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Inverse melting and inverse freezing in a three-state spin-glass model with finite connectivity
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(Received 17 September 2012; published 24 January 2013)

The phase diagrams of the three-state Ghatak-Sherrington spin-glass (or random Blume-Capel) model are
obtained in mean-field theory with replica symmetry in order to study the effects of a ferromagnetic bias and
finite random connectivity in which each spin is connected to a finite number of other spins. It is shown that
inverse melting from a ferromagnetic to a low-temperature paramagnetic phase may appear for small but finite
disorder and that inverse freezing appears for large disorder. There can also be a continuous inverse ferromagnetic
to spin-glass transition.
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Versions [1–6] of the Blume-Emery-Griffiths (BEG) model
[7] with random interactions have been studied lately as spin
models that yield thermodynamic phase diagrams exhibiting
unusual reversible inverse transitions (IT), as inverse melting
and inverse freezing, that have been found experimentally
in a variety of quite different systems. Examples in which
they occur are He3 and He4 isotopes at very low temperature
and high pressure, the polymer P4MP1, solutions, colloidal
systems, ferroelectricity in Rochelle salt, ferromagnetism of
gold nanoparticles, high-temperature superconductors, and
quantum-spin systems [8] (see Refs. [4,6] for a recent summary
of references).

Inverse melting appears as the reversible first-order transi-
tion between a liquid or completely disordered paramagnetic
phase at low temperature and a crystalline or ordered phase at
higher temperature, whereas inverse freezing is the reversible
first-order transition from a paramagnetic phase to a high-
temperature amorphous or glassy phase [4,6]. These transi-
tions usually appear with a reentrance in the phase boundary
of continuous transitions at high temperature between an
ordered and a fully disordered phase. The characteristic feature
of inverse transitions is that the ordered high-temperature
phase is favored by the entropy while the low-temperature
disordered phase is favored by the minimum of the energy.
This is best illustrated by the change of the folded into the
unfolded configurations of methyl cellulose polymer chains
in water. The bundles of methyl groups that are folded in
a compact weakly interacting configuration at low T unfold
with increasing T making more microscopic configurations
available with an increase in volume and entropy [4,9].

The three-state spin-glass (SG) model with a crystal-field
term of Ghatak and Sherrington (GS) [1] is a Blume-Capel
(BC) model [10,11] with random bonds that exhibits a
continuous transition between a spin-glass and a paramagnetic
(P) phase at high temperature and a reentrant phase boundary
at low temperature. Inverse freezing appears on the latter as a
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genuine thermodynamic first-order transition below a tricriti-
cal point in mean-field theory with infinite-range interactions
and full replica symmetry breaking (FRSB) [3]. Similar results
were obtained in mean-field theory with one-step replica
symmetry breaking for the BC model with spin degeneracy [4].
Inverse freezing also appears in numerical simulations for a
three-dimensional GS model with nearest-neighbor interac-
tions [6] and numerical work on the two-dimensional random-
bond Ising model exhibits an inverse melting transition [12]. It
would be interesting to have independent analytical results for
either of these random systems with finite-range interactions
exhibiting both IT.

Theoretical works on inverse freezing deal usually with a
symmetric distribution of random bonds in fully connected
systems. The purpose of the present work is to study, by
means of an analytical procedure combined with a numerical
evolution of a population dynamics [17], the dependence on
disorder of the phase diagrams for the GS model with finite
connectivity as a way to account for effective finite-range
interactions [13–16], and in order to achieve this we use an
asymmetric distribution of random bonds.

