PHYSICAL REVIEW E, VOLUME 65, 061908
Information space dynamics for neural networks
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We propose a coupled map lattice defined on a hypercubedimensions, the information space, to model
memory retrieval by a neural network. We consider that both neuronal activity and the spiking phase may carry
information. In this model the state of the network at a given tinecompletely determined by a function
y(o,t) of the bit strings&=(al,¢rz ..... onm), Whereo;=*+1 withi=1,2,... M, that gives the intensity
with which the informations is being expressed by the network. As an example, we consider logistic maps,
coupled in the information space, to describe the evolution of the intensity fungtiont). We propose an
interpretation of the maps in terms of the physiological state of the neurons and the coupling between them,
obtain Hebb-like learning rules, show that the model works as an associative memory, numerically investigate
the capacity of the network and the size of the basins of attraction, and estimate finite size effects. We finally
show that the model, when exposed to sequences of uncorrelated stimuli, shows recency and latency effects
that depend on the noise level, delay time of measurement, and stimulus intensity.
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[. INTRODUCTION synaptic cleft, as an electrical potential or the concentration
of neurotransmitters, their agonists, or antagoni6tg]. In

Coupled map lattice§l,2] present a wealth of different this sense, the effective intensity of the exchange of neu-
and interesting behaviors and are used as a tool to modebtransmitters may vary, depending on the state of the brain
nonlinear systems made of many interacting elements. las a whole. Recent developments in neuroscience reveal that
particular, it has been recently shown that coupled map latthe biochemistry of the local extracellular medium, due to
tices defined over the vertices of a hypercubavirdimen-  the presence of hormones and neuromodulators, may modu-
sions may present short and long term memory of its expolate the intensity of interactions among neurons, representing
sition to external stimuli, as well as a dynamical mechanisnglobal interactions through other channels besides the syn-
to forgetting[3,4]. In this context, a map is associated with apse§8—12]. Regions in the brain may be recognized, where
each hypercube vertex, labeled by a strindvobits, and the  specific information processing takes place as, for example,
different states assumed by these maps represent differesppeech centers or regions where the different sensory organs
combinations of patterns that are simultaneously expressesknd their signals to. However, these centers are also in-
by the system. The hypercube is then the information spacensely connected to other regions in the brain and may re-
of these models where couplings between different patternseive feedback. Brain activity and the emerging mind origi-
are explicitly considered and may be monitored. The fact thabate in this intricate exchange of information through
each bit string may be mapped to an integer in the intervasynapses and hormone release and in being recursively and
[0,2M—1] brings additional advantages to the numericalexternally stimulated by both environment and signals com-
treatment of the evolution of such systef5s. ing from the body. The modeling of the brain by synapses

