 

r::::::ú)B D~l ::::::ú)B 1/3 , (18) 
H 

with the instability appearing in the parameter space 
range 

(19) 

One should notice that this last instability [Eq. (19)], is to 
be interpreted as a direct extension of the strong pump 
regime of the MIK. We still quote that when H>> 1, the 
value of r given by Eq. (18) is much larger than the one 
calculated without dispersion; in fact, the growth rate 
(18) is H 113 times larger than r Kl [which can be calculat­
ed from Eq. (15) with a=amaxl· 

(iii) If a---.0 (K 2 >>úJ~ ), we finally have from relation 
(13) 402 =(~+DK2 )2 , which indicates that in this situa­
tion the system is stable. 

Now, let us recall the two maio points derived in this 
work. First of ali, we note that MID may set in only 
when H > 1. With this in mind, we see that when 
g(k 2)-.k 2 (the case where wave-guiding effects are 
small), the instability, in principie, cannot be a MID one. 
Indeed, in this situation we would have - D ---.6)~ + ~ 
(take a look at the definition o f D, V, and ~ ), which 
would produce a value of H such that H -+úJ1 ( << I) if 
we consider the fact that, in practice, as the amplitude of 
the laser field is much smaller than the one corresponding 
to the wiggler, @~ « 1~1 [see Eq. (12)]. On the other side, 
when wave guiding is important, g(k 2 )oi=k 2, 

D ::::::O ( 1 )( <O), and H may be very large, which indeed 
conducts to the possibility of MID. These reasonings 
a1so permit to conclude that the dispersive terms have a 
stabilizing inftuence on the small frequency range 

(K 2 <<úJ~ ); consider the negativity of ~ and D together 
with point (i) above. 

As for the second point, we have seen that at synchrot­
ron resonance (K 2 -+úJ~ ), where the most important in­
stabilities are located, two different behaviors for the un­
stable mode were found to occur. One of them, given by 
relation (18), is the direct extension of the one analyzed 
by Davidson and Wurtele. 2 The other one, given by rela­
tion (17), has a different structure, it being absent if D is a 
very small quantity. In fact, mode (17) is a further exten­
sion of mode (18) to even larger values of H. With this in 
perspective, we may say that as ~ tends to small values, 
beginning from I~ I úJ 8 I << 1, MI passes by three regimes: 
kinetic regime (MIK) when H< 1( = 1~1 > IDiúJ1 ), 
a dispersive regime [given by (18)] when 
1 «H« lúJ8 /~I 112( =D 2úJ1 « 1~1 « IDiúJ~ ), and 
another dispersive regime [given by Eq. (17)] when 
H»lúJ8 /~I 112(=1~1 «D 2úJ1) (see Fig. 1). One shall 
be aware of the importance of small I~ I as it is this range 
that corresponds to strong amplitude laser waves and/or 
tenuous beams. The precise structure of the waveguide 
was not taken into account. Calculations including these 
(and others) effects should be carried out in the future. 
We think, however, that the conclusions regarding the 
importance of the usually discarded wave equation's slow 
second derivatives will not be invalidated anyhow. 
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FIG. I. Schematic view of r* [ =c2r ![w 8 (c /V) 113Ww 8 )213 ]j 
as a function of H. The solid line represent the growth rate as 
calculated without dispersive terms while the dotted one in­
cludes their effects. One shall note that the two curves begin to 
diverge around H= I. 
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APPENDIX 

Let us demonstrate the equivalence between t:. and (a 
possible) aa0 /az. To do so, let us write the field a in the 
form 

(Al) 

where À represents the small equilibrium phase inhomo­
geneity (À=:: -aaeq/az, with laaeqlazl « i(k +kw )aeql ). 
Then, on applying the left-hand side operator of Eq. (9) 
on (A 1), we get 

eiÀz[- t:.- 2 V /cÀ.-2i W1 +V !caz J+a;-a;]ae;u 

_ ""2 -ic[(k+kw)/w](z0 +z*) (A2) 
- -wpawe 
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