The three-state spin-glass model of Ghatak and Sherrington
with finite connectivity is described by the Hamiltonian

H = −1

c

∑
i<j

cij Jij σiσj + D
∑

i

σ 2
i , (1)

with the spins σi ∈ {−1,0,1}, i = 1 . . . N and the random
symmetric (cji = cij ) connectivity variable cij . The latter takes
the values cij = 1 if there is a connection between a pair of
spins at sites (ij ) and cij = 0 if there is none, independently
of other pairs of spins, according to a Poisson distribution for
small c/N

p(cij ) = c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0. (2)

The network connectivity c, that is the average number of
connections per site, is assumed to remain finite in the
thermodynamic limit N → ∞, such that c/N → 0, and the
statistical mechanics for the model is derived in that limit.
The set of infinite-range interactions {Jij } is assumed to con-
sist of independent, identically distributed random variables
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drawn from the binary distribution p(Jij ) = pδ(Jij − J ) +
(1 − p)δ(Jij + J ) for every pair of sites (i,j ), where J > 0.
Thus, each coupling has a probability p to be ferromagnetic
and (1 − p) to be antiferromagnetic, where (1 − p) plays the
role of a quenched disorder. For simplicity, we take J = 1.
Finally, the quadratic form in the spins favors the population
of the zero state, if D > 0, or the states ±1, if D < 0.

Assuming thermal equilibrium at an inverse temperature
β = 1/T , the disorder-averaged free energy per spin is
calculated in the replica procedure as [18]

f (β) = − lim
N→∞

1

βN
lim
n→0

1

n
log〈Zn〉, (3)

where n is the number of replicas, Z = ∑
σ1...σN

e−βH is the
partition function, and the brackets stand for the disorder
average over the sets of both cij and Jij , in that order. In
the small c/N limit, the disorder-average replicated partition
function becomes, to leading order in N ,

〈Zn〉 =
∑

σ 1···σ n

exp

[
− βD

∑
i,α

(
σα

i

)2

+ c

2N

∑
i �=j

〈
e

1
c
βJ

∑
α σα

i σ α
j − 1

〉
J

]
, (4)

where α = 1, . . . ,n denotes the replica index. Here, 〈g(J )〉J
is the average of an interaction-dependent quantity g(Jij ) over
the distribution p(Jij ).

Since the connectivity c is finite, one cannot expand the
inner exponential and follow the standard infinite-connectivity
procedure. Instead, we refer to Ref. [16] for a detailed
calculation of the finite-connectivity replica symmetric (RS)
solution for the three-state spin-glass problem. This requires
the introduction of an order function P (σ ) = (1/N )

∑
i δσσ i

,
which represents the fraction of sites with the replica config-
uration given by the n-component vector σ , where δσσ i

= 1
if σ = σ i and zero otherwise. The order function follows a
saddle-point equation and to solve it we restrict the present
work to a RS ansatz and assume that [16]

P (σ ) =
∫

dh db W (h,b)
eβh

∑
α σα−βb

∑
α σ 2

α

[2e−βb cosh(βh) + 1]n
, (5)

for any real n, where h and b are the two components of a
local field distributed according to the density W (h,b) that
has to be determined self-consistently. For each temperature
T = 1/β, crystalline field D, and connectivity c, we proceed
numerically by means of an iterative population dynamics
procedure for a large number of vector fields. As an initial
guess, a uniform distribution of fields is chosen, which are
then updated as follows [17]. First, a number k is chosen
from a Poisson distribution of mean c. Then, cells (hl,bl)
with l running from 1 to k are selected randomly from the
population, while couplings Jl are selected from the binary
distribution p(Jl) given above with Jl replacing Jij . Next,
one selects randomly a new cell (h,b) from the population and
sets h = 1

β

∑k
l=1 φ(hl,bl,Jl) and b = θ − 1

β

∑k
l=1 ψ(hl,bl,Jl),

where

φ(h,b,J ) = 1

2
log

2a1 + eβb

2a−1 + eβb
(6)
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FIG. 1. (Color online) Phase diagram T vs. disorder 1 − p. (a)
D = 0.2, c = 4 (black lines), and c = 8 (red lines). (b) D = 0.48,
c = 4. Solid (dotted) lines correspond to continuous (discontinuous)
transitions.

and

ψ(h,b,J ) = 1

2
log

(2a1 + eβb)(2a−1 + eβb)

[2a0 + eβb]2
(7)

follow from the saddle-point equation for the order function
in which aσ = cosh(βh + σβJ/c) is the part that contains the
interaction and, for simplicity of notation, we left out the cell
label l. The procedure is continued until it converges to a
limiting W (h,b).