Neural networks are generally conceived considering inonly, and in fact, by one only homogeneously coupled neural
teractions involving two neurons, the one that is firing, thatnet, is certainly too simple when the aim is to successfully
is, releasing neurotransmitters, and the post synaptic neurafescribe the emergence of the mind or, less ambitiously,
that is receiving these neurotransmitters. However, as newsome specific cerebral function. It is important to consider
rons are not exactly touching each other in the senseulti-interactions and a dynamical modulation of these inter-
that there is a small space—the synaptic cleft—between thactions, in the sense that it is the overall activity of the net
presynaptic neuron and the receptors of the postsynaptic nethat should define how these interactions are modulated.
ron, the synapse would be better described as a small region Events happening in different time scales play different
containing extracellular liquid, the receptors of the postsyn+oles in the functioning of the brain. Specifically, when a
aptic neuron, and the region of the presynaptic neuron fronmeuron fires, it generally fires a train of pulses. The typical
which the neurotransmitters are released. It is important téime scale for one pulse is 1 ms followed by an absolute
notice that other neurons can have axons or dendrites insidefractory period of 1 ms, such that the maximum firing rate
the influence region of a given synapse and axon-axon anaf a neuron could be of the order of 500 Hz. Temporal sum-
dendrite-dendrite synapses are also possible. Therefore theation of excitatory postsynaptic potentials, that is, the ac-
postsynaptic response may in fact depend on the state ¢ibn potential measured inside the postsynaptic neuron, is
many neurons, instead of only two, being more exactly depossible when the pulses occur in rapid succession, within 5
scribed as many-body interactions involving more neuronsto 15 ms from one another. The modeling of neural networks
Moreover, both the release and reception of neurotransmiby physicists generally considers discrete time evolution,
ters are strongly influenced by the local properties of thevhere at each time step a neuron is either active or inactive,
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in the sense that the information received from other neuron®rmation” space from which the dynamics for the neurons
have been summed at the soiff8—14. This time step can be derived. In Sec. Il we define information space and
should englobe the necessary time for the neuron to integragresent the model, in Sec. Il and IV we define order param-
the incoming signals both spatially and temporally, that is.gters and discuss analytical results, and in Sec. V we present
the physicists’ time step should be of the order of 15 mshumerical simulations results and apply this model to short
However, it has been pointed out by many authors that nofqerm human memory. Finally, in Sec. VI we discuss our find-
only the coincidence in neurons activity during the integra-iNgs and conclude.
tion time interval, but also the relative phase of pulse trains
could be relevant for information processifiy/ —22. These Il. THE MODEL
relative phases may represent additional variables that regu-
late the intensity of effective neurotransmitters exchange at a
given time. Consequently correlations among spike trains of The definition of complexity is rather controversial, but in
different neurons, averaged over the integration time, can bgeneral we can state that more complex devices may dis-
regarded as further dynamical variables of the system, alsariminate subtler differences in stimuli, yielding richer re-
subject to evolution equations. sponse repertoires. When proposing a mathematical model,
Furthermore, there are some indications that neural sighigher complexity implies that the model system states and
nals are integrated both temporally and spatially. For exexternal stimuli should present more possibilities, leading to
ample, Mountcastl¢23—25 proposed minicolumns as sets different trajectories in the life history of the system. In very
of neurons more intensely coupled between themselves tharomplex systems, small differences in the system state or in
with other neurons. Analogously, minicolumns that interactthe external stimulus may imply completely different out-
more intensely between themselves than with other minicoleomes. Neurons are complex unities and we should expect
umns form the so-called cortical columns. There is evidenc¢hat a whole network of neurons is even more complex. On
of these spatially integrated structures beyond the sensotfe other hand, it is common wisdom that one should not
cortex[26—29, and they have been proposed as the processomplicate models more than necessary at the price of deal-
ing units in a mammalian corteX80,31. ing with too much information to infer the relevant causes of
What emerges from the scenario described above is agiven phenomenon. The optimal equilibrium between com-
highly complex structure, with neurons integrating signalsplexity and simplicity, such that the model is tractable and
both spatially and temporally coming through nonlinear in-the phenomenon is still present may be elusive and difficult
teractions involving many neurons, represented by synapsée reach. Modeling is also an art.
and other information diffusion channels, and responding to Neural networks, as has been vastly investigated by
them in a nontrivial way. On the other hand, we observe thatphysicists, consist of a network of simple unities that can in
although simple models for neural networks, such as thgeneral assume two values. The connection between the
Hopfield model or the Perceptron and their derivations, havenathematical models and real neural networks is made
many unbiological features, they do present the possibility ofhrough the assumption that the valtel of a binary vari-
recognizing what information is and how information pro- able S; at a given timet should be associated with the ex-
cessing takes place. In these models, initial states or inpuggerimental fact that the neuron is active. Since a neuron in
may be mapped to some given information and the result ophysiological conditions is always spiking, activity has to be
letting the system evolve is the retrieved information or theinterpreted as a state where the neural firing rate exceeds the
output for a question. Some earlier works approached assdaseline firing rate.
ciative memory in attractor neural nef82-3¢ and rule Physicists then proceeded by assuming evolution equa-
learning processes in layered ndt37,3g, where multi- tions for the individual neurons, that take into account the
interactions have been explicitly considered. The result istate of the network of these idealized neurons in previous
that the information processing capability in the two in-times. Typically the interaction is considered to happen be-
stances is greatly enhanced by multi-interactions. tween each pair of neurons, describing independent syn-
It would certainly be rather desirable that a more complexapses; that is, each interaction depends on the state of the
model for neural networks could keep the ability of follow- two involved neurons only and on a predetermined synaptic
ing the information flux, incorporating features such as tem-parameter, fixed during a previous learning phase. The re-
poral and spatial signal integration together with the dynamisults are well described in the literatufer reviews se¢13—
cal modulation of the synapses to emulate hormone and6]) and, although very interesting, these models present se-
extracellular medium effects. rious limitations in reproducing the observed behavior of real
With this too ambitious goal in mind, we essay a first neuronal networks. From this particular point of view, we
move in this direction by introducing a model for neural can say that these systems are not responding differently for
networks where we can recognize Hebb terms and Hebb-likdifferent stimuli and hence other, more complex models
terms for multi-interactions, as well as the modulation of theshould be proposed.
interactions by the global activity of the net, in an attempt to  There are at least two different directions to increase com-
incorporate biologically based hypotheses to the informatiorplexity in neural networks. The first is to assume multi-
processing capabilities of previous models. The model startiteractions, as has been proposed in some earlier works
from a different point of view in relation to classical neural [32—38. The results show an enhanced information process-
network models, by proposing evolution equations in an “in-ing performance but the models still lack biological features.

A. Experimental quantities and model variables

061908-2



INFORMATION SPACE DYNAMICS FOR NEURAL NETWORKS PHYSICAL REVIEW B5 061908

The second direction is to consider more complex unitiesmnodel takes into account the exact spike times occurring in
that is, a system dl neurons should have more possibilities K previous time slices. This fact may be regarded as a form
to describe its state. In this work we propose a model thapf temporal integration of neural activity.
increases complexity in both directions. Besides temporal integration, spatial integration may also
We assume that to completely determine the state of thge considered. Individual neurons subject to the same stimuli
network at a given time one must know not only the firing present large variability regarding whether and when the
ratg of leach neuron, but also their spiki.ng relqtive phases i§pikes occur, generating sources of noise that may degrade
a time intervalAt, of order of 15 ms, during which a neuron jnformation processing. Summing over a set of neurons as
can spike and recover several times. This is the relevant timge|| 55 different time slices could decrease this effect. Simi-

scale for the discrete dynamics of our model and it is CONy, 4 e jntegration time intervalt, an integrated process-

sidered as the integration time scale, or the integration timﬁ1g unit may be defined as a set of intensely coupled neu-
that leads to cognitively meaningful states. The spikes hav?ons in the spirit of the minicolumns that were proposed by

roughly the same shape, varying the cross membrane pOteR/I'ountcastle[ZS—ZS. We note that spatially integrated struc-

tial from to —65 mV up to 40 mV, then decreasing to t h b found in th ¢ ‘ |
—80 mV, and finally relaxing back te-65 mV during a time ures have been found in he somatosensory cortex as early
£ 1956 25], in the visual cortex26,27), and more recently

interval of about 2 ms. One way to model the state of T
neuron is to consider a partition of the interdetl in K equal their existence has been proposed beyond the sensory cortex

slices, typically less than 2 ms, and assign a value 1 if the28.29. To consider_the evol_ut_ion of thgse processing units,
neuron spiked in that time slice and zero otherwise. The stat@n® may then consider the joint evolution of all neurons of
of a neuron during a given integration time interval is thenthe set, during a finite time interval. We model this joint
given by a sequence df bits, similar to what is done in temporal and spatial integration by considering that each unit
information theoretical analysis of spike traif39,40. As  is composed of neurons, such that the stagt) of theith

we shall see in what follows, in this model neuron states at @rocessing unit at timeis specified by the state of each one
given timet determine the neuron states in the next timeof the » neurons at each time slice in the interval between
interval, labeled by + At, implying that the dynamics of the t—At andt, that is

Si(t)=(S11,512, - - - S1K 159115921 - - - SoK s+« - Sy 1:Sy21 -+ - Sy k) (1)

Wheres}’T: +1 indicates whether thgh neuron in process- 1
ing uniti has spiked in theth time subinterval. riZZ—TO[(SH 1], 4
Correlation functions among different units are defined as

LK wherery=At/K is defined as the lasting time of a spike, and
3 (S (1).--S (1))= — stg2 gm hence G<ri7p<1 since—1=(S)=<1.
(S, (05,0 5,(1) vK le Zl bl b7 For m>1 in Eq. (2), the correlation functions involve
2 more units and carry information on the spiking relative
phases. Observe that for the same valueéSgf and(S,),

where iy, iz, ... i’im correspond to different processing for example, there can be different values (8S,). In fact,
units. As each bis; ;== 1, the above equation implies that there are ¥—1 different correlation functions for @m
correlation functions with one or more repeated units are<N, and they may assume the discrete values,—1

redundant. For example, the self-correlation functi§fy is  +2/(Kv), . ..,—2/(Kv),0,2/(Kv), ...,1-2/(Kv),1, that
calculated as is, 1/(Kv) gives a scale for the correlation functions, such
that whenKv—oo the correlation functions are continuous
~ 1 rok (3) it k is odd qgantities. These gorrglatipn functiorjs are well defined quan-
<3k>: =—>> (s} k= _ _ " (3) tities that may be, in principle, experimentally measured. Itis
KiZiz= o 1 if k is even. their evolution that we propose to model here and we do it in

an indirect way, using an associated space that we call infor-

Consequently, the complete set of correlations involving onlymation space.
different units carry all information about the system. We begin by defining a given information pattern by a bit

For a network wittN neurons, there afel =N/v process-  string = (0,05, . ..,oy) Of M bits (o;=*1 for 1<i
ing units, andM correlation functions involving only one <M). This bit string is a vector in aM-dimensional space
unit. The firing rate, defined as the average number of spikelsut may also be mapped to the binary representation of an
produced by thes neurons during the integration tindst, is  integer, here represented by such that B=o<2"—1. The
therefore idea is to somehow associate information patterns to con-
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figurations of a neural network. As the bit strings represent- y(o,t+1)=[1—a(t)]y(o,1)

ing the information patterns hawd bits and to completely "

represent the configuration of a neural network we need z 0

KvM bits, only whenK=1 andv=1 the information pat- X X(UHE 21 y(e, 01, ©

terns may be mapped to the instantaneous configuration of
the net. In this case the processing units in the neural ne{yhere the integer) = o+ (1+0;)2' =2 is associated with
work are composed by single binary neurons=(1) with  the vertex neighbor te- in the hypercube that has itth bit,
nonsliced integration timesK(=1). Here we work with 4,  flipped.zis a parameter of the model that regulates the
more complex units, so this map is not straightforward.  coupling between a given information pattern and its neigh-
In order to obtain the map between the configuration ofyors in the information space. One can imagine couplings
the network and the information patterns, we consider thapetween information patterns with more bits flipped or some
the network made d¥ processing units may simultaneously other neighborhood relation; this is certainly interesting but
express different information patterns with intensities is beyond the scope of the present work. Observe also that

y((;-,t) at a given timd. Given the expression intensiw of all the information aCtIVItya(t) of the net modulates the cou-
information patterns, one should be able to uniquely deterPling between neighboring sites in the information space:
mine the state of the network that is accomplishing such dvhen the net is expressing a lot of different information and
deed and vice versa. This is possible by prescribing the folls too active the association between similar information is
lowing map between the representation intensity functiorless intense.

y(o,t) and the quantities representing the network activity 10 better appreciate the relevance of each term,

and correlations: observe that in some cases Ef) may be regarded as a
logistic map with an effective parametei ={x(o)
oM-1 +[z/a(t)1=M ,y(0™,t)}. Depending on whethex is less
a(t)= Z y(o,t), than, equal to, or greater than one, there may be attractors for
o=0 y(o,t—) larger than zero, for some. There are two terms

in the expression foh: x(o), which does not depend on

- time and is a function oé only, and a dynamically set term,

(Si(a(t)= 2 y(o,t)oy, which describes the coupling between different information

70 patterns. Hence, the retrieving of a given pattern may or may

not be stable depending on the valuex¢t), and the first

~ = term in the square bracket of the right-hand side of &g.

(S )at)= UZO y(o.)oioy, (3 describes the difference between permanently learned and
not learned patterns. On the other hand, the second term
dynamically sets the possible values for the effective param-
eter\: it describes how the state of the whole network influ-
oM_y ences the effective retrieving of a given pattern.