Knowledge of W (h,b) allows us to determine directly
the magnetization m = ∫

dh db W (h,b)〈σ 〉, the spin-glass
order parameter q = ∫

dh db W (h,b)〈σ 〉2, and the activity,
r = ∫

dh db W (h,b)〈σ 2〉. The free energy and the entropy per
site, needed for the results presented below, were also obtained
in the procedure [16]. As usual in the three-state model, m �= 0,
q > 0, and r > 0 indicates magnetic order; m = 0, q > 0, and
r > 0 characterizes spin-glass ordering and m = 0 = q and
r � 0 describes paramagnetic order. The activity parameter r

is zero when all spins are in the σi = 0 local state. Otherwise,
it is a variable with finite nonzero value.

We present next the results for the phase diagrams. In Fig. 1
we show the domains of a ferromagnetic phase (F), a spin-glass
phase (SG), and a paramagnetic phase (P). The latter may
appear even at low T if the crystal field favoring inactive spin
states is large enough. If D is small, most spins are expected
to be active, that is in the states ±1, and the nature of the phase
should depend strongly on the amount of disorder 1 − p. Small
disorder favors F states and large disorder favors SG states,
which is what one would expect for a given connectivity as
shown in Fig. 1(a) for c � 4. That c is the smallest value of the
connectivity for which the continuous SG=P phase boundary
has a reentrance at all. As D is increased, favoring inactive
spins, one would still expect stable ferromagnetic states at
low but finite disorder that should disappear with increasing
disorder. What is new is that, instead of a SG phase, a low-
activity (small-r) P phase appears at low T for not too small
disorder, as can be seen in Fig. 1(b). These effects of the crystal
field should be reduced at higher T , leaving a region of F states
for small disorder followed by a region of SG states for higher
disorder.

Thus, for low but increasing T with appropriate values of
D and a small but finite disorder (1 − p), one may expect
an inverse melting transition from the low-T paramagnetic
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FIG. 2. (Color online) (a) Order parameters m (solid line),
q (dashed), and r (dotted) in function of the temperature for
1 − p = 0.24, D = 0.48, and c = 4; (b) free-energy; (c) entropy.

to a high-T ferromagnetic phase followed by an inverse
freezing transition for higher disorder. The latter is the case
for 1 − p � 0.22. Both inverse transitions are first-order
transitions that meet the F to SG transition at a triple point.
The SG phase becomes smaller when c increases. Indeed, due
to the normalization of the interactions with 1/c, the frozen-in
fluctuations of the interactions that characterize the spin-glass
state are reduced with increasing c. In contrast, the increase of
the F phase with c is favored by an increase of the alignment
of the spins. In the ranges 0.22 � 1 − p � 0.24 for c = 4 and
0.30 � 1 − p � 0.32 for c = 8 there is a SG phase at low
temperature, followed by an F phase at higher T .

In what follows, we concentrate on the regimes of small and
intermediate 1 − p, where the F phase appears. Figure 2(a)
shows the order parameters m, q, and r in function of
the temperature for c = 4, D = 0.48, and 1 − p = 0.24.
Figures 2(b) and 2(c) show the corresponding free-energy
and entropy, respectively. At low T , the system is found in
a P phase characterized by a low activity r . As T increases,
there is first a discontinuous transition to a SG phase, which is
located by the equality of the free energies and is indicated by
the arrows A between the metastable states at low T (in dotted
lines). It is also the place where the entropy has a discontinuity.
As T increases further, there is a continuous SG-F transition
indicated by the arrows B. A further increase in the temperature
drives continuously the system to the P phase of large activity
r , indicated by C.