~ ~ _ Equation(6) describes the evolution of the pattern inten-

(S1DS(1) - - Su(b)a(t) = ,,ZO y(o.)o102 - ou. sitiesy(o,t), making the processing units to follow a given

trajectory. In fact, there is an underlying dynamics for the

The number of correlation functions on the left-hand sideneurons that may be made apparent by multiplying &g.

must be equal to the number of averages in the informatiol®y o; and summing over. We then arrive at

space that lays in the right-hand side of the above equations,

M1

2M_1

which explains the reason why the bit-string leniythin the 5 21

information space must be equal to the numiér of pro- a(t+1)(S)ir1= ZO oil1-a(t)]y(o,t)

cessing units, wherH is the total number of neurons in the .

net. The role played b¥, the number of time slices in the z M .
integration time, is to approach the correlation functions to X|X(o)+——= E y(eDt)|. (7

the continuous limit, Kv—c0). Observe that, given all ex- al) =

perimental quantities, in the continuous limit, we can univo-
cally determiney(o,t) up to a normalization constaa(t).
On the other handa(t) can be viewed as an overall infor-
mation activity of the network, as measured in the informa
tion space.

The first term in the large square brackets, containing infor-
mation about stored memories, may be related to Hebb-like
learning rules for the synapses, while the second term is the
“highly nonlinear term that describes nonlearned synapses and
other global connections between the units and consequently
between the neurons in the net. Obviously to obtain the
B. The dynamics Hebb-like synapses we must conveniently define the function
The dynamics is modeled by the way the information pat.X(O') We ChOOSS((O’) to assume either one of two values:
terns interact with one another in the information space. That

is, we propose a dynamics for the intensitigsr,t) as fol-
lows:

k, if o isalearned pattern,
X(o)= k, otherwise, ®
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wherek,, andk, are conveniently chosen to ensure, respec— ¢*, are also storefB2]. The functionx(o) may be written
tively, thato is or is not a memory, that is, it may present anas
attractor state with an intensigyo,t— ) larger than zero. P

Now, suppose that there is a set®fmemorized patterns x(o)=k,+ (km—K,) E [8(c—o*)+ 6(0—?)], (9)
o, for u=1,2,...P. In case we want to reobtain the p=1
Hopfield model in the appropriate limits, we must considenyhere5(c— o#)=1 if o=o* and zero otherwise. The trick
that the patterns images on the hypercubé=(2M—1) now is to write thes functions as follows:

l+ ojol*
—om=[1 1
M M-1 M
—(1+> oo+ > > giol'ojol+ .- +o1010,05 - -oqay |, (10
i=1 i=1 j=i+1
such that by using this expansion for batHunctions in Eq.(9), we may rewritex(o) as
2P M—-1 M-3 - - M
X(O‘):ku+2 (km—k,)| 1+ 21 J§|:+ J,J a'a'J-i—iZ: 2 _EJ: 2 |]k|a'a'J(Tk(r|+~-~+J(1'\2"?_'M(rla'2---a',\,| ,
11
where the synaptic intensitie¥ describe multi-interactions involving neurons and are given as
J(Z)_i i Ty
P & 77
P
=5 2 olofolaf,
p.=l
(12)

(N)

'UII—‘

which are the same expressions presented in R&#$and[37]. Here we have only even order synapses as a consequence of
storing both patterns and their images. The expansior(i®j proposed in Eq(11) implies that the first term in the evolution
equation Eq(7) is regulated by Hebb-like terms. Using E4l) in Egs.(7) we obtain

2M_1

~ 2P 2P
a(t+1)(S)ir1=| K +2—M(km—kv)1 EO [1-a()]y(o,t)oi+ 2_M(km_kv)

M1 M-1 M

2P
X 2 [1- a(t)]y(ot)E 2 J,k 01001+ iy (k=)

2M_1 M-3 M—=2 M-1 M
x 2 [1- a(t)]y(at)E 2 22 I oo
=1 k=] +1 I=k+1 m=
oM_1
+ E [1- a(t)]y(ot)—E y(oi )o. (13)

That can be rewritten as
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s 2P - 2P M o/ op
a(t+1)<Si>t+l:[l_a(t)]a(t) kv+_M(km_kv) <Si>t+ _M(km_ku)_ 2 . JIJ <S]>t+ _M(km_kv)
2 2 j=1)#i 2
5 u 2P M-2 M-l M
1SS St i (km (4) (BT T
szlz,j#i k:j;l,kséi Ji(SiS§S0+ 2M(km kv)j:”?&i k:j;‘k# I:HE“# IN(ESSS)
M-3 M—2 M—1 M
oMM 4) (BETEE
NPT kU)le,j#ci k:j+21,k#i I=KT1J#i m=1F1m#i Jim{SiSSS St - - -
1-at)] 2’ M |
[ a(t§ )] 2 y(g',t)o'i; y(O'(]),t), )

In the above equations we can recognize three different=K=1, and because it yields promising results. However,
classes of terms involving synaptic intensities. The first classther equations could also present the same advantages. The
contemplates the usual interactions, where other processirgpint here is to propose an information space formalism with

units act on théth unit state through terms @(S)),. In
the limit where v=1 andK=1 it is a usual, two-body,
Hebb-like interaction, for other values ef andK it repre-
sents a mean field action of ufion uniti. The second class
considers interactions d§})(S;S,S)., which describes how
the joint activity of three unitsj(k,l) may act on a fourtffi)

the adequate transformation to the network configuration
space as a convenient tool to approach information process-
ing by biological neuronal networks.

The correlation functions are hence relevant in determin-
ing the evolution of the system. In fact, for the evolution
equations given in Eq6) to completely specify(o,t+1)

(up to the normalization constanit is necessary to know all

composing a fourth order coupling. These are mean fielgattern intensities at time As there are ¥ intensities, the
approximations to Hebb-like terms describing many-body incomplete specification of the state of the net requires a phase
teractions. The third class of terms, SUChJé\§<3§j§k>t, space of ¥ dimensions, where Eq6) can be regarded as a
describes how the interaction between other urjk3 (nflu- ~ master equation of a Markov process. Observe that the set of
ences théth unit evolution, depending on the current state ofthe quantities a(t), (S):, (SS)i, (SSS)t, ---»

3. This term can be interpreted as the consequences d1S;: - - Sw)t contains 2! elements and allows us to deter-

(3141 due to changes in the extracellular medium causedn€ the 2! values ofy(o.t) at a given timet and their

by the activation of synapses between other neurons in th%ubsequent evolution. In thg next section we def!ne order

network, for example. parameters that we use to investigate the behavior of the
In the discussion above, we chose to store both patterF{resent model.

and image to be able to recover the Hopfield model dynam-

ics in the appropriate limits. We do not have to do so. In the lll. ORDER PARAMETERS

results we present in Sec. Ill we do not make this assump- \we first define the average overlam*), of the network
t|0n, since we think th|S is the more general case. We remarKNith the information pattermrl-" at timet as an average over
however, that when images are not stored, the odd ordgpe information space where the weights are given by the

synapses are also present and their learning rules are dirgglative intensityy(o,t)/a(t) with which the informations
generalizations of the even order synapses learning rules. js peing expressed by the net at titpe

The last term in Eq(14) also deserves some comments. It
is a highly nonlinear term and it can be shown that it may be
decomposed in sums of products of correlation functions in-
volving a different number of units. They do not contain
Hebb-like synaptic intensities and are not modified in learn- ) .
ing. They are interpreted as describing inbuilt relations, repWhere the time dependence appears through the average im-
resented by, between neurons that are specific of each braili€d in this equation and the specific overlao™, o) is
center. In the particular model we propose here, these reldl€ usual overlap between the stored patiefnand the in-
tions have been chosen to pair similar information patternéormationa,
and to endow the network with content addressable memory
capabilities. In other models, describing other devices, dif-
ferent relations between information patterns may be as-
sumed. We also stress that the assumption of @ds rather
arbitrary. It has been chosen due to its memory device propie note thato; may take the values1 so thatm(o*, o)
erties[4], due to the fact that it presents a sensible limit formay assume values in the interyat 1,1] and assumes 1, 0,

22yt
(mey= > —m(o*,0),

2 a 9

1M
m(o*,o)= i Zl alo;. (16)
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or —1 wheno ando* are, respectively, equal, orthogonal, ! z+1(ky—k,) [ 241 (K +k,)— 2l
or images of one another in the information space. The spe- E yb= 5 - Tk +vk }
cific overlaps can be written in terms of the Hamming dis- n=1 z 2+l (kmtky)
tanceH, defined as the number of different bits between two |
patterns: 3 p L 271 (km—ky) [z I (kntk,) — 2l 23
PR 2z ZH1(kpt Ky) |
2H(o*,0)
m((r'“,a')=1—T. (17)

a—

z+ukm+k0—2q
z+1(kpntky,)

In what follows we obtain stationary values and time evo-

lution for the above defined quantities under different proto-The above equations imply the possibility of many different
cols. Depending on how the stored patterns are chosen artationary solutions, depending on the individual values of
the prescription we use to run and initialize the time evolu-y4 andy# . For example, the activity, given by the third
tions, we can gather different information about the perfor-equation of(23), can be written as a sum of ahyndividual

mance of the net. activities a, =y4+My4>0, provided they are compatible
with positive values fory§ yielded by Eq.(20).
IV. STATIONARY SOLUTIONS The constraint of positive intensities imposes limits on the

. . number of simultaneously retrieved memoriesTo begin
We consider a network with® sparsely stored patterns, with. a>0, and hence

such that memories are not first or second neighbors on the
hypercube. We look for stationary solutions whé{@® of z

these patterns are simultaneously retrieved, in the sense that I<m. (249)
the intensitiey of these patterns are greater than zero. In this m- T
case, the simplest stationary solution is Also, Elﬂzl)”f must be positive, so that
yg if o=o* for u=12,...], z
yi if o isfirst neighbor to ac*, I<km—kv' @9
y(o,t)= ¢ 1o (18
or m=Ls...0 Considering <k,<1, the above conditions define a maxi-
0 otherwise. mum number of simultaneously expressed memories,
Using this solution in Eq(6) we get . 2[2—(kntk,)] if k,<kn,<1, 28
My M 2l (k= k,)  if kp>1.
zNMyp
yo=(1-a)yo| kn+ a } (19) The interesting point here is an upper limit fothat may
be larger than one, stating that the system may be expressing
zy more than one previously memorized pattern simultaneously,
yi=(1—a)y4| k,+ —0} which is a feature presented by short term memory in
a humang 41].

_ u u We have so far analyzed the existence of these stationary
Assuming thatyg>0 andy;>0 for all u<I, the above gg|utions. We turn our attention now to their stability. As

equations imply that there are many different solutions, with different stability
conditions, we restrict ourselves to special cases when either
yM:£ i a(km_kv):| (20) =1 or all retrieved memories are equally expressed, that is
om0 z ' yt=yh andy#=y! for all u<I. In these cases, E@6) is

written as a fixed point equation of a logistic map, that is,
Summing overu we get