Phase diagrams for T versus D at fixed 1 − p and c are
shown in Fig. 3. Figure 3(a) corresponds to a small amount of
disorder, 1 − p = 0.2 for c = 4 and 1 − p = 0.24 for c = 8.
In this case there is no SG phase. There is a small range in
D where the phase boundary of continuous transitions has a
reentrance and the system exhibits a first-order inverse melting
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FIG. 3. (Color online) Phase diagram T vs. D. In (a), c = 4 and
1 − p = 0.2 (black), c = 8 and 1 − p = 0.24 (red). In (b), c = 4
and 1 − p = 0.24 (black), c = 8 and 1 − p = 0.31 (red). Continuous
(discontinuous) transitions are shown by heavy solid (dotted) lines
and spinodals by light lines. The boundaries of each phase are
discussed in the text.

transition below a tricritical point located on the reentrance.
For a larger range of connectivity, 1.2 � c � 16, the phase
diagrams remain qualitatively unchanged. Thus, inverse melt-
ing and the presence of tricritical behavior seem to be robust
to changes in the connectivity. If the disorder is somewhat
increased, one has the situation shown in Figure 3(b). Here,
1 − p = 0.24 for c = 4 and 1 − p = 0.31 for c = 8. In both
cases the continuous F-P transition has again a reentrance and
a first-order transition that appears below a tricritical point.
There is now also a continuous inverse transition between the
F and SG phases, with the less ordered phase appearing at
lower T , which seems to end at the tricritical point if c = 4,
whereas it ends at the first-order transition below the tricritical
point if c = 8. In both cases, the endpoint is a triple point
where the three phases coexist.

To summarize, the phase diagrams of the three-state GS
model with finite connectivity exhibiting inverse freezing in
mean-field theory with RS [16] are extended in this work.
Keeping in mind that finite connectivity between sites may
account for effective finite-range interactions [14], we studied
here the trend of the phase diagrams with the average number
of connections per site. The results obtained for a range
of values going from c = 4 to a “large” c = 16 indicate a
uniform behavior of the phase boundaries with c and the results
obtained from mean-field theory may contain the essentials of
systems with finite-range interactions.

The main features of the phase diagrams are as follows. If
D is small there is an F phase for small disorder 1 − p and a
SG phase for large disorder down to T = 0. The continuous
F-SG phase boundary has a reentrance apparently for any finite
c reminiscent of the fully connected Sherrington-Kirkpatrick
Ising SG model [19]. For a larger D, the lower part of
the F-SG phase boundary disappears and there is instead a
low-T paramagnetic phase of low-activity states giving rise
to both an inverse freezing and an inverse melting transition.
The presence of the low-T paramagnetic phase reflects the
reentrance of the phase boundary in the T versus D plane.
From the phase diagrams, one can see that the size of the
crystal field D and the disorder 1 − p play a crucial role.
Similar results should follow with a Gaussian distribution for
the interactions with a finite mean.
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Finally, a comment about the assumption of replica symme-
try in view of the goal of the present work, which is the study
of inverse transitions at not too low T in the case of finite
connectivity. The assumption may not be a too severe one for
the transition with reentrant behavior from the low-T P phase
to either the F or the SG phase. Works by earlier authors on the
fully connected model [3,6] show that there is inverse freezing
with a reentrant phase boundary even with replica-symmetry
breaking (RSB) and one would expect this to be also the case
for inverse melting, although the precise shape of the phase
boundaries may be expected to change with RSB.

The transition from the SG to the F phase may be a different
situation and, in analogy to the situation for the fully connected

Ising SG, that phase boundary could be a straight vertical line
in the (T ,1 − p) diagram for the exact solution of the present
model, with no reentrance into the F phase. However, the reader
is reminded that there is only an argument and not a proof even
in the case of the Ising SG [20] and apparently nothing like
that yet in the case of the GS model.
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