| 2+ (kptky) 1 2z | 27
' _ Yo= Yol 1~ Yol
1 al(kn—k,) 21 z+1(ky—k,)
2 vi=y| 2, v6- +} (21) "
# a where we can define the logistic parameteas
We now can use that z+1(k+k,)
= #, (28)
2|
— //-+ M
a ,;1 Yo Mﬂzzl Y1 (22 yielding the solution
together with Eqs(19) and (21) to obtain the following re- 2z yh=1-= (29)
sults: z+1(kp—k,) ”7° A
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that reproduces the solutions given by E(3) in the ad- =k, while their first and second neighbors pres&(ir)
equate limits. Imposing the limits fox corresponding to =k, . Anyway, this mechanism suggests that the capacity of
stable fixed points of the logistic maps<h <3, we have the ne’:c/I scales with the size of the information space, that is,
with 2,
z |~ z (30 Having investigated stationary states, we must now look
6—(kmt+k,) 2—(kmt+Kk,)’ at dynamical features of the model, such as the stability of
these solutions and the size of the basins of attraction, and
where the lower limit corresponds to the onset of bifurca-their relations with the network size.
tions and the upper limits correspond to the existence of the
stationary solutions, and it is the same condition obtained in V. NUMERICAL SIMULATIONS
Eq. (24).
Equations23) and the above conditions consider that the
neighbors of a retrieved pattern are expressed by the net, that We first choose the values flr, andk, that define which
is, y{>0. It is also possible a solution witjy'=0. In this  patterns are memorized by the net and which are not. In this
case, the stationary solution is paper we shall considés,,=1.5 andk,=0.5. We also must
| choose the coupling parameter and we takel. For these
e parameters, Eq.26) states that,,,— >, but asl<P, this
le Yo=1— k_m 3D result should be restated bg,,=P. However, we note that
for too large values oP, Eq. (26) is no longer valid. The
and, when ally# are equal, it is stable provided<lk,<3 stlationary solu}ions as defined by E((;E3) take the va!ues
andky,<(k,+2/1). yo=1/3 and y7=0.0 V\{hen there is only one retrieved
We have explicitly used that only some of the memorizedMemory with overlap given bym,_;)=1.0. We stress that
patterns and first neighbors are being expressed by the nélﬂese _s_olutlons are valid when the other |_nfqrmat|on pat_terns
with every other pattern presenting zero intensity. This isntensitiesy(o,t) are zero or nearly so. This is only possible
reasonable, sincy3'1~l/M and we expect further neighbors when memlonzed patterns are §parsely distributed on the _hy—
to be even less disturbed. In this approximation, the value foP€"cUPe, since nearby memorized patterns could be excited
the overlap with the recovered patterns may also be obtainefrough the coupling with their neighbors.
in the limit where the stored patterns may all be taken as Given a numbeM of processing units, there aré'ver-
orthogonal to each other. In this case, the average overIaIﬂFeS in the information space. This exponential increase in

A. Simulations without noise

with one of the recovered pattegp<| is the number of the intensity function components strongly
limit our calculations. Here we considiét=12, 14, and 16,
y'0+My'1(1—2/M) and the calculations were performgd _in a P_entium ”2 800
(m*y=(m))= | | MHz personal computer using multispin coding techniques
[(yo+My1) [42] to treat the integers representing the information pat-
terns and to access their binary representation.
= E_ M (32) Initial states for the simulations are built as follows. An
| zIM information patternoi, . is generated by flippindy, ran-

) __domly chosen bits of a randomly chosen memorized pattern
where it can be seen that the average overlap with in thg The initial configuration of the system is given by
retrieving solution increases wit#l, going to 1 asvl goes to

infinity. These solutions and their stability have been ana- 0.3 if o=0nitial

lyzed regarding the evolution equations as approximations to 0.012M

logistic maps. This assumption may be easily overruled by a y(o,t=0)=¢ . ; ) (33
further neighborhood effectively acting on the stored pattern, if o =first neighbor ofapjtia,

and other stable or nearly stable solutions cannot be dis- 0.00000t otherwise,

carded.

We can expect limits in the performance of any real tool.wherer is a random number in the intenvd,1]. The initial
Here we can identify at least two different mechanisms thatonfiguration is represented in the information space by a
impose limits in the memory capacity of this model. The firstpeak in the intensity distribution located at a distancédngf
one is explicit and originates in the fact thatshould be bits from a randomly chosen memorized pattern. We then let
greater than zero. Wheh increases,y'0 decreases and the system evolve and we monitored the average overlap
memory recovery is less intense. Observe that the maximumwith the memorized pattera™, (m*), averaged over 100
number of simultaneously retrieved memories depends omamples during 100 time steps. We considered different val-
the values ofk,, andk, and, more interestingly, increasing ues for the numbeP of memorized patterns and different
the coupling between patterns, | 5, increases. values ofh.

The second mechanism to limit the capacity of the net Consider first the time evolution ofm*) for different
lays in the validity of the assumptions and has to do with thevalues ofhy. Figure 1 shows the results for a system with
numberP of stored patterns. Whem is too large, it may not M= 16. Typically, forP= 1, the system always converges to
be possible to find information patterns such thdtr) the stationary solution with a peak at the memorized pattern,
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FIG. 2. Long time value ofm*) for different values ofP and
network sizes oM =12, 14, and 16.

regardless of the initial condition, as shown in Figa)1For

all casesa converges to 1/3 corresponding to the calculated
stationary solution. However, the convergence time to this
stationary solution increases wity. For P=2, the final
state depends on the initial conditions, as shown in Rig). 1
When the system starts too far framt, the final configura-
tion may either converge to a stationary solution around ei-
ther one of the two memorized patterns, or to a mixed solu-
tion, presenting peaks at both memorized patterns,
preserving the overlaps with the two stored patterns at
roughly 1/2.

Figure Xc) shows that folP =10 there are enough memo-
rized patterns distributed on the hypercube for the final con-
figuration to converge to patterns that are, on average, or-
thogonal toc* whenhy=2. As the number of memorized
patterns increases still further, the chances that the initial
condition is at or very near a memorized pattern other than
o* also increases and the final configuration converges to
these nearby memorized patterns. The final overlap then
stays at roughly its initial value, as shown Fidd), for P
=16 000.

We now analyze what happens whieg=0, that is, ini-
tially the intensity peak is localized right at a memorized

pattern and we vary the number of stored memoReFig-
081 il ure 2 presents the long time value @h*) for different
“ values of P and network sizes oM =12, 14, and 16. For
04r i P <10, the performance is the same for every network size:
A 00 in this limit the number of stored patterns is far from the
t i T percolation threshold on the hypercutie<2M/M), and the
Voo - long time behavior of m*) depends orP, but not onM.
) i::g ::_1 I However, ad increases, the percolation threshold is reached
o8k —0—h,=6 h=8 || earlier for smaller nets, and we find that analogous behaviors
| P=16000 M=16 —>—h,=10 are presented by systems where the valueesM is the
0 25 50 75 100 same.
(d) time Figures 1 and 2 show that the system behaves as an at-

tractor neural network with content addressable memories.
The size of the basins of attraction is roughly 2 bits for small
P, and this limit is clearly due to the coupling assumed in Eq.

FIG. 1. Time evolution of the overlagm*) with the stored (6). Longer range couplings, involving further neighbors in
patterno™* , averaged over 100 samples. The initial condition is anthe information space, or larger values for the coupling con-
intensity function peaked at an information pattégbits far from  stantz will have relevant effects in the size of the basins of
o*, for M=16 and (a) P=1, (b) P=2, (c) P=10, (d) P attraction. This point is under investigation and will be pub-
=16 000.
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lished elsewhere. The limit on the network loBddepends Noise=10
on the performance indicator we use. In the simplest case of e B I A M
uncorrelated information patterns, with couplings between — —— o]
first neighbors in the information space, the limit for retriev- 08 P=4000
ing only one pattern at a time depends on the size of the I P=10
region covered by the retrieving solution: when only one 06 L |
pattern and its first neighbors are noticeably excited, this A
limit scales with the percolation threshold of occupying the E 04 L i
hypercube with balls formed by a vertex and its first neigh- ’_ P=400 |
bors. 02 b i
We have considered noiseless equations and their stable | M=14 ]
solutions. We do not expect this to be the case of neuronal 0,0 Ll s vl vl v g
networks in a mammalian brain. Random stimuli both from 1 10 100 1000 10000 100000
other parts of the brains, as well as from the body and from (@) time
the environment are continuously being received by the dif- . .
ferent regions of the brain. Moreover, individual neurons 0.6 —rrrrm—rrrer '.\l.o.l.s.f,=.1.(.)...... S
may present chaotic dynamics and do not work as com-
pletely deterministic units. In what follows, we consider the
effect of a small random term introduced in the evolution .
equations. P=400 1
P=40 i
B. Simulations with noise © |
The noise term is introduced in the evolution equations of 03 L P=1, P=2, P=10
the model, by adding a random term in E§), ' M=14
0,2 PEERETTIT BN R ETTTY B AR TTIT B AT R TTTT MR RTTTT B AR TTIT
y(O’,t+1):[1_a(t)] 1 10 100 1000 10000 100000
(b) time
z M ) FIG. 3. Evolution of(m*) and a with time, starting withhg
X{Y(U,t) X(U)‘FE E y(eOt) [ +n(t) ¢, =0 and averaged over 10 samples during 1®* steps forM
=1 =14 and a different network loafl.
(34)

asking subjects to memorize stimuli, which can vary from a
wheren(t) has probability (1 pg) of being zero angg of  list of written known words to spoken unknown sounds, un-
assuming a small valueg. In this paper we considerguk der different circumstances where the time delay between
=0.01 andhg=10"“. Figure 3 shows the evolution Om*) stimuli and the time delay for testing the memory, back-
starting with h,=0, averaged over 10 samples during g ground sound or visual stimuli, and simultaneously per-
x 10* steps forM =14 and different network load8. The  formed tasks are varied. In the simplest example, subjects are
solutions are stable only foP=1 and 2. For largeP the = asked to read words that successively appear on a screen.
systems tend to lose the initial memory as time passes, arfifter a list of N items, the subject is asked to remember the
the typical time for losing the memory dependsmriwWhen words. The retrieving probability, defined as the relative fre-
P is not too large, increasing implies a smaller memory duency with which each word of the list is retrieved, is ob-
decay time. However, for very larg® there is a stabilization tained after the test is repeated with different subjects. Plot-
at higher values ofm* ). This is so because the activity has ting the retrieving probability as a function of the order
attained a stable value by the excitation of nearby memoriegiumber of the words, we can see peaks for the first word,

This result is particularly interesting. Two relevant fea- Which is called the latency effect, and for the last words in
tures in human short term memory are tkiatit may keep  the list, which is known as the recency eff¢d8]. Typical
simultaneously aroused several items &indit decays with ~ investigations aim at measuring the number of items that
time. These features are presented by this model, as we haigmans can simultaneously remember within a short interval
just shown, and to better illustrate its potential we consider irPf time and the causes for memory loss. Two different
the next section the results for a simulation protocol wherénechanisms for short term memory loss seem to be in ac-

the laboratory procedures for performance measurement &Pn: a natural decay with time, which should be intrinsic to
short term memory are reproduced. the dynamics of the system, and interference effects, where

the memory loss is due to another stimulus the subject has
been exposed to.
The model for neural networks we propose here is able to
As nicely reviewed by Baddeley in his bodkuman present latency and recency effects and shows both memory
Memory[41], short term memory in humans is measured byloss mechanisms. To show that, we simulated the model

C. Short term memory performance
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0,35 — - - - being simultaneously remembered. Eventually these overlaps
1 . . .
030} Yo = 0-10 ] merge back in the background noise, and that can be inter-
025l ] preted that the associated pattern has been forgotten. After
’ ten stimuli, the network is let to evolve without further per-
0,20 . turbation and all overlaps decrease, eventually merging with
g 045 ] the background: the decay mechanism for memory loss is
v clearly present. The decay mechanism in this model is
ool 2 3 \1\]& caused by the noise, which here we take as being intrinsic of
0,05 - I the dynamics of individual neurons and the exposition of the
s ; network to some environment.
@ 0 5000 j°°°° 15000 20000 When measured immediately after the presentation of the
time last stimulus, the lastly presented patterns have their overlap
035 . . . above the background, that is, the last stimuli are always
1 ~0.05 remembered. This is the recency effect, which may disappear
030 Yeim = V-9 :
; when the measurement is performed later after the presenta-
025 tion of the last stimulus due to the intrinsic decay.
0z0l The latency effect, that is, the high probability of remem-
A bering the first stimulus in the list, is present when the
\E/ 0,15 stimuli are not too intense. Everything happens as if the first
010 stimulus had forced the network in a quasistable solution,
with a large decaying time, which weak stimuli cannot
0,05 strongly disturb. Strong enough stimuli, on the other hand,
e disrupt this solution and latency effects are not verified any-
0 5000 10000 15000 20000 more.
(®) time As we mentioned, there are several different protocols and
0.35 — . . . procedures to investigate short term memory, where the
1 Y, =0.03 noise level, number of items in the list, waiting times, simul-
0,30 ] taneous tasks, correlation between the items in the list, etc.,
0,25} are varied. It would certainly be interesting to investigate
0z0l whethe_r and if yes, under which cirCl_Jmstances, the present
A model is able to reproduce the experimental results.
E o015}
\%
0,10
0,05 F
= VI. DISCUSSION AND CONCLUSIONS
0 5000 10000 15000 20000 We have presented a model to simulate an associative
© time memory device, and we indicated how the different terms in

the model evolution equations could be realized by a net-
for u=1,...,10. At intervals of 1500 time stepgs;i, is added to work O.f neurons where mL_JItl-lnteracfuons and modulations of
a randomly chosen memorized pattern intengiyy.q=0.1, (b) these interactions are .taklng plgce in such a manner that t.he
0.05, and(c) 0.03. many neuron correlation functlc_)ns are alsq dyr_1am|c vari-
ables of the system. The model is very idealized in the sense
that all possible interactions and modulations are present and
it worked well as an associative device. It has the appeal of
equations with noise. We started with every intensity beingoointing in what direction all the wet machinery present in
zero and, after stabilizing the system, at intervaldfdfime  the brain may be acting to enhance its information process-
steps we added a fixed valyg;;,, to a randomly chosen ing abilities, and indicates the relative spiking phases to-
memorized pattern. We consider®d=20, T=1500, yi,,  gether with an assembly of neurons as quantities that should
=0.1, 0.05, and 0.03, with other parameters as in the prebe further monitored. On the other hand, the assumed inter-
ceding section. Figure 4 shows the time evolution of theactions in the information space may be too simple and the
average overlagm(u)) with time for u=1,...,10. The incorporation of so many more dynamic variabtgsm M to
presentation of each stimulus is clearly seen by the discont2™), besides the desirable fact of enhancing information pro-
nuity in the curves. When a new stimulus is presented, itsessing abilities, brings along the unwanted increase in the
overlap jumps from the background to a finite value. At thisdemands of computational resources to deal with realistic
instant, previously shown patterns suffer a decrease in theirtumbers of neurons.
overlap, which is interpreted as the interference mechanism The interactions in the information space are supported by
for memory loss. Simultaneously, several patterns have thesynapses and modulations among real neurons. A careful
overlaps above the background what may be interpreted amalysis of what terms are possible and what are not in real

FIG. 4. Time evolution of the average overlap(x)) with time
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systems is a necessary step to obtain a more realistic, or le$&e justification for this choice here is henaeposteriori
idealized, model of neuronal networks. However, in oursince they yield sensible results. However, a thorough ex-
opinion, the analysis should start from two different points ofperimental investigation must be performed before we can
view. At one end, we should consider only a few, more rel-state we have a first principle model for short term human
evant terms, supported by experimental evidence, where thmemory. Also, the second kind of term in the dynamical
first of these terms corresponds to the two neuron, Heblequations, that is, the pairing between neighbor patterns in
synapses. At the other end, the analysis should start by cuthe hypercube is intended to describe associative memory,
ting some terms from an ideal, optimal model and by study-but different couplings are possible to describe other brain
ing its performance as an information processor. The presefiinctions.

model could be the zeroth step of the investigation from the Nevertheless, we stress that a novel and strong point in
idealized system side. this approach is the transformation from the neuron network

We applied the model to describe short term memory inconfiguration space to the information space, which is made
humans and could find recency and latency effects, and twpossible by the consideration of more complex dynamical
different mechanisms of memory logdecay and interfer- units.
ence. In our opinion, these results are very encouraging,
since they link the results of experiments with human perfor-
mance and neuron dynamics.

The dynamics for the intensity function, as proposed by
Eqgs.(6) and(34), is certainly arbitrary. They have the vitue ~ We acknowledge partial financial support from Brazilian
of presenting Hebb-like terms in memorization-dependenagencies FAPERGS, CNPqg, and CAPES. We thank J.A.
terms, but these terms could have different functional formsQuillfeldt for fruitful discussions and valuable suggestions.